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Abstract—In this letter, a novel approach is presented for imaging of metallic objects based on induction sensing. The 
approach relies on the concept of collection of the point-spread function (PSF) in a linear space-invariant system. For 
this purpose, the responses of small objects are measured a priori to serve as the PSFs of the imaging system. Then, 
these PSFs are employed in a test scenario, in which, the response of unknown objects distributed over multiple depths 
are measured and inverted to reconstruct two-dimensional (2D) images at those depths. The stack of these 2D images 
provides a 3D image. The image reconstruction is fast due to the use of forward and inverse Fourier transforms. This 
imaging approach is validated via the use of off-the-shelf components. 

 
Index Terms—Electromagnetics, Eddy Currents, Imaging and Sensing, Inductive Sensing.  

 
 

I. INTRODUCTION 

Imaging of metallic objects has a wide range of applications in 
infrastructure imaging (e.g., see [Szymanik 2016]), non-destructive 
testing (e.g., see [Darrer 2015]), security screening (e.g., see [Ledger 
2015]), biomedical imaging (e.g., see [Gogola 2013]), etc. In a 
common imaging technique, called electromagnetic induction 
imaging (EII) [Peyton 1996], electromagnetic waves with sufficiently 
low frequency, are employed to illuminate the medium under 
inspection. The use of low frequencies allows for penetration inside 
the medium and producing eddy currents on the surface of hidden 
metallic objects. These eddy currents, in turn, produce secondary 
electromagnetic fields that reflect back toward the transmitter. These 
secondary electromagnetic fields carry information about the type, 
size, and shape of the hidden metallic objects. 

The EII has been exploited for biomedical imaging [Peyton 1996, 
Griffiths 2001, Zolgharni 2010], non-destructive testing [Higson 
2003, Gaydecki 2002, Wei 2012], and national nuclear security 
[Darrer 2015]. In [Ma 2013], a planar array system, including an array 
of 4 × 4 coils, has been proposed for three-dimensional (3D) 
subsurface imaging. There, a linear inverse solver along with 
Tikhonov regularization have been utilized to calculate the 
conductivity distribution in the inspected domain. Besides, retrieving 
depth information has been achieved by using non-adjacent coils. 

Recently, high-sensitivity detection and imaging have been 
implemented based on EII systems. For instance, in [Gaydecki 2002], 
Q-detection sensors have been used for condition monitoring of steel 
reinforcing bars embedded in concrete. Besides, an inductance-
capacitance resonance system has been proposed for detection of 
metallic wear debris in rotating and reciprocating machinery [Du 
2012, Du 2013]. In [Guilizzoni 2015], a measurement system has 
been reported based on a resonant LCR circuit which has shown 
promising results for 2D imaging of metallic samples. This method 
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has been extended in [Guilizzoni 2016], demonstrating imaging of 
conductive samples shielded by conductive barriers. 

Along the above-mentioned efforts, here, we propose a fast and 
cost-effective approach to perform imaging of metallic objects at 
multiple depths. The imaging system is assumed to be linear and 
space-invariant so that we can employ the convolution theory 
[Oppenheim 1999]. The inversion approach is fast due to the use of 
forward and inverse Fourier transforms (FTs). The performance of the 
approach is validated via the use of off-the-shelf components. 

 
II. THEORY 

Fig. 1 illustrates the proposed imaging setup including a transmitter 
coil illuminating the metallic objects with electromagnetic waves 
while moving over a rectangular aperture. Multiple receiver coils 
move together with the transmitter coil to scan the back-scattered field 
over the aperture. To increase the sensitivity of measuring secondary 
fields, a capacitor can be connected in parallel with each coil to build 
an LC tank circuit resonating at frequency f0 as: 

 0
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   (1) 

 
Fig. 1. Illustration of the EII technique which employs a transmitter coil 
and multiple receiver coils scanning a 2D aperture. 
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Then, the presence of metallic objects can be detected via 

measuring the change in the resonant frequency. Here, to be able to 
image objects at multiple depths, we propose data acquisition with Nr 
receiver coils. Assume that at each sampling position (x, y), the 
resonant frequencies are measured for all the receiver coils. The 
objective is then to reconstruct images over z = zi planes where i = 
1,…, Nz. In the following, we refer to the measured resonant 
frequencies as just responses. 

In the proposed imaging technique, we assume that the imaging 
system is linear and space-invariant (LSI). The linear property is 
based on the assumption that multiple reflections between the metallic 
objects are ignored and the objects are small. On the other hand, 
space-invariant property indicates that if the objects are shifted in a 
plane parallel to x-y plane in Fig. 1, their responses will be shifted by 
the same amount and along the same direction. Assuming that the 
imaging system is LSI allows for the use of convolution theory. 

According to the convolution theory for an LSI system, the 
response to any arbitrary input function to the system can be written 
in terms of the convolution of the point-spread function (PSF) of the 
system and that input function. PSF of the system is actually the 
response of the system to a Dirac delta function.  

Here, in order to collect the PSFs, we record the responses Rco due 
to small objects placed at (0, 0, zi), i = 1,…,Nz,. We refer to these small 
objects as calibration objects (COs). These are the smallest objects 
that can be measured at (0, 0, zi) positions. Responses measured for 
such small objects approximate the responses of the imaging system 
to Dirac delta input functions. These COs are placed, one at a time, at 
each (0, 0, zi), i=1,…,Nz position and their responses co ( , )iR x y  are 
measured over the aperture by scanning the transmitter and receiver 
coils. Then, the response ( , )iR x y  due to any object under tests 
(OUT) at plane z = zi, can be obtained by the convolution of the 
collected PSF for the corresponding plane with the OUT’s spatial 
distribution function ( , )ic x y . This is written as: 

co( , ) ( , ) ( , )i i x y iR x y R x y c x y                        (1) 

where x  and y  denote convolutions with respect to the x and y 
variables, respectively. Equation (1) can be written for responses 
created by the OUTs over each imaged plane (0, 0, zi), i = 1,…,Nz. 
Then, the total response ( , )R x y  measured by the receiver coil due to 
the presence of the OUTs at all imaged planes can be approximated 
with the superposition of the contribution of all these responses as: 

co
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In the above equation, co ( , )iR x y  functions are known due to the 
measurement of the responses for COs. ( , )R x y  is also known due to 
the recording of the response for the OUTs. In order to estimate the 
unknown functions ( , )ic x y  on the imaged planes z = zi, i = 1,…, Nz, 
the responses are acquired with Nr receiver coils with various sizes 
allowing for various inspection depths. Thus, (2) can be re-written for 
the measured responses of each coil. This provides the following 
system of equations: 
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In order to solve the system of equations in (3), 2D FTs with respect 
to x and y variables are applied on both sides of the equations. This 
leads to the following system of equations in the Fourier domain: 
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             (4) 

where ( , , )x yR k k r , co ( , , )i x yR k k r  and ( , )i x yc k k  are the 2D FTs of 

the functions ( , , )R x y r , co( , , )iR x y r , and ( , )ic x y , respectively, and 
kx and ky are Fourier variables corresponding to the x and y variables, 
respectively. 

Here, we apply beamspace methodology to each system of 
equations in (4) (written at each spatial frequency pair (kx,ky)). 
Beamspace processing contains passing the FT of the measured data 

vector [ ( , ,1),..., ( , ,N )]x y x y rR k k R k kb    through a linear 
transformation that reduces sensitivity to correlation between the 
objects in adjacent imaged surfaces [Rodriguez-Rivera 2006]. In fact, 
each b is multiplied by a matrix that reduces the dimension of b before 
solving the system of equations. Dimension reduction is obtained by 
designing the beamspace transformation to focus on a specific imaged 
surface. The term beamspace was chosen because the spatial response 
of the dimension-reducing measured data were designed to form a set 
of overlapping directional beams that has large gain on a specific 
imaged surface and low gain elsewhere.  

We first re-write (4) at each (kx, ky) in a matrix form as: 

,  , ,( ) ( ) ( )x y x y x yk k k k k kb = A x ,                     (5) 

where 
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We then propose an approach for beamspace transformation that is 
optimized to preserve objects within each imaged surface. We 
indicate the beamspace transformation using the 1rN   matrix T and 
obtain the rM N  dimensional beamspace data vectors as 

T ( , ) ( , )x y x yk k k kb T b . We assume that the columns of T are 
orthonormal without loss of generality. The design of matrix T is 
based on minimizing the average error between the original and 
beamspace representation of the object images. The beamspace data 
is interpreted as the data in the space spanned by the columns of T. 
Therefore, the component that is not considered in beamspace is the 
projection of the data onto the space orthogonal to T, i.e., 
( ) ( , )x yk kI T T b . This implies that the squared error associated with 
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mapping an object at a specific imaged plane zi, i = 1, …, Nz into 
beamspace is 

22 '
2

( ) ( ) ie i  T I TT A ,                             (9) 

where iA  is the ith column of matrix A. In general, an appropriate 
selection of T will lead to a small error in all imaged surfaces. One 
method for choosing matrix T could be based on minimizing the 
mean squared representation error (MSRE) between the original and 
beamspace representation of the objects in each specific surface 

 2min ( )e iTT
                                   (10) 

Using (9), the minimization problem (10) is equivalent to the 
maximization problem: 

' 'maxtr( ) subject to =TGT TT I                    (11) 

where 

' , 1,2,...i i zi N G A A .                          (12) 

The solution to (11) is obtained by choosing the columns of T as the 
eigenvectors corresponding to the M largest eigenvalues of G. 
Therefore, the corresponding minimum MSRE is given by the sum of 
the rN M  smallest eigenvalues of G. Here, since Ai is an 1rN   
vector, the rank of matrix G is one and therefore M = 1. Then, the 
matrix T is obtained by choosing the eigenvector corresponding to the 
largest eigenvalue. 

Beamspace algorithm operates on the beamspace-frequency data 
vector at each ( , )x yk k , i.e. T ( , )x yk kb . Therefore, the matrix 

( , )x yk kA  must be mapped into beamspace to obtain: 

T ( , ) ( , )x y x yk k k kA T A .                          (13) 

Then, the following system of equations: 

T T( , ) ( , ) ( , ) x y x y x yk k k k k kb = A x                      (14) 

is solved in the beamspace at each ( , )x yk k  to obtain the values for 

( , )i x yc k k at the corresponding imaged planes zi, i = 1,…, Nz. The 

algorithm is repeated Nz times to obtain all the Nz values of ( , )i x yc k k . 
Once the systems of equations are solved for all (kx, ky), inverse 2D 
FT is applied to ( , )i x yc k k , i = 1,..., Nz, to reconstruct a 2D image 

( , )ic x y  at each z = zi plane. Then, the normalized modulus of ( , )ic x y , 
| ( , ) | /ic x y L , where L is the maximum of | ( , ) |ic x y  for all zi, is 
plotted versus x and y to obtain 2D images of the objects at all Nz 
planes. By putting together all 2D slice images, a 3D image of the 
object is obtained. 
 

III. Experimental Results 

To validate the performance of the proposed imaging technique, 
we conduct several experiments. Fig. 2 shows the experimental setup. 
We employ two planar coils manufactured by Texas Instruments 
[Texas Instruments 2015] called LDC coils H and J connected side-
by-side with center-to-center distance of 43 mm. Table 1 shows the 
parameters for these coils. The use of two different coils with different 
field strengths allows for distinguishing objects along the depth. 
These coils are used along with the inductance-to-digital converter 
data acquisition module (LDC1614) manufactured by Texas 

Instruments [Texas Instruments 2016]. LDC1614 board operates 
based on the inductive sensing technology discussed in the previous 
section to sense and measure the presence or position of conductive 
objects. While, in general, the transmitter and receiver coils can be 
separate (as shown in Fig. 1), here, each coil operates as both 
transmitter and receiver. Coils H and J, with their self-capacitance, 
resonate at 1.226 MHz and 2.664 MHz, respectively. As discussed in 
section II, the changes of resonant frequencies due to the presence of 
metallic objects are measured by LDC1614 module. 
 

Arduino and motor 
shield board

Stepper 
motor Stepper 

motor

objects

coils

LDC and 
Arduino 
boards

 
Fig. 2. Experimental setup. 

 
Table 1. Parameters of LDC coils manufactured by Texas Instruments. 

Coil Shape Radius 
(mm) Layers Turns/

Layer 

Trace 
Width 
(mm) 

Trace 
Spacing 
(mm) 

H circular 46 2 50 0.15 0.15 
J circular 29 2 35 0.15 0.15 

 
The coils perform raster scanning of a 2D region with size of 22 cm 

× 26 cm. This is implemented via the use of two stepper motors for 
positioning along the x and y directions. The motors are controlled by 
PC via an Arduino UNO board and a motor shield board Adafruit 
V2.3. The number of samples along both x and y directions is 30 
samples. The metallic objects employed in the imaging experiments 
are made of iron with size of 2 cm × 2 cm × 0.5 cm. The aim is to 
reconstruct the images of the objects placed at two planes (at two 
depths) z = 1 cm and z = 2 cm, referred to as planes 1 and 2, 
respectively. The coils are scanned over the z = 0 plane. 

In the first experiment, we place one object at (x, y) = (16, 7) cm on 
the first plane and another object at (x, y) = (16, 19) cm on the second 
plane. Figs. 3(a) and (b) show the raw data measured by the two coils. 
We apply a threshold that is equal to the 5% of the peak of the 
measured data to convert the data to a binary image. We then extract 
the boundary around each peak that could be due to the presence of a 
metallic object. The boundaries are extracted using Moore-Neighbor 
tracing algorithm provided in MATLAB [Gonzalez 2004]. These 
boundaries provide estimations of the locations of the objects which 
are used as regions of interest (ROIs) for beamspace transformation. 
We then apply the beamspace approach to each ROI. Figs. 4(a) and 
(b) show the reconstructed images of the objects over the two planes. 
It is observed that the two objects are reconstructed successfully on 
their true positions. 

In the second experiment, we place two objects on the first plane 
at (x, y) = (7, 11) cm and (x, y) = (14, 11) cm and one object on the 
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second plane at (x, y) = (11, 21) cm. The raw data images are shown 
in Fig. 5. Following the same approach as in the first example, the 
images shown in Fig. 6 are reconstructed. Again, it is observed that 
the objects appear in their true positions. 

Finally, in the third experiment, we consider one metallic object on 
the first plane at (x, y) = (11, 9) cm and two metallic objects on the 
second plane at (x, y) = (9, 21) cm and (x, y) = (16, 21) cm. Figs. 7 
and 8 show the raw data and the reconstructed images, respectively. 
The appearance of the objects in their true positions again confirms 
the validity of the proposed imaging approach. 

   
                            (a)                                                     (b) 
Fig. 3. Measured data with (a) coil I and (b) coil J when, for objects at 
(x, y, z) = (16, 7, 1) cm and (x, y, z) = (16, 19, 2) cm. 

 
                              (a)                                                 (b) 
Fig. 4. Reconstructed images at (a) first plane and (b) second plane 
using the measured data in Fig. 3. 

 
                            (a)                                                    (b)    
Fig. 5. Measured data with (a) coil I and (b) coil J for objects at (x, y, z) 
= (7, 11, 1) cm, (x, y, z) = (14, 11, 1) cm, and (x, y, z) = (11, 21, 2) cm. 
 

IV. CONCLUSION 

An approach was proposed for reconstructing 2D images of 
metallic objects at multiple depths. It is based on the inductive sensing 
technology which is cost-effective and sensitive. The proof-of-
concept experiments were conducted using off-the-shelf components. 

For a given imaging configuration (specific coils, data acquisition 
circuitry, imaged medium, and imaged depths), measurements of 
PSFs are implemented only once and then they are employed for 
imaging of unknown objects over the corresponding depth using the 
corresponding setup. In practice, for a given imaging setup, a database 
of PSFs can be measured a priori for various imaged depths. Besides, 
COs are the smallest possible defects that are measurable at each 
depth. Thus, their size can be different for different depths and for 

different coils. The chosen COs are, in turn, the building blocks for 
any larger object to be imaged at the corresponding depth. 

 
                              (a)                                                  (b) 
Fig. 6. Reconstructed images at (a) first plane and (b) second plane 
using the measured data in Fig. 5. 

 
                             (a)                                                    (b)    
Fig. 7. Measured data with (a) coil I and (b) coil J for objects at (x, y, z) 
= (11, 9, 1) cm, (x, y, z) = (9, 21, 2) cm, and (x, y, z) = (16, 21, 2) cm. 

 
                              (a)                                                  (b) 
Fig. 8. Reconstructed images at (a) first plane and (b) second plane 
using the measured data in Fig. 7. 

 
Higher depth sensitivity and better depth resolution can be achieved 

using larger coils and larger difference between the coils (in size, 
number of turns, number of layers, or core materials), respectively. 

As a near-field electromagnetic imaging system, the lateral 
resolution depends on the dimensions of the coils and the noise floor 
of the data acquisition system, e.g., see [Tabib-Azar 1999]. Maximum 
depth range depends on the field strength of the coils, and the shape, 
size, and composition of the metallic object. For the utilized coils, 
according to the manufacturer, the depth sensitivity is almost in the 
order of coil’s diameter [Texas Instruments 2018]. Furthermore, the 
spatial sampling rate of the responses can be determined based on the 
Nyquist sampling criteria. For instance, if the spatial spectrum of the 
collected PSF along x axis has maximum bandwidth of m

xk  , the 

minimum spatial sampling rate becomes 2 m
xk . 

The processing which is based on convolution theory and 
beamspace transformation is fast and robust and can be implemented 
within few seconds on a regular computer. Thus, quasi real-time 
imaging can be realized, in future, using an array of sensors (instead 
of mechanical scanning implemented in this work) to expedite the 
data acquisition process. 
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