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Abstract—In this letter, a novel approach is presented for imaging of metallic objects based on induction sensing. The
approach relies on the concept of collection of the point-spread function (PSF) in a linear space-invariant system. For
this purpose, the responses of small objects are measured a priori to serve as the PSFs of the imaging system. Then,
these PSFs are employed in a test scenario, in which, the response of unknown objects distributed over multiple depths
are measured and inverted to reconstruct two-dimensional (2D) images at those depths. The stack of these 2D images
provides a 3D image. The image reconstruction is fast due to the use of forward and inverse Fourier transforms. This
imaging approach is validated via the use of off-the-shelf components.

Index Terms—Electromagnetics, Eddy Currents, Imaging and Sensing, Inductive Sensing.

I.  INTRODUCTION

Imaging of metallic objects has a wide range of applications in
infrastructure imaging (e.g., see [Szymanik 2016]), non-destructive
testing (e.g., see [Darrer 2015]), security screening (e.g., see [Ledger
2015]), biomedical imaging (e.g., see [Gogola 2013]), etc. In a
common imaging technique, called electromagnetic induction
imaging (EII) [Peyton 1996], electromagnetic waves with sufficiently
low frequency, are employed to illuminate the medium under
inspection. The use of low frequencies allows for penetration inside
the medium and producing eddy currents on the surface of hidden
metallic objects. These eddy currents, in turn, produce secondary
electromagnetic fields that reflect back toward the transmitter. These
secondary electromagnetic fields carry information about the type,
size, and shape of the hidden metallic objects.

The EII has been exploited for biomedical imaging [Peyton 1996,
Griffiths 2001, Zolgharni 2010], non-destructive testing [Higson
2003, Gaydecki 2002, Wei 2012], and national nuclear security
[Darrer 2015]. In [Ma 2013], a planar array system, including an array
of 4 x 4 coils, has been proposed for three-dimensional (3D)
subsurface imaging. There, a linear inverse solver along with
Tikhonov regularization have been utilized to calculate the
conductivity distribution in the inspected domain. Besides, retrieving
depth information has been achieved by using non-adjacent coils.

Recently, high-sensitivity detection and imaging have been
implemented based on EII systems. For instance, in [Gaydecki 2002],
Q-detection sensors have been used for condition monitoring of steel
reinforcing bars embedded in concrete. Besides, an inductance-
capacitance resonance system has been proposed for detection of
metallic wear debris in rotating and reciprocating machinery [Du
2012, Du 2013]. In [Guilizzoni 2015], a measurement system has
been reported based on a resonant LCR circuit which has shown
promising results for 2D imaging of metallic samples. This method
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has been extended in [Guilizzoni 2016], demonstrating imaging of
conductive samples shielded by conductive barriers.

Along the above-mentioned efforts, here, we propose a fast and
cost-effective approach to perform imaging of metallic objects at
multiple depths. The imaging system is assumed to be linear and
space-invariant so that we can employ the convolution theory
[Oppenheim 1999]. The inversion approach is fast due to the use of
forward and inverse Fourier transforms (FTs). The performance of the
approach is validated via the use of off-the-shelf components.

II. THEORY

Fig. 1 illustrates the proposed imaging setup including a transmitter
coil illuminating the metallic objects with electromagnetic waves
while moving over a rectangular aperture. Multiple receiver coils
move together with the transmitter coil to scan the back-scattered field
over the aperture. To increase the sensitivity of measuring secondary
fields, a capacitor can be connected in parallel with each coil to build
an LC tank circuit resonating at frequency f as:
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Fig. 1. lllustration of the Ell technlque which employs a transmitter coil
and multiple receiver coils scanning a 2D aperture.
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Then, the presence of metallic objects can be detected via
measuring the change in the resonant frequency. Here, to be able to
image objects at multiple depths, we propose data acquisition with N,
receiver coils. Assume that at each sampling position (x, y), the
resonant frequencies are measured for all the receiver coils. The
objective is then to reconstruct images over z = z; planes where i =
I,..., M. In the following, we refer to the measured resonant
frequencies as just responses.

In the proposed imaging technique, we assume that the imaging
system is linear and space-invariant (LSI). The linear property is
based on the assumption that multiple reflections between the metallic
objects are ignored and the objects are small. On the other hand,
space-invariant property indicates that if the objects are shifted in a
plane parallel to x-y plane in Fig. 1, their responses will be shifted by
the same amount and along the same direction. Assuming that the
imaging system is LSI allows for the use of convolution theory.

According to the convolution theory for an LSI system, the
response to any arbitrary input function to the system can be written
in terms of the convolution of the point-spread function (PSF) of the
system and that input function. PSF of the system is actually the
response of the system to a Dirac delta function.

Here, in order to collect the PSFs, we record the responses R*® due
to small objects placed at (0, 0, z)), i = 1,...,N.. We refer to these small
objects as calibration objects (COs). These are the smallest objects
that can be measured at (0, 0, z;) positions. Responses measured for
such small objects approximate the responses of the imaging system
to Dirac delta input functions. These COs are placed, one at a time, at

each (0, 0, z), i=1,...,N: position and their responses R:°(x,y) are
measured over the aperture by scanning the transmitter and receiver
coils. Then, the response R;(x,y) due to any object under tests

(OUT) at plane z = z, can be obtained by the convolution of the
collected PSF for the corresponding plane with the OUT’s spatial
distribution function c,(x, y) . This is written as:

R,‘ (xsy):Rico(xay)*x *yC,-(X,y) (1)
where x_and *, denote convolutions with respect to the x and y
variables, respectively. Equation (1) can be written for responses
created by the OUTs over each imaged plane (0, 0, z), i = 1,...,N-.
Then, the total response R(x,y) measured by the receiver coil due to

the presence of the OUTs at all imaged planes can be approximated
with the superposition of the contribution of all these responses as:

N, N,
R(x,y) =Y R (x,y)= Y RP(x,y)*, * ¢ (x,y) )
i=1 i=1

In the above equation, R°(x,y) functions are known due to the

measurement of the responses for COs. R(x,y) is also known due to
the recording of the response for the OUTs. In order to estimate the
unknown functions c,(x,y) on the imaged planes z=z;, i=1,..., N,
the responses are acquired with N, receiver coils with various sizes
allowing for various inspection depths. Thus, (2) can be re-written for
the measured responses of each coil. This provides the following
system of equations:

NZ
R(xsysl) = zRico(xayal) *x *yci(xay)

i=1

3)

N:
R(x’y’N)') = ZRIF:O(x’y’ N)') *X *ycl(x’y)
i=1
In order to solve the system of equations in (3), 2D FTs with respect
to x and y variables are applied on both sides of the equations. This
leads to the following system of equations in the Fourier domain:

= Ny . ~
]é(kx > ky )= Z Rico (k,, ky e (k,, ky)

i=1

“4)

= NZ = ~
Rk, k,,N,) = R®(k.k,.N,)ék,.k,)

i=1

where ﬁ(kx,ky,r) s 1:2,.°°(kx,ky,r) and gi(kx,ky) are the 2D FTs of

the functions R(x,y,r), R°(x,y,r), and ¢,(x,y), respectively, and

kx and k; are Fourier variables corresponding to the x and y variables,
respectively.

Here, we apply beamspace methodology to each system of
equations in (4) (written at each spatial frequency pair (kxky)).
Beamspace processing contains passing the FT of the measured data

b =[R(k,.k,,1),...R(k,,k,,N,)]  through  a

transformation that reduces sensitivity to correlation between the
objects in adjacent imaged surfaces [Rodriguez-Rivera 2006]. In fact,
each b is multiplied by a matrix that reduces the dimension of b before
solving the system of equations. Dimension reduction is obtained by
designing the beamspace transformation to focus on a specific imaged
surface. The term beamspace was chosen because the spatial response
of the dimension-reducing measured data were designed to form a set
of overlapping directional beams that has large gain on a specific
imaged surface and low gain elsewhere.
We first re-write (4) at each (kx, ky) in a matrix form as:

vector linear

b(k,.k,)= Ak, .k, )x(k, k) » ®)
where
Rk, k,.1)
Rik..k.2
b(k,.k,)= (kokys2) | (6)

R(k,k,,N,)

RE(k, k1) RS (K, k)
Ak, k)= : , (D
R (kyoky,N,) - RY (kyok,,N,)
él(kx’k}’)
&k, k
x(k, k) = | 20 ®)
Ey, (kyok)

We then propose an approach for beamspace transformation that is
optimized to preserve objects within each imaged surface. We
indicate the beamspace transformation using the N, x1 matrix T and

obtain the M <N,
by (k,,k,)=T'b(k,k,) . We assume that the columns of T are

dimensional beamspace data vectors as

orthonormal without loss of generality. The design of matrix T is
based on minimizing the average error between the original and
beamspace representation of the object images. The beamspace data
is interpreted as the data in the space spanned by the columns of T.
Therefore, the component that is not considered in beamspace is the
projection of the data onto the space orthogonal to T, ie.,
(I-T'T)b(k,,k,) - This implies that the squared error associated with
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mapping an object at a specific imaged plane z;, i = 1, ..., N: into
beamspace is
R
@) =[a-Tra ©)
where A, is the i column of matrix A. In general, an appropriate

selection of T will lead to a small error in all imaged surfaces. One
method for choosing matrix T could be based on minimizing the
mean squared representation error (MSRE) between the original and
beamspace representation of the objects in each specific surface

min ¢7(7) (10)

Using (9), the minimization problem (10) is equivalent to the
maximization problem:

max tr(T'GT) subject to TT=I 1D
where
G=AA,,i=12,.N,. (12)

The solution to (11) is obtained by choosing the columns of T as the
eigenvectors corresponding to the M largest eigenvalues of G.
Therefore, the corresponding minimum MSRE is given by the sum of
the N, — M smallest eigenvalues of G. Here, since A; is an N, x1

vector, the rank of matrix G is one and therefore M = 1. Then, the
matrix T is obtained by choosing the eigenvector corresponding to the
largest eigenvalue.

Beamspace algorithm operates on the beamspace-frequency data
vector at each (k,,k,) , ie. by(k,,k,) . Therefore, the matrix

A(k,,k,) mustbe mapped into beamspace to obtain:
Ay(ky k) =T Ak, k) - (13)
Then, the following system of equations:
br(ke, k)= Ak, k)x(k, k) (14)

is solved in the beamspace at each (k,k,) to obtain the values for

El.(kx,ky) at the corresponding imaged planes zi, i = 1,..., N.. The

algorithm is repeated N: times to obtain all the N: values of 5,. (ky,k)) .
Once the systems of equations are solved for all (k, k), inverse 2D
FT is applied to éi(kx,ky) ,i=1,..., N, to reconstruct a 2D image
¢;(x,y) ateachz=z; plane. Then, the normalized modulus of ¢,(x,y),
|c,(x,y)|/L , where L is the maximum of |¢,(x,y)| for all z, is
plotted versus x and y to obtain 2D images of the objects at all N:

planes. By putting together all 2D slice images, a 3D image of the
object is obtained.

lll. Experimental Results

To validate the performance of the proposed imaging technique,
we conduct several experiments. Fig. 2 shows the experimental setup.
We employ two planar coils manufactured by Texas Instruments
[Texas Instruments 2015] called LDC coils H and J connected side-
by-side with center-to-center distance of 43 mm. Table 1 shows the
parameters for these coils. The use of two different coils with different
field strengths allows for distinguishing objects along the depth.
These coils are used along with the inductance-to-digital converter
data acquisition module (LDC1614) manufactured by Texas

Instruments [Texas Instruments 2016]. LDC1614 board operates
based on the inductive sensing technology discussed in the previous
section to sense and measure the presence or position of conductive
objects. While, in general, the transmitter and receiver coils can be
separate (as shown in Fig. 1), here, each coil operates as both
transmitter and receiver. Coils H and J, with their self-capacitance,
resonate at 1.226 MHz and 2.664 MHz, respectively. As discussed in
section II, the changes of resonant frequencies due to the presence of
metallic objects are measured by LDC1614 module.

SR YR

Fig. 2. Experimental setup.

Table 1. Parameters of LDC coils manufactured by Texas Instruments.

Radius Turns/ Trace Trace
Coil  Shape Layers Width  Spacing
(mm) Layer
(mm) (mm)
H  circular 46 2 50 0.15 0.15
J circular 29 2 35 0.15 0.15

The coils perform raster scanning of a 2D region with size of 22 cm
x 26 cm. This is implemented via the use of two stepper motors for
positioning along the x and y directions. The motors are controlled by
PC via an Arduino UNO board and a motor shield board Adafruit
V2.3. The number of samples along both x and y directions is 30
samples. The metallic objects employed in the imaging experiments
are made of iron with size of 2 cm x 2 cm x 0.5 cm. The aim is to
reconstruct the images of the objects placed at two planes (at two
depths) z = 1 cm and z = 2 cm, referred to as planes 1 and 2,
respectively. The coils are scanned over the z = 0 plane.

In the first experiment, we place one object at (x, y) = (16, 7) cm on
the first plane and another object at (x, y) = (16, 19) cm on the second
plane. Figs. 3(a) and (b) show the raw data measured by the two coils.
We apply a threshold that is equal to the 5% of the peak of the
measured data to convert the data to a binary image. We then extract
the boundary around each peak that could be due to the presence of a
metallic object. The boundaries are extracted using Moore-Neighbor
tracing algorithm provided in MATLAB [Gonzalez 2004]. These
boundaries provide estimations of the locations of the objects which
are used as regions of interest (ROIs) for beamspace transformation.
We then apply the beamspace approach to each ROI. Figs. 4(a) and
(b) show the reconstructed images of the objects over the two planes.
It is observed that the two objects are reconstructed successfully on
their true positions.

In the second experiment, we place two objects on the first plane
at (x, y) = (7, 11) cm and (x, y) = (14, 11) cm and one object on the
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second plane at (x, y) = (11, 21) cm. The raw data images are shown
in Fig. 5. Following the same approach as in the first example, the
images shown in Fig. 6 are reconstructed. Again, it is observed that
the objects appear in their true positions.

Finally, in the third experiment, we consider one metallic object on
the first plane at (x, y) = (11, 9) cm and two metallic objects on the

second plane at (x, y) = (9, 21) cm and (x, y) = (16, 21) cm. Figs. 7
and 8 show the raw data and the reconstructed images, respectively.
The appearance of the objects in their true positions again confirms
the validity of the proposed imaging approach.

0 5 10 15 20 0 5 10 15 20
x (cm) x (cm)

(a)
Fig. 3. Measured data with (a) coil | and (b) coil J when, for objects at
(x,¥,2z)=(16,7, 1) cm and (x, y, z) = (16, 19, 2) cm.

10
x (cm)

(a)
Fig. 4. Reconstructed images at (a) first plane and (b) second plane
using the measured data in Fig. 3.

0 5 10 15 20
x (cm) x (cm)

(a) (b)
Fig. 5. Measured data with (a) coil | and (b) coil J for objects at (x, y, z)
=(7,11,1)cm, (x,y, z) = (14, 11, 1) cm, and (x, y, z) = (11, 21, 2) cm.

IV. CONCLUSION

An approach was proposed for reconstructing 2D images of
metallic objects at multiple depths. It is based on the inductive sensing
technology which is cost-effective and sensitive. The proof-of-
concept experiments were conducted using off-the-shelf components.

For a given imaging configuration (specific coils, data acquisition
circuitry, imaged medium, and imaged depths), measurements of
PSFs are implemented only once and then they are employed for
imaging of unknown objects over the corresponding depth using the
corresponding setup. In practice, for a given imaging setup, a database
of PSFs can be measured a priori for various imaged depths. Besides,
COs are the smallest possible defects that are measurable at each
depth. Thus, their size can be different for different depths and for

different coils. The chosen COs are, in turn, the building blocks for
any larger object to be imaged at the corresponding depth.

X (cm)

(a)
Fig. 6. Reconstructed images at (a) first plane and (b) second plane
using the measured data in Fig. 5.

10 15 20 0 5 10 15 20
x (cm) x (cm)

(a) (b)
Fig 7. Measured data with (a) coil | and (b) coil J for objects at (x, y, z)
(11,9, 1)em, (x, y, 2) = (9, 21, 2) cm, and (x, y, z) = (16, 21, 2) cm.

10 15 20 0 5 10 15 20
x (cm) x (cm)

(a) (b)
Fig. 8. Reconstructed images at (a) first plane and (b) second plane
using the measured data in Fig. 7.

Higher depth sensitivity and better depth resolution can be achieved
using larger coils and larger difference between the coils (in size,
number of turns, number of layers, or core materials), respectively.

As a near-field electromagnetic imaging system, the lateral
resolution depends on the dimensions of the coils and the noise floor
of the data acquisition system, e.g., see [Tabib-Azar 1999]. Maximum
depth range depends on the field strength of the coils, and the shape,
size, and composition of the metallic object. For the utilized coils,
according to the manufacturer, the depth sensitivity is almost in the
order of coil’s diameter [Texas Instruments 2018]. Furthermore, the
spatial sampling rate of the responses can be determined based on the
Nyquist sampling criteria. For instance, if the spatial spectrum of the

collected PSF along x axis has maximum bandwidth of k" , the

minimum spatial sampling rate becomes 2k .

The processing which is based on convolution theory and
beamspace transformation is fast and robust and can be implemented
within few seconds on a regular computer. Thus, quasi real-time
imaging can be realized, in future, using an array of sensors (instead
of mechanical scanning implemented in this work) to expedite the
data acquisition process.
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