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ABSTRACT: This paper describes the creation of mesopo-
rous inorganic films based on the plasma processing of ligand-
capped nanocrystals. We use nanorods of HfO2 as a model
system and report an extensive characterization of the
chemistry, structure, mechanical properties, and reactivity to
show that (i) the aspect ratio of the nanorods regulates the
pore size and pore volume of the films in a predictable manner
and yields an increase in porosity over spherical nanocrystals of
up to 60%, (ii) the modulus (>25 GPa) and hardness (>1.1
GPa) are sufficient to tolerate chemical−mechanical planariza-
tion, and (iii) the catalytic activity can be finely controlled by
the choice of ligands, which regulate the surface chemistry and
water adsorption in the final product. This approach is an
attractive route to createin two simple and scalable steps
crack-free inorganic mesoporous films for applications in catalysis, energy storage, energy harvesting, and more.

■ INTRODUCTION

Colloidal nanocrystals (CNs) are attractive building blocks for
the creation of mesoporous thin films1−4 or clusters5−9 because
of the control over their size, shape, composition, and surface
chemistry.10,11 Their assembly into mesoporous films with
large, accessible pores requires the use of a porogen and its
later removal after assembly, which is significantly challenging
(e.g., incomplete removal, pore collapse, cracking).1−3

Therefore, there is a continuous interest in consolidating
CNs to make mesoporous materials without the use of
porogens for catalysts,5 nanocomposite electrochromic films,4

drug delivery,6 bioseparation,7 sensing,8 and more. However,
the characterization of the pore space in these systems is
complicated by their small volume,12 the residual organics12

and water13 in their pores, and the structural defects caused by

ligand removal (cracks, pinholes, etc.).14 Therefore, the
understanding of how particle size, shape, capping ligands,
and postprocessing affect the key functionalities of these
systems (pore structure, surface chemistry, and mechanical
properties) is very limited.
Over the past few years, we have demonstrated that

nonthermal plasma processing allows to convert spin-coated
assemblies of ligand-capped spherical nanocrystals into all-
inorganic, crack-free films, whose nanostructure preserves the
crystal size and shape of the original building blocks and whose
mechanical properties are comparable to those of the sintered
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analogue.12−17 Plasma processing fully removes the ligands by
the combined action of radicals and UV radiation16 and causes
the opening of the interstitial pores17 (up to the expected
random close-packed pore volume of 32%), followed by their
spontaneous filling with strongly bound adventitious water.13

We believe that the strong adsorption of water in the pores is a
result of the exposure of the bare, high energy surfaces of the
nanocrystals and is consistent with their remarkably high
mechanical properties.17,18

Although the porosity observed in our films obtained from
spherical nanoparticles was encouraging, it was insufficient in
magnitude (∼32%) to truly qualify the material as mesoporous
and it was completely occluded by water because of the small
pore size and high surface energies.
In this article, we show that the aspect ratio (AR) of HfO2

nanorod building blocks allows for the deliberate increase of
porosity (up to 55% pore volume) and pore size and the
opening up of the pores to relatively large molecules (141.9
m2/cm3 or 33.7 m2/g of surface area accessible to toluene at
room temperature). Characterization of the toluene adsorption
isotherms by ellipsometric porosimetry (EP) shows hysteresis
of type H2(a), which are characteristic of mesopores with
necks in the pore network. Increasing the AR of the
nanoparticles and therefore the porosity of the films does
not compromise their crack-free nature and predictably
reduces their mechanical strength but not enough to preclude
them from chemical−mechanical planarization (CMP). Last,
we show that the chemical reactivity of the substrate HfO2
nanoparticles toward the acetalization of benzaldehyde is
strongly controlled by the transformation of the original ligand
head group by the plasma by way of the extent of water
adsorption on the surfaces of the pores. These results reinforce
the importance of understanding and quantifying the water
adsorption on catalytic surfaces to fairly assess the influence of
chemistry on catalytic reactivity.19

■ RESULTS AND DISCUSSION
HfO2 nanorods of different ARs were synthesized by heating a
solution of hafnium chloride and hafnium isopropoxide in

trioctylphosphine oxide (TOPO) to 340 °C for different times
(1, 2, and 4.5 h).20 Ligand exchange was used to replace the
original TOPO ligands with oleic acid (OA) ligands on the
nanorod surface (cf. Methods in supporting information).
Figure 1A−C shows transmission electron microscopy (TEM)
micrographs of the OA-capped HfO2 nanorods with three
different AR values along with histograms showing the
respective diameter and length distributions. While the average
diameter of the nanorods is similar at 2.4 ± 0.5 nm, their
average lengths are 6.1 ± 0.3, 12.2 ± 0.5, and 17.1 ± 0.9 nm,
with AR values of 2.7 ± 0.3, 4.7 ± 0.4, and 7.3 ± 0.7,
respectively (the error indicates the 95% confidence interval on
the mean value based on a normal distribution, which was not
rejected by Kolmogorov−Smirnov or Anderson−Darling
tests). For convenience, we label the samples by using the
handle “length-ligand-HfO2”, for example, 12nm-OA-HfO2
refers to the nanorods with an average length of 12.2 nm
and capped with OA.
The nanorods are in the monoclinic phase of HfO2.

Regardless of the AR value, the X-ray diffraction (XRD)
patterns (Figure 1D) show peaks (28.6°, 35.4°, and 50.4°) that
are diagnostic of the monoclinic HfO2 phase, with some
evidence of small amounts of tetragonal phase. The (200)
peaks of the monoclinic structure (35.4°) become narrower for
longer nanorods, consistent with a preferential growth of the
nanocrystals along the [100] direction.20

Transmission Fourier transform infrared (FT-IR) spectra
collected before and after ligand exchange (Figure 1E) indicate
that most of the TOPO ligands were replaced by OA. The
stretching vibration of PO (1109 cm−1) decreases
significantly after ligand exchange, while the peaks at 1406
and 1548 cm−1 (attributed to the symmetric and asymmetric
stretching of COO−, respectively)21 appear. The relative
intensity of the peaks suggests significant deprotonation of
OA on the HfO2 surface.

21,22 The broad absorption at 3400
cm−1 in the TOPO-capped HfO2 nanorods indicates a
significant amount of adsorbed water, consistent with our
prior findings.17

Figure 1. Nanocrystals as building blocks. (A−C) OA-capped HfO2 (OA-HfO2 for short) nanocrystals with different ARs. (D) XRD patterns of the
three types of nanocrystals. (E) FT-IR spectra of the three types of nanocrystals, wherein ligand exchange was used to replace originally capped
TOPO with OA.
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The particles were then deposited by spin-coating from
dispersions in hexane (to produce disordered assemblies of
200−300 nm in thickness)14 and then processed for 24 h in an
inductively coupled plasma (O2, 500 mTorr, 30 W).
The plasma processing effectively removes the ligands from

the films. The depth profiles of the atomic fractions of each
element in the films (plasma-processed OA-HfO2) were
reconstructed from elastic backscattering spectrometry (EBS)
and elastic recoil detection (ERD) spectra.23 For all AR values,
the atomic fraction of Hf atoms is constant throughout the film
thickness (standard deviation is smaller than 1%), consistent
with a lack of concentration gradients (Figure S1). For all
values of AR, the carbon fraction (normalized to Hf) is close to
0.1 near the surface, while it decreases to 0.01 inside the film,
consistent with the successful removal of ligands by plasma,17

followed by adventitious contamination after plasma process-
ing (Figure 2A).17,24 Residual phosphorus was detected in all
films.
While the plasma processing removes the organic fraction of

the ligands, the surface chemistry of the ligand-free samples
strongly depends on the original ligands. Diffuse reflectance
infrared Fourier transform spectra (DRIFTS) collected under
He flow show significant differences between plasma-processed
12nm-OA-HfO2 and 14nm-TOPO-HfO2 (Figure 2B). Specif-
ically, OA samples show a carbonate-rich surface, whereas
TOPO samples show a phosphate-rich surface. Both types of
samples show peaks corresponding to pyrophosphates (706

cm−1 and multiple peaks between 1000 and 1200 cm−1)25,26

and carbonates (the broad shoulder between 1350 and 1700
cm−1, indicative of multiple binding motifs, e.g., monodentate
and bidentate),27 albeit carbonates are significantly more
evident in the OA samples. The TOPO samples show a
distinct feature at 1090 cm−1 that is consistent with phosphate
groups. Pyrophosphates can form during the synthesis of oxide
particles with TOPO and are very strongly bound to the oxide
surface and resilient to ligand exchange.28

The carbonates likely originate from the adsorption of CO
and CO2 after processing.27 The phosphates result from
oxidation of phosphine oxides in the TOPO samples during
plasma processing [X-ray photoelectron spectroscopy (XPS)
characterization of the P 2p3/2 peak is consistent with this
explanation, cf. Figure S2].13 As the temperature increases, the
broad peak at 3400 cm−1 associated with physisorbed water
only partially decreases, indicating the presence of a significant
amount of strongly bound water, especially in OA-HfO2 films
(Figure 2C). EBS/ERD data are consistent with the presence
of strongly bound water: the H/C and O/Hf ratios are
inconsistent with adventitious carbon and HfO2

24 but are
consistent with adsorbed water in the pores (∼6% of the total
film volume) (cf. Table S1).13

Scanning electron microscopy (SEM) characterization of the
top surface and cross section of 12nm-OA-HfO2 thin films
before and after 24 h of plasma processing (Figure 2D) shows
two key features: the films shrunk significantly (by 54%) in

Figure 2. Plasma-processed OA-HfO2 thin films. (A) Elemental depth profile of 12nm-OA-HfO2 after O2 plasma. 0 TFU corresponds to the film
surface. The atomic fractions of all elements were normalized to Hf. (B) DRIFTS collected from 12nm-OA-HfO2 and 14nm-TOPO-HfO2 samples
(∼10 mg) under He flow at 30 and 300 °C. The spectra were normalized to the Hf−O phonon vibration peak at 30 °C for both samples,
respectively. The shaded areas indicate, from left to right, the peaks attributed to water, bicarbonate/carbonate, and phosphate/pyrophosphates,
respectively. (C) Relative water contents in OA- and TOPO-HfO2 films after O2 plasma calculated from DRIFTS spectra through area integration
between 2600 and 3800 cm−1. (D) SEM micrographs of as-prepared and after O2 plasma-processed 12nm-OA-HfO2 thin films (from left to right:
low and high magnification of the surface morphology, cross section of the film). (E) GISAXS of thin films for as-prepared and O2 plasma-
processed 12nm-OA-HfO2.
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thickness, but they did not crack in spite of this shrinkage.14

Samples calcined at 450 °C for 20 h show cracks, holes, and a
shrinkage of only 27%, consistent with an incomplete removal
of the ligands (Figure S3).12,29

The mechanical properties of the plasma-processed films (cf.
Figure S4 and Table S2) were studied with nanoindentation
with correction for substrate effects.30 The average film
modulus (ranging from 25 to 43 GPa) and hardness (ranging
from 1.1 to 1.9 GPa) are compatible with the requirements of
CMP steps that are highly common in device manufacturing.31

Grazing-incidence small-angle X-ray scattering (GISAXS)
shows changes in the arrangement of the nanorods during
plasma processing (Figure 2E). The higher intensity for Qx = 0
indicates the existence of order perpendicularly to the substrate
before plasma processing, plausibly originating with a preferred
orientation of the rods parallel to the substrate.32,33 After
plasma processing, the intensity of the scattering is uniform
and is stretched to higher Qz values, indicating a decrease in
the interparticle distance perpendicularly to the substrate
(consistent with the film shrinkage) and a loss of order
(consistent with particle rearrangement resulting from the
etching of the ligands).
The plasma-processed films are highly porous. A representa-

tive TEM image of 17nm-OA-HfO2 after O2 plasma (Figure
3A) shows pores of 2−3 nm (dashed red circles). The total
porosity after plasma processing (Figure 3B) was measured by
ellipsometry (black triangles), EBS/ERD (red circles), and X-
ray reflectometry (XRR, blue squares). While similarly
processed films from spherical nanoparticles (∼3 nm) had a
porosity consistent with a random close-packed array of
spheres (∼32%),13,34 the porosity of the nanorod films
according to both EBS/ERD and XRR was >50% for all AR
values. This porosity is close to the reported porosities of
nanocrystal-assembled films using templates (∼60%)35,36 and
much higher than that of nontemplated assemblies
(∼28%).35,36 Furthermore, these values of porosity are
consistent with simulations of random packing of spherocy-
linders using a mechanical contact method that shows that AR
> 2 leads to higher porosities than random close packings of
spheres (cf. Figure 3B, purple stars).37

Ellipsometry yielded systematically lower values, plausibly
due to the presence of adventitious water, which was not
accounted for by the simulation: the difference between the
porosities estimated from ellipsometry and EBS/ERD/XRR is
consistent with the volume fraction of H2O (∼6%) (cf. Table
S1).
Accessible porosity was characterized by EP using toluene as

an adsorbate.38 The adsorption/desorption isotherms from the
three different ARs (Figure 3C) show hysteresis of type H2(a),
which are unique to mesopores.39 The steep desorption branch
indicates pore blocking/percolation or cavitation-induced
evaporation because of necks in the pore network.39 The
steep desorption branches occur at similar values of relative
pressure, indicating that the size of the necks is similar for all
ARs. On the other hand, the saturation point of adsorbate
uptake scales strongly with the AR (13.3% for 6nm-HfO2,
19.5% for 12nm-HfO2, and 21.5% for 17nm-HfO2) but are
smaller than the total porosities. The accessible porosity of
17nm-HfO2 is close to the reported accessible porosities of
nanocrystal-assembled films using templates (20−26% poros-
ities with average pore sizes of 9−17 nm)1,40 and higher than
the accessible porosity of films made of nanocrystals with
similar AR (AR = 7, porosity = 15%).4 The difference between

total and accessible porosity is consistent with (i) the use of a
relatively large molecule such as toluene as an adsorbate and
(ii) physisorbed water and other adventitious contaminants in
the pores (consistent with EBS/ERD analysis). The large
dependence of accessible porosity on AR indicates that, while
the size of the necks is similar across all ARs, the average size of
the pores increases with AR.
The absorption/desorption isotherms are frequently used to

calculate pore size distribution using the Barrett−Joyner−
Halenda model, which assumes cylindrical pores.41,42 The
pores in our materials are irregular, so we could only estimate
the size of the necks from the steep region of the desorption
branch. Two parts compose the pore diameter: the meniscus
diameter, rk, calculated from the Kelvin equation and the
thickness of the adsorbed film, t, calculated from the
Brunauer−Emmett−Teller model (cf. Figure S5 and Table
S3).43 The resulting pore neck diameter is 2.7 ± 0.2 nm for all
three samples, consistent with the pore sizes observed by
TEM.
We estimated the accessible surface area from the

isotherms.39,44 The nonzero solvent volumes at the starting

Figure 3. Pore structure of the OA-HfO2 thin film after O2 plasma.
(A) TEM micrograph of the 17nm-OA-HfO2 thin films. Some of the
pores were marked with red dashed ellipse. (B) Porosity of OA-HfO2
thin films obtained from ellipsometry, EBS, and ERD spectra, and
XRR. The simulation result is adapted from ref 37. The porosity of
the spherical nanoparticles is adapted from our previous work.17 (C)
Adsorption/desorption hysteresis using toluene as probing molecules
measured from EP in an environmental cell. The empty and solid
scatters indicate the first and second cycles, respectively.
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pressure of the second cycles suggest that some porosity is
irreversibly filled during the first cycle. Therefore, we used the
first desorption branch to estimate the specific surface area,
which scales with the AR: 91.3 m2/cm3 or 16.8 m2/g for 6nm-
HfO2; 126.1 m2/cm3 or 25.5 m2/g for 12nm-HfO2; and 141.9
m2/cm3 or 33.7 m2/g for 17nm-HfO2. These accessible surface
areas are comparable to those measured by N2 adsorption in
the ordered mesoporous materials prepared from colloidal Pt
nanocrystals through calcination.1

Controlling pore surface composition is important for
applications in catalysis, drug delivery, and sensing.45 Plasma-
processed TOPO-HfO2 and OA-HfO2 samples have signifi-
cantly different surface chemistries (Figure 4A). We tested the

effect of these differences on the catalysis of the acetalization of
benzaldehyde. The 14nm-TOPO-HfO2 sample showed high
conversion in 2 h, while it took 21 h for the 12nm-OA-HfO2
sample to achieve similar conversion (Figure 4B). The slower
conversion rate on OA-HfO2 samples may be due to their
larger amount of adsorbed water (cf. Figure 2C), which is one
of the products for benzaldehyde acetalization and could slow
down the diffusion of the reactants to the surface.
Furthermore, oxyacid species such as phosphinic and
phosphonic acid species are expected to form on the surface
of TOPO-HfO2 nanoparticles during the synthesis

28 and could
contribute to catalysis of the acetalization reaction. These

species are relatively labile and could be removed upon ligand
exchange with OA.

■ CONCLUSIONS
In summary, we have demonstrated that the plasma processing
of films of colloidal nanorods is a practical, rapid, two-step
approach to the synthesis of crack-free, all-inorganic,
mesoporous films with 100% crystallinity and controlled
crystallite size, shape, and surface chemistry. The absence of
residual carbon, the nonthermal nature of the processing, and
the molecular control over the chemistry of the surfaces make
this approach potentially highly desirable for the development
of model catalysts for applications or fundamental studies.
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(45) Brühwiler, D. Postsynthetic Functionalization of Mesoporous
Silica. Nanoscale 2010, 2, 887−892.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.9b03723
J. Phys. Chem. C XXXX, XXX, XXX−XXX

G

http://dx.doi.org/10.1021/acs.jpcc.9b03723

