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Abstract: Dynamic sensor networks have the potential to significantly increase the speed and scale of infrastructure monitoring. Structural
health monitoring (SHM) methods have been long developed under the premise of utilizing fixed sensor networks for data acquisition. Over
the past decade, applications of mobile sensor networks have emerged for bridge health monitoring. Yet, when it comes to modal identi-
fication, there remain gaps in knowledge that have ultimately prevented implementations on large structural systems. This paper presents a
structural modal identification methodology based on sensors in a network of moving vehicles: a large-scale data collection mechanism that is
already in place. Vehicular sensor networks scan the bridge’s vibrations in space and time to build a sparse representation of the full response,
i.e., an incomplete data matrix with a low rank. This paper introduces modal identification using matrix completion (MIMC) methods to
extract dynamic properties (frequencies, damping, and mode shapes) from data collected by a large number of mobile sensors. A dense matrix
is first constructed from sparse observations using alternating least-square (ALS) then decomposed for structural modal identification. This
paper shows that the completed data matrix is the product of a spatial matrix and a temporal matrix from which modal properties can be
extracted via methods such as principal component analysis (PCA). Alternatively, an impulse-response structure can be embedded into the
temporal matrix and then natural frequencies and damping ratios are determined using Newton’s method with an inverse Hessian approxi-
mation. For the case of ambient vibrations, the natural excitation technique (NExT) is applied and then structured optimization (Newton’s
method) is performed. Both approaches are evaluated numerically, and results are compared in terms of data sparsity, modal property ac-
curacy, and postprocessing complexity. Results show that both techniques extract accurate modal properties, including high-resolution mode
shapes from sparse dynamic sensor network data; they are the first to provide a complete modal identification using data from a large-scale

dynamic sensor network. DOI: 10.1061/(ASCE)EM.1943-7889.0001733. © 2020 American Society of Civil Engineers.

Introduction

Dynamic sensor networks are an element of modern society.
Humans are increasingly relying on ubiquitous smartphones,
internet-of-things devices, and data-driven services in their daily
lives. This phenomenon has given life to massive amounts of data,
which have driven an entire field of studies (Barabasi 2005; Wang
et al. 2010, 2012; Alexander et al. 2015; Tachet et al. 2017) on
human activity in the urban environment and the development
of smart city applications (Tachet et al. 2016; Anjomshoaa et al.
2018; Vazifeh et al. 2018). Sensors carried by humans create an
inexpensive, large-scale mobile sensor network—and as smart
and self-driving cars continue to emerge, vehicles will become a
growing source for sensory data on the built environment (Gurney
et al. 2015; Massaro et al. 2017). Throughout hundreds of millions

'Ph.D. Candidate, Dept. of Civil and Environmental Engineering,
Lehigh Univ., Bethlehem, PA 18015 (corresponding author). ORCID:
https://orcid.org/0000-0001-9285-6911. Email: soheil.sadeghi69 @ gmail.com

2Associate Professor, Dept. of Civil and Environmental Engineering,
Lehigh Univ., Bethlehem, PA 18015.

3Assistant Professor, Dept. of Industrial and Systems Engineering,
Lehigh Univ., Bethlehem, PA 18015.

“Postdoctoral Researcher, Senseable City Laboratory, Massachusetts
Institute of Technology, Cambridge, MA 02139; Researcher, Cornell Tech,
Cornell Univ., New York, NY 10044. ORCID: https://orcid.org/0000-0001
-8978-1357

Note. This manuscript was submitted on March 4, 2019; approved on
August 27, 2019; published online on January 28, 2020. Discussion period
open until June 28, 2020; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Engineering
Mechanics, © ASCE, ISSN 0733-9399.

© ASCE

04020011-1

of trajectories each day, humans capture data on bridges and other
infrastructure routinely and comprehensively.

This has sparked a large interest in the use of mobile sensors for
structural health monitoring (SHM), a field that has exclusively re-
lied on data sets collected by networks of fixed sensors (Sony et al.
2019; Pakzad et al. 2008; Lynch and Loh 2006; Kurata et al. 2011;
Matarazzo and Pakzad 2016b). Mobile sensor networks have low
setup costs and address major shortcomings of fixed sensor net-
works. Mobile sensor data contain a denser spatial resolution when
compared to data collected by the same number of distributed fixed
sensors. Overall, mobile sensor networks are scalable and produce
significantly more spatial information per sensor. The development
of SHM approaches that are able to incorporate crowdsensed mo-
bile sensor data (Matarazzo and Pakzad 2018; Matarazzo et al.
2018; Mei et al. 2019; Mei and Giil 2018) accelerates the rate at
which engineers acquire knowledge on the true conditions of infra-
structure; the corresponding boom in information would prove in-
valuable to bridge monitoring and management (Kleywegt and
Sinha 1994; Smith 2016). Early work on mobile sensors in SHM
demonstrated that a sensor within a moving vehicle can be used to
detect the fundamental frequency of a bridge (Yang et al. 2004; Lin
and Yang 2005; Yang and Chang 2009). Subsequent studies built
on the theory and application of vehicle-bridge interaction in order
to estimate damping using various drive-by setups (Gonzélez et al.
2012; Keenahan et al. 2014; McGetrick et al. 2015) or stiffness
information (Li et al. 2014) whose variations may be indicative
of structural damage. Very recent studies have theoretically and ex-
perimentally developed methodologies for damage detection using
the aggregation of passing-by vehicles on bridges (Mei et al. 2019;
Mei and Giil 2018).
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Modern system identification (SID) algorithms for civil struc-
tures are reliable, repeatable, and often have a formidable math-
ematical foundation, e.g., frequency domain decomposition (FDD)
(Brincker et al. 2001), eigensystem realization analysis (ERA)
(Juang and Pappa 1985; James et al. 1995), stochastic system iden-
tification (SSI) (Peeters and De Roeck 2001), fast Bayesian FFT
method (Au 2011), distributed modal identification (Pakzad et al.
2011), Kalman filter-based SID (Chang and Pakzad 2014), and sto-
chastic iterative SID (Dorvash and Pakzad 2013). As with SHM,
classical SID methods were formulated under the expectation of
fixed sensor network data and are incompatible with mobile sensor
data. Recently, there has been progress in the development of SID
methods that are designed for mobile sensor data. Matarazzo and
Pakzad (2016a) proposed an updated version of the structural mo-
dal identification using expectation maximization (STRIDE) algo-
rithm to accept incomplete data sets and mobile sensor network
data. A method proposed by Marulanda et al. (2017) enabled the
identification of spatially dense mode shapes using a hybrid sensor
network: one mobile and one fixed. Matarazzo and Pakzad (2016b)
derived three state-space models that expect data from dynamic
sensor networks and recommended the truncated physical model
based on its configurable model complexity and ability to distin-
guish between sensing nodes and model degree of freedom (DOF).
Matarazzo and Pakzad (2018) introduced a new version of the
STRIDE algorithm called STRIDEX, which is able to identify
the parameters of the truncated physical state-space model and,
therefore, produce comprehensive estimates of structural modal
properties using data from a mobile sensor network. In an initial
experimental application, STRIDEX produced an accurate mode
shape with 248 points using data from two mobile sensors. Sub-
sequent experimental applications demonstrated accurate identifi-
cation of higher modes, complete with dense mode shapes, based
exclusively on mobile sensor data (Matarazzo et al. 2018).

This paper focuses on bridge SID based on vehicular sensor
networks, an especially widespread dynamic sensor network with
increasing sensing capabilities. In everyday traffic, connected ve-
hicles with embedded sensors scan the bridge’s vibrations in space
and time. The vehicular sensor network data is a sparse represen-
tation of the full response—more specifically, an incomplete data
matrix with a low rank. The sparsity of the data matrix depends on
attributes of the vehicular sensor network, such as the number of
mobile sensors, position time-series, sampling rates, etc. This paper

In this equation s? is a vector of sensors’ positions at time step

k; s¢ is the location of the ith VPL; and As® is the uniform distance
between the VPLs. In spatial signal reconstruction, the role of
sinc(x) = sin(x)/x is to map measurements from an observed lo-
cation to a different unobserved location based on the ideal low-
pass filter (Gensun 1996; Schanze 1995; Moheimani et al. 2003).

In this mathematical framework, the STRIDEX method has
been successful in both numerical and experimental applications
where the VPLs were set to be uniformly spaced [as recommended
by Matarazzo and Pakzad (2016b)]. Yet, the applications to date
have considered a relatively small number of mobile sensors (less
than ten). In addition, signal reconstruction literature shows the
errors associated with nonuniform sampling (Jerri 1977; Maymon
and Oppenheim 2011); yet, further research is needed to quantify
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presents modal identification using matrix completion (MIMC)
methods for SID of bridges based on data collected by a large num-
ber of mobile sensors.

Background Theory and Scope

Mathematical Model for Dynamic Sensor Networks

Dynamic sensor network data are produced when some aspect of
the sensor network varies during measurement. For instance, mo-
bile sensor data are classified as dynamic sensor network data be-
cause the positions of the sensors change throughout discrete-time
sampling. Dynamic sensor networks were introduced in Matarazzo
and Pakzad (2016b) along with state-space models that were de-
signed to analyze the resulting data sets for structural dynamics
applications; the stochastic truncated physical state-space model is
the primary model for the case of ambient vibrations [for complete
mathematical details, see Matarazzo and Pakzad (2016b, 2018)].
The model is given in Eq. (1)

X = AXp_g + 1
Vi = GiCxy + v (1)

where x; ~N(, \7), e ~N(0,Q), and v, ~N(0,R); and A €
RPNaxPNa g the state matrix, C € RNoxPNa ig the observation ma-
trix, x; € R”Ne and y, € R0 are the state and observation vectors,
respectively; 17, and vy are the input excitation and measurement
noises, which are both modeled as Gaussian white noise with
covariance matrices Q and R, respectively; N, is the number of
virtual probing locations; N is the size of the observation vectors;
p is the model order; and G is the mode shape regression (MSR)
function [in this study, G; is identical to €, in Matarazzo and
Pakzad (2016b)], which maps structural responses at the locations
of the mobile sensors to responses at virtual probing locations
(VPLs). In one definition, VPLs are the structural DOF of interest
and are the points at which mode shapes are computed. In theory,
the MSR function is a product of two matrices, which are based on
the exact structural mode shapes. Matarazzo and Pakzad (2016b)
showed that the MSR function could be approximated accurately

using sinc basis functions with Gy, as shown in Eq. (2)

how the spacing of the VPLs, or the mobile sensors, influences the
accuracy of the sinc MSR approximations used in STRIDEX,
which ultimately impact modal property estimates. When relying
on vehicular sensor networks, it is prudent to consider the follow-
ing: (1) a very large number of sensors collecting data simultane-
ously; (2) a variable number of participating sensors during data
collection; and (3) vehicle-bridge interaction and pavement
roughness effects. The approach described in this paper addresses
the first two considerations (throughout the paper, the dynamic
effect of the vehicles are ignored, and road surface is assumed
to be smooth); the preceding topic (3) is studied in Eshkevari
and Pakzad (2019) and Eshkevari et al. (2020). Despite the signifi-
cance of topic (3) in the overall formulation of the problem, it is
outside of the scope of the current study. The effect of vehicle
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Fig. 1. Illustration of a sparse matrix produced by a large vehicular sensor
network. The full bridge response is represented by a three-dimensional
data matrix: two spatial dimensions and one temporal dimension. A
two-dimensional (2D) matrix shows the response along the bridge length
for a given traffic lane. The methods in this paper consider the problem of
completing such a sparse 2D data matrix and extracting bridge modal
properties. The instantaneous vehicle configurations corresponding to
time samples 7', T, T3, and T4 are depicted.

dynamics and roughness-caused vibrations has been broadly stud-
ied in recent years (Lin and Yang 2005; Malekjafarian et al. 2015;
Malekjafarian and OBrien 2014).

Dynamic Sensor Networks with Sparse Data

The structural responses recorded by a vehicular sensor network are
both sparse and dynamic. At each instant, the vast majority of the
bridge is not sampled in space (sparse), and the sensing configu-
ration is time variant (dynamic). Consider a large response matrix
with temporal and spatial dimensions. Because the data collected
by a moving sensor is a function of both time and space, the entries
build in two directions simultaneously, i.e., not just in a single row
or column. In the case of a constant speed, the mobile sensor data is
a diagonal band within the response matrix.

Fig. 1 shows an illustration of a generic sparse data matrix pro-
duced by a large vehicular sensor network. The response matrix is
three-dimensional (3D) with two spatial dimensions on the bridge
(longitudinal and transverse directions) and one temporal dimension
(time). A two-dimensional (2D) slice of this matrix removes the di-
mension along the cross section (transverse) of the bridge and shows
the data collected for a given traffic lane. There are two key obser-
vations: (1) this data matrix is mostly empty; and (2) while there are
some visible patterns among the available entries in the data matrix,
ultimately there is an unknown stochastic structure that governs. The
methods presented in this paper are evaluated based on this 2D slice
of the full 3D response matrix, both of which are sparse tensors.
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The general approach is to complete the unobserved parts of this
matrix given the sparse entries, i.e., the matrix completion problem.
For example, in Eshkevari and Pakzad (2020) and Eshkevari et al.
(2019), the alternating least-squares (ALS) method (Jain et al. 2013;
Zachariah et al. 2012) was implemented to complete a sparse struc-
tural response matrix, which resulted in responses at all considered
DOFs. Using ALS, the sparse matrix is estimated as the product
of two matrices with rank K, which is much smaller than the
dimensions of the original matrix. Further details of this method
are discussed later in this paper.

Contributions

This paper presents a set of modal identification using matrix com-
pletion methods, which enables a comprehensive bridge SID based
solely on data collected by a large-scale vehicular sensor network.
As mentioned previously, vehicular sensor network data are unique
for SHM because they are both sparse and dynamic. Two ap-
proaches, the principal component analysis (PCA) and structured
optimization analysis (SOA), are proposed to transform a com-
pleted response matrix into structural modal properties. The MIMC
methods have the following novelties:

e The MIMC methods are the first SID algorithms designed to
process data collected by a large network of mobile sensors
and are immediately applicable to vehicular sensor networks.

e MIMC methods are able to process unstructured mobile sensor
data, which include records from vehicles that have random and
independent trajectories, e.g., different speeds, sampling rates, etc.

e MIMC methods are able to estimate very high-resolution mode
shapes after one computational run (no iterations are necessary).

e Within the MIMC methods, a new optimization technique for
the structured matrix completion problem that uses an approx-
imate Newton’s method is proposed and validated.

*  MIMC methods adapt to the availability of the observed data. The
procedure is successful in identifying structural modes even when
the original data matrix is very sparse, e.g., 0.5% completeness.
In the next section, the matrix completion problem is presented

with respect to incomplete structural response data. Then three MIMC
methods are proposed and described in detail. In Simulation and Re-
sults, three mobile sensing simulations based on finite-element models
are presented to evaluate the performance of the MIMC methods. In
the Discussion, the simulation results are discussed. An overview of
the methods and primary remarks are presented in the Conclusion.

Completion of a Sparse Structural Response Matrix

In this matrix completion problem, the full structural response
matrix Y is represented as the product of two matrices A and B
[Eq. (3)]. Within alternating least squares (ALS), the problem re-
duces to determining the optimal values of decomposition matrices
A and B (Jain et al. 2013; Zachariah et al. 2012). Note that Y is the
true complete response matrix, which is not available; only a subset
of it is observed (Y ;) during data collection. As a result, the math-
ematical expression of the objective function is described in Eq. (5)

Y = AB (3)
Y, = D(Y) (4)
r;gily%IIYobs—<1>(AB)H2 +%(HA||2+ IB?) (5)

where Y, is a sparse matrix, which is a subset of the original time-
space matrix Y. The matrix @ is a mapping function that selects
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observed entries from the full matrix Y. In the ALS method, the
objective function shown in Eq. (5) is minimized using alternating
gradient descent steps on matrices A and B (the goal is to find
matrices A and B that minimize the objective function). Conven-
tionally, a regularization term is added to the objective function to
prohibit overfitting.

So far, the algorithm provides a solution to complete the re-
sponse matrix using sparse observations. The next step is to process
this matrix in order to extract modal properties of the bridge. The
first approach could be to apply ERA (Juang and Pappa 1985) for
modal identification. Despite its broad application, ERA is compu-
tationally impractical when the number of output channels is large
(Kramer and Gugercin 2016; Krishnan et al. 2011; Kramer and
Gorodetsky 2018). In addition, no distributed implementation of
ERA-based algorithms is known to the authors. To address this
concern, and because the focus of this paper is not on the system
identification methods, alternative algorithms have to be proposed
that are computationally affordable and can adequately demonstrate
the efficiency and accuracy of this approach.

ALS requires that the original matrix (in this study, Y)
has a low-rank. From structural dynamics, it is known that in a
multi degree of freedom (MDOF) system, the response at each
location can be represented in modal coordinates as shown in
Eq. (6). In this equation, Q is a matrix of stacked mode shapes,
and Q is a matrix of stacked single degree of freedom (SDOF)
responses of modal coordinates

Y=Q0~QQ0 (6)

The dimensionality of this equation can be reduced through
modal truncation. For many structures, the dynamic responses
can be estimated accurately using only the most significant modes,
e.g., the first K modes. The truncated matrices of the mode shapes
and modal coordinates are presented as Qand Q with the ranks equal
to K (model order). From Egs. (3) and (6), AB ~ QQ This suggests
that matrices A and B are the transformed versions of the matrix of
mode shapes (9) and modal coordinates (Q) respectively.

From modal analysis, it is known that the modal coordinates are
orthogonal with respect to the mass and stiffness matrices, while
there is no orthogonality condition when matrices A and B are op-
timized using ALS (unconditional optimization). The normalized
mass matrix of a large and homogeneous bridge converges to an
identity matrix. This fact simplifies the mass orthogonality condi-
tion to a simple orthogonality condition. Therefore, to mass-
orthogonalize components of matrices A and B, a simple approach
is to transform them using the principal component analysis (PCA).
PCA extract orthogonal principal components from a set of data
(note that it is nearly equivalent to apply PCA over the recon-
structed matrix with significantly more computational cost). It is
expected that after orthogonalization of A and B, these new
matrices are better estimations of the actual modal components.
However, it is known that the mass and stiffness orthogonality
between two modes does not guarantee that these modes are natural
mode shapes. For instance, Ritz modes (Wilson et al. 1982) are
orthogonal but not natural (Ritz modes may contain an exclusive
subset of natural modes). To address this problem, an alternative
approach is proposed to estimate modal components from matrices
A and B in which the structure of matrix B is prefixed.

Impulse Response Analysis using Structured
Optimization

The impulse response of each mode in a MDOF system has a cer-
tain structure. In fact, in this response, Q contains the free vibration
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responses of the modal coordinates as presented in Eq. (7) for
undamped and Eq. (8) for damped problems

M~

Y(x,1) = Q, (x) sin(w,? + ¥,)
n=1

= Q(x) sin(w + Py)+ -+ +Q(x) sin(wgt + k)
sin(wt + ;)
sin(wyt + 1)

=[Qi(x) Q(x) - Qx)]
sin(wgt + ¢¥k)

=QQ0 (7)

n=1
e‘élwltsin(wlt+ 1/)1)
e 29t gin(wyt + 1)
=[Q(x) (x) Qi (x)]
e SkekT sin(wit + 1)
=00 (8)

where Q,(x) = ith mode shape magnitude at location x; and ¢&;,
w;, and ¢; are modal damping ratio, frequency, and phase angle
for mode i. This reiterates the fact that the dense time and space
response matrix ¥ can be decomposed into two submatrices that
include modal information. The rows of the matrix Q are decaying
harmonics.

In this study, as an alternative for the PCA method for extracting
modal components from ALS results, the following optimization
problem is considered. Say matrix Y is estimated from Y, using
the ALS method; the new objective function is expressed as Eq. (9),
in which optimization variables are shown in Eq. (10)

PPy
min_[[¥ — Q0| ¥
Q.0
[ e~ Wnwit sin(W12l + Wl3)
A et sin(szf + W23)
Q =
el sin(wiat +Wks) | ooy
o=|v, v, . v, (10)
| . : MxK

Matrix w is unknown in all components, while Q has only three
unknowns per row (w;;, w;,, and w;3). This optimization problem
aims to find the best parameters for w;; and V in order to minimize
the objective function. A visualization of this decomposition is
given in Fig. 2.

By imposing the structure, it is guaranteed that if the optimal
parameters are found, they will provide modal property estimates,
i.e., frequency, damping, and mode shapes. The ALS method, like
other common linear optimization methods for matrix completion
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Fig. 2. Concept of matrix decomposition from free vibration response:
in this case, a bridge is subjected to impulsive loading, and its vibration
responses at all DOFs are stacked and form the matrix (a). This re-
sponse matrix can be accurately approximated as a multiplication of
two matrices (b and c¢), both with rank K (model order). The vertical
matrix contains natural mode shapes, while the horizontal matrix in-
cludes natural modal fluctuations.

(Cai et al. 2010; Candes and Recht 2009), is inapplicable to such a
highly-constrained optimization problem. Therefore, in this study,
Newton’s optimization method is incorporated for estimating param-
eters. The main challenge in applying Newton’s method to high
dimensional data is the numerical calculation of the Hessian inverse
(Zhu et al. 1997). An approximate approach is utilized in this study
to do this task more efficiently.

Ambient Response Analysis using NExT

The structured optimization technique is suitable only when the
impulse responses of an MDOF system are available. In order
to generalize this method for random structural vibrations, the natu-
ral excitation technique (NExT) is embedded (James et al. 1995)
into the proposed method. In short, this technique converts the re-
sponse of a structure under ambient loading into impulse responses
in cross-correlational coordinates. The equation of motion for a
damped system under ambient loading is shown in Eq. (11)

My (1) + Cy(1) + Ky = F(1) (11)

where M, C, and K = mass, damping, and stiffness matrices
of the system, respectively; y(#) = response vector at time #; and
F(t) = random loading vector. In case of a random ambient load
(e.g., white noise), the cross-correlation function of the response
vector with an arbitrary reference response channel results in a free
vibration equation of motion, as in Eq. (12)

MRMW.(I) +CRy; (1) + KRMW,(t) =0 (12)
where Ry 5 () = cross-correlation between the response signal y;
at DOF i and a reference response signal y,.; (could be any chosen
DOF, with minimal constrains). Note that this technique was
developed to use with measurements from a fixed sensor network.
Yet, in this case, after matrix completion, the columns of the re-
sponse matrix Y, i.e., time histories at the DOFs, are available.
Therefore, it is possible to apply NExXT on the columns of Y to
produce a response matrix with the required structure, i.e., free
vibration of a damped SDOF system. A demonstration of how
to incorporate NEXT with structured optimization analysis (SOA)
is given in Fig. 3.

Modal Identification using Matrix Completion
Methods

In this section, the proposed procedure (MIMC) is explained in its
three possible forms: (1) matrix completion with PCA; (2) matrix
completion with structured optimization analysis; and (3) matrix
completion with structured optimization analysis integrated with
the NEXT method. In all three methods, the preliminary step is
to complete the bridge response matrix using the ALS method.
The first two methods are designated for bridges subjected to
impulsive loads (free vibration response), while the third method
is generalized for structures responding to ambient white noise
excitations.

Method 1: Matrix Completion with PCA

This method includes two main steps: (1) use ALS to complete
the response matrix based on the observed mobile sensor
data; and (2) apply PCA to the decomposition matrices to produce

Mﬁﬂ!mm [l rﬂm!hﬁ}»

NEXT,

NxM

I
—
KxN
N: Time increments
M: Location increments (DOFs)
K: Selected rank (K« M,N)
MxK
NxM
() (d)

Fig. 3. Concept of matrix decomposition from ambient loading response: in this case, a bridge is subjected to ambient loading, and its vibration
response is shown as a matrix (a). The vibration responses at each DOF is not decaying, therefore, these random responses are mapped into decaying
signals, matrix (b), using NEXT. Once this matrix is formed, the rest of the process is identical to the free vibration case (Fig. 2).
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orthogonal modes. In order to complete the highly sparse response matrix, the objective function shown in Eq. (5) should be minimized
by tuning variable matrices A and B. This task can be done by taking gradient steps toward optimality as expressed in Algorithm 1

(Jain et al. 2013).

Algorithm 1. Alternating minimization for matrix completion

: Input: Y, ®(), T

fort=1,...,T do

DU AW~

: Return AT, BT

In this algorithm, Y2V = sparse matrix with an assumed model
order K; ®(-) = binary location matrix with ones at observed
coordinates and zeros elsewhere; and 7 = desired number of iter-
ations. Within the argmin(.) function, the variable matrices are up-
dated using a magnitude proportional to their gradients and with a
certain step size. For brevity, these common steps are summarized
into the argmin(.) function.

After this step, the PCA algorithm is applied on K columns
(or rows) of matrix A (or B) to decouple its components into
estimations of modal coordinates. A similar task was done by
Poncelet et al. (2007) using PCA, independent component analysis
(ICA), and second-order blind identification (SOBI). These tools
are all able to extract uncoupled sources from mixed data by assum-
ing different characteristics for separated sources (e.g., orthogonal-
ity, statistical independence, and uncorrelatedness for the three
mentioned methods). In this study, the simplest method (PCA)
is incorporated for the separation task. In PCA, a matrix is decom-
posed into its singular vectors and values and then, based on a
desired level of accuracy, multiple singular terms with the most
participation are used to repopulate an estimation of the original
matrix. We say that the estimated matrix ¥ = A7 x BT has a rank
equal to the model order K. Therefore, by applying PCA, K
orthogonal modes are expected that are estimations of the natural
mode shapes.

Method 2: Matrix Completion with Structured
Optimization Analysis

The second MIMC method can be viewed as a variation of Method
1. In the second step of Method 1, PCA may not produce the

Ar+l = argminA(HYobs - (I)(Ath)H%)
B! = argming (|| g, — P(A"'B)[[3)

. .. . l l .
: Initialize Ay, . By y to be random matrices

> Gradient Descent
> Gradient Descent

expected results, i.e., natural modal coordinates. There are multiple
modal coordinates, among which each pair satisfies the orthogon-
ality condition; however, they are not necessarily true structural
modes. In fact, PCA performs ideally on regular and symmetric
structures with a uniform mass distribution. In these cases, the mass
matrix is approximated as a scaled identity matrix and mass
orthogonality condition is simplified to the regular orthogonality
condition, which is guaranteed in PCA. To force this step of the
algorithm to produce the natural modes, structured optimization
analysis (SOA) is proposed, as shown in Eq. (10).

To estimate parameters of the structured decomposition matrices
[@ and Q in Eq. (10)], an approximate Newton’s optimization
method is adopted from Eisen et al. (2017). In principle, Newton’s
optimization method takes the step shown in Eq. (13) toward the
optimal point, using second order information from the Hessian

Wit = Wy — /\H[f(wn)}_lvf(wn) (13)

where H(.) = Hessian of a function f(w); and \ = step size that
ensures the step satisfies Wolfe conditions (Wright and Nocedal
1999) (a requirement for line search algorithms). The inverse cal-
culation for the Hessian is a computationally expensive task for
high-dimensional data. In this problem, the dimension includes
all entries of matrix Q and three parameters for each columns of
matrix €, in total (M + 3) x K. Despite its lower dimension with
respect to the matrix completion problem using ALS, the problem
is still high dimensional, and the inverse Hessian calculation
is a bottleneck. To circumvent this issue, k-truncated adoptive
Newton’s method (k-TAN) is implemented as shown in Algorithms
2 and 3:

Algorithm 2. Newton algorithm using approximated Hessian inverse

1: Input: Y., ®(.), eps, threshold
2:d =1, w; = random;

3: procedure LOSSFUNCTION(W)

4: Lw, p,B=w

55 A=flEwo)
6
7
8

return [oss(w) := |®(AB) — Y ;|

: while d > threshold do

Apews Pk = LineSearch(eps)

9: wy =w; + aneka

10: d = |loss(w,y) —loss(w)|
11: Wi =W,

12: Return w,
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> w is flattened vector of variables

> Based on strong Wolfe conditions
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Algorithm 3. Hessian inverse approximation using truncated absolute

eigenvalues
1: procedure INVERSEHESSIAN
2: Input: H, eps
U'VU:=H
A\ = diag(V)
If |\;| > eps:

vi =1/
Else:

7 =0
Vnew = dlag(%)
Hin'v = UTVnewU
Return H;,,,

e A

—_ o

In this algorithm, eps is a threshold for eigenvalue truncation;
threshold is the acceptable accuracy indicator; and f(.) = function
that converts &, w, and ¢ into decaying oscillations and stack
them to form matrix A. The LineSearch(.) function is adopted
from Wright and Nocedal (1999) to calculate valid step sizes
new and produce H(loss)™'Vloss for each time step. Note that
®(.) is the binary matrix that activates available entries of Y,
in AB. However, because this step (Newton’s optimizer) is imple-
mented following ALS, after all entries of Y,,, have been esti-
mated, ®(-) is equal to a matrix of all ones. Most importantly,
H(.)~!is calculated according to Algorithm 3. This algorithm uses
truncated absolute values of the Hessian eigenvalues to approxi-
mate its inverse. The proposed method using ALS and SOA is illus-
trated visually in Figs. 4 and 5.

SOA is a nonconvex optimization problem and is sensitive to the
initial values of the variables. Accordingly, an appropriate initial-
ization of the frequencies is possible by detecting peaks in the PSD
estimate of a random scan. This warm start of the frequency var-
iables proved to be sufficient for the algorithm to find the optimal
parameters.

Method 2b: Structured Optimization Only

Method 2 can proceed without the matrix completion step in
advance. In Algorithm 2, the objective function still includes
®(.), which is an element-wise multiplication of a binary matrix.

...........................

Apply PCA

-------

Produce Perform
sparse matrix ALS

Pre-processing I '-,. Matrix Completion

..................................

Structured
......................... S Optimization

] s
i
]

.........................

Fig. 4. Process of the methods for free vibration-based identification.
The method consists of three main phases: Block 1: preprocessing;
Block 2: matrix completion; and Block 3: system identification. The
third phases can be performed using PCA (Block 3a) or structured
optimization (Block 3b).
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> Eigenvalue decomposition of Hessian

> Eigenvalue truncation

> Inverse Hessian approximation

In Method 2, the binary matrix @(.) is all ones because the unob-
served entries of the response matrix are estimated. Alternatively,
instead of minimizing the objective function calculated over the
entire matrix, Y,,, (sparse matrix) can be fed into the algorithm
along with its corresponding binary matrix ®(.) to tailor this algo-
rithm for an SOA-only method. In other words, SOA has this
possibility to be applied directly on the original sparse matrix of
the observations, in contrast to PCA in which a preliminary matrix
completion step is necessary. This approach is successful in SID
when impulse responses are considered; however, for a generalized,
random structural response, it is beneficial to integrate NEXT into
the process. For that case, ALS as a preliminary step is required.

Method 3: Matrix Completion with Structured
Optimization Analysis Integrated with NExT

The third method combines Method 2 with the natural excitation
technique (NExT) in order to process response data from a ran-
domly excited structure, which is the most commonly considered
scenario in SID. Fig. 6 shows that in this approach, after completing
the partially observed response matrix Y, one DOF is selected as
the reference signal (y,.; in Fig. 3), and a new matrix of cross-
correlated signals with respect to the reference signal is produced.
Then, this matrix is estimated using the SOA technique to produce
modal property estimates.

The critical hyper-parameter in this method is the index of the
reference signal (DOF). According to literature on NEXT, the best
selection for y,,r is a location whose response is influenced by the
structural modes of interest (i.e., it is not at or near a modal node
for modes of interest). This method needs the matrix completion
step to be performed before SOA because the completed matrix
after Block 2 (Fig. 6) does not have the presumed decaying struc-
ture in its columns. A better illustration of this proposed method is
given in Fig. 7.

To evaluate the proposed methods, in the next section, they are
validated in multiple numerical simulations.

Simulation and Results

In this section, three simulations of the MIMC methods are pre-
sented to demonstrate their performances for SID: (1) an undamped
structure subjected to an impulsive load; (2) a damped structure
subjected to an impulsive load; and (3) a damped structure sub-
jected to a random ambient load. The goal of the simulations is
to accurately identify the first four modes of a bridge using mobile
sensors scanning data. In the first two simulations, Method 1
(ALS+PCA) and Method 2 (ALS+SOA) are implemented and
their performances are compared for three different levels of data

J. Eng. Mech.

J. Eng. Mech., 2020, 146(4): 04020011



Downloaded from ascelibrary.org by Martin Takac on 12/29/20. Copyright ASCE. For personal use only; all rights reserved.

Block 1: Producing sparse matrix \

Rank (K)
selection

/

Block 2: Perform ALS matrix completion \

N

K Space

I~ X K

Time

Optimization using
Gradient Descent algorithm

%gnl¢(AB) — Yops|

_/

Block 3a: Apply PCA on A matrix (orthogonal bases) \

w s

7 /
/ Block 3b: Structured optimization \

N

Time
Time

C K Space
S R W R ~ x K

~
T W TR
TS W R S —y
R ——— 2 s
et e ] e e . =] A, = modal oscillations

B, = Mode shapes
Quasi-newton optimization algorithm

\ aé = g~fiwit sin(w;t + ¢;) /

Fig. 5. Components of the free vibration-based methods: Block 1:
superposing dynamic mobile scans into a global response matrix;
Block 2: applying ALS to complete matrix from the sparse matrix;
Block 3a: applying PCA to extract uncoupled components from ma-
trices A and B; and Block 3b: applying structured optimization to
fit free vibration signal parameters for each mode from the completed
matrix.

P PR TR T
R P TR T T

Produce Perform Structured
sparse matrix NEXT optimizatiol

Pre-processing - System Identification ;

Fig. 6. Process of the method for ambient vibration-based identifica-
tion. The identification phase can be performed by structured optimi-
zation after applying NEXT to the completed matrix.

availability, which are directly related to the total number of ve-
hicles that contribute to the mobile sensor data set: 75 scans,
100 scans, and 125 scans (cases A, B, and C, respectively). The
completeness of the corresponding data matrices in these cases
are 0.75%, 1.00%, and 1.25%, respectively. These cases are pre-
sented first as a reference to better understand the methods in order
to present comprehensively in the third simulation case. Moreover,
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Block 1: Producing sparse matrix \

Depends on observed
data availability

Rank (K)
selection

/

Block 2: Perform ALS matrix completion \

N

K Space

=~ X «

Time

Optimization using
Gradient Descent algorithm

min|P(AB) — Yops|

- /

/ Block 3: Apply NEXT to convert matrix to impulse responses \

@

Replacing columns by
cross-correlation of it
with respect to the
reference column

YWY W WY

YR WY RV Wy

SRR T Wy
WY T WY

Reference
to be picked

R WY RV WY
et e s
OV PRV WY
YRS W Wy

Block 4: Structured optimization \

hY#

K Space

Q
X

Time

A = modal oscillations
B = Mode shapes
Quasi-newton optimization algorithm

\ a = e~ sin(w;t + ¢;) /

Fig. 7. Components of the ambient vibration-based method: Block 1:
superposing dynamic mobile scans into a global response matrix;
Block 2: applying ALS to complete matrix from the sparse matrix;
Block 3: applying NEXT to convert nondecaying signals to decaying
signals; and Block 4: applying structured optimization for modal
properties extraction.

in bridges with potholes or construction/expansion joints, impul-
sive loads are a proper way of modeling large trucks and buses
passing through these bumps and holes. In Simulation III, ambient
vibrations are considered along with four data completion levels
(0.50%, 0.75%, 1.00%, and 1.25%) for which Method 3 is
implemented.

Finite-Element Model and Mobile Sensing Setup

The simulations are based on a 500-m single-span bridge, whose
linear responses are modeled using OpenSees. The responses at
5,000 equally-spaced DOFs of the bridge are considered, which
are sampled at 50 Hz and have a duration of 100 s. Forces are
applied at nine evenly-spaced nodes, along the bridge with magni-
tudes that vary in each simulation. The response data at all DOFs
form a 5,000 x 5,000 dense response matrix from which a sparse
response matrix Y, can be subsampled based on the paths of the
simulated mobile sensors. Rayleigh damping is assigned by setting
damping ratios equal to 2% for modes one and eight. A modal
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Fig. 8. Simulation I: ALS results for three cases: (a) Case A; (b) Case B; and (c) Case C. DOF versus normalized amplitude plots show matrix A
components in space and frequency versus component content plots show Welch PSD estimates of matrix B components.

analysis of the structure shows the natural frequencies of the
first four modes: 0.2655, 0.7322, 1.4356, and 2.3731 Hz. Because
the bridge is modeled in 2D, all modes are vertical. After data gen-
eration in OpenSees, the matrix database is exported to Python for
further analyses.

The mobile scanning data are generated by selecting appropriate
entries from the dense response matrix—a process that is illustrated
in Block 1 of Fig. 5. To simulate the random nature of vehicles
scanning the bridge, the starting times and locations of each vehicle
are selected randomly. This process is repeated » times to mimic a
sensing scenario, including n vehicular sensors, which scan the
bridge’s response within a 100 s period. Note the lengths of the
individual mobile scans (diagonals) vary among the vehicles be-
cause their trajectories begin at a random point in the data matrix.
In other words, the mobile sensors collect data independently.
Finally, for simplicity, the speeds of all the sensors are set to
5.0 m/s to allow just enough time (100 s) for a vehicle starting
at one end to complete one full-length bridge scan, meaning that
most scans only cover a portion of the bridge.

Simulation I: Undamped Bridge Subjected to
Impulsive Load

The first step in all the proposed methods is to complete the matrix
using the ALS method, for which Algorithm 1 is implemented in
Python using TensorFlow framework and performed on the sparse
matrix. For applying the algorithm, a value for K (desired model
order of the decomposition matrices) must be selected. In all three
cases, a K value between four and six yields the best performance—
further details about this selection are discussed later. Fig. 8 shows
the ALS results for cases A, B, and C: top plots display the com-
ponents of the A matrix and bottom plots show the power spectral
density (PSD) estimates of the components of the B matrix. The
components of the matrix A are similar to the expected mode shapes
of the bridge; however, they are not exactly the natural modes. The
peaks of the PSD estimates of the components of the B matrices
correspond to the modal frequencies. Note these components
are coupled, i.e., each component does not have a distinct peak.
PCA is used to make these components orthogonal to one another.
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PCA is performed on columns of matrix A as well as rows of
matrix B to produce orthogonal modes. Fig. 9 shows the mode
shapes resulting from PCA for cases A, B, and C, respectively.
The estimated mode shapes for the first four modes are consistent
with the true mode shapes of the bridge as indicated by the modal
assurance criteria (MAC) (Allemang and Brown 1982) values in
Table 1, which are all greater than 0.95. The first and second mode
shapes were perfectly identified in all cases. The PSD estimates
of these extracted modes for all three cases are presented in Fig. 10.
In this figure, each mode shows only one peak in its frequency
representation, which means PCA is successful in decoupling the
modes.

It is important to notice that the identified mode shapes contain
5,000 points; a very high resolution—in fact, these are the densest
mode shapes that are extracted from accelerometer data in the lit-
erature of the field. The implication is that, in case A, on average,
each mobile sensor scan produced about 66 points.

The same problem is approached using Method 2 (matrix
completion with structured optimization). In this method, after the
matrix completion step, the response matrix is reformed into a
structured matrix to approximate modal properties of each mode.
Likewise, Algorithm 2 is implemented in Python to tune unknown
variables. The estimated mode shapes for cases A, B, and C are
shown in Fig. 11. In Method 2, the number of points in the iden-
tified mode shapes is reduced to 100, a user-defined value. This
particular selection enables a quick solution to the optimization
problem while maintaining a dense mode shape.

The quality of the identified mode shapes is quantified using
MAC values and displayed in Table 1. The MAC values for all four
modes are above 0.94 in all three cases, which indicates the iden-
tified shapes are consistent with the true mode shapes. In addition,
the mode shape estimates are insensitive to data completion levels
(from case A to case C). MAC values for two first modes using both
PCA and SOA are above 0.99. This accuracy is especially signifi-
cant considering the high resolution of the identified mode shapes.
Comparing two methods in natural frequency estimation shows
that PCA has a 2% error in the worst case, while SOA estimates
are within 1% of the true values. Regarding the frequency
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Fig. 9. Simulation I: mode shapes resulted from Method 1: (a) Case A; (b) Case B; and (c) Case C.

Table 1. Identification results for simulation I

representation of the modes identified with SOA, Fig. 12 shows that
in all three cases, modes are independent and without spectral

Case Method Mode 1 Mode 2 Mode 3 Mode 4 . . .
leakage. By comparing these results with Fig. 10, the advantage
MAC values of SOA is noticeable; SOA includes a constraint that guarantees
A PCA 0.9999 0.9993 0.9408 0.9585 natural mode extraction, which is different from PCA. This special
SOA 0.9995 0.9987 0.9575 0.9511 . .. . . .
feature is demonstrated again in the following simulation.
B PCA 0.9999 0.9996 0.9577 0.963 . . .
SOA 0.9995 0.9985 0.9418 0.9543 Table 1 summarizes the estimated modal frequencies from both
C PCA 0.9999 0.9993 0.9533 0.9566 methods and all three cases; the results confirm that both methods
SOA 0.9995 0.9988 0.9485 0.9519 produce accurate modal property estimates. Overall, SOA provided
Natural ies (H2) more accurate frequency estimates than PCA. It is important to
atural frequencies Z . . . . . . s
A PCA 02562 07291 14187 23498 lgeep 11(11 mtmd; thaF whlle. (sjuccgs.sfué,' thlls ts‘1mu11;1t10n was basic; a
SOA 0.2656 07317 1.4066 53554 amped structure is considered in Simulation II.
B PCA 0.2704 0.7375 1.4356 2.3451
SOA 0.2656 0.7316 1.4322 2.3553 Simulation Il: Damped Bridge Subjected to
C PCA 0.2653 0.7274 1.4305 2.3499 Impulsive Load
SOA 0.2656 0.7317 1.4313 2.3553 , ' o , , o
— Actual 0.2655 0.7322 1.4356 23731 Simulation II is similar to simulation I except that damping is

Component Content

2

3

considered. After forming a sparse matrix of the damped bridge

Component Content

Component Content

2

3 4 5 0 1 2 3 4 5

0 1 5 0
(a) Frequency [Hz] (b) Frequency [Hz] (c) Frequency [Hz]
Fig. 10. Simulation I: Welch PSD estimates of identified modes for (a) Case A; (b) Case B; and (c) Case C using Method 1.
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Fig. 12. Simulation I: Welch PSD estimates of identified modes for (a) Case A; (b) Case B; and (c¢) Case C using Method 2.

response subjected to an impulsive load from finite-element analy-
sis, the matrix is completed using the ALS algorithm; the results are
shown in Fig. 13. These plots are different when compared with
ALS results of the undamped case; for instance, the components
of the A matrix are noisy and contain outliers. In addition, the peaks
in the PSD estimates are less prominent. One explanation for this
difference is that the matrix completion algorithm performs more
desirably when the values of the matrix do not decay significantly.
In the damped case, the rapid decays of the signal interfere with the
algorithm’s ability to properly estimate the tails. Despite this,
Table 2 shows that Method 1 is still successful in identifying highly
dense mode shapes. A comparison between Fig. 10 (undamped)
and Fig. 14 (damped) highlights the spectral leakage among the
modes in the frequency domain in the damped case, which influ-
ences the amplitudes of each peak.
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Regarding three sparsity cases, it is observed that as the
amount of available data increases, the estimated components of
matrix A are less noisy. However, to address this noise (unwanted
high frequency content), a moving average window is applied to the
mode shapes resulting from PCA to filter out high frequency
noises.

In Method 1 (matrix completion with PCA), the damping ratios
for each mode are calculated based on free vibration decay (Chopra
2017). After applying PCA, the corresponding modal coordinates
are plotted in time, the amplitude decay within a certain number of
cycles is measured, and the modal damping is estimated. The re-
sults shown in Table 2 indicate that the damping ratios are esti-
mated properly.

Next, Method 2 is used, in which SOA is implemented after
matrix completion. This algorithm is very fast and converges in
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Fig. 13. Simulation II: ALS results for three cases: (a) Case A; (b) Case B; and (c) Case C. DOF versus normalized amplitude plots show matrix A
components in space and frequency versus component content plots show Welch PSD estimates of matrix B components.

Table 2. Identification results for simulation II

Case Method Mode 1 Mode 2 Mode 3 Mode 4
MAC

A PCA 0.9993 0.9986 0.9578 0.9582
SOA 0.9902 0.9948 0.9555 0.7996

B PCA 0.9959 0.9260 0.9579 0.9426
SOA 0.9875 0.9994 0.9554 0.9246

C PCA 0.9933 0.9929 0.9579 0.9700
SOA 0.9831 0.9988 0.9557 0.9572

Natural frequencies (Hz)

A PCA 0.2655 0.7325 1.4258 2.3500
SOA 0.2657 0.7318 1.4313 2.3495

B PCA 0.2606 0.7325 1.4307 2.3599
SOA 0.2655 0.7319 1.4313 2.3539

C PCA 0.2706 0.7429 1.4315 2.3653
SOA 0.2657 0.7319 1.4316 2.3550

— Actual 0.2655 0.7322 1.4356 2.3731

Damping ratios (%)

A PCA 2.048 1.004 0.707 0.473
SOA 1.886 0.777 0.576 0.450

B PCA 2.101 0.976 0.619 0.521
SOA 1.783 0.751 0.574 0.535

C PCA 2.155 0.923 0.735 0.933
SOA 1.882 0.792 0.576 0.539

— Actual 2.000 0.800 0.600 0.700

fewer than 20 iterations. In contrast to Method 1, after convergence,
the mode shapes, damping ratios, and frequencies are all calculated
separately, and there is no need for post processing. The identified
modes are not presented for brevity; however, the MAC values,
damping ratios, and frequencies are presented in Table 2.
Overall, the mode shapes are estimated accurately; MAC values
in Table 2 exceed 0.92 in all cases (except for the fourth mode in
case A). Note that the identified modes from Method 1 consist of
5,000 points, while Method 2 results in 100 points. In terms of
natural frequency estimates, Table 2 shows that both methods were
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equally successful. Estimated damping ratios shown in Table 2
indicate that both algorithms are successful in this aspect. SOA
results in almost exact estimations for the first three modes while
PCA estimates are not as accurate. The PSD estimates in Fig. 15
display four independent and smooth frequency plots for the struc-
tural modes.

Until now, we showed that the proposed methods are successful
for estimating modal characteristics of a bridge (damped or un-
damped) subjected to the impulsive load and using mobile sensors
data. In the next simulation, a more realistic loading case (ambient
random load) is investigated.

Simulation Ill: Damped Bridge Subjected to Ambient
Load (Operational Condition)

In this section, Method 3 is used for SID using ambient vibration
data. Based on the results in the previous two simulations, it is
concluded that SOA produces more consistent SID results.
Simultaneously, PCA excels at determining modes that are
orthogonal to one another; yet, it does not automatically produce
true structural modes as the condition for these is orthogonality
with respect to the mass and stiffness matrices. As a result, PCA
performs ideally on single-span bridges with a uniform mass be-
cause in these cases, the condition for component orthogonality is
equivalent to that for mass-stiffness orthogonality. SOA, on the
other hand, is not built on this assumption and is widely appli-
cable to more generic structures. Based on these considerations,
SOA is recommended to be used with NEXT for ambient vibra-
tions and is selected for this simulation. In this example, to further
test the limits of sparse data, a lower level of data completion case
is added. The four cases, 50, 75, 100, and 125 scans, correspond
to data completion levels 0.50%, 0.75%, 1.00%, and 1.25%,
respectively.

The bridge is excited randomly at nine locations while the
mobile sensors scan the response. This case is simulating the pas-
sage of a network of moving sensors over evenly spaced potholes
or expansion joints. However, other random loading patterns with
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Fig. 16. Simulation III: Welch PSD estimates of completed versus actual bridge response signals: (a) 50 scans; and (b) 125 scans.

more loading points can be assigned with no loss of generality in includes contributions from all four modes. Then, a response matrix
the performance. In addition, 5% white measurement noise is added with decaying signals in each column is constructed for SOA.
to the mobile sensing data. The first step is to apply ALS to com- Fig. 17 shows the estimated modes for each of the data availability
plete the response matrix. To demonstrate this process, Fig. 16 levels. In general, the modal property estimates from this simula-
compares the PSD estimates of the true response at the 1,000th tion are more accurate than those from Simulation II.
DOF with the ALS approximations for two extreme sparsity cases. The estimated mode shapes are evaluated using MAC values
Overall, the ALS results contain accurate frequency content— in Table 3. The MAC values for the identified mode shapes, for
especially below 3 Hz. These plots do not indicate any significant all modes, and all sparsity cases are greater than 0.95, which
differences among the data completion levels. indicates a strong agreement with the true mode shapes. In par-
After the matrix completion step, NEXT is applied to the ticular, the shapes for the first and second modes were perfectly
estimated signals (according to the procedure in Fig. 6). Out of the identified in all incomplete data cases, as measured by MAC
100 DOFs available (reduced from 5,000 to improve the CPU values over 0.99. Furthermore, it is worth reiterating that Method
speed), the 40th is selected as the reference signal because it 3 is successful in estimating high resolution mode shapes
© ASCE 04020011-13 J. Eng. Mech.
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Fig. 17. Simulation III: mode shapes resulted from Method 3: (a) 50 scans; (b) 75 scans; (c¢) 100 scans; and (d) 125 scans.

(100 points each). Fig. 18 illustrates the method’s accuracy in
extracting clear and independent modal frequencies without spec-
tral leakage. This result can be attributed to the structure imposed
by SOA.

Lastly, by superposing identified modes and comparing with the
completed response matrix results, Fig. 19 is created. This figure
demonstrates that the combined reconstructed signal from SOA
ideally resembles the underlying natural frequency contents of the
bridge. In addition, by comparing figures, different cases (data avail-
ability variations) result in the same level of modal estimation accu-
racy. Table 3 shows that the natural frequency estimations are all
within 0.7% error range, which is promising. Damping ratio estima-
tions from Table 3 agree closely with the actual values, especially in
the first three modes. The same level of accuracy is also evident from
MAC values of the estimated mode shapes presented in Table 3
(two first modes are identified with MAC values higher than
0.99). By comparing the accuracy of the estimated parameters in dif-
ferent data availability cases, it is evident that MIMC performs con-
sistently well within the tested range (50-125 scans). This is
important because it shows the robustness of the proposed method
for different mobile data availability. This robustness was also ob-
served in two former simulations and in SOA results. In fact, in
SOA, the number of unknown variables reduces from (M + N) x K
for ALS step to (M + 3) x K (M x K for mode shape estimations
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and 3 x K for modal coordinate estimations), and this lowers the
sensitivity of the algorithm to the observed data availability.

Discussion

In the previous sections, the proposed MIMC methods were applied
to a set of examples for demonstration and validation. This section
provides further information to assist users with proper implemen-
tations of MIMC methods.

Operations on high dimensional data are vulnerable to computa-
tional instabilities. ALS and SOA are two optimization techniques
based on sparse data whose performances depend on a number of
parameters. In the matrix completion with ALS, a decaying step
size, tuned for the gradient descent optimization, provided an ad-
equate performance. A decaying step size is generally suitable for
smooth and convex objective functions. The SOA objective func-
tion is nonconvex; thus, a line search algorithm with strong Wolfe
conditions (Wright and Nocedal 1999) was implemented, as
presented in Algorithm 2.

In the optimization process (ALS step), the sparse matrix is
more accurately estimated if the model order K is slightly more
than the expected rank of the response matrix. In general, the rank
of the decomposition matrix is close to the target number of modes
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Table 3. Identification results for simulation III

Scans Mode 1 Mode 2 Mode 3 Mode 4
MAC
50 0.9932 0.9981 0.9546 0.9527
75 0.9965 0.9978 0.9552 0.9542
100 0.9978 0.9980 0.9552 0.9549
125 0.9976 0.9972 0.9555 0.9573
Natural frequencies (Hz)
50 0.2654 0.7316 1.4311 2.3549
75 0.2654 0.7333 1.4312 2.3555
100 0.2654 0.7331 1.4311 2.3554
125 0.2654 0.7330 1.4311 2.3553
Actual 0.2655 0.7322 1.4356 2.3731
Damping ratios (%)
50 1.855 0.894 0.421 0.214
75 1.857 1.004 0.426 0.213
100 1.867 0.996 0.422 0.213
125 1.867 0.993 0.349 0.213
Actual 2.000 0.800 0.600 0.700

to be identified (e.g., four in this study). However, increasing the
rank (model order) marginally can improve ALS optimization
based on the sparse data and produce beneficial SID results
(Eshkevari and Pakzad 2020). In all simulations, K is tuned to pro-
duce the best performance.

In Simulation II, Fig. 14 shows that despite the fair accuracy of
the identified modes (shown in Table 2), the modes from PCA are
not as well separated as the first simulation (modal interactions are
present). Fig. 15 shows that this problem does not exist in the
modes identified with SOA. In SOA, modal interactions or spectral
leakage are unlikely, because the structure only accepts one set of
frequency, damping ratio, and phase shift parameters for each com-
ponent; this constraint guarantees the extraction of distinct and
independent modes.

For a matrix completion problem, a range of data completion
between 0.5% and 2.0% is reasonable (Candes and Recht 2009).
This ratio is convertible to different numbers of mobile scans
according to the dimension of the response matrix. For instance,
in this study, the response matrix is 5,000 x 5,000, which needs
nearly 100 mobile scans to suffice a 1.0% data completion rate.
These 100 scans are divided in the number of lanes over the bridge
(e.g., for the numerical case study, we can assume three lanes in

each direction). Therefore for each lane, 17 scans are needed within
the monitoring duration (or 25 scans for a four-lane bridge).
Considering the sampling rate, the vehicle speed, and the length
of the bridge, this number is easily practical. The important note
in this study is that these 17 scans do not need to visit all DOFs within
the time frame, e.g., partial scans are acceptable. For crowded bridges,
the number of mobile scans is significantly more than this range;
however, the operator can randomly pick sufficient measurements
and use for the matrix completion and modal identification tasks.

To better understand the effect of model order K with respect to
the data availability levels, various K values and scan levels were
considered by Method 3. Table 4 shows the corresponding final
objective function values of ALS and SOA and documents the run-
times and number of identified modes. In this table, ALS objective
function values are reported per observed matrix entry and SOA
values are reported over the entire response matrix after completion
with normalization. A smaller ALS objective function value indi-
cates a more successful fit based on the observed entries and
suggests a more accurate signal reconstruction. Generally, as K in-
creases, the ALS objective function decreases. At the lowest data
availability (50 scans), when K grew from 5 to 6, the ALS objective
function value increased slightly—which implies that a limit had
been reached. For the more complete data cases, the ALS objective
function always decreased as K increased. Similarly, the SOA ob-
jective function value measures the success in imposing a structure
over the response matrix; however, this value was much less sen-
sitive to changes in K or data availability.

The runtimes of each technique are compared in Table 4; while
these are subject to the processor’s type, the relative metrics are
informative. At the lowest data level (50 scans) and with K equal
to 6, five modes were identified; however, the runtime for ALS was
significant. Alternatively, five modes can be identified ten times
faster, and about four times more accurately, when 100 or 150 scans
were available (Table 4). Generally, when the number of scans
increased from 100 to 150, there was no improvement in SID.
These points demonstrate some of the trade-offs between K, data
availability, and the target number of identified modes. In certain
circumstances, more data does not improve the SID results.

There are numerous variables that influence the data collected
by a vehicular sensor network. In this paper, the proposed MIMC
methods were shown to produce accurate SID results in the case of
arandom monitoring process. The speed of the mobile sensors is an
influential parameter that was not explicitly studied in this paper—
instead it was linked to a particular data duration and the bridge
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Fig. 18. Simulation III: Welch PSD estimates of identified modes using Method 3: (a) 50 scans; and (b) 125 scans.
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Table 4. Runtimes, number of identified modes, and objective functions for various K and data availability

Measure Scans K=2 3 4 5 6
Runtime (s) 50 155 161 >1,000 >1,000 >1,000
100 31 30 55 93 162
150 46 31 57 31 233
Identified modes 50 2 3 3 4 5
100 0 3 4 5 5
150 2 3 4 5 5
Objective function values
ALS step 50 77.1751 40.6841 23.9679 11.0315 12.7113
100 90.8833 51.8795 29.3165 7.3299 3.6893
150 93.5409 51.0089 26.5513 9.0379 4.6717
SOA step 50 0.0221 0.0479 0.0535 0.0025 0.0159
100 0.1313 0.0483 0.0476 0.0446 0.0404
150 0.0378 0.0549 0.0807 0.0469 0.0461

length. It is important to clarify that this example was presented for
demonstration purposes and to show that there are no aspects of the
MIMC methods algorithms that restrict speed variations of the mo-
bile sensors. The velocities of the individual vehicles affect the lo-
cations of the observed entries in the response matrix and, in turn,
the shape of the available data (see the first block of the proposed
methods shown in Figs. 5 and 7). Matrix completion literature
(Candes and Recht 2009) discusses how sparse matrices with ran-
domly arranged entries provide an ideal starting point for reaching
the global optimum, i.e., yielding the most accurate full response
matrix. Thus, a stochastic vehicular sensor network with various
speeds, sampling rates, scanning intervals, etc., is better suited
to achieve this condition. In addition, speed variations can help
to better facilitate the proposed methods for shorter span bridges.
For instance, if the bridge span is 300 m and the vehicle network
crosses the bridge with a speed of 10 km/h, the same level of spa-
tial discretization could be achieved. This means that the response
matrix will have the same dimensions, and consequently, the con-
clusions of the current case studies (e.g., high resolution natural
mode shape identification) are achievable.

Conclusion

In this study, novel methods were proposed for a comprehensive
modal identification of a bridge based on data collected by a large
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number of moving sensors (i.e., vehicles). Bridge response data
collected by a vehicular sensor network are both sparse and
dynamic. The full (unobserved) bridge response is viewed as a very
large data matrix of which the aggregate mobile sensing data
provide a sparse representation. The modal identification using
matrix completion methods proposed utilizing matrix completion,
i.e., alternating least squares (Jain et al. 2013), to complete the full
matrix based on sparse entries. Then, the completed matrix was an-
alyzed to extract a complete set of modal properties, e.g., frequencies,
damping ratios, and high-resolution mode shapes. For this, two
algorithms, principal component analysis (Jolliffe 2011) and struc-
tured optimization analysis were proposed (the latter was developed
by the authors) and applied on the completed matrix (Methods 1 and
2, respectively). To extend the applicability of this technique to
ambient structural vibrations, a third method was proposed based on
the natural excitation technique (James et al. 1995) (Method 3).
The proposed methods were evaluated numerically in three dif-
ferent simulation studies, and results were presented. Method 1 was
able to extract natural mode shapes of the bridge under impulsive
loading with 5,000 points, which are the densest identified mode
shapes in the existing literature. Alternatively, Method 2 can extract
mode shapes with a user-defined number of points. In Simulation
III, Method 3 showed that it is a robust and accurate SID solution
for bridges using mobile sensor network with minimal sensitivity to
the data completion rate. However, the methods generally improve
in terms of computational costs and SID results when more data
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completion rates are available. It was also shown that Method 2 and
Method 3 could extract fully decoupled modal components
while Method 1 suffered from modal leakage in some modes. A
sensitivity study on the user-defined model order K (rank of the
decomposition matrices) was done. The study showed that while
larger K’s usually lead to better signal reconstruction results, it will
increase the computational costs. A balanced configuration of K
and data completion rate yielded the best performance.

The accuracy of estimated modal properties is promising in all
three simulations and methods (within 2% error in most cases).
Method 1 was able to identify a very high-resolution fundamental
mode with MAC value equals to 0.9999. The frequency estimated
in all three simulations are very accurate (e.g., Method 3 resulted in
0.07% estimation error in the worst case on Simulation I1I). Method
2 and 3 showed a desired performance in damping ratio estimation,
especially on the first three modes. This work further supports the
practice of dynamic sensor networks for SHM applications, espe-
cially system identification. MIMC methods are applicable to data
collected by vehicular sensor networks, which present new oppor-
tunities to monitor bridge vibrations at unprecedented rates and
scales. This proposed methodology paves the way toward a fully
autonomous and real-time bridge health monitoring platform using
crowdsourced data provided by smart devices.
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