
IMA Journal of Numerical Analysis (2020) Page 1 of 30
doi:10.1093/imanum/drnxxx

Randomized sketch descent methods for non-separable linearly
constrained optimization

ION NECOARA†
Automatic Control and Systems Engineering Department, University Politehnica Bucharest,

060042 Bucharest, Romania

AND

MARTIN TAKÁČ‡
Industrial and Systems Engineering Department, Lehigh University, Bethlehem, PA 18015,

USA

[Received on 30 January 2019]

In this paper we consider large-scale smooth optimization problems with multiple linear coupled con-
straints. Due to the non-separability of the constraints, arbitrary random sketching would not be guar-
anteed to work. Thus, we first investigate necessary and sufficient conditions for the sketch sampling
to have well-defined algorithms. Based on these sampling conditions we develop new sketch descent
methods for solving general smooth linearly constrained problems, in particular, random sketch descent
and accelerated random sketch descent methods. From our knowledge, this is the first convergence anal-
ysis of random sketch descent algorithms for optimization problems with multiple non-separable linear
constraints. For the general case, when the objective function is smooth and non-convex, we prove for
the non-accelerated variant sublinear rate in expectation for an appropriate optimality measure. In the
smooth convex case, we derive for both algorithms, non-accelerated and accelerated random sketch de-
scent, sublinear convergence rates in the expected values of the objective function. Additionally, if the
objective function satisfies a strong convexity type condition, both algorithms converge linearly in expec-
tation. In special cases, where complexity bounds are known for some particular sketching algorithms,
such as coordinate descent methods for optimization problems with a single linear coupled constraint,
our theory recovers the best known bounds. Finally, we present several numerical examples to illustrate
the performances of our new algorithms.

Keywords: smooth optimization problems, linear coupled constraints, random sketch descent methods,
convergence rates.

1. Introduction

During the last decade first order methods, that eventually utilize also some curvature information, have
become the methods of choice for solving optimization problems of large sizes arising in all areas of hu-
man endeavor where data is available, including machine learning Necoara & Patrascu (2014); Richtárik
& Takáč (2014); Shalev-Shwartz & Zhang (2013), portfolio optimization Markowitz (1952); Frongillo &
Reid (2015), internet and multi-agent systems Ishii et al. (2012), resource allocation Necoara (2013); Xiao
& Boyd (2006) and image processing Wright (2012). These large-scale problems are often highly struc-
tured (e.g., we encounter sparsity in data, separability in objective function, convexity) and it is important
for any optimization method to take advantage of the underlying structure. It turns out that gradient-based
algorithms can really benefit from the structure of the optimization models arising in these recent applica-
tions Fercoq & Richtárik (2015); Nesterov (2012).

†Corresponding author. Email: ion.necoara@acse.pub.ro
‡Email: Takac.MT@gmail.com

c© The author 2020. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

2 of 30 I. NECOARA AND M. TAKÁČ

Why random sketch descent methods? The optimization problem we consider in this paper has the
following features: the size of data is very large so that usual methods based on whole gradient/Hessian
computations are prohibitive; moreover the constraints are coupled linear equalities. In this case, an
appropriate way to approach these problems is through sketch descent methods due to their low memory
requirements and low per-iteration computational cost. Sketching is a very general framework that covers
as a particular case the (block) coordinate descent methods Luo & Tseng (1993) when the sketch matrix
is defined by sampling columns of the identity matrix. Sketching was used, with a big success, to either
decrease the computation burden when evaluating the gradient in first order methods Nesterov (2012) or
to avoid solving the full Newton direction in second order methods Pilanci & Wainwright (2017). Another
crucial advantage of sketching is that for structured problems it keeps the computation cost low, while
preserving the amount of data brought from RAM to CPU as for full gradient or Newton methods, and
consequently allows for better CPUs utilization on modern multi-core machines. Moreover, in many
situations general sketching keeps the per-iteration running-time almost unchanged when compared to the
particular sketching of the identity matrix (i.e. comparable to coordinate descent). This, however, leads to
a smaller number of iterations needed to achieve the desired quality of the solution, as observed e.g., in
Qu et al. (2016).

In second order methods sketching was used to decrease the computation cost when evaluating the full
Hessian or to avoid solving the full Newton direction. In Pilanci & Wainwright (2017); Berahas et al.
(2017) a Newton sketch algorithm was proposed for unconstrained self-concordant minimization, which
performs an approximate Newton step, wherein each iteration only a sub-sampled Hessian is used. This
procedure significantly reduces the computation cost, and still guarantees superlinear convergence for
self-concordant functions. In Qu et al. (2016), a random sketch method was used to minimize a smooth
function which admits a non-separable quadratic upper-bound. In each iteration a block of coordinates
was chosen and a subproblem involving a random principal submatrix of the Hessian of the quadratic
approximation was solved to obtain an improving direction.

In first order methods particular sketching was used, by choosing as sketch matrix (block) columns of
the identity matrix, in order to avoid computation of the full gradient, leading to coordinate descent frame-
work. The main differences in all variants of coordinate descent methods consist in the criterion of choos-
ing at each iteration the coordinate over which we minimize the objective function and the complexity of
this choice. Two classical criteria are the cyclic and the greedy coordinate search, which significantly dif-
fers by the amount of computations required to choose the appropriate index. For cyclic coordinate search
estimates on the rate of convergence were given recently in Beck & Tetruashvili (2013); Gurbuzbalaban
et al. (2017); Sun & Ye (2016), while for the greedy coordinate search (e.g. Gauss-Southwell rule) the
convergence rates were given in Tseng & Yun (2009); Luo & Tseng (1993). Another approach is based
on random choice rule, where the coordinate search is random. Complexity results on random coordi-
nate descent methods for smooth convex objective functions were obtained in Nesterov (2012); Necoara
(2013). The extension to composite convex objective functions was given e.g. in Richtárik & Takáč
(2014); Necoara & Clipici (2016); Lu & Xiao (2015); Necoara & Patrascu (2014). Recently, accelerated
Fercoq & Richtárik (2015), parallel Necoara & Clipici (2016); Richtárik & Takáč (2016), asynchronous
Liu & Wright (2015) and distributed implementations Takáč et al. (2019) of coordinate descent methods
were also analyzed. Let us note that the idea of sketching was also successfully applied in various other
settings, including Wang et al. (2017); Richtárik & Takáč (2020).

Related work. However, most of the aforementioned sketch descent methods assume essentially un-
constrained problems, which at best allow separable constraints. In contrast, in this paper we consider
sketch descent methods for general smooth problems with linear coupled constraints. Particular sketching-
based algorithms, such as greedy coordinate descent, for solving linearly constrained optimization prob-
lems were investigated in Tseng & Yun (2009); Luo & Tseng (1993), while more recently in Beck (2014) a
greedy coordinate descent method is developed for minimizing a smooth function subject to a single linear
equality and additional bound constraints on variables. Random coordinate descent methods that choose
at least 2 coordinates at each iteration have been also proposed recently for solving convex problems with
a single linear coupled constraint in Necoara (2013); Necoara & Patrascu (2014); Necoara et al. (2017).

RANDOMIZED SKETCH DESCENT METHODS 3 of 30

In all these papers, detailed convergence analysis is provided for both, convex and non-convex settings.
Motivated by the work in Necoara et al. (2017) several recent papers have tried to extended the random
coordinate descent settings to multiple linear coupled constraints Frongillo & Reid (2015); Necoara &
Patrascu (2014); Reddi et al. (2015). In particular, in Reddi et al. (2015) an extension of the 2-random
coordinate descent method from Necoara et al. (2017) has been analyzed, however under conservative as-
sumptions, such as full rank condition on each block of the matrix describing the constraints. In Frongillo
& Reid (2015) a particular sketch descent method is proposed, where the sketch matrices specify arbitrary
subspaces that need to generate the kernel of the matrix describing the coupled constraints. However,
in the large-scale context and for general linear constraints it is difficult to generate such sketch matri-
ces. Other primal methods for solving linearly constrained convex problems are e.g., center-free gradient
methods Xiao & Boyd (2006) or Newton-based methods Wei et al. (2013). Another strand of the literature
on (linearly) constrained problems develops dual methods, such as augmented Lagrangian method (ALM)
Nedelcu et al. (2014) or alternating direction method of multipliers (ADMM) Hong & Luo (2017), which
embeds a coordinate descent strategy (Gaussian-Seidel decomposition) into each iteration of the ALM.
ADMM was originally proposed for problems with a two-block structure and recently extended to the
multi-block case, e.g. in Deng et al. (2017); Lin et al. (2016). Although, in general, ADMM is able to
solve more general structured problems, sketch descent methods have the advantage of keeping feasibility
throughout the iterations, while ADMM achieves feasibility only at the solution.

Our approach and contribution. Our approach introduces general sketch descent algorithms for
solving large-scale smooth optimization problems with multiple linear coupled constraints. Since we have
non-separable constraints in the problem formulation, a random sketch descent scheme needs to consider
new sampling rules for choosing the coordinates. We first investigate conditions on the sketching of the
coordinates over which we minimize at each iteration in order to have well-defined algorithms. Based on
these conditions we develop new random sketch descent methods for solving our linearly constrained opti-
mization problem, in particular, random sketch descent and accelerated random sketch descent algorithms.
Both methods start from a feasible initial point. However, unlike existing methods, such as coordinate de-
scent, our algorithms are capable of utilizing curvature information, which leads to striking improvements
in both theory and practice.
Our contribution. To this end, our main contribution can be summarized as follows:

(i) Since we deal with optimization problems having non-separable constraints we need to design
sketch descent schemes based on new sampling rules for choosing the sketch matrix. We derive necessary
and sufficient conditions on the sketching of the coordinates over which we minimize at each iteration
in order to have well-defined algorithms. To our knowledge, the algebraic conditions on the probability
distribution defining the sketch matrices from Section 2.3 are new for this class of optimization problems.

(ii) Furthermore, from our best knowledge, this paper is the first complete work on the convergence
analysis of random sketch descent type algorithms for problems with more than one linear constraint. Our
theoretical results consist of new optimization algorithms, accompanied with global convergence guaran-
tees to solve a wide class of non-separable optimization problems.

(iii) In particular, we propose a random sketch descent (RSD) algorithm for solving such general op-
timization problems with multiple coupling constraints. For the general case, when the objective function
is smooth and non-convex, we prove sublinear rate in expectation for an appropriate optimality measure.
In the smooth convex case we obtain in expectation an ε-accurate solution in at most O(1/ε) iterations,
while for strongly convex functions the method converges linearly.

(iv) We also propose an accelerated random sketch descent (A-RSD) algorithm. From our knowledge,
this is the first convergence analysis of an accelerated variant for optimization problems with non-separable
linear constraints. In the smooth convex case we obtain in expectation an ε-accurate solution in at most
O(1/

√
ε) iterations. For strongly convex functions the new accelerated random sketch descent method

converges linearly.

Let us emphasize the following points of our contribution. First, our sampling strategies are for multiple
linear constraints and thus very different from the existing methods designed only for one linear constraint

4 of 30 I. NECOARA AND M. TAKÁČ

(see Section 2.3). Second, we provide new convergence proofs for the random sketch descent method
(RSD) that differ from those given already for random coordinate descent (see Theorem 3.2 and Remark
3.1). Third, our accelerated random sketch descent method (A-RSD) is the first designed for this class
of problems and requires new proof techniques for deriving the convergence rates compared to standard
convergence proofs for accelerated gradient methods (see Theorems 4.2, 4.3, and Remark 4.1). Fourth,
our non-accelerated sketch descent algorithm covers as special cases some methods designed for problems
with a single linear constraint and coordinate sketch. In these special cases, where convergence bounds
are known, our theory recovers the best known bounds or leads to better bounds (see Remark 3.2). We
also illustrate, that for some problems, random sketching of the coordinates produces better results than
deterministic selection of them. Finally, our framework can be extend to other types of constraints, not
necessarily linear, as long as we are able to find an initial feasible point and to solve efficiently the corre-
sponding subproblem from each iteration (which, usually, it will not have a closed form solution as it is
the case for the linear constraints) or used to further develop other methods such as Newton-type schemes.

Content. The paper is organized as follows. Section 2 presents necessary and sufficient conditions for
the sampling of the sketch matrix. Sections 3 provides a full convergence analysis of the random sketch
descent method, while Section 4 derives the convergence analysis for an accelerated variant. Finally, in
Section 5 we present some numerical examples to illustrate the performances of our new algorithms.

1.1 Problem formulation

We consider the following general smooth optimization problem with multiple linear coupled constraints:

f ∗ = min
x∈Rn

f (x) s.t. Ax = b, (1.1)

where f : Rn→ R is a general differentiable function and A ∈ Rm×n, with m� n, is such that the feasible
set is nonempty. The last condition is satisfied if e.g. A has full row rank. Note that large n and small m
are the typical settings for sketching (coordinate descent) methods, see e.g. Beck (2014); Necoara et al.
(2017); Nesterov (2012). The simplest case is when n is large and m = 1, that is we have a single linear
constraint aT x = b, as considered in Beck (2014); Necoara (2013); Necoara & Patrascu (2014); Necoara
et al. (2017). Note that we do not necessarily impose f to be a convex function. From the optimality
conditions for our optimization problem (1.1) we have that x∗ ∈ Rn is a stationary point if there exists
some λ ∗ ∈ Rm such that:

∇ f (x∗)+AT
λ
∗ = 0 and Ax∗ = b.

However, if f is convex, then any x∗ satisfying the previous optimality conditions is a global optimum for
optimization problem (1.1). Let us define X∗ the set of these points. Therefore, x∗ ∈ X∗ is a stationary
(optimal) point if it is feasible and satisfies the condition:

∇ f (x∗) ∈ range(AT).

1.2 Motivation

We present below several important applications from which the interest for problems of type (1.1) stems.

1.2.1 Page ranking. This problem has many applications in Google ranking, network control, data
analysis Ishii et al. (2012); Nesterov (2012); Necoara (2013). For a given graph G let Ē ∈ Rn×n be its
incidence matrix, which is sparse. Define E = Ē diag(ĒT e)−1, where e ∈ Rn denotes the vector with all
entries equal to 1. Since ET e = e, i.e. the matrix E is column stochastic, the goal is to determine a vector
x∗ > 0 such that: Ex∗ = x∗ and eT x∗ = 1. This problem can be written directly in optimization form:

min
x∈Rn

f (x)
(

:=
1
2
‖Ex− x‖2

)
s.t. eT x = 1,

which is a particular case of our optimization problem (1.1) with m = 1 and E sparse matrix.

RANDOMIZED SKETCH DESCENT METHODS 5 of 30

1.2.2 Machine learning. Consider the optimization problem associated with the loss minimization of
linear predictors without regularization for a training data set containing n observations ai ∈ Rm Shalev-
Shwartz & Zhang (2013):

min
w∈Rm

1
n

n

∑
i=1

φi(wT ai).

Here φi is some loss function, e.g. SVM φi(z) = max{0,1− yiz}, logistic regression φi(z) = log(1 +
exp(−yiz)), ridge regression φi(z)= (z−yi)

2, regression with the absolute value φi(z)= |z−yi| and support
vector regression φi(z) = max{0, |z−yi|−v} for some predefined insensitivity parameter v > 0. Moreover,
in classification the labels yi ∈ {−1,1}, while in regression yi ∈ R. Further, let φ ∗i denote the Fenchel
conjugate of φi. Then the dual of this problem becomes:

min
x∈Rn

f (x)

(
=

1
n

n

∑
i=1

φ
∗
i (xi)

)
s.t. Ax = 0,

where A = [a1 · · ·an] ∈ Rm×n. Clearly, this problem fits into our model (1.1), with m representing the
number of features, n the number of training data, and the objective function f is separable.

1.2.3 Portfolio optimization. In the basic Markowitz portfolio selection model Markowitz (1952), see
also Frongillo & Reid (2015) for related formulations, one assumes a set of n assets, each with expected
returns µi, and a covariance matrix Σ ∈ Rn×n, where Σ(i, j) is the covariance between returns of assets i
and j. The goal is to allocate a portion of the budget into different assets, i.e. xi ∈ R represents a portion
of the wealth to be invested into asset i, leading to the first constraint: ∑

n
i=1 xi = 1. Then, the expected

return (profit) is r = ∑
n
i=1 µixi and the variance of the portfolio can be computed as ∑i, j xix jΣ(i, j). The

investor seeks to minimize risk (variance) and maximize the expected return, which is usually formulates
as maximizing profit while limiting the risk or minimizing risk while requiring given expected return. The
later formulation can be written as:

min
x∈Rn

xT
Σx s.t.

n

∑
i=1

µixi = r,
n

∑
i=1

xi = 1,

which clearly fits again into our optimization model (1.1) with m = 2. We can further assume that each
asset belongs exactly to one class c ∈ [C], e.g. financials, health care, industrials, etc. The investor would
like to diversify its portfolio in such a way that the net allocation in class c is ac: ∑

n
i=1 xi1c(i) = ac for all

c ∈ [C], where 1c(i) = 1 if asset i is in class c and 1c(i) = 0 otherwise. One can observer that in this case
we get a similar problem as above, but with C additional linear constraints (m =C+2).

2. Random sketching

It is important to note that stochasticity enters in our algorithmic framework through a user-defined distri-
bution S describing an ensemble of random matrices S ∈ Rn×p (also called sketch matrices). We assume
that p� n, in fact we usually require p ∼ O(m) and note that p can also be random (i.e. the S can
return matrices with different p). Our schemes and the underlying convergence theory support virtually
all thinkable distributions. The choice of the distribution should ideally depend on the problem itself, as it
will affect the convergence speed. However, for now we leave such considerations aside. The basic idea
of our algorithmic framework consists of a given feasible x, a sample sketch matrix S ∼S and a basic
update of the form:

x+ = x+Sd such that ASd = 0, (2.1)

where the requirement ASd = 0 ensures that the new point x+ will remain feasible. Clearly, one can choose
a distribution S which will not guarantee convergence to stationary/optimal point. Therefore, we need to
impose some minimal necessary conditions for such a scheme to be well-defined. In particular, in order to

6 of 30 I. NECOARA AND M. TAKÁČ

avoid trivial updates, we need to choose S∼S such that the homogeneous linear system ASd = 0 admits
also nontrivial solutions, that is we require:

range(S)∩ker(A) 6= 0. (2.2)

Moreover, since for any feasible x0 an optimal solution satisfies x∗ ∈ x0 +ker(A), it is necessary to require
that with our distribution S we can generate ker(A):

ker(A) = Span(∪S∼S (range(S)∩ker(A))) . (2.3)

Note that the geometric conditions (2.2)-(2.3) are only necessary for a sketch descent type scheme to be
well-defined. However, for a discrete probability distribution, having e.g. the property that P(S) > 0 for
all S∼S , condition (2.3) is also sufficient. In Section 2.3 (see Assumption 2.2) we will provide sufficient
conditions for a general probability distribution S in order to obtain well-defined algorithms based on
such sketching. Below we provide several examples of probability distributions satisfying our geometric
conditions (2.2)-(2.3).

2.1 Example 1 (finite case)

Let us consider a finite (or even countable) probability distribution S . Further, let x0 be a particular
solution of the linear system Ax = b. For example, if A† denotes the pseudo-inverse of the matrix A, then
we can take x0 = A†b. Moreover, by the properties of the pseudo-inverse, In−A†A is a projection matrix
onto ker(A), that is range(In−A†A) = ker(A). Therefore, any solution of the linear system Ax = b is:

x = A†b+(In−A†A)y,

for any y ∈ Rn. Thus, we may consider a finite (the extension to countable case is straightforward) set
of matrices Ω = {Si ∈ Rn×p : i = 1 : N} endowed with a probability distribution Pi = P(S = Si) for all
i ∈ [N] and condition (2.3) requires that the span of the image spaces of {Si}N

i=1 contains or is equal to
range(In−A†A):

ker(A) = range(In−A†A) = Span(∪i:Pi>0(range(Si)∩ker(A))) . (2.4)

In particular, we have several choices for the sampling for a finite distribution:

Kernel sketching: If one can compute a basis for ker(A), then we can take as random sketch matrix
Si ∈Rn×p any block of p elements of this basis endowed with some probability Pi = P(S = Si)> 0 (for the
case p = 1 the matrix Si represents a single element of this basis generating ker(A)). This sampling was
also considered in Frongillo & Reid (2015). Clearly, in this particular case condition (2.2) and condition
(2.3) or equivalently (2.4) hold since ker(A) = Span

(
∪N

i=1 range(Si)
)
.

Coordinate sketching: However, for a general matrix A it is difficult to compute a basis of ker(A). A
simple alternative is to consider then any p-tuple N = (i1 · · · ip) ∈ 2[n], with p > m, and the corresponding
random sketch matrix SN = [ei1 · · ·eip], where ei denotes the ith column of the identity matrix In, with
some probability distribution PN over the set of p-tuples in 2[n]. It is clear that for this choice condition
(2.2) and condition (2.3) or equivalently (2.4) also hold. For the particular case when we have a single
linear coupled constraint, i.e. aT x = b, we can take random matrices S(i j) = [ei e j] also considered e.g. in
Necoara (2013). This particular sketch matrix based on sampling columns of the identity matrix leads to
coordinate descent framework. However, the other examples (including those from Section 2.2) show that
our sketching framework is more general than coordinate descent.

General sketching: Instead of working with the matrix In, as considered previously, we can take any
orthogonal or full rank matrix I ∈Rn×n having the columns Ii and thus forming a basis of Rn. Then, we
can consider p tuples N = (i1, · · · , ip) ∈ 2[n], with p > m, and the corresponding random sketch matrix
SN = [Ii1 · · ·Iip], with some probability distribution PN over the set of p-tuples in 2[n]. Clearly, for this
choice of the random sketch matrices S the conditions (2.2) and (2.3) or equivalently (2.4) still hold.

RANDOMIZED SKETCH DESCENT METHODS 7 of 30

2.2 Example 2 (infinite case)

Let us now consider a continuous (uncountable) probability distribution S . We can consider in this case
two simple sampling strategies:

Kernel sketching: If one can sample easily a random matrix B such that range(B) = ker(A), then choose
one or several columns from this matrix as a sketch matrix S. In this case p> 1.

General sketching: Alternatively, we can sample random full rank matrices in Rn×n and then define S
to be random p > m columns. Furthermore, since it is known that random Gaussian matrices are full rank
almost surely, then we can define S ∼N n×p to be a random Gaussian matrix. Similarly, we can consider
random uniform matrices and define e.g. S∼ Unif(−1,1)n×p.
A sufficient condition for a well-defined sampling in the infinite case is to ensure that in expectation one
can move in any direction in ker(A). Considering the general update rule (2.1), we see that if we sample
S ∈ Rn×p, then our update can be only Sd for some d ∈ Rp. Now, we also have a condition, that we want
to stay in the ker(A), and therefore d cannot be anything, but has to be chosen such that Sd ∈ ker(A). Now,
this restricts the set of possible d’s to be such that:

ASd = 0 ⇒ d = (Ip− (AS)†(AS))t

for some t ∈ Rp. Recall, that we allow p to be also random, hence to derive the sufficient condition we
need to have some quantity with dimension independent on p. Note that each t ∈ Rp can be represented
as t = ST t ′+ t ′′ for some t ′ ∈ Rn and t ′′ ∈ ker(S). Hence, we see that if S is a general matrix and t ∈ Rp,
then we can move in the direction:

Sd = S(I− (AS)†(AS))t = S(I− (AS)†(AS))(ST t ′+ t ′′) = S(I− (AS)†(AS))ST t ′,

since St ′′ = 0. Hence, we have the ability to move in range
(
S(I− (AS)†(AS))ST

)
. Now, the condition to

be able to move in ker(A) can be expressed as requiring that on expectation we can move anywhere in
ker(A):

range
(
E
[
S(I− (AS)†(AS))ST])= ker(A), (2.5)

provided that the expectation exists and is finite. Note, that this condition must hold also for a discrete
probability distribution, however the condition (2.3) is more intuitive in the discrete case. In the next
section we provide algebraic sufficient conditions on the sampling for a general probability distribution S
in order to obtain well-defined algorithms.

2.3 Sufficient conditions for sketching

It is well known that in order to derive any reasonable convergence guarantees for a minimization scheme
we need to impose some smoothness property on the objective function. Therefore, throughout the paper
we consider the following blanket assumption on the smoothness of f :

ASSUMPTION 2.1 For any feasible x0 there exists a positive semidefinite matrix M such that M is
positive definite on ker(A) and the following inequality holds:

f (y)6 f (x)+ 〈∇ f (x),y− x〉+ 1
2
(y− x)T M(y− x), ∀x,y ∈ x0 +ker(A). (2.6)

Note that for a general (possibly non-convex) differentiable function f the smoothness inequality (2.6)
does not imply that the objective function f has Lipschitz continuous gradient, so our assumption is less
conservative than requiring Lipchitz gradient assumption. Note that when f is convex the condition (2.6) is
equivalent with Lipschitz continuity of the gradient of f on x0+ker(A), see Nesterov (2013). In particular,
if M = L · In for some Lipschitz constant L > 0 we recover the usual definition of Lipschitz continuity of
the gradient for the class of convex functions. However, (2.6) allows for our methods to take into account
more structure on the objective function, when this is available. For example, if the objective function

8 of 30 I. NECOARA AND M. TAKÁČ

is quadratic we can choose M as the Hessian, and our methods can be interpreted as novel extensions to
more general optimization models of the recently introduced iterative Hessian sketch method for minimiz-
ing self-concordant objective functions Pilanci & Wainwright (2017). If the objective function is separable,
i.e. f (x) = ∑i fi(xi) as in the dual SVM application from Section 1.2.2, and there exist constants Mi > 0
such that f ′′i (xi) 6 Mi, we can choose M = diag(Mi, i ∈ [n]). Finally, there are many application having
the objective function of the form f (x) = g(M̄x) for some appropriate matrix M̄ and some smooth convex
function g, as in page ranking (see Section 1.2.1) or portfolio optimization (see Section 1.2.3). For this
case, if Lg is an upper bound on the Hessian of g on the ker(A), then we can easily compute an M satisfying
Assumption 2.1 as M = LgM̄T M̄, whereas obtaining the classical bound LIn is a computationally more in-
tensive task and would lead to worse theoretical convergence speed. In conclusion, our sketching methods
derived below are based on (2.6) and therefore they have the capacity to utilize curvature information, this
leading usually to striking improvements in theory and practice.
The reader should also note that we can further relax the condition (2.6) and require smoothness of f with
respect to any image space generated by the random matrix S. More precisely, it is sufficient to assume
that for any sample S ∼S there exists a positive semidefinite matrix MS such that MS is positive definite
on ker(A)∩ range(S) and the following inequality holds:

f (y)6 f (x)+ 〈∇ f (x),y− x〉+ 1
2
(y− x)T MS(y− x) ∀x,y ∈ x0 +ker(A) ∧ x− y ∈ range(S).

Note that if MS = M for all S we recover the relation (2.6). For simplicity of the exposition in the sequel
we assume (2.6) to be valid, although all our convergence results can be also extended under previous
smoothness condition given in terms of MS.
From the above discussion it is clear that the direction d in our basic update (2.1) needs to be in the kernel
of matrix AS. However, it is well known that the projection onto ker(AS) is given by the projection matrix:

PS = Ip− (AS)†(AS).

Clearly, we have ker(AS) = range(PS). Let us further define the symmetric matrix:

ZS = SPS(PT
S ST MSPS)

†PT
S ST ∈ Rn×n. (2.7)

The matrix ZS plays a key role in the accelerated and non-accelerated random sketch algorithms we propose
in the sequel. For example, both algorithms have an update step of the form xk+1 = xk−ZS∇ f (xk) (see
Sections 3 and 4). Hence, we derive below some important properties for the matrix ZS, since they are
useful for algorithm development. First we observe that:

LEMMA 2.1 For any probability distribution S the matrix ZS is symmetric (ZS = ZT
S), positive semidef-

inite (ZS � 0), and for any u ∈ range(AT) we have ZSu = 0, that is range(AT) ⊆ ker(ZS). Moreover, the
following identity holds ZSMZS = ZS.

Proof. It is clear that ZS is positive semidefinite matrix since M is assumed positive semidefinite. It is
well-known that for any given matrix B its pseudo-inverse satisfies BB†B = B and B†BB† = B†. Now, for
the first statement given the expression of ZS it is sufficient to prove that PT

S ST u = 0 for u ∈ range(AT).
However, if u ∈ range(AT) then there exists y such that u = AT y and consequently we have:

PT
S ST u = PT

S ST AT y = (I− (AS)†(AS))T (AS)T y

= [(AS)(I− (AS)†(AS))]T y

= ((AS)− (AS)(AS)†(AS))T y = 0,

where in the last equality we used the first property of pseudo-inverse (AS)(AS)†(AS) =AS. For the second
part of the lemma we use the expression of ZS and the second property of the pseudo-inverse applied to
the matrix (PT

S ST MSPS)
†, that is:

ZSMZS = [SPS(PT
S ST MSPS)

†PT
S ST]M[SPS(PT

S ST MSPS)
†PT

S ST] = ZS,

which concludes our statements. �

RANDOMIZED SKETCH DESCENT METHODS 9 of 30

Now, since the random matrix ZS is positive semidefinite, then we can define its expected value, which is
also a symmetric positive semidefinite matrix:

Z = ES[ZS]. (2.8)

In the sequel we also consider the following assumption on the expectation matrix Z:

ASSUMPTION 2.2 We assume that the distribution S is chosen such that ZS has a finite mean, that is
the matrix Z is well defined, and positive definite (notation Z � 0) on ker(A).

It is straightforward to see that this assumption holds automatically for all the examples from Section 2.1,
provided that M is positive definite matrix. As we will see below, Assumption 2.2 is a sufficient condition
on the probability distribution S in order to ensure convergence of our algorithms that will be defined in
the sequel. To our knowledge our algebraic characterization of the probability distribution defining the
sketch matrices S for problems with multiple non-separable linear constraints seems to be new.

Note that the necessary condition (2.2) holds provided that ZS 6= 0. Indeed, from Lemma 2.1 we have
range(AT)⊆ ker(ZS) for all S∼S and ker(ZS)⊥ range(ZS). Therefore, we get that range(AT)⊥ range(ZS)
and we know that range(AT) ⊥ ker(A). Let z ∈ range(ZS) ⊆ Rn, z 6= 0, then there exists unique z1 ∈
range(AT) and z2 ∈ ker(A) such that z = z1 + z2. Moreover, we have z ⊥ range(AT), i.e. z ⊥ z1, which
implies that 〈z1 + z2,z1〉= ‖z1‖2 +0 = 0. Thus, z1 = 0 and z ∈ ker(A). From the last relation, we get:

range(ZS)⊆ ker(A).

Moreover, from the definition of the symmetric matrix ZS we have range(ZS)⊆ range(S), which combined
with the previous relation leads to:

range(ZS)⊆ ker(A)∩ range(S),

and consequently proving that the condition (2.2) holds provided that ZS 6= 0. Moreover, we can show that
the necessary condition (2.3) holds if Z satisfies Assumption 2.2.

LEMMA 2.2 If Assumption 2.2 holds, then the following identity takes place

range(AT) = ker(Z)

and consequently Z†Z is a projection matrix onto ker(A), where Z† denotes the pseudo-inverse of the
matrix Z. Moreover, the necessary condition (2.3) is also valid.

Proof. First we note that Z � 0 on ker(A), if and only if Z � 0 on Rn \ range(AT). Indeed, since
ker(A) ⊆ (Rn \ range(AT))∪{0}, one direction of the equivalence is straightforward. In order to prove
the other direction of the equivalence, we first note from Lemma 2.1 that Zu = 0 for any u ∈ range(AT).
Now, any x ∈ Rn \ range(AT) can be written as x = AT λ + x⊥, where λ ∈ Rm and x⊥ ∈ ker(A)\{0}, and
consequently xT Zx = (AT λ + x⊥)T Z(AT λ + x⊥) = xT

⊥Zx⊥ > 0, which proves the equivalence.
Furthermore, for proving the first part of the lemma we use that range(AT) ⊆ ker(ZS) for all S ∼ S
(see Lemma 2.1). This means that range(AT) ⊆ ∩S∼S ker(ZS) ⊆ ker(Z). The other inclusion follows by
contradiction. Indeed, let us assume that there exists u 6∈ range(AT) such that Zu = 0, or equivalently Zu =
0 for some u∈Rn \ range(AT). However, note that Z � 0 on ker(A) if and only if Z � 0 on Rn \ range(AT),
which contradicts our assumption. Moreover, it is well-known that Z†Z is an orthogonal projector onto
range(Z) and the rest follows from standard algebraic arguments. In conclusion, the first statement holds.
For the second part of the lemma we observe that for any non-zero u ∈ ker(A), we have Zu 6= 0, that is
u 6∈ ker(Z). In conclusion, we get ker(A)⊆ (Rn \ker(Z))∪{0}. But, range(Z)⊆ Span(∪S∼S range(ZS)),
from which we can conclude ker(A)⊆ Span(∪S∼S range(ZS)) and consequently condition (2.3) holds. �

The primal-dual ”norms”. Since the matrix ZS is positive semidefinite, matrix Z is also positive semidef-
inite. Moreover, from Lemma 2.1 we conclude that range(AT) ⊆ ker(Z). In the sequel we assume that

10 of 30 I. NECOARA AND M. TAKÁČ

S ∼S such that Z is a positive definite matrix on ker(A) and consequently on Rn \ range(AT) (see As-
sumption 2.2). Then, we can define a norm induced by the matrix Z on ker(A) or even Rn \ range(AT).
This norm will be used subsequently for measuring distances in the subspace ker(A). More precisely, we
define the primal norm induced by the positive semidefinite matrix Z as:

‖u‖Z =
√

uT Zu ∀u ∈ Rn.

Note that ‖u‖Z = 0 for all u ∈ range(AT) (see Lemma 2.1) and ‖u‖Z > 0 for all u ∈ Rn \ range(AT). On
the subspace ker(A) we introduce the extended dual norm:

‖x‖∗Z = max
u∈Rn:‖u‖Z61

〈x,u〉 ∀x ∈ ker(A).

Using the definition of conjugate norms, the Cauchy-Schwartz inequality holds:

〈u,x〉6 ‖u‖Z · ‖x‖∗Z ∀x ∈ ker(A), u ∈ RN . (2.9)

LEMMA 2.3 Under Assumption 2.2 the primal and dual norms have the following expressions:

‖u‖Z =
√

uT Zu, ‖x‖∗Z =
√

xT Z†x ∀u ∈ Rn, ∀x ∈ ker(A). (2.10)

Proof. Let us consider any û ∈ range(AT). Then, the dual norm can be computed for any x ∈ ker(A) as:

‖x‖∗Z = max
u∈Rn: 〈Zu,u〉61

〈x,u〉= max
u:〈Z(u−û),u−û〉61

〈x,u− û〉

= max
u:〈Zu,u〉61,u∈ker(A)

〈x,u〉= max
u:〈Zu,u〉61,Au=0

〈x,u〉= max
u:〈Zu,u〉61,uT AT Au60

〈x,u〉

= min
ν ,µ>0

max
u∈Rn

[〈x,u〉+µ(1−〈Zu,u〉)−ν〈AT Au,u〉]

= min
ν ,µ>0

µ + 〈(µZ +νAT A)−1x,x〉= min
ν>0

min
µ>0

[µ +
1
µ
〈(Z +

ν

µ
AT A)−1x,x〉]

= min
ζ>0

√
〈(Z +ζ AT A)−1x,x〉.

We obtain an extended dual norm that is well defined on the subspace ker(A):

‖x‖∗Z = min
ζ>0

√
〈(Z +ζ AT A)−1 x,x〉 ∀x ∈ ker(A). (2.11)

The eigenvalue decomposition of the positive semidefinite matrix Z can be written in the following form
Z = Udiag(λ1, · · · ,λr,0, · · · ,0)UT , where λi are its positive eigenvalues and the columns of orthogonal
matrix U = [Uker Urange] are the corresponding eigenvectors, Uker generating ker(A) and Urange generating
range(AT). Then, we have:

(Z +ζ AT A)−1 =Udiag(λ1, · · · ,λr,ζ λr+1, · · · ,ζ λn)
−1UT ,

where λr+1, · · · ,λn are the nonzero eigenvalues of symmetric matrix AT A. From (2.11) it follows that our
newly defined dual norm has the following closed form:

‖x‖∗Z =
√

xT Z†x ∀x ∈ ker(A),

where Z† denotes the pseudoinverse of matrix Z. �

The following example shows that the 2-coordinate sampling proposed in Necoara et al. (2017) (in the
presence of a single linear constraint m = 1) is just a special case of the sketching analyzed in this paper:

RANDOMIZED SKETCH DESCENT METHODS 11 of 30

EXAMPLE 2.3 Let us consider the following optimization problem:

f (x) =
n

∑
i=1

fi(xi) subject to
n

∑
i=1

xi = b.

In this case, assuming that each scalar function fi has Li Lipschitz continuous gradient, then we consider
M = diag(L1, · · · ,Ln). Moreover, we can take any random pair of coordinates (i, j) with i, j = 1 : n, i < j
and consider the particular sketch matrix S(i j) = [ei e j]. Note that, for simplicity, we focus here on Lipschitz
dependent probabilities for choosing the pair (i, j), that is P(i, j) = (Li +L j)/((n− 1)L) with L = ∑

n
i=1 Li.

Following basic derivations we get:

Z(i j) =
1

Li +L j
S(i j)

[
1 −1
−1 1

]
ST
(i j) =

1
Li +L j

(ei− e j)(ei− e j)
T ,

Z =
n

(n−1)L

(
In−

1
n

eeT
)
, Z† =

(n−1)L
n

(
In−

1
n

eeT
)
. (2.12)

Clearly, Z � 0 on ker(A) and thus Assumption 2.2 holds. Similarly, we can compute explicitly Z and Z†

for the fixed selection of the pair of coordinates (i, i+1) with i = 1 : n−1.

3. Random Sketch Descent (RSD) algorithm

For the large-scale optimization problem (1.1) methods which scale cubically, or even quadratically, with
the problem size n is already out of the question; instead, linear scaling of the computational costs per-
iteration is desired. Clearly, optimization problem (1.1) can be solved using projected first order methods,
such as gradient or accelerated gradient, both algorithms having comparable cost per iteration Nesterov
(2013). In particular, both methods require the computation of the full gradient ∇ f (x) and finding the
optimal solution of a subproblem with quadratic objective over the subspace ker(A)⊂ Rn:

min
d∈Rn:Ad=0

f (x)+ 〈∇ f (x),d〉+ 1
2

dT Md. (3.1)

For example, for the projected gradient method since we assume M positive definite on ker(A) (see As-
sumption 2.1), then the previous subproblem has a unique solution leading to the following gradient itera-
tion:

xk+1
G = xk

G−ZIn∇ f (xk
G), (3.2)

where ZIn ∈ Rn×n is obtained by replacing S = In in the definition of the matrix ZS. However, for very
large n even the first iteration is not computable, since the cost of computing ZIn is cubic in the problem
dimension (i.e. of order O(n3) operations) for general matrix M. Moreover, since usually ZIn is a dense
matrix regardless of the matrix M being dense or sparse, the cost of the subsequent iterations is quadratic
in the problem size n (i.e. O(n2)). Hence, full gradient type methods are prohibitive when n is large and
m is small. Therefore, the development of new optimization algorithms that target linear cost per iteration
and nearly dimension-independent convergence rate is needed. These properties can be achieved using
the sketch descent framework. In particular, let us assume that the initial iterate x0 is a feasible point,
i.e. Ax0 = b. Then, the first algorithm we propose, Random Sketch Descent (RSD) algorithm, chooses
at each iteration a random sketch matrix S ∈ Rn×p according to the probability distribution S and find
a new direction solving a simple subproblem (see Algorithm 1 below). Let us explain the update rule of
our algorithm RSD. Note that the new direction in the update xk+1 = xk +Sdk of RSD is computed from

12 of 30 I. NECOARA AND M. TAKÁČ

Algorithm 1 Algorithm RSD

1: choose x0 ∈ Rn such that Ax0 = b
2: for k > 0 do
3: Sample S∼S and perform the update:
4: xk+1 = xk−ZS∇ f (xk).
5: end for

a subproblem with quadratic objective over the subspace ker(AS)⊂ Rp that it is simpler than subproblem
(3.1) corresponding to the full gradient:

dk = arg min
d∈Rp:ASd=0

f (xk)+ 〈∇ f (xk),Sd〉+ 1
2

dT ST MSd. (3.3)

We observe that from the feasibility condition ASd = 0 we can compute d as:

d = PSt
(
:= (Ip− (AS)†(AS))t

)
,

for some t. Then, the constrains will not be violated. Now, let’s plug this into the objective function of the
subproblem, to obtain an unconstrained problem in t:

tk = arg min
t∈Rp
〈∇ f (xk),S((Ip− (AS)†(AS))t)〉+ 1

2
‖S(Ip− (AS)†(AS))t‖2

M.

Then, from the first order optimality conditions we obtain that:

PT
S ST MSPStk =−PT

S ST
∇ f (xk),

and hence we can define tk as
tk =−(PT

S ST MSPS)
†PT

S ST
∇ f (xk).

In conclusion we obtain the following update rule for our RSD algorithm:

xk+1 = xk−SPS(PT
S ST MSPS)

†PT
S ST

︸ ︷︷ ︸
=ZS

∇ f (xk) = xk−ZS∇ f (xk). (3.4)

After k iterations of the RSD algorithm, we generate a random output (xk, f (xk)), which depends on the
observed implementation of the random variable:

Fk = (S0, · · · ,Sk−1).

Let us define the expected value of the objective function w.r.t. Fk:

φk = E
[

f (xk)
]
.

Next, we compute the decrease of the objective function after one random step:

f (xk+1) = f (xk +SPStk) = f (xk−ZS∇ f (xk))

(2.6)
6 f (xk)−〈∇ f (xk),ZS∇ f (xk)〉+ 1

2
‖ZS∇ f (xk)‖2

M

= f (xk)−〈∇ f (xk),ZS∇ f (xk)〉+ 1
2

∇ f (xk)T ZSMZS∇ f (xk)

= f (xk)−〈∇ f (xk),ZS∇ f (xk)〉+ 1
2

∇ f (xk)T ZS∇ f (xk)

= f (xk)− 1
2
〈∇ f (xk),ZS∇ f (xk)〉. (3.5)

RANDOMIZED SKETCH DESCENT METHODS 13 of 30

Then, we obtain the following strict decrease for the objective function in the conditional expectation:

E[f (xk+1)|Fk]6 f (xk)− 1
2
‖∇ f (xk)‖2

Z , (3.6)

provided that xk is not optimal. This holds since we assume that Z � 0 on Rn \ range(AT) and since any
feasible x satisfying ∇ f (x) ∈ range(AT) is optimal for the original problem. Therefore, RSD algorithm
belongs to the class of descent methods.

3.1 Computation cost per-iteration for RSD

It is easy to observe that if the cost of updating the gradient ∇ f is negligible, then the cost per iteration in
RSD is given by the computational effort of finding the solution of the subproblem. The sketch sampling
S can be completely dense (e.g. Gaussian random matrix) or can be extremely sparse (e.g. a few columns
of the identity matrix).

Case 1: dense sketch matrix S. In this case, since we assume p� n (in fact we usually choose p of
order O(m) or even smaller), then the computational cost per-iteration in the update (3.4) is linear in n
(more precisely of order O(pmn)) plus the cost of computing the matrix ST MS ∈ Rp×p. Clearly, if M is
also a dense matrix, then the cost of computing the matrix ST MS is quadratic in n. However, it can be
reduced substantially, that is the cost of computing this matrix depends linearly on n, when e.g. we have
available a decomposition of the matrix M as M = M̄T M̄, with M̄ ∈ R p̄×n and p̄� n, or M is sparse.

Case 2: sparse sketch matrix S. For simplicity, we can assume that S is chosen as few columns of the
identity matrix and thus obtaining a coordinate descent type method. In this case, the cost per-iteration of
RSD is independent of the problem size n. For example, the cost of computing (AS)† is O(m2 p), while
the cost of computing (PT

S ST MSPS)
† is O(p3).

In conclusion, in all situations the iteration (3.4) of RSD is much computationally cheaper (at least one
order of magnitude) than the iteration (3.2) corresponding to the full gradient. Based on the decrease of
the objective function (3.6) we can derive different convergence rates for our algorithm RSD depending
on the assumptions imposed on the objective function f .

3.2 Convergence rate: smooth case

We derive in this section the convergence rate of the sequence generated by the RSD algorithm when the
objective function is only smooth (Assumption 2.1). Recall that in the non-convex settings a feasible x∗

is a stationary point for optimization problem (1.1) if ∇ f (x∗) ∈ range(AT). On the other hand, for any
feasible x we have the unique decomposition of ∇ f (x) ∈ Rn:

∇ f (x) = AT
λ +∇ f (x)⊥, where λ ∈ Rm, ∇ f (x)⊥ ∈ ker(A).

It is clear that if a feasible x satisfies ∇ f (x)⊥ = 0, then such an x is a stationary point for (1.1). In
conclusion, a good measure of optimality for a feasible x is described in terms of ‖∇ f (x)⊥‖. The theorem
below provides a convergence rate for the sequence generated by RSD in terms of this optimality measure:

THEOREM 3.1 Let f be bounded from below, i.e. there exists f̄ > −∞ such that minx∈x0+ker(A) f (x) > f̄
and Assumptions 2.1 and 2.2 hold. Then, the iterates of RSD have the following sublinear convergence
rate in expectation:

min
06l6k−1

E[‖∇ f (xl)⊥‖2
Z]6

2(f (x0)− f̄)
k

. (3.7)

Proof. Taking expectation over the entire history Fk in (3.6) we get:

φk+1 6 φk−
1
2

E[‖∇ f (xk)‖2
Z]. (3.8)

14 of 30 I. NECOARA AND M. TAKÁČ

Summing the previous relation and using that f is bounded from below we further get:

k−1

∑
l=0

E[‖∇ f (xl)‖2
Z]6 2(φ0−φk)6 2(φ0− f̄).

Using the unique decomposition ∇ f (xl) = AT λ l +∇ f (xl)⊥ for all l and since ker(Z) = range(AT), then
we obtain ‖∇ f (xl)‖2

Z = ‖∇ f (xl)⊥‖2
Z . Therefore, taking the limit as k → ∞ we obtain the asymptotic

convergence limk→∞ E[‖∇ f (xk)⊥‖2
Z] = 0. Moreover, since Z � 0 on ker(A) and ∇ f (xl)⊥ ∈ ker(A) we also

get:

min
06l6k−1

E[‖∇ f (xl)⊥‖2
Z]6

2(f (x0)− f̄)
k

,

which concludes our statement. �

3.3 Convergence rate: smooth convex case

In the next theorem we prove sublinear convergence for RSD in expected value of the objective function
in the smooth convex case:

THEOREM 3.2 Let the objective function f be convex and Assumptions 2.1 and 2.2 hold. Let also de-
fine c = λmax(M−1/2Z†M−1/2) < ∞. Then, the iterates generated by RSD have the following sublinear
convergence rate in the expected value of the objective function:

φk− f ∗ 6
1

k+ c

(
1
2

min
x∗∈X∗

‖x0− x∗‖2
Z† + c(f (x0)− f ∗)

)
(3.9)

Proof. Recall that all our iterates are feasible, i.e. xk ∈ x0 + ker(A). Let us define r2
k = (‖xk− x∗‖∗Z)2 =

‖xk− x∗‖2
Z† . Then, we have:

r2
k+1 = ‖xk+1− x∗‖2

Z† = ‖xk−ZS∇ f (xk)− x∗‖2
Z†

= r2
k −2(xk− x∗)T Z†ZS∇ f (xk)︸ ︷︷ ︸

:=T1

+‖ZS∇ f (xk)‖2
Z†︸ ︷︷ ︸

:=T2

. (3.10)

In the following we find the appropriate bounds for the two terms T1 and T2, respectively. For the term T1
by taking conditional expectation with respect to Fk we obtain:

E[T1|Fk] = E[(xk− x∗)T Z†ZS∇ f (xk)|Fk] = (xk− x∗)T Z†Z ∇ f (xk).

Moreover, we have that xk− x∗ ∈ ker(A), or equivalently by Lemma 2.2, xk− x∗ ∈ range(ZT) = range(Z),
since Z is symmetric matrix. Therefore, there exists some uk such that xk− x∗ = Zuk, and by utilizing the
fact that Z = ZZ†Z, we can continue the above equality as:

E[T1|Fk] =
(

ZZ†Zuk
)T

∇ f (xk) = (Zuk)T
∇ f (xk) = (xk− x∗)T

∇ f (xk). (3.11)

Now, we also derive a bound for the second term T2. From the definition of c = λmax(M−1/2Z†M−1/2), it
follows that Z† � cM. Then, we get:

T2 = ‖ZS∇ f (xk)‖2
Z† = ∇ f (xk)T ZT

S Z†ZS∇ f (xk)

6 ∇ f (xk)T ZT
S (cM)ZS∇ f (xk) = c∇ f (xk)T ZS∇ f (xk),

where the last relation follows from Lemma 2.1. By taking now expectation with respect to Fk we obtain:

E[T2|Fk]6 c∇ f (xk)T Z ∇ f (xk) = c‖∇ f (xk)‖2
Z . (3.12)

RANDOMIZED SKETCH DESCENT METHODS 15 of 30

In conclusion, taking expectation with respect to Fk in (3.10) we have:

E[r2
k+1|Fk] = r2

k −2E[T1|Fk]+E[T2|Fk]
(3.11)+(3.12)
6 r2

k −2(xk− x∗)T
∇ f (xk)+ c‖∇ f (xk)‖2

Z

(3.6)
6 r2

k +2c
(

f (xk)−E[f (xk+1)|Fk]
)
−2(f (xk)− f ∗),

where in the last inequality we also used convexity of f . Taking now expectation over the entire history,
we have:

cE[f (xk+1)− f ∗]6 E[
1
2

r2
k+1 + c(f (xk+1)− f ∗)]6 E[

1
2

r2
k + c(f (xk)− f ∗)]−E[f (xk)− f ∗]

6
1
2

r2
0 + c(f (x0)− f ∗)−

k

∑
l=0

E[f (xl)− f ∗].

By utilizing the monotonic decrease of the expected objective values, see (3.6), we get:

c E[f (xk+1)− f ∗]6
1
2

r2
0 + c(f (x0)− f ∗)− (k+1)E[f (xk+1)− f ∗],

which leads to our convergence estimate (3.9). �

REMARK 3.1 Note that for coordinate descent methods the convergence proofs in the smooth convex case
are usually given in terms of a constant R(x0) = max{x∈x0+ker(A): f (x)6 f (x0)} minx∗∈X∗ ‖x− x∗‖∗Z , which it
is assumed to be bounded. For example, in Nesterov (2012); Necoara & Patrascu (2014) convergence
rates of order O(R2(x0)/k) are derived. However, the new proof of Theorem 3.2 does not depend on such
R(x0), which can be arbitrarily large, but it is given in terms of the parameter c, which basically depends
on the properties of the objective function (M) and probability distribution on the sketching matrix (Z).

3.4 Convergence rate: smooth strongly convex case

In addition to the smoothness assumption, we now assume that the function f is strongly convex with
respect to the extended norm ‖ · ‖∗Z with strong convexity parameter σZ > 0 on the subspace x0 +ker(A):

ASSUMPTION 3.3 We assume that the objective function f is strongly convex on the subspace x0 +
ker(A), that is there exists a parameter σZ > 0 satisfying the following inequality:

f (x)> f (y)+ 〈∇ f (y),x− y〉+ σZ

2
(‖x− y‖∗Z)2 ∀x,y ∈ x0 +ker(A). (3.13)

Note that if f is strongly convex function everywhere in Rn, that is there exists a positive definite matrix
G such that:

f (x)> f (y)+ 〈∇ f (y),x− y〉+ 1
2
(y− x)T G(y− x) ∀x,y ∈ Rn, (3.14)

then using the definition of the dual norm (‖x‖∗Z)2 = xT Z†x (see Lemma 2.3) we have that (3.13) also holds
for some σZ satisfying:

G� σZZ† on ker(A) (or equivalently on Rn \ range(AT)).

Since xT Zx = 0 for all x ∈ range(AT) (see Lemma 2.1), then also xT Z†x = 0 for all x ∈ range(AT). In
conclusion, the matrix inequality G � σZZ† holds automatically on range(AT) for any constant σZ , and
consequently we can define σZ as the largest positive constant satisfying everywhere on Rn the matrix
inequality:

G� σZZ†.

This shows that Assumption 3.3 is less restrictive than requiring strong convexity for f everywhere in Rn

as in (3.14). Next, we prove that the strong convexity parameter σZ is bounded from above:

16 of 30 I. NECOARA AND M. TAKÁČ

LEMMA 3.1 Under Assumptions 2.1, 2.2 and 3.3 the strong convexity parameter σZ defined in (3.13) is
bounded above by:

σZ 6 λmax(M1/2ZM1/2)6 1. (3.15)

Proof. By the Lipschitz continuous gradient inequality (see Assumption 2.1) and the strong convexity
inequality (see Assumptions 3.3) we have that σZZ† �M on ker(A) (or equivalently on Rn \ range(AT)).
Since xT Zx = 0 for all x ∈ range(AT) (see Lemma 2.1), then also xT Z†x = 0 for all x ∈ range(AT). In
conclusion, the matrix inequality σZZ† � M holds automatically on range(AT). Therefore, we get the
following matrix inequality valid on Rn:

σZZ† �M.

Pre- and post-multiplying the previous matrix inequality with ZM1/2 leads to:

σZM1/2ZZ†ZM1/2 �M1/2ZMZM1/2,

or equivalently

σZM1/2(ZZ†Z)M1/2 �M1/2Z(M1/2M1/2)ZM1/2.

Using the basic properties of the pseudo-inverse we obtain:

σZ M1/2ZM1/2 � (M1/2ZM1/2)(M1/2ZM1/2).

Therefore, if we denote by ϒ =M1/2ZM1/2� 0, then we get that ϒ 2−σZϒ � 0 and thus for any eigenvalue
λ of ϒ it holds that λ 2−σZλ > 0 or equivalently σZ 6 λ . It remains to show that λmax(ϒ)6 1. For this,
we recall that according to Lemma 2.1 we know that ZS = ZSMZS. By utilizing the fact that M is symmetric
and positive-definite, we can notice that

M1/2ZSM1/2 = M1/2ZSMZSM1/2 = (M1/2ZSM1/2)(M1/2ZSM1/2).

Therefore, all the eigenvalues of M1/2ZSM1/2 belongs to the set {0,1}. Further, by the definition of Z in
(2.8) and using the convexity of the function λmax on the set of positive semidefinite matrices, we have:

λmax(M1/2ZM1/2) = λmax(ES[M1/2ZSM1/2])6 ES[λmax(M1/2ZSM1/2)]6 1,

which completes our proof. �
We now derive a linear convergence estimate for our algorithm RSD under this additional strong convexity
assumption on the subspace x0 +ker(A):

THEOREM 3.4 Under Assumptions 2.1, 2.2 and 3.3 the sequence generated by RSD satisfies the following
linear convergence rate for the expected value of the objective function:

φk− f ∗ 6 (1−σZ)
k (f (x0)− f ∗

)
. (3.16)

Proof. Given xk, taking the conditional expectation in (3.6) over the random matrix S leads to the following
inequality:

2
(

f (xk)−E
[

f (xk+1) | xk
])
> ‖∇ f (xk)‖2

Z . (3.17)

On the other hand, consider the minimization of the right hand side in (3.13) over x ∈ x0 + ker(A), and
denote x(y) its optimal solution. Using the definition of the dual norm ‖ · ‖∗Z in the subspace ker(A), one
can see that x(y) satisfies the following optimality conditions:

∃µ s.t. : ∇ f (y)+σZZ†(x(y)− y)+AT
µ = 0 and x(y) ∈ x0 +ker(A).

Combining these optimality conditions with the well-known property of the pseudo-inverse, that is Z†ZZ† =
Z†, we get that the optimal value of this minimization problem has the following expression:

f (y)− 1
2σZ
‖∇ f (y)‖2

Z .

RANDOMIZED SKETCH DESCENT METHODS 17 of 30

Therefore, minimizing both sides of inequality (3.13) over x ∈ x0 +ker(A), we have:

‖∇ f (y)‖2
Z > 2σZ(f (y)− f ∗) ∀y ∈ x0 +ker(A) (3.18)

and for y = xk we get:
‖∇ f (xk)‖2

Z > 2σZ

(
f (xk)− f ∗

)
.

Combining the inequality (3.17) with the previous one, and taking expectation in Fk−1 on both sides, we
arrive at the statement of the theorem. �

From the proof of Theorem 3.4 it follows that we can further relax the strong convexity assumption, that
is instead of (3.13) it is sufficient to require (3.18) to hold on x0 + ker(A). The reader should note that
an inequality of the form (3.18) is known in the optimization literature as the Polyak-Lojasiewicz (PL)
condition (see e.g. Karimi et al. (2016) for a recent exposition), and the proof above shows that algorithm
RSD converges linearly for smooth convex functions satisfying only the PL condition. Since functions
satisfying the PL inequality need not be convex, linear convergence of RSD method to the global optimum
extends beyond the realm of convex functions. More precisely, is is easy to see that the convergence result
of Theorem 3.1 can be strengthen, that is we can prove linear convergence in the expected values of the
objective function for the iterates of algorithm RSD provided that additionally the PL type condition (3.18)
holds (we just need to combine the inequalities (3.8) and (3.18)).

REMARK 3.2 Note that in special cases, where complexity bounds are known for particular RSD, such as
2-coordinate descent for optimization problems with a single linear coupled constraint, our theory recovers
the best known bounds or leads to better bounds (see e.g. the convergence analysis in Frongillo & Reid
(2015); Necoara & Patrascu (2014); Necoara et al. (2017)). Note that the convergence rates of coordinate
descent methods for the smooth convex case are usually given in terms of a constant defined as R(x0) =
max{x∈x0+ker(A): f (x)6 f (x0)} minx∗∈X∗ ‖x−x∗‖∗Z , which is assumed to be bounded. For example, in Frongillo
& Reid (2015); Nesterov (2012); Necoara & Patrascu (2014); Necoara et al. (2017) convergence rates of
order O(R2(x0)/k) are derived for coordinate descent type methods. Similarly, for the strongly convex
case, choosing for the sketch matrix S any 2 columns of the identity matrix, then combining (2.12) with
Theorem 3.4 we recover the convergence rate of 2-coordinate descent algorithm from (Necoara et al.,
2017, Theorem 4.2) for the problem with a separable objective function and a single linear constraint.
In conclusion, to our knowledge, this is the first complete convergence analysis of a general random
sketch descent (RSD) algorithm, for which coordinate descent method is a particular case, for solving
optimization problems with multiple linear coupled constraints.

4. Accelerated random sketch descent algorithm

For the accelerated variant of Algorithm RSD let us first define the following constant:

νmax = max
u∈ker(A),u6=0

E[(‖ZSu‖∗Z)2]

‖u‖2
Z

= max
u∈ker(A),u6=0

E[‖ZSu‖2
Z†]

‖u‖2
Z

. (4.1)

Let us now consider any constant parameter ν > νmax. The Accelerated Random Sketch Descent (A-RSD)
scheme is depicted in Algorithm 2:

4.1 Computation cost per-iteration for A-RSD

It is easy to observe that the computational cost for updating the sequence xk is comparable to the one
corresponding to RSD algorithm. Therefore, the conclusions regarding the cost per-iteration from Section
3.1 corresponding to RSD are also valid here. Note that the accelerated variant also requires updating
two additional sequences yk and vk, which requires computations with full vectors in Rn. However, for
structured optimization problems we can avoid the addition of full vectors in Rn and still keep the cost per-
iteration of A-RSD comparable to that of RSD. More precisely, we can efficiently implement the updates

18 of 30 I. NECOARA AND M. TAKÁČ

Algorithm 2 Algorithm A-RSD

1: Input: Positive sequences {αk}∞
k=0,{βk}∞

k=0,{γk}∞
k=0

2: Choose x0 ∈ Rn such that Ax0 = b and set v0 = x0

3: for k > 0 do
4: sample S∼S and perform the following updates:
5: yk = αkvk +(1−αk)xk

6: xk+1 = yk−ZS∇ f (yk)
7: vk+1 = βkvk +(1−βk)yk− γkZS∇ f (yk)
8: end for

of A-RSD algorithm without full-dimensional vector operations when the sketch matrix S is sparse and
when we can efficiently compute:

∇ f (αv+βu) ∀α,β ∈ R and v,u ∈ Rn.

Note that gradient evaluation in such points is computationally easy when f has a special structure, e.g. of
the form f (x) = g(Ex), where E is a sparse matrix Fercoq & Richtárik (2015). Objective functions of this
form includes many generalized linear models, such as logistic regression, least squares, etc. In Appendix
we provide efficient implementations of the updates of A-RSD for these settings.

4.2 Basic properties of A-RSD

Before deriving convergence rates for A-RSD we analyze some basic properties of this algorithm. First,
we prove that the newly introduced constant νmax is bounded, thus finite:

LEMMA 4.1 Under Assumptions 2.1, 2.2 and 3.3 we have:

σZ 6 νmax 6 λmax(M−1/2Z†M−1/2)6
1

σZ
.

Proof. If we denote c = λmax(M−1/2Z†M−1/2), then it follows that Z† � cM. Using this matrix inequality
in the definition of νmax we have:

E[‖ZSu‖2
Z†]

‖u‖2
Z

=
E[uT ZSZ†ZSu]

uT Zu
6

E[c ·uT ZSMZSu]
uT Zu

= c
E[uT ZSu]

uT Zu
= c ∀u ∈ ker(A),u 6= 0.

This proves that νmax 6 c < ∞ provided that Assumptions 2.1 and 2.2 hold (there is no need to impose
strong convexity for this upper bound). Now, we will show that σZ 6 νmax if additionally strong convexity
(Assumption 3.3) holds. Indeed, from Jensen inequality we have:

νmax = max
u∈ker(A),u6=0

E[‖ZSu‖2
Z†]

‖u‖2
Z

> max
u∈ker(A),u6=0

‖E[ZS]u‖2
Z†

‖u‖2
Z

= max
u∈ker(A),u6=0

‖Zu‖2
Z†

‖u‖2
Z

= max
u∈ker(A),u6=0

‖u‖2
Z

‖u‖2
Z
= 1

(3.15)
> σZ ,

proving the left-hand side inequality. Moreover, by the Lipschitz continuous gradient inequality and
the strong convexity inequality we have σZZ† � M and consequently M−1/2Z†M−1/2 � 1

σZ
In. Hence,

λmax(M−1/2Z†M−1/2)6 1
σZ

, which concludes the proof. �

RANDOMIZED SKETCH DESCENT METHODS 19 of 30

EXAMPLE 4.1 (Cont. of example 2.3.) For the optimization problem considered in Example 2.3 we can
easily compute a good upper approximation for νmax:

νmax = max
u∈ker(A),u 6=0

E[uT Z(i, j)Z†Z(i, j)u]
uT Zu

= max
u∈ker(A),u6=0

E
[

2(n−1)L
n(Li+L j)

uT Z(i, j)u
]

uT Zu
6max

i< j

2(n−1)L
n(Li +L j)

, (4.2)

where we used (ei− e j)
T (In− 1/n eeT)(ei− e j) = 2. This shows that νmax 6

∑i Li
mini Li

(:w n) and conse-
quently it is related to the dimension of the optimization problem (see also Nesterov (2012)).

For simplicity of the exposition let us also denote:

gk =−ZS∇ f (yk)
(
=−SPS(PT

S ST MSPS)
†PT

S ST
∇ f (yk)

)
.

From the updates of A-RSD we can also show a descent property for the conditional expectation E[f (xk+1)|Fk].
Indeed, from our updates and Assumption 2.1 we have:

f (xk+1) = f (yk +gk)6 f (yk)+ 〈∇ f (yk),gk〉+
1
2
‖gk‖2

M.

Taking now the conditional expectation with respect to random choice S and using that ZSMZS = ZS (see
Lemma 2.1) we obtain:

E[f (xk+1)|Fk]6 f (yk)+ 〈∇ f (yk),E[gk|Fk]〉+
1
2

E[‖gk‖2
M|Fk]

= f (yk)+ 〈∇ f (yk),E[−ZS∇ f (yk)|Fk]〉+
1
2

E[‖ZS∇ f (yk)‖2
M|Fk]

= f (yk)−‖∇ f (yk)‖2
Z +

1
2
‖∇ f (yk)‖2

Z = f (yk)−
1
2
‖∇ f (yk)‖2

Z . (4.3)

Moreover, the sequences xk,yk and vk satisfies xk−x∗ ∈ ker(A), yk−x∗ ∈ ker(A) and vk−x∗ ∈ ker(A), and
consequently also xk− yk ∈ ker(A). Moreover, since range(AT) = ker(Z) (see Lemma 2.2), then Z†Z is a
projection matrix onto ker(A), that is Z†Zu = u for all u ∈ ker(A), and thus the following holds:

Z†Z(x∗− yk) = x∗− yk and Z†Z(xk− yk) = xk− yk. (4.4)

For any optimal point x∗ let us also define the sequence: r2
k = ‖vk− x∗‖2

Z† . Based on the previous discus-
sion, we can show the following descent property for the sequence rk generated by Algorithm A-RSD that
holds also for the case σZ = 0:

LEMMA 4.2 Under Assumptions 2.1, 2.2 and 3.3, for any choices of the sequences {αk}∞
k=0 ∈ (0, 1],

{βk}∞
k=0 ∈ (0, 1] and {γk}∞

k=0 ∈ (0, ∞), and any ν > νmax the Algorithm A-RSD produces a sequence of
points (xk,yk,vk) such that the following descent inequality holds:

E[r2
k+1 +2γ

2
k ν(f (xk+1)− f ∗)|Fk]6 βk

(
r2

k +2γk
1−αk

αk
(f (xk)− f ∗)

)
(4.5)

+(1−βk− γkσZ)‖yk− x∗‖2
Z† +

(
2γ

2
k ν−2γk−2γkβk

1−αk

αk

)
(f (yk)− f ∗).

Proof. Using the definition of rk+1 we have:

r2
k+1 = ‖vk+1− x∗‖2

Z† = ‖βkvk +(1−βk)yk− x∗+ γkgk‖2
Z†

= ‖βkvk +(1−βk)yk− x∗‖2
Z† + γ

2
k ‖gk‖2

Z† +2γk

(
βkvk +(1−βk)yk− x∗

)T
Z†gk

6 βk‖vk− x∗‖2
Z† +(1−βk)‖yk− x∗‖2

Z† + γ
2
k ‖gk‖2

Z† +2γk

(
βkvk +(1−βk)yk− x∗

)T
Z†gk,

20 of 30 I. NECOARA AND M. TAKÁČ

where in the last inequality we used the convexity of the norm and the fact that βk ∈ [0, 1]. Taking now
the conditional expectation with respect to Fk we get:

E[r2
k+1|Fk]6 βk‖vk− x∗‖2

Z† +(1−βk)‖yk− x∗‖2
Z† + γ

2
k E[‖−ZS∇ f (yk)‖2

Z† |Fk]

+2γk

(
βkvk +(1−βk)yk− x∗

)T
Z†(−Z∇ f (yk))

(4.1)
6 βkr2

k +(1−βk)‖yk− x∗‖2
Z† + γ

2
k ν‖∇ f (yk)‖2

Z +2γk

(
x∗−βkvk− (1−βk)yk

)T
Z†Z∇ f (yk)

= βkr2
k +(1−βk)‖yk− x∗‖2

Z† + γ
2
k ν‖∇ f (yk)‖2

Z

+2γk

(
x∗− yk

)
Z†Z∇ f (yk)−2γkβk

(
vk− yk

)T
Z†Z∇ f (yk)

= βkr2
k +(1−βk)‖yk− x∗‖2

Z† + γ
2
k ν‖∇ f (yk)‖2

Z

+2γk

(
x∗− yk

)
Z†Z∇ f (yk)−2γkβk

1−αk

αk

(
yk− xk

)T
Z†Z∇ f (yk)

(4.3)
6 βkr2

k +(1−βk)‖yk− x∗‖2
Z† +2γ

2
k ν

(
f (yk)−E[f (xk+1)|xk]

)

+2γk

(
x∗− yk

)
Z†Z∇ f (yk)−2γkβk

1−αk

αk

(
yk− xk

)T
Z†Z∇ f (yk).

Rearranging the terms, we get:

E[r2
k+1 +2γ

2
k ν(f (xk+1)− f ∗)|xk]

6 βkr2
k +(1−βk)‖yk− x∗‖2

Z† +2γ
2
k ν(f (yk)− f ∗)

+2γk

(
x∗− yk

)T
Z†Z∇ f (yk)+2γkβk

1−αk

αk

(
xk− yk

)T
Z†Z∇ f (yk)

(4.4)
6 βkr2

k +(1−βk)‖yk− x∗‖2
Z† +2γ

2
k ν(f (yk)− f ∗)

+2γk

(
x∗− yk

)T
∇ f (yk)+2γkβk

1−αk

αk

(
xk− yk

)T
∇ f (yk)

(3.13)
6 βkr2

k +(1−βk)‖yk− x∗‖2
Z† +2γ

2
k ν(f (yk)− f ∗)

+2γk

(
f ∗− f (yk)− σZ

2
‖yk− x∗‖2

Z†

)
+2γkβk

1−αk

αk

(
xk− yk

)T
∇ f (yk).

Note that the previous derivations also hold without Assumption 3.3, that is we use the strong convexity
inequality (3.13) with σZ = 0. Using now the convexity of function f and that αk ∈ (0, 1], we further get:

E[r2
k+1 +2γ

2
k ν(f (xk+1)− f ∗)|xk]

6 βkr2
k +(1−βk− γkσZ)‖yk− x∗‖2

Z† +(2γ
2
k ν−2γk)(f (yk)− f ∗)+2γkβk

1−αk

αk
(f (xk)− f (yk))

= βk

(
r2

k +2γk
1−αk

αk
(f (xk)− f ∗)

)
+(1−βk− γkσZ)‖yk− x∗‖2

Z†

+

(
2γ

2
k ν−2γk−2γkβk

1−αk

αk

)
(f (yk)− f ∗),

which concludes our statement. �
Based on the previous descent property we can derive different convergence rates for our algorithm A-RSD
depending on the assumptions imposed on the objective function f .

RANDOMIZED SKETCH DESCENT METHODS 21 of 30

4.3 Convergence rate: smooth convex case

In this section we prove the sublinear convergence rate for A-RSD (Algorithm 2) for some choices of the
sequences {αk}∞

k=0, {βk}∞
k=0 and {γk}∞

k=0. In particular, the next lemma shows the behavior of {γk}∞
k=0

defined as follows:

LEMMA 4.3 Let {γk}∞
k=0 be a sequence defined recursively as γ0 =

1
ν

and γk+1 be the largest solution of
the second order equation:

γ
2
k+1− 1

ν
γk+1 = γ

2
k . (4.6)

Then, γk satisfies the following inequality:

γk >
k+2
2ν

. (4.7)

Proof. First, we observe that {γk}∞
k=0 is a non-decreasing sequence. Indeed, the largest root of (4.6) is:

γk+1 =

1
ν
+
√

1
ν2 +4γ2

k

2
>

√
4γ2

k

2
= γk. (4.8)

Next, we have:

1
ν

γk+1
(4.6)
= γ

2
k+1− γ

2
k = (γk+1− γk)(γk+1 + γk)

(4.8)
6 2γk+1(γk+1− γk), (4.9)

which implies that

γk +
1

2ν
6 γk+1 ⇒ γk > γ0 + k

1
2ν

=
2+ k
2ν

.

This concludes our proof. �
From (4.7) it follows γkν > 1,∀k > 0. Now, we are ready to prove the sublinear convergence of A-RSD:

THEOREM 4.2 Under Assumptions 2.1 and 2.2 the sequences generated by Algorithm A-RSD with αk =
1

γkν
∈ (0, 1], βk = 1, γ0 =

1
ν

and γk be the largest solution defined by recursion (4.6), satisfy the following
sublinear convergence rate in expectation:

E
[

f (xk)− f ∗
]
6

2ν

(k+1)2 min
x∗∈X∗

‖x0− x∗‖2
Z† ∀k > 1.

Proof. In the smooth convex case we can use Lemma 4.2 (i.e. descent relation (4.5)) by setting σZ = 0:

E[r2
k+1 +2γ

2
k ν(f (xk+1)− f ∗)|Fk]

(4.5)
6

(
r2

k +2γk
1−αk

αk
(f (xk)− f ∗)

)

+

(
2γ

2
k ν−2γk

1
αk

)
(f (yk)− f ∗). (4.10)

Note that αk =
1

γkν
and hence the last term in (4.10) vanishes. Thus, we further obtain:

E[r2
k+1 +2γ

2
k ν(f (xk+1)− f ∗)|Fk]

(4.10)
6 r2

k +2γk
1−αk

αk
(f (xk)− f ∗). (4.11)

Moreover, since αk =
1

γkν
, then:

2γk
1−αk

αk
= 2γ

2
k ν

(
1− 1

γkν

)
= 2γ

2
k ν−2γk. (4.12)

22 of 30 I. NECOARA AND M. TAKÁČ

Plugging (4.12) into (4.11) and dividing both sides by 2ν we obtain:

E[1
2ν

r2
k+1 + γ

2
k (f (xk+1)− f ∗)|Fk]6

(
1

2ν
r2

k +(γ2
k − 1

ν
γk)(f (xk)− f ∗)

)
. (4.13)

Now, it reminds to note that γk+1 satisfy (4.6) and consequently:

E[1
2ν

r2
k+1 +(γ2

k+1− 1
ν

γk+1)(f (xk+1)− f ∗)|Fk]6
(

1
2ν

r2
k +(γ2

k − 1
ν

γk)(f (xk)− f ∗)
)
.

Taking now the expectation over the entire history in the previous recursion and unrolling it, we get:

E[(γ2
k − 1

ν
γk)(f (xk)− f ∗)]6 E[1

2ν
r2

k +(γ2
k − 1

ν
γk)(f (xk)− f ∗)]

6
(1

2ν
r2

0 +(γ2
0 − 1

ν
γ0)(f (x0)− f ∗)

)
.

Since the second order equation γ2
k − 1

ν
γk = γ2

k−1

(4.7)
>
(k+1

2ν

)2
for all k > 1, we get our statement. �

4.4 Convergence rate: smooth strongly convex case

We are now ready to state the linear convergence rate for A-RSD (Algorithm 2).

THEOREM 4.3 Under Assumptions 2.1, 2.2 and 3.3 the sequences generated by Algorithm A-RSD with
αk =

γkσZ
1+γkσZ

∈ (0, 1], βk = 1− γkσZ ∈ [0, 1] and γk =
1√
σZν
6 1

σZ
satisfy the following linear convergence

rate in expectation:

E
[

r2
k +

2
σZ

(f (xk)− f ∗)
]
6

(
1−
√

σZ

ν

)k(
r2

0 +
2

σZ
(f (x0)− f ∗)

)
.

Proof. Note that the choices of αk,βk and γk from the theorem guarantee that:

2γ
2
k ν = 2γk

1−αk

αk
, 1−βk− γkσZ 6 0, 2γ

2
k ν−2γk−2γkβk

1−αk

αk
= 0.

Using these relations in Lemma 4.2 (i.e. descent relation (4.5)), we get:

E[r2
k+1 +2γ

2
k ν(f (xk+1)− f ∗)|Fk]

(4.5)
6 βk

(
r2

k +2γk
1−αk

αk
(f (xk)− f ∗)

)
.

After plugging αk =
γkσZ

1+γkσZ
and γk =

1√
σZν

we further obtain:

E[r2
k+1 +2/σZ(f (xk+1)− f ∗)|Fk]6 βk

(
r2

k +2/σZ(f (xk)− f ∗)
)
,

and taking now the expectation over the entire history we get:

E[r2
k +2/σZ(f (xk)− f ∗)]6

(
k−1

∏
j=0

β j

)
(
r2

0 +2/σZ(f (x0)− f ∗)
)
,

which leads to the statement of our theorem. �

REMARK 4.1 Note that the presence of coupling constraints requires new proof techniques for A-RSD
algorithm, different from the standard convergence proofs of accelerated coordinate descent methods from
the literature, e.g. the parameters αk,βk and γk are defined differently from those in Nesterov (2012). Con-
sequently the recurrence relation from Lemma 4.2. is also different from the one in Nesterov (2012). It is
also important to note that in this work we designed for the first time an accelerated random sketch descent
algorithm (A-RSD) for optimization problems with multiple non-separable linear constraints accompanied
by a full convergence analysis.

RANDOMIZED SKETCH DESCENT METHODS 23 of 30

Table 1: Comparison of convergence rates for RSD and A-RSD algorithms.

RSD A-RSD

smooth convex
‖x0−x∗‖2

Z†
k

ν‖x0−x∗‖2
Z†

k2

smooth strong convex (1−σZ)
k

(
1−
√

σZ
ν

)k

Table 1 summarizes the convergence rates in E[f (xk)]− f ∗ of RSD and A-RSD algorithms for smooth
(strongly) convex objective functions (we assume, for simplicity, ‖x0−x∗‖2

Z† w c(f (x0)− f ∗)). We observe
from this table that we have obtained the typical convergence rates for these two methods, in particular,
A-RSD achieves accelerated converges rates, see Nesterov (2012). Let us write the convergence rates of
the algorithms RSD and A-RSD for the particular choice of sketching matrix S(i j) = [ei e j] for solving the
optimization problem with a single linear constraint from Example 2.3. In this case, according to (4.2), we
have ν 6 ∑i Li

mini Li
. Hence, we get:

‖x0− x∗‖2
Z†

k
vrs

∑i Li

mini Li
·
‖x0− x∗‖2

Z†

k2 and (1−σZ)
k vrs

(
1−
√

σZ ·
mini Li

∑i Li

)k

.

Clearly, in the smooth convex case A-RSD is superior to RSD provided that the number of iterations k is
larger than ∑i Li

mini Li
. Similarly, in the strongly convex case A-RSD is superior to RSD for σZ 6

mini Li
∑i Li

.

5. Illustrative numerical experiments

In this section we provide several numerical examples showing the benefits of random sketching and the
performances of our new algorithms.

Experiment #1: A pre-fixed coordinate sampling can be very slow. Recently, in Tu et al. (2017)
it has been shown for linear systems that Gauss-Seidel algorithm with randomly sampled coordinates
substantially outperforms Gauss-Seidel with any fixed partitioning of the coordinates that are chosen ahead
of time. Motivated by this finding, we also analyze the behavior of RSD and A-RSD algorithms for three
different choices for S ∈ Rn×2, fixed coordinates sketch, random coordinates sketch and Gaussian sketch:

fixed partition of coordinates : S(i,i+1) = [ei ei+1] ∀i = 1 : n−1

random partition of coordinates : S(i, j) = [ei e j] ∀i < j

Gaussian sketch : S = [N (0,1)]n×2,

where we recall that ei denotes the ith column of the identity matrix In and N (0,1) is normally distributed
random variable with mean 0 and variance 1. Here, p = 2 and note that the index i is chosen random when
using the fixed partition of coordinates matrix S(i,i+1). We build three challenging problems. The first
problem is to minimize the following convex optimization problem parameterized by δ ∈ [0,1]:

min
x∈Rn

xT (In +(1−δ)(e1eT
n + eneT

1)
)

x s.t. eT x = 0. (5.1)

The initial iterate in this case was set x0 = [1 −1 · · ·]T . For the second problem we consider:

min
x∈Rn

xT Mx s.t. Ax = 0,

where M = M0 + δ In and M0 � 0 is a rank deficient random matrix. In this case we denote {vk}n
k=0 to

be a set of orthogonal eigenvectors of M, such that v1 corresponds to the largest eigenvalue and vn is the

24 of 30 I. NECOARA AND M. TAKÁČ

eigenvector which corresponds to the smallest eigenvalue. We have chosen x0 = v1 and A = vT
2 . The third

problem is as follows:

min
x∈Rn

(x1− x2)
2 +(x2− x3)

2 + · · ·+(xn−1− xn)
2 s.t. ∑

i

1
i2

xi = 0.

The initial iterate in this case was set x0 = en. The optimal solution for all three problems is x∗ = 0
with f (x∗) = 0. In Figure 1 we show the results for the three problems (each column corresponds to one

Problem #1 Problem #2 Problem #3

δ

σ
Z

o
r

(σ

Z
/ν

)

#1

10−8 10−6 10−4 10−2 100

10−10

10−8

10−6

10−4

10−2

Fixed
Fixed-accelerated
Random CD
Random CD-accelerated
Gaussian
Gaussian-accelerated

10−8 10−6 10−4 10−2 100

δ

10−13

10−11

10−9

10−7

10−5

10−3

σ
Z

or
√
(σ

Z
/ν

)

3 Samplings

Fixed
Fixed-accelerated
Random CD
Random CD-accelerated
Gaussian
Gaussian-accelerated

3 4 5 6 7 8 9 10

n

10−3

10−2

10−1

σ
Z

or
√
(σ

Z
/ν

)

3 Samplings

Fixed
Fixed-accelerated
Random CD
Random CD-accelerated
Gaussian
Gaussian-accelerated

100 101 102 103 104 105

Iteration

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

f
(x

t)
−
f
∗

Problem with δ = 10−3

Fixed
Random CD
Gaussian
Fixed-accelerated
Random CD-accelerated
Gaussian-accelerated

100 101 102 103 104 105 106

Iteration

10−9

10−7

10−5

10−3

10−1

101

f
(x

t)
−
f
∗

Problem with δ = 10−4

Fixed
Random CD
Gaussian
Fixed-accelerated
Random CD-accelerated
Gaussian-accelerated

100 101 102 103 104 105

Iteration

10−12

10−10

10−8

10−6

10−4

10−2

100

f
(x

t)
−
f
∗

Problem with n = 10

Fixed
Random CD
Gaussian
Fixed-accelerated
Random CD-accelerated
Gaussian-accelerated

FIG. 1: Behavior of RSD and A-RSD for 3 problems and 3 different random sketch samplings.

problem). The first row shows the important quantities σZ or
√

σZ/ν which characterize the convergence
rates of the two algorithms in the strongly convex case (see Table 1). In the bottom row we show the typical
evolution of f (xk)− f ∗. One can observe that for the first problem, the random coordinate sampling is the
best, whereas the other two samplings are suffering. The main reason is that for this problem, the most
important sketch matrix S is S = [e1 en] which is selected more often by the random coordinate sketching
than the other two sketching strategies. For the second test problem the best results were obtained for
random coordinate and Gaussian sketch. For the third problem, we can see that the Gaussian sketching
is the best choice leading to the smallest number of iterations. Therefore, empirically these experiments
show that both algorithms, RSD and A-RSD, based on random sketching provides speedups compared to
the fixed partitioning of the coordinates.

Experiment #2: The effect of a quadratic upper-bound in convergence speed. In this experiment,
we investigate the benefit of using the full matrix M in (2.6) as compared to just using a scaled diagonal
upper-bound as considered e.g. in Frongillo & Reid (2015); Necoara (2013). Consider the following
convex optimization problem parameterized by δ ∈ [0,1]:

min
x∈Rn

xT (δ In +(1−δ)eeT)︸ ︷︷ ︸
B�0

x s.t. eT x = 0. (5.2)

We compare in Figure 2 the speed of Algorithm RSD when the random matrix S is chosen uniformly
at random as p columns of the identity matrix and consider three choices for the matrix M: M = B,
M = λmax(B)In and MS = λmax(ST BS)SST . We also implement RSD for the Gaussian sketch and M = B.
From Figure 2 one can observe that if we set M = B, then increasing p will decrease the number of
iterations needed to achieve the desired accuracy with the best rate. We can also observe that in this
scenario the Gaussian sketch and random coordinate sketch have a similar behavior for M = B.

RANDOMIZED SKETCH DESCENT METHODS 25 of 30

100 101 102 103 104 105 106

iteration

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

f
(x

t)
−
f
∗

Case p=2

M = B

M = λmax(B)I

MS = λmax(S
TBS)SST

Gaussian

100 101 102 103 104 105 106

iteration

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

f
(x

t)
−
f
∗

Case p=10

M = B

M = λmax(B)I

MS = λmax(S
TBS)SST

Gaussian

100 101 102 103 104 105 106

iteration

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

f
(x

t)
−
f
∗

Case p=40

M = B

M = λmax(B)I

MS = λmax(S
TBS)SST

Gaussian

FIG. 2: Comparison of speed of Algorithm RSD for various choices of M and p.

Experiment #3: Portfolio optimization with specified industry allocation. In Section 1.2.3 we have
described the basic Markowitz portfolio selection model Markowitz (1952). We have also described a
variant of the basic model which assumes that investor also decide how much net wealth would be allocated
in different asset classes (e.g. Financials, Health Care, Industrials, etc). When we have C asset classes,
then the problem of minimizing the risk with all the desired constraints will lead to C+ 2 linear equality
constraints. In Figure 3 we compare the performance of the RSD algorithm with the sketch matrix S
chosen random Gaussian with the coordinate descent sketch. We consider real data from the index S&P500
which contains 500 assets split across C = 11 asset classes. The µis and Σ were estimated from the
historical data. In the left plot we show the evolution of error f (xk)− f ∗ for various sizes of block size p
as a function of iterations and in the middle plot the total computational time in seconds. We can observe
that increasing p leads to a significant decrease of the number of iterations and also a faster convergence in
terms of wall-clock time for the RSD with Gaussian sketch than for the coordinate descent variant. For the
coordinate descent algorithm increasing p has a very slight benefit for decreasing the number of iterations,
and, in terms of time, after p = 50 one observe a slow-down. Note also that as p is becoming larger, the
per-iteration computational cost increases moderately (see the right plot in Figure 3) for both RSD with
Gaussian sketch and for coordinate descent. Note that for coordinate descent implementation, for small
p, each iteration is faster than the Gaussian sketching counterpart because it can benefit from the sparsity
of sketch matrix S and thus many steps can be implemented efficiently. But as p is becoming larger,
the computation of pseudoinverse becomes the dominant cost for both implementations and consequently
the per-iteration cost is identical for the two schemes. However, the RSD with Gaussian sketch requires
significantly less number of iterations.

0 250 500 750 1000 1250 1500 1750 2000

Iteration

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

f
(x

t)
−
f
∗

Effect of the p on the convergence speed

p=14
p=20
p=50
p=100
p=200
p=400

10−3 10−2 10−1 100 101

Time [sec]

10−12

10−10

10−8

10−6

10−4

10−2

100

f
(x

t)
−
f
∗

Effect of the p on the convergence speed

p=14
p=20
p=50
p=100
p=200
p=400

102

p

10−3

10−2

10−1

Ti
m

e
[s

]

The cost of single iteration
Gauss sketch
Coordinate Descent

FIG. 3: Algorithm RSD on Markovitz portfolio optimization problem with 13 linear constraints: solid line
is for RSD with Gaussian sketch and dashed line is for coordinate descent variant.

Experiment #4: Very large- and small-scale page-rank problem. In this experiment we consider page
rank problem (see Section 1.2.1) with dimensions ranging from n = 103 to n = 106.
Page rank on random networks. In Figure 4 we compare the speed of Algorithm RSD using a random
coordinate sketch for various values of sketching size p. We build random graphs with dimensions ranging
from n = 103 to n = 106 such that each column has on average 10 or 40 non-zero elements arranged on
random places. One can observe that the algorithm has no problem to achieve a very high accuracy in

26 of 30 I. NECOARA AND M. TAKÁČ

0.0 0.2 0.4 0.6

Time [sec]
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
0.
5||

E
x
−
x
||2

n=1k, sparsity=10
p=2
p=8
p=32
p=128
p=256

0 2 4 6

Time [sec]
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0.
5||

E
x
−
x
||2

n=10k, sparsity=10
p=2
p=8
p=32
p=128
p=256

0 10 20 30 40 50

Time [sec]
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0.
5||

E
x
−
x
||2

n=100k, sparsity=10
p=2
p=8
p=32
p=128
p=256

0 200 400 600 800

Time [sec]
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0.
5||

E
x
−
x
||2

n=1000k, sparsity=10
p=2
p=8
p=32
p=128
p=256

0.0 0.2 0.4 0.6 0.8

Time [sec]
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0.
5||

E
x
−
x
||2

n=1k, sparsity=40
p=2
p=8
p=32
p=128
p=256

0 2 4 6

Time [sec]
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
0.
5||

E
x
−
x
||2

n=10k, sparsity=40
p=2
p=8
p=32
p=128
p=256

0 20 40 60

Time [sec]
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0.
5||

E
x
−
x
||2

n=100k, sparsity=40
p=2
p=8
p=32
p=128
p=256

0 200 400 600

Time [sec]
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0.
5||

E
x
−
x
||2

n=1000k, sparsity=40
p=2
p=8
p=32
p=128
p=256

FIG. 4: Performance of Algorithm RSD on randomly generated networks.

relatively short time. Moreover, choosing around p = 32 coordinates leads to the fastest convergence (in
terms of running time).
Page rank on Wikipedia network. Computation of page-rank on a random network is relatively easy, as the

100 101 102 103

epochs

10−9

10−8

10−7

10−6

10−5

10−4

10−3

0.
5||

E
x
−
x
||2

wikipedia, n=1k

Power Method
p=2
p=8
p=32
p=128
p=256

100 101 102 103

epochs

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

0.
5||

E
x
−
x
||2

wikipedia, n=10k
Power Method
p=2
p=8
p=32

FIG. 5: Performance of Algorithm RSD on a subset of Wikipedia network.

Hessian is well-conditioned. This motivated us to also test RSD on a real network data. In this experiment
we consider the Wikipedia dump and extract a link structure between pages. We have restricted ourselves
on a subset of pages written in English language. We have chosen the top 103 or 104 pages (top in a
sense of number of outgoing links from given page). In Figure 5 we compare the Algorithm RSD with a
random coordinate sketch for different values of sampling size p and the Power method. Observe, that this
problem is much harder when compared to random networks. Moreover, for all sketching sizes p chosen,
our algorithm RSD is performing better than Power method in terms of number of full iterations (epochs).
Also, more coordinates we sample, less epochs are needed to achieve given accuracy to solution.

Conclusions. In this paper we have designed novel sketch descent methods (random sketch descent and
accelerated random sketch descent) for solving general smooth linearly constrained problems. From our
knowledge, this is the first complete convergence analysis of random sketch descent algorithms for op-
timization problems with multiple non-separable linear constraints. In special cases, where complexity
bounds are known for some particular sketching algorithms, such as coordinate descent methods for opti-
mization problems with a single linear coupled constraint, our convergence rates recover the best known
bounds. The numerical examples also illustrate the performances of our new algorithms.

RANDOMIZED SKETCH DESCENT METHODS 27 of 30

Acknowledgements

The work of Ion Necoara was supported by the Executive Agency for Higher Education, Research and
Innovation Funding (UEFISCDI), Romania, under PNIII-P4-PCE-2016-0731, project ScaleFreeNet, no.
39/2017. The work of Martin Takáč was partially supported by the U.S. National Science Foundation,
under award numbers NSF:CCF:1618717, NSF:CMMI:1663256 and NSF:CCF:1740796.

REFERENCES

BECK, A. (2014) The 2-coordinate descent method for solving double-sided simplex constrained minimization prob-
lems. Journal of Optimization Theory and Applications, 162, 892–919.

BECK, A. & TETRUASHVILI, L. (2013) On the convergence of block coordinate descent type methods. SIAM
Journal on Optimization, 23, 2037–2060.

BERAHAS, A. S., BOLLAPRAGADA, R. & NOCEDAL, J. (2017) An investigation of newton-sketch and subsampled
newton methods. arXiv:1705.06211.

DENG, W., LAI, M.-J., PENG, Z. & YIN, W. (2017) Parallel multi-block admm with o(1/k) convergence. Journal
of Scientific Computing, 71, 712–736.

FERCOQ, O. & RICHTÁRIK, P. (2015) Accelerated, parallel, and proximal coordinate descent. SIAM Journal on
Optimization, 25, 1997–2023.

FRONGILLO, R. & REID, M. D. (2015) Convergence analysis of prediction markets via randomized subspace descent.
Advances in Neural Information Processing Systems, 3034–3042.

GURBUZBALABAN, M., OZDAGLAR, A., PARRILO, P. A. & VANLI, N. (2017) When cyclic coordinate descent
outperforms randomized coordinate descent. Advances in Neural Information Processing Systems, 6999–7007.

HONG, M. & LUO, Z.-Q. (2017) On the linear convergence of the alternating direction method of multipliers.
Mathematical Programming, 162, 165–199.

ISHII, H., TEMPO, R. & BAI, E.-W. (2012) A web aggregation approach for distributed randomized pagerank
algorithms. IEEE Transactions on Automatic Control, 57, 2703–2717.

KARIMI, H., NUTINI, J. & SCHMIDT, M. (2016) Linear convergence of gradient and proximal-gradient methods
under the polyak-łojasiewicz condition. Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases. Springer, Springer, pp. 795–811.

LEE, Y. T. & SIDFORD, A. (2013) Efficient accelerated coordinate descent methods and faster algorithms for solving
linear systems. IEEE Symposium on Fondations of Computer Science (arXiv:1305.1922).

LIN, T., MA, S. & ZHANG, S. (2016) Iteration complexity analysis of multi-block admm for a family of convex
minimization without strong convexity. Journal of Scientific Computing, 69, 52–81.

LIU, J. & WRIGHT, S. J. (2015) Asynchronous stochastic coordinate descent: Parallelism and convergence properties.
SIAM Journal on Optimization, 25, 351–376.

LU, Z. & XIAO, L. (2015) On the complexity analysis of randomized block-coordinate descent methods. Mathemat-
ical Programming, 152, 615–642.

LUO, Z.-Q. & TSENG, P. (1993) Error bounds and convergence analysis of feasible descent methods: a general
approach. Annals of Operations Research, 46, 157–178.

MARKOWITZ, H. (1952) Portfolio selection. The Journal of Finance, 7, 77–91.
NECOARA, I. (2013) Random coordinate descent algorithms for multi-agent convex optimization over networks.

IEEE Transactions on Automatic Control, 58, 2001–2012.
NECOARA, I., NESTEROV, Y. & GLINEUR, F. (2017) Random block coordinate descent methods for linearly con-

strained optimization over networks. Journal of Optimization Theory and Applications, 173, 227–254.
NECOARA, I. & CLIPICI, D. (2016) Parallel random coordinate descent method for composite minimization: Con-

vergence analysis and error bounds. SIAM Journal on Optimization, 26, 197–226.
NECOARA, I. & PATRASCU, A. (2014) A random coordinate descent algorithm for optimization problems with

composite objective function and linear coupled constraints. Computational Optimization and Applications, 57,
307–337.

NEDELCU, V., NECOARA, I. & TRAN DINH, Q. (2014) Computational complexity of inexact gradient augmented
lagrangian methods: Application to constrained mpc. SIAM Journal of Control and Optimization, 52, 3109–
3134.

NESTEROV, Y. (2012) Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM Journal
on Optimization, 22, 341–362.

28 of 30 I. NECOARA AND M. TAKÁČ

NESTEROV, Y. (2013) Introductory lectures on convex optimization: A basic course, vol. 87. Springer Science &
Business Media.

PILANCI, M. & WAINWRIGHT, M. (2017) Newton sketch: A near linear-time optimization algorithm with linear-
quadratic convergence. SIAM Journal on Optimization, 27, 205–245.

QU, Z., RICHTÁRIK, P., TAKÁČ, M. & FERCOQ, O. (2016) SDNA: stochastic dual newton ascent for empirical risk
minimization. International Conference on Machine Learning, 1823–1832.

REDDI, S., HEFNY, A., DOWNEY, C., DUBEY, A. & SRA, S. (2015) Large-scale randomized-coordinate descent
methods with non-separable linear constraints. Conference on Uncertainty in Artificial Intelligence (arXiv:1409.2617),
762–771.

RICHTÁRIK, P. & TAKÁČ, M. (2014) Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function. Mathematical Programming, 144, 1–38.

RICHTÁRIK, P. & TAKÁČ, M. (2016) Parallel coordinate descent methods for big data optimization. Mathematical
Programming, 156, 433–484.

RICHTÁRIK, P. & TAKÁČ, M. (2020) Stochastic reformulations of linear systems: algorithms and convergence
theory. SIAM Journal on Matrix Analysis and Applications (arXiv:1706.01108), to appear.

SHALEV-SHWARTZ, S. & ZHANG, T. (2013) Stochastic dual coordinate ascent methods for regularized loss mini-
mization. Journal of Machine Learning Research, 14, 567–599.

SUN, R. & YE, Y. (2016) Worst-case complexity of cyclic coordinate descent: o(n2) gap with randomized version.
Mathematical Programming (arXiv:1604.07130), to appear.

TAKÁČ, M., RICHTÁRIK, P. & SREBRO, N. (2019) Distributed mini-batch SDCA. Journal of Machine Learning
Research (arXiv:1507.08322), to appear.

TSENG, P. & YUN, S. (2009) Block-coordinate gradient descent method for linearly constrained nonsmooth separable
optimization. Journal of Optimization Theory and Applications, 140, 513.

TU, S., VENKATARAMAN, S., WILSON, A. C., GITTENS, A., JORDAN, M. I. & RECHT, B. (2017) Breaking
locality accelerates block gauss-seidel. International Conference on Machine Learning (arXiv:1701.03863),
3482–3491.

WANG, J., LEE, J. D., MAHDAVI, M., KOLAR, M. & SREBRO, N. (2017) Sketching meets random projection in
the dual: A provable recovery algorithm for big and high-dimensional data. Electronic Journal of Statistics, 11,
4896–4944.

WEI, E., OZDAGLAR, A. & JADBABAIE, A. (2013) A distributed newton method for network utility maximization–i:
Algorithm. IEEE Transactions on Automatic Control, 58, 2162–2175.

WRIGHT, S. J. (2012) Accelerated block-coordinate relaxation for regularized optimization. SIAM Journal on
Optimization, 22, 159–186.

XIAO, L. & BOYD, S. (2006) Optimal scaling of a gradient method for distributed resource allocation. Journal of
Optimization Theory and Applications, 129, 469–488.

Appendix. Efficient implementation of A-RSD

Algorithm 3 Efficient implementation of A-RSD for sparse sketching: strongly convex case

1: Input: Positive sequences {αk}∞
k=0,{βk}∞

k=0,{γk}∞
k=0

2: choose x0 ∈ Rn such that Ax0 = b and set u0 = w0 = x0, B0 = I2
3: for k > 0 do

4: sample S∼S and compute g = ZS∇ f


B11

k uk +B12
k wk

︸ ︷︷ ︸
yk




5: update Bk+1 = AkBk

6:

(
uk+1

wk+1

)
=

(
uk

wk

)
−B−1

k+1

(
(1−αk+1(1− γk))g

γkg

)

7: end for

RANDOMIZED SKETCH DESCENT METHODS 29 of 30

In this appendix we discuss how to implement the A-RSD updates without full-dimensional vector oper-
ations. Recall that we assume the following settings: the sketch matrix S is sparse and we can efficiently
evaluate ∇ f (αv+βu). First we derive an efficient implementation of A-RSD iterations for strongly con-
vex objective functions and then a simplified implementation for the convex case. Following a similar
approach as in the coordinate descent work proposed in Lee & Sidford (2013) for solving linear systems
and further extended in Fercoq & Richtárik (2015) for accelerated coordinate descent method with sepa-
rable composite problems we note that:

yk+1 = αk+1vk+1 +(1−αk+1)xk+1

= (1−αk+1βk)yk +αk+1βkvk− (1−αk+1(1− γk))ZS∇ f (yk).

Hence, we obtain the following recursion:
(

yk+1

vk+1

)
= Ak

(
yk

vk

)
− sk, (A.1)

with

Ak =

(
1−αk+1βk αk+1βk

1−βk βk

)
, sk =

(
(1−αk+1(1− γk))ZS∇ f (yk)

γkZS∇ f (yk)

)
.

Now, our goal is to maintain two sequences {uk}k,{wk}k such that:
(

yk

vk

)
= Bk

(
uk

wk

)
. Therefore, it has

to hold that

Bk+1

(
uk+1

wk+1

)
=

(
yk+1

vk+1

)
(A.1)
= AkBk

(
uk

wk

)
− sk,

and therefore we require
(

uk+1

wk+1

)
= B−1

k+1AkBk

(
uk

wk

)
−B−1

k+1sk.

In order to make this computationally efficient, it is sufficient to define Bk recursively as: B0 = I2, Bk+1 =
AkBk, u0 = y0 and w0 = v0, to obtain the following update rule

(
uk+1

wk+1

)
=

(
uk

wk

)
−B−1

k+1sk,

which is a sparse update provided that sk is a sparse vector. However, when the sketch matrix S is sparse
the vector ZS∇ f (yk) is sparse as well and consequently sk is also a sparse vector (see Example 2.3 where
for S(i, j) = [ei e j] the corresponding vector Z(i, j)∇ f (y) has only two non-zero entries). The final algorithm
is depicted in Algorithm 3.

Simplified Convex Case.
In the case of non-strongly convex objective function, the implementation can be significantly simplified
using the fact that βk = 1 for all k. Then, we have:

vk+1 = vk− γkZS∇ f (yk) (A.2)

and

yk+1− vk+1 = αk+1vk+1 +(1−αk+1)xk+1− vk+1

= (1−αk+1)(yk−ZS∇ f (yk)− vk + γkZS∇ f (yk))

= (1−αk+1)(yk− vk)− (1−αk+1)(1− γk)ZS∇ f (yk).

30 of 30 I. NECOARA AND M. TAKÁČ

Algorithm 4 Efficient implementation of A-RSD for sparse sketching: convex case

1: Input: Positive sequences {αk}∞
k=0,{γk}∞

k=0
2: choose x0 ∈ Rn such that Ax0 = b
3: set v0 = x0, u0 = 0 and b0 = 1
4: for k > 0 do

5: sample S∼S and compute g = ZS∇ f


vk +bkuk
︸ ︷︷ ︸

yk




6: update vk+1 = vk− γkg
7: uk+1 = uk− 1−γk

bk
g

8: bk+1 = (1−αk+1)bk
9: end for

Therefore, we obtain the following recursion:
(

yk+1− vk+1

vk+1

)
= Ãk

(
yk− vk

vk

)
− s̃k, (A.3)

with

Ãk =

(
1−αk+1 0

0 1

)
, s̃k =

(
(1−αk+1)(1− γk)ZS∇ f (yk)

γkZS∇ f (yk)

)
.

Now, we see that the update of vk given by (A.2) is sparse if ZS∇ f (yk) is sparse. Further, we want to
express yk+1− vk+1 = bk+1uk+1. Then, from (A.3) we have:

bk+1uk+1 = yk+1− vk+1 = (1−αk+1)(yk− vk)− (1−αk+1)(1− γk)ZS∇ f (yk)

= (1−αk+1)bkuk− (1−αk+1)(1− γk)ZS∇ f (yk).

Therefore, if we define bk+1 = (1−αk+1)bk, this will simplify to:

uk+1 = uk− (1−αk+1)(1− γk)

bk+1
ZS∇ f (yk) = uk− 1− γk

bk
ZS∇ f (yk).

It follows that the update of uk is also sparse if ZS∇ f (yk) is sparse. Next, we can easily compute yk =
vk + bkuk (however, this shouldn’t be formed during the run of the algorithm). Finally, it is sufficient to
note that v0 = x0, u0 = 0 and we can choose b0 = 1. The final algorithm is given in Algorithm 4.

