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e Background and Aims The composition and dynamics of plant communities arise from individual-level
demographic outcomes, which are driven by interactions between phenotypes and the environment. Functional
traits that can be measured across plants are frequently used to model plant growth and survival. Perhaps surpris-
ingly, species average trait values are often used in these studies and, in some cases, these trait values come from
other regions or averages calculated from global databases. This data aggregation potentially results in a large loss
of valuable information that probably results in models of plant performance that are weak or even misleading.

* Methods We present individual-level trait and fine-scale growth data from >500 co-occurring individual trees
from 20 species in a Chinese tropical rain forest. We construct Bayesian models of growth informed by theory and
construct hierarchical Bayesian models that utilize both individual- and species-level trait data, and compare these
models with models only using individual-level data.

* Key Results We show that trait—growth relationships measured at the individual level vary across species, are
often weak using commonly measured traits and do not align with the results of analyses conducted at the species
level. However, when we construct individual-level models of growth using leaf area ratio approximations and
integrated phenotypes, we generated strong predictive models of tree growth.

* Conclusions Here, we have shown that individual-level models of tree growth that are built using integrative
traits always outperform individual-level models of tree growth that use commonly measured traits. Furthermore,
individual-level models, generally, do not support the findings of trait—growth relationships quantified at the spe-
cies level. This indicates that aggregating trait and growth data to the species level results in poorer and probably
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misleading models of how traits are related to tree performance.
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INTRODUCTION

The structure and dynamics of communities ultimately emerge
from differential individual-level performance. Tropical forests
play a major role in the global carbon cycle, thereby making
our understanding of forest dynamics critical for models of
our future (e.g. Malhi and Phillips, 2004; Fyllas ef al., 2014).
Models of individual- or population-level tree performance
often utilize trait information (e.g. Uriarte et al., 2010; Fyllas
et al.,2014; Liu et al., 2016; Katabuchi et al., 2017). The traits
utilized are chosen because they represent a common currency
that can be measured and compared across systems (Westoby,
1998; Westoby et al., 2002; Reich, 2014) and because they are
believed to represent fundamental life history trade-offs that
should be related to performance (e.g. McGill et al., 2006).

In practice, trait data are often collected on a handful of in-
dividuals in a population and averaged. These population- or
species-level average data are then used for downstream ana-
lyses ranging from models of individual-level tree performance
to correlations of average trait values with average demo-
graphic rate values (e.g. Hérault et al., 2011; Kraft et al., 2015;

Paine et al., 2015). While collecting trait data from a small
number of individuals may be a pragmatic approach, particu-
larly in diverse systems (Swenson, 2013), the analysis of popu-
lation- or species-mean trait data is conceptually misaligned
with the vast evolutionary ecology literature relating traits to
individual performance (Swenson et al., 2020) and it may lead
to weak or misleading models and inferences (e.g. Liu et al.,
2016; Yang et al., 2018).

Relating traits to performance outcomes is foundational
to ecology and evolutionary biology (Arnold, 1983; McGill
et al., 2006). In evolutionary ecology, the trait distribution in
a population through time is shaped by the relationship be-
tween individual-level trait values and fitness (Conner and
Hartl, 2004). Specifically, the relative fitness values of indi-
viduals are commonly regressed against the standardized trait
data to derive fitness functions (Fig. 1). Positive or negative
relationships implicate directional selection, whereas concave-
down and concave-up relationships implicate stabilizing and
diversifying selection, respectively. Ecologists using traits to
predict performance outcomes of an entire population certainly
do not measure the lifetime fitness of individuals, but the fitness
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FIG. 1. A conceptual figure of how traits should be related to growth that is
similar to analysing fitness functions in evolutionary ecology (Conner and
Hartl, 2004). Here, we propose that one should regress a growth deviation
against a standardized trait value. Each data point should be an individual tree
(not species), and linear and second-order polynomial fits to the relationship
should be compared. The growth deviation is the difference in the individual-
level growth from the mean growth of the population. Thus, positive values are
higher than average growth, and negative values are lower than expected. The
standardized trait value is the z-scaled trait value for the individual. The graphs
are analogous to fitness functions where relative fitness is regressed onto stand-
ardized trait values. Under that framework, (A) concave-down relationships in-
dicate stabilizing selection, (B) concave-up relationships indicate diversifying
selection and (C, D) linear relationships indicate directional selection. Here, we
stress that growth is not a clear or reliable metric of fitness, but we do propose
plotting growth and trait data in this way, and explicitly considering polynomial
relationships between traits and growth should help trait-based ecology grow
conceptually and empirically while allowing for a clearer integration with the
evolutionary ecology literature.

function framework, nonetheless, should be utilized in their
work more frequently for multiple reasons (Swenson et al.,
2020). First, an evolutionary ecology framework is focused on
individuals as the unit of study, whereas much of trait-based
ecology focuses on trait and performance data aggregated to the
population or species level. Secondly, this evolutionary ecology
framework explicitly considers the possibility of concave trait—
performance relationships, whereas most trait-based ecology
searches for simple positive or negative relationships between
traits and performance. It may be reasonable to expect that con-
cave relationships between traits and performance should be
common as natural selection is not only directional. Thirdly,
an evolutionary ecology framework serves as a unifying con-
ceptual and analytical language that could be used to encourage
communication between ecology and evolutionary biology.
Individual-centric analysis of traits as they relate to plant
performance not only permit a connection with evolutionary
ecology, but they can also facilitate a second major challenge
in trait-based ecology. This second challenge concerns the im-
portance of phenotypic integration. Specifically, a trait may not
be a strong predictor of plant performance by itself and its im-
portance is only understood in the context of other trait values
from the individual (Yang et al., 2018). Such a context is crit-
ical for modelling the performance of large and long-lived indi-
vidual organisms such as trees. Existing theory built upon first

principles can be leveraged to direct our analyses of growth as
it relates to phenotypic integration. For example, the growth
of photosynthetic organisms is expected to isometrically scale
with photosynthetic mass (Niklas and Enquist, 2001). In a hypo-
thetical tree where the leaves are the only photosynthetic tissue,
we can deconstruct the photosynthetic mass into multiple trait
axes an ecologist may measure. Specifically, the 2-D crown
area of a tree combined with the average tree-level leaf area
index (LAI; a measure of the amount of leaf area above an area
of ground) provides an estimate of the leaf area for that tree.
This value, combined with one of the most widely measured
leaf traits, leaf mass per area (LMA; the inverse of specific leaf
area), provides a rough estimate of the photosynthetic mass of
a tree. This value standardized by the body size of the tree (i.e.
an estimate of leaf mass divided by tree diameter) is expected to
predict the relative growth rate (i.e. growth standardized by tree
diameter) (Yang et al., 2018). Measuring the traits discussed
above (i.e. crown area and LAI) requires the measurement of
traits on individuals as allocation traits are uniformative when
averaged across a population or species. This is because in-
dividuals within and across species vary widely in their allo-
cation due to differences in ontogeny and other factors (e.g.
microenvironmental differences). Additionally, integrating
phenotypes using data from multiple individuals or averaged
data will result in an inadvertent and erroneous loss or gain of
trait—trait relationships in the phenotype, resulting in poorer
models of growth. In sum, individual-level concepts and ana-
lyses permit a clearer modelling of tree growth that is informed
by theory derived from first principles.

In this work, we consider the relationship between traits and,
for tropical trees, relative growth rates (RGRs). We focus on
20 species of trees in a Chinese rain forest where we have col-
lected individual-level trait and growth data on hundreds of in-
dividuals. The analyses we present are designed to compare the
outcomes of species- and individual-level analyses of growth.
To do this, we constructed Bayesian models of growth informed
by theory derived from first principles and we constructed
hierarchical Bayesian models that utilize both individual- and
species-level trait data, and compare these models with models
only using individual-level data. The specific questions we ask
are as follows. (1) Are the results of trait—-RGR analyses con-
ducted at the species level consistent with those obtained from
individual-level analyses? (2) Is there evidence for non-linear
trait—-RGR relationships within species? (3) Do models that
consider phenotypic integration outperform models that do
not? (4) Do models that partially rely on species-level data per-
form as well as those that only use individual-level data?

MATERIALS AND METHODS

Study location

The study was conducted in the 20 ha Xishuangbanna forest
dynamics plot (FDP) in a seasonal tropical rain forest of South-
west China (21°37°08”N, 101°35’07”E), characterized as a
monsoonal climate, with a distinct dry season (November to
April) and wet season (May to October). The annual average
temperature is 21.0 °C and the annual mean rainfall is 1493 mm
in the forest. A total of 1256 mm, 84 % of the annual average, of
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rainfall occurs in the wet season (Cao et al., 2006). This forest
is dominated by large individuals of Parashorea chinensis
(Dipterocarpaceae). All freestanding woody stems >1 cm diam-
eter at breast height (dbh), i.e. 130 cm from the ground, are
measured, tagged, identified and mapped. A detailed descrip-
tion of the climate, geology and flora of this plot can be found
in Cao et al. (2008).

Tree growth and trait measurements

This study used a sub-set of evergreen trees in the forest
plot that have growth monitored by dendrometer bands. The
stainless steel dendrometer bands were installed in the plot
in January 2009 following a standardized protocol (Muller-
Landau and Dong, 2008); since then the dendrometers have
been re-measured every 3 months. The RGRs used in this
study were calculated by In(dbh/dbh)/(z, — 1) from August
2009 to August 2018, where ¢ is year and the subscripts f and
i are final and initial values of the dbh. To guarantee data ac-
curacy, we discarded the cases where (1) the tree had damaged
dendrometer bands; (2) the tree died during the study period;
or (3) the tree had incomplete trait or growth data. In total, our
study included 510 individual trees from 20 species varying in
the number of individuals measured per species from nine to
104 (Supplementary data Table S1).

We collected seven functional traits [leaf area, leaf chloro-
phyll content, leaf dry matter content (LDMC), leaf thickness,
leaf toughness, leaf mass per area (LMA) and wood specific
resistance (WSR)] for each tree with a dendrometer band using
the standard protocols described in Cornelissen et al. (2003) or
based upon the information below for leaf chlorophyll content
and wood-specific resistance. Leaf chlorophyll content is dir-
ectly related to the photosynthetic rate of plants (Vaieretti et al.,
2007). Because SPAD readings and extractable chlorophyll
content are highly correlated (Maderia ef al., 2003), we meas-
ured relative leaf chlorophyll content using the Chlorophyll
Meter SPAD-502Plus (Konica Minolta, Osaka, Japan). Wood
density represents a trade-off between volumetric growth rate
and mechanical strength (Cornelissen et al., 2003), but coring
trees in the long-term forest dynamics plot is not allowed. Thus,
we measured the WSR for each individual using a Resistograph
(Rinntech Co., Germany), an electronically controlled drill
that measures the relationship between drilling resistance and
stem density (Isik and Li, 2003; Yang et al., 2014). The WSR
of an individual is strongly correlated with the more commonly
measured wood density, while being a less destructive meas-
urement on individuals undergoing long-term monitoring (Isik
and Li, 2003).

To examine crown allocation, we measured the dimensions
of tree crowns to estimate the 2-D crown area and LAI values
for each individual tree. In 2009, crown width and length were
measured using a laser telemeter attached to an altimeter pole
following the protocols described in lida et al. (2012) to calcu-
late the superficial area of an ellipsoid:

Crown surface area = (R, + R;) /2]

where R, is the crown width and R, is the crown length. We
used the crown surface area measures to estimate the leaf area

ratio (LAR) for each tree. Here, we define LAR as the crown
surface area divided by the tree diameter at the time of the
crown measurement. LAR is typically measured as total plant
leaf area divided by total plant mass. Thus, we are presenting a
rough estimate of the actual LAR. An LAI-2200 Plant Canopy
Analyzer (LI-COR Inc., Lincoln, NE, USA) was used to esti-
mate the LAI under each focus tree, and measurements were
taken following the LiCor protocols in the manual. The LAI in
this study is the average number of leaves above any point on
the ground below the tree and, therefore, is not equivalent to
LAR and it does not have to be correlated with LAR.

Modelling growth: species- vs. individual-level data

The first goal of this study was to quantify the relationship
between RGR and functional traits at the species level. The
traits utilized for this set of analyses include LMA, LAR, leaf
chlorophyll content, leaf thickness, leaf toughness, WSR, and
LDMC. The trait and RGR data were collected on every indi-
vidual tree in the study, but for this first analysis we calculated
an average RGR and trait value for each species. The species-
mean RGR values were then regressed onto the species-mean
trait data. This approach was used to simulate the widely used
practice of analysing RGR and trait data aggregated at the
species level. For each RGR-trait relationship, we generated
a linear regression model and a second-order polynomial re-
gression model and recorded the 72 and Akaike information cri-
terion (AIC) for both models.

The second goal of this study was to conduct an analysis that
models individual-level growth as a function of individual-level
traits. These analyses were designed to be analogous to fitness
function analyses in quantitative genetics (Conner and Hartl,
2004), with the recognition that we are not measuring fitness
in this study. These analyses first quantified the deviation of
the individual-level RGR from the mean value for the species,
which we call the ‘growth deviation’. The growth deviation
data were then regressed onto the individual-level trait data that
were centred and scaled (i.e. z-transformed or standardized).
This was repeated for each species. As with the previous ana-
lyses, we generated linear regression and second-order polyno-
mial regression models and recorded the r? and AIC values for
both models.

Modelling growth: building individual-level phenotypically
integrated models

An alternative to blindly building models of trait-RGR re-
lationships is to build and evaluate models of RGR that are
informed by an understanding of phenotypic integration and
functional ecology (Garnier 1991; Enquist et al., 2007; Yang
et al., 2018). Thus, the third goal of this study was to build
models of individual-level RGR that build from simple, and
theoretically supported, expectations of how traits should im-
pact RGR. Specifically, it is expected that the overall photosyn-
thetic biomass of a plant relative to body mass should predict
RGR (Niklas and Enquist 2001). For this portion of the study,
we utilized hierarchical Bayesian models of RGR.
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We began with a simple model regressing individual-level
LAR onto individual-level RGR data with species-level random
slopes and intercepts. This base model had the form of:

pij = o + PB1j X LAR;;

where y, .is the expected RGR of individual i in species j, a and
B, are the intercept and slope for species j, and LAR,  is the
LAR of individual 7 in species j.

As the LAR is a measure of the canopy surface area rela-
tive to biomass on a 2-D plane, we built additional models that
modified the above base model by including one piece of the
individual-level LAI and LMA data at a time and in unison with
and without an interaction between LAI and LMA. The form
of these models, full model descriptions (including priors), dir-
ected acyclic graphs of the models and R code for running the
models are provided in Supplementary data Appendices 1-4.
The models were evaluated using STAN via the R package rstan
(Stan Development Team, 2019). Each model was run with un-
informative priors, run using four chains with 10 000 iterations
and a warm up of 5000 iterations. A WAIC (Watanabe—Akaike
information criterion; Watanabe, 2010) was calculated for
each model, as was the posterior distribution of the pseudo-R?
(Gelman et al., 2019).

Modelling growth: building models that mix individual- and
species-level data

The final portion of this study aimed to determine whether
models of RGR that applied a mixture of individual-level and
species-level trait data were comparable with models of RGR
that utilized only individual-level data. This was meant to simu-
late a situation where a researcher has individual-level data on
tree structure (i.e. LAR and LAI), but species-level data for a
leaf trait (i.e. LMA). Such a situation would occur if one had
remotely sensed data (e.g. LIDAR) regarding tree structure, but
could only measure LMA on a few individuals per species. To
accomplish this, we began by modelling individual-level RGR
as a function of individual-level LAR data with species-specific
intercepts and slopes. These species-specific slopes and inter-
cepts were modelled as a function of species-level LMA data.
This hierarchical model had the form of:

pij = o + P1j X LAR;;
aj = a+y3 X LMA;

/61:7 = 0o + 55 X LMA'

where p, - 1s the expected RGR of individual i in species j, o
and /3’l are the 1ntercept and slope for species j, LAR is the
LAR of individual i in species j, v, and vy, are the 1ntercept
and slope of the model of ¢ as a function of the species-mean
LMA values, LMA,, and 6/ and 6, S, are the intercept and
slope of the model of ﬁ] as a function of LMA Building
from this model, we addéd individual-level LAI data in a
second model as shown in Table 1. The full model descrip-
tions (including priors), directed acyclic graphs of the models
and R code for running these models are also provided in
Supplementary data Appendices 1-4. As in the previous
analyses, the models were evaluated using STAN via the R
package rstan (Stan Development Team, 2019). We recorded
the WAIC and the posterior distribution of the pseudo-R?
values for each model. Each model was run with uninforma-
tive priors, run using four chains with 10 000 iterations and a
warm up of 5000 iterations.

RESULTS

Species-level growth—trait correlations

The RGR was significantly correlated with LMA, leaf tough-
ness, wood resistance and LDMC at the species level (Fig. 2).
We compared linear and second-order polynomial model fits
using AIC. If a model had an AIC two or more units smaller
than another, it was selected. The best RGR-leaf tough-
ness, RGR—wood resistance and RGR-LDMC models were
all linear. On the other hand, the best RGR-LMA model was
concave up (Fig. 2, r* = 0.58). The leaf toughness and wood
resistance decreased linearly with increasing RGR (Fig. 2,
r?=0.2, = 0.17); however, the LDMC increased linearly with
increasing RGR (Fig. 2, > = 0.22). Thus, species with low leaf
toughness, low wood resistance and higher LDMC tended to
grow faster.

TABLE 1. Form of growth models at the individual level and hierarchical models using a mixture of species- and individual-level data

Type of Data Model WAIC Pseudo-R? (95 % CI)
All individual-level data M =a;+p xLAR -1889.4 0.292 (0.231 - 0.350)
M=o+ B X LAR’, X LAL; —-1890.9 0.297 (0.234 — 0.356)
M=o+ B xLAR, +f, xLAL, —-1893.5 0.307 (0.245 - 0.363)
M= aj + [3’1 xLAR, + /3’2 xLAI . X LMA -1910.2 0.329 (0.266 — 0.387)
M =a;+p X LAR, + /3’2 x LAL  + /5; x ﬁMA -1912.6 0.339 (0.277 - 0.397)
Species average LMA and o= o+ [3’l x LAR x /3’2 LA —1888.9 0.312 (0.255 - 0.363)
Ly J J J
individual-level data a; =y, +vpx LMA
=0, +5ﬁxLMA
,u =a;+p,;x LAR,; —-1887.9 0.295 (0.232 - 0.350)
ya +7vy, X LMA "’
/J’u. =0+ g 3 LMA

The WAIC and pseduo-R? values are provided for each model.
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Individual-level growth—trait correlations

Next, we generated linear and second-order polynomial re-
gression models of RGR regressed onto LMA, leaf chlorophyll
content, leaf thickness, leaf toughness, wood resistance and
LDMC at the individual level. Again, we used AIC to select
the best model for each trait. In most cases, we did not find a
relationship between RGR and a trait value at the individual
level (Table 2; Supplementary data Table S2). We found evi-
dence for three concave-down RGR~trait relationships (Fig. 3).
Specifically, LMA for the species Archidendron kerrii, Colona
thorelii and Nephelium chryseum had a concave-down relation-
ship. Thus, extreme trait values had negative growth deviations
(i.e. lower RGR than the population mean) and intermediate trait
values had the highest growth deviations (i.e. higher RGR than
the population mean) (Fig. 3; Supplementary data Table S2).

We found two concave-up relationships in our analyses.
Specifically, chlorophyll content and LDMC had concave-up
relationships with 72 values of 0.45 and 0.06, respectively
(Supplementary data Table S2). This indicates that species with
extreme values for these traits had higher than average growth
in the population.

We found two positive relationships between RGR and
LMA, two negative and one positive RGR—leaf chlorophyll re-
lationship, two positive RGR-leaf thickness relationships, one
positive RGR-leaf toughness relationship, one negative and
one positive RGR-wood resistance relationship, and one nega-
tive and two positive RGR-LDMC relationships. The 7 values
for these linear regressions ranged from 0.04 to 0.56 with a
mean of 0.32. In sum, there were few relationships detected
even when using individual-level data for these traits; the slopes

r2=0.58
0.12 - . -
o 0.08 - - B -
O]
o ] 4 4 ]
0.04 -1 -1 —
T T T T T T T 1T 1771 T T T T T T T T
-1 0 1 2 -2 -1 0 1 -2 -1 0 1 2 -2 - 0 1
Leaf mass per area Leaf area ratio Leaf chlorophyll Leaf thickness
content
r2=0.20 r2=0.17 r2=0.22
0.12 - .
o - . |
) 008 \ \
o _ _ _
0.04 - -
T T T T 177 T T T T T T T T T T T
-05 05 15 25 -1 0 1 2 -1 0 1 2

Leaf toughness Wood resistence

Leaf dry matter content

F1G. 2. The relationship between relative growth rate (RGR) and functional trait values. Each data point is a species in the data set. Three models had no relation-

ship using a linear or second-order polynomial regression. Three models had significant linear relationships and one had a significant concave-up second-order

polynomial relationship. Regression lines are only shown for significant relationships. The values on the x-axis are z-scaled (i.e. centred and scaled) transform-
ations and are, therefore, unitless.

TABLE 2. Linear regression results for trait—-RGR relationships at the individual level

LMA CHOL THICK

TOUGH WOOD LDMC

Species M r? m r m

r? m r? m r? m r?

ALSEPE -
CASTEC +
CASTHY

DIOSHA - 0.51

FICULA +
KNEMTE + 0.56

MACRDI

MALLGA +
MANGFO

0.28
0.10 +

0.28

+ 0.44 - 0.32

0.05 - 0.04

0.37

+ 0.48

+ 0.53

m, sign of the slope; LMA, leaf mass per area; CHOL, leaf chlorophyll content; THICK, leaf thickness; TOUGH, leaf toughness; WOOD, wood specific resist-

ance; LDMC. leaf dry matter content.
Blank cells indicate a relationship no different from zero (P > 0.05).
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Archidendron kerrii

Colona thorelii

Nephelium chryseum

i 0.10 -
0.04 - 0.10
0.02 4
S S 0.05- S 0.05
s © s
3 0 1 3 3
© © ©
£ £ £
8 _0.02- 3 07 8 0
(G} (O] (G}
—0.04 |
-0.05 | 0.05
2 _ 2 _ —YU9 T 2 —
—0.06 - r°=0.17 r2=0.51 2 =0.08
T T T T T T T T T T T T T T T T T T T T T
-1.0 0 05 1.0 1.5 2.0 20 -1.0 0 05 1.0 15 -15-1.0-05 0 05 1.

Standardized leaf mass per area

Standardized leaf mass per area

Standardized leaf thickness

F1G. 3. The relationship between growth deviations and standardized (i.e. z-scaled) leaf mass per area and leaf thickness trait values for three species. The growth
deviation is the difference between the individual tree RGR and the mean of all individuals in the data set for that species. Thus, positive values indicate trees
growing faster than average and negative values indicate trees growing slower than average.

for significant models did vary for a few traits and the amount
of variation explained was highly variable.

Individual-level growth—LAR correlations

Next, we regressed individual-level RGR onto our measures
of individual-level LAR. There were 17 species that had a sig-
nificant RGR-LAR relationship out of the 20 in total. Fourteen
of these models were positive linear relationships. An add-
itional two were concave-up second-order polynomial relation-
ships and one was a negative linear relationship (Table 3). The
positive linear relationships had 7? values ranging from 0.04 to
0.93 with an average of 0.42 (Table 3; Fig. 4).

Individual-level phenotypically integrated models

We used a Bayesian model evaluation approach to model
individual-level RGR. We began with a model using only LAR
with species-specific slopes and intercepts (Table 1). This
model had a pseudo-R? value of 0.292 [confidence interval (CI)
0.231-0.350]. We then added individual-level LAI and LMA
data to this base model additively or using an interaction be-
tween LAR and LAI. We compared models using their WAIC
values because model fit will improve simply by adding more
parameters. The WAIC, like the AIC, penalizes for this, and
lower WAIC values are preferred. We defined the superior
models as those models that had a WAIC value that was two
or more times lower than the model with which it was being
compared. The best model identified in our individual-level
analyses was an additive model including LAR, LAIT and LMA
[WAIC = —1912.6; pseudo-R? = 0.339 (CI 0.277-0.397)]. The
additive model of u, = . + 5, . X LAR, + 3, . X LMAI.J. was the
second ranked model and nearly as gooé as the model including
all three independent variables (i.e. u =t I5} he LARZ,J. + ﬁz,,‘
X LAL + B, x LMA, ; Table 1).

TABLE 3. Regression results for trait—-RGR relationships at the
individual level using linear and second-order order polynomial

models

LAR

Linear Poly
Species m r m r
ALSEPE + 0.48
ARCHKE + 0.42
BACCRA u 0.43
CASTEC u 0.01
CASTHY + 0.04
CASTIN + 0.14
CINNBE - 0.34
COLOTH + 0.23
DIOSHA + 0.74
ELAEGL
FICULA + 0.27
GARCCO + 0.49
KNEMTE + 0.56
MACRDI + 0.56
MALLGA
MANGFO + 0.41
NEPHCH
OROPLA + 0.18
PHOELA + 0.93
PITTKE + 0.32

m, sign of the slope for linear regressions; u, concave up for polynomial
models.
Blank cells indicate a relationship no different from zero (P > 0.05).

Mixed individual- and species-level trait models

We used a Bayesian approach to evaluate hierarchical
models of individual-level RGR with individual-level LAR or
LAR and LAI data as independent variables. In these models,
we modelled the species-specific intercept and slope of LAR as
a function of the species-level LMA value (Table 1). Using both
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FIG. 4. The relationship between growth deviations and standardized (i.e.

z-scaled) leaf area ratios. The growth deviation is the difference between the

individual tree RGR and the mean of all individuals in the data set for that

species. Thus, positive values indicate trees growing faster than average and
negative values indicate trees growing slower than average.

WAIC and pseudo-R? as guides, we found that these models
were not superior to the individual-level models. They were in-
distinguishable in quality from one another and from the most
simple LAR-based individual-level model (Table 1). These
hierarchical models were inferior to all other non-LAR-based
individual-level models, indicating that adding species-level
trait data to an individual-level base model did not improve it
and in some cases it noticeably reduced the quality of the model
(Table 1).

DISCUSSION

Trait-based ecology is built upon the premise that differential
performance can be attributed to variation in traits, and that
differential performance (McGill et al., 2006) should scale
up to explain emergent patterns such as community and eco-
system structure and dynamics (Reich, 2014). In many — but
not all — cases, researchers aggregate trait data to generate
species-level means that are used in downstream analyses
(e.g. Kraft er al., 2010; Uriarte et al., 2010; Paine et al., 2015;
Katabuchi et al., 2017), but relying on only inter-specific vari-
ation and ignoring intra-specific variation may have critical
conceptual and empirical consequences (Yang et al., 2018;
Swenson et al., 2020). The results provided herein show that
models of individual-level tree growth in a tropical rain forest
were greatly improved when using individual-level trait data
and when growth models are built upon first principles. These
results not only inform us on how we should model tree
growth upon the basis of traits in future work, but they also
indicate that trait-based ecology should rethink how it con-
ceptually and analytically aligns with evolutionary ecology.
In the following, we discuss the results and their implications
in more detail.

The shape and strength of trait—growth relationships

Our first series of analyses focused on simple trait-based
regression models of tree RGR. We generated models where
species-mean RGR was modelled as a function of species-mean
trait values and models where individual-level RGR and trait
data were used. The species-level analyses found negative rela-
tionships between RGR and leaf toughness and wood resistance
(Fig. 2). Tougher leaves and wood are considered conservative
traits that are expected to lead to lower growth rates, making
these results consistent with expectations from the previous
literature (e.g. Coley, 1988; Chave et al., 2009; Kitajima and
Poorter, 2010; Kitajima et al., 2012). We found a positive rela-
tionship between LDMC and RGR, which was not consistent
with our expectation as higher LDMC is a conservative trait
strategy. The positive relationship between RGR and LDMC
may be explained by reduced herbivory levels in high LDMC
species. However, the negative relationship between RGR and
leaf toughness would suggest otherwise. These three rela-
tionships each explained about 20 % of the variation in RGR.
Interestingly, we found a concave-up relationship between
RGR and LMA that explained 58 % of the variation in RGR
(Fig. 2). This may indicate that species with intermediate LMA
values perform less well in this forest as compared with those
with very acquisitive (i.e. low) or conservative (i.e. high) LMA
values. This may be due to inter-specific partitioning of light
gradients within the forest. The other three traits considered,
LAR, leaf chlorophyll content and leaf thickness, had no rela-
tionship to RGR at the species level (Fig. 2).

The individual-level analyses regressed the growth deviation
of an individual tree against the centred and scaled trait data
from that tree. Recall, the growth deviation is the deviation in
RGR of the individual tree from the mean RGR for the spe-
cies. Thus, positive values indicate a tree with a faster RGR
than average in the population. For all traits, except LAR, there
were a few species with a linear or polynomial relationship with
RGR. For example, two species had positive LMA-RGR re-
lationships and two species had positive leaf thickness—RGR
relationships (Table 2). Additionally, species varied in the sign
of their trait—RGR relationship for three traits — leaf chlorophyll
content, wood resistance and LDMC. These linear relationship
indicate that traits on one extreme of the population-level trait
distribution conferred a growth advantage during the study
period. This contrasts with a handful of polynomial relation-
ships we uncovered. Specifically, two species had concave-
down LMA-RGR relationships, one species had a concave-up
leaf chlorophyll content—-RGR relationship, one species had
a very weak concave-down leaf thickness—RGR relationship
and one species had a very weak concave-up LDMC-RGR re-
lationship (Supplementary data Table S2). The concave-down
relationships indicate that extreme trait values in the popula-
tion conferred a growth disadvantage, whereas concave-up re-
lationships indicated that trait values on both extremes of the
population-level trait distribution were advantageous. While we
underscore, again, that our measurement of RGR over the study
period is not a reliable predictor of individual fitness, we do
argue that ecologists conducting trait-based analyses of plant
performance should more routinely analyse their data on the in-
dividual level and place them into the present analytical context
as it allows a clearer pathway for the integration of concepts
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and empiricism between trait-based population and community
ecology and evolutionary ecology.

Our results from the individual-level LAR-RGR analyses
differed dramatically from those using other traits. Specifically,
17 out of 20 species had significant linear (n = 15) or polyno-
mial models (n = 2). Both polynomial models were concave
up, with one being quite weak. All but one of the linear rela-
tionships were positive (Table 3). The variance explained by
the linear models was frequently higher than 30 % and in two
cases exceptionally high (>70 %). Out of the 17 species with
significant LAR models, 12 had r? values higher than any r?
from a model using any other trait (Tables 2 and 3). From these
results, we draw a few conclusions. First, we found trait-RGR
relationships that varied in their shape, strength and sign across
species. This, as with the other results, indicates that expecting
consistent relationships between a single trait and RGR across
species is unrealistic. It also may support the work of others
indicating that interactions between traits or alternative traits
should be considered (Iida et al., 2016; Swenson et al., 2017,
2020; Zambrano et al., 2017; Worthy et al. 2020). Secondly,
LAR, while not totally consistent across species in its rela-
tionship with RGR, was clearly the best and most reliable pre-
dictor of tree RGR in this study. Importantly, when this trait
is aggregated to a mean at the species level, it did not predict
species-mean RGR (Fig. 2), which indicates that this trait can
only be logically used at the individual level. Thirdly, while
there is good reason to believe that the important trade-offs that
occur at the organ or tissue scale such as leaf or wood eco-
nomics traits (Reich et al., 1997; Chave et al., 2009) should be
related to growth, the importance of allocation information and
trade-offs at the organismal scale are underappreciated in most
current trait-based studies of plant performance despite their
importance being underscored in the plant growth literature
(e.g. Poorter, 1989; Garnier, 1991; Enquist et al., 2007). Thus,
models of tree growth that incorporate individual-level allo-
cation information and integrate this information with organ-
level, leaf-level in particular, traits representing key trade-offs
should be a major focus going forward.

Individual-level phenotypically sintegrated models of growth

The results of our individual-level models showed that
LAR was a strong, if not the strongest, trait predictor of RGR.
Indeed, the amount of variation in RGR explained by this
single trait is higher than most of the traits in the literature
(Yang et al., 2018). Theory indicates that plant growth should
scale with total photosynthetic mass (Niklas and Enquist,
2001), which may explain why LAR would predict RGR.
However, this estimate of LAR is an imperfect measurement
both of total crown leaf area and of leaf mass. Rather, the total
leaf area in a crown would be better estimated by integrating
our measure of LAR with a measure of LAI, which is the
average number of leaves in a canopy per unit ground area.
Adding an average LMA for the individual tree to a model
including LAR and LAI would provide an estimate of the
photosynthetic mass weighted by body size, which should
produce improved models of RGR.

The results showed that our model of RGR that included
LAR, LAI and LMA was superior, in terms of both WAIC and
pseudo-R2, to any of the other sub-models that included some
combination of LAR and LAI or LMA, or just LAR (Table 1).
Additive models of LAR with LAI or LMA were superior to
a model of RGR that just included LAR, but a model that in-
cluded only an interaction between LAR and LAI did not pro-
vide a notable improvement over a model only including LAR
(Table 1). Thus, a model that was based on a first principles
integration of how crown properties and a leaf-level trait should
impact growth outperformed a univariate model only consid-
ering LAR. We do note that the pseudo-R? values for these
Bayesian models with slopes and intercepts for species mod-
elled as random effects were generally lower than the * values
found for many of the species-specific ordinary least squares
regression models of LAR onto RGR.

Hierarchical models of growth mixing individual- and species-
level trait data

The models discussed to this point clearly demonstrate the
importance of individual-level measurements of crown dimen-
sions (i.e. LAR and LAI). Such data are not commonly meas-
ured in functional trait inventories, but they are not particularly
hard to measure as they do not require leaf collection. As re-
mote sensing (e.g. LIDAR) becomes more commonly utilized,
we anticipate that estimates of LAR and LAI at the individual
level may become commonplace. Our work shows that models
of RGR that include these two variables perform well, but are
slightly inferior to models that include individual-level LMA
data. LMA can be challenging to collect in forests due to the
difficulty in obtaining leaves from tall individuals. Thus, the
collection of LAR and LAI may be able to scale easily, but
LMA may remain difficult to collect. We therefore wanted to
determine whether models of RGR that utilized individual-level
LAR and LAI data, but species-level LMA data, were compar-
able with models that utilized individual-level LMA data.

We built hierarchical Bayesian models of RGR where the
species-specific intercept and the slope on the LAR term were,
themselves, modelled as a function of species-level LMA
values (Table 1; Supplementary data Appendices 1-4). We gen-
erated two models using this approach — one with only LAR and
one with LAR and LAI. These models were indistinguishable
from one another in their quality (Table 1). Furthermore, nei-
ther of these models was an improvement on any of the models
that utilized individual-level LAR and LAI data (Table 1). In
other words, including species-mean LMA data in models
with individual-level LAR and LAI data did not provide an
improvement over models that did not have this information
(Table 1). Taken together, these results show that our attempts
to improve individual-level models by adding in additional
species-level trait data were unsuccessful. This further under-
scores the importance of individual-level data for modelling
tree RGR. Thus, the challenge moving forward will be to de-
termine which methods can obtain individual-level data beyond
the shape of canopies and LAI. Recent work indicates that traits
such as LMA may be robustly estimated using remote sensing
data products (Marconi et al., 2019a, b) and this may allow for
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a viable and scalable approach for modelling individual-level
tree growth based upon individual-level traits of known import-
ance on stand to regional scales.

Conclusions

The key advantages of functional trait-based ecology are that
the traits measured are representative of fundamental trade-offs
and they are relatively easy to measure across systems. However,
these advantages would be weakened if the traits collected did
not convey information regarding the performance of individ-
uals and, therefore, populations. The trait literature frequently
utilizes mean trait values to represent all individuals in a popu-
lation or species. This approach greatly reduces the resources
needed for trait inventories, but the negative consequences of
such data aggregation are not well established. Here, we have
shown, using detailed individual-level trait and growth data for
>500 rain forest trees, that models of RGRs suffer when species-
level mean trait data are used. When individual-level data are
utilized and we integrate individual-level trait data, our models
of tree growth perform very well. This indicates that trait-based
approaches are particularly powerful for modelling tree growth
when collected and analysed at the individual level. Data col-
lection or analyses that aggregate data to the population or spe-
cies level will provide some insights, but these insights will be
limited in most cases when modelling plant performance and,
in some cases, misleading. Thus, the next great challenges will
be developing phenotypically integrative models of tree growth
parameterized at the individual level that will be made possible
by scalable data collection methods.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. Table S1: the 20
focal species used in this study and the number of trees with
dendrometers. Table S2: second-order polynomial regression
results for trait-RGR relationships at the individual level.
Appendices 1 and 2: model description and directed acyclic
graph (DAG) for the base model regressing individual-level
leaf area ratio onto relative growth rate. Appendices 3 and 4:
the STAN code utilized via the rstan package in R to run the
base model regressing individual-level leaf area ratio onto rela-
tive growth rate.
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