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•  Background and Aims  The composition and dynamics of plant communities arise from individual-level 
demographic outcomes, which are driven by interactions between phenotypes and the environment. Functional 
traits that can be measured across plants are frequently used to model plant growth and survival. Perhaps surpris-
ingly, species average trait values are often used in these studies and, in some cases, these trait values come from 
other regions or averages calculated from global databases. This data aggregation potentially results in a large loss 
of valuable information that probably results in models of plant performance that are weak or even misleading.
•  Methods  We present individual-level trait and fine-scale growth data from >500 co-occurring individual trees 
from 20 species in a Chinese tropical rain forest. We construct Bayesian models of growth informed by theory and 
construct hierarchical Bayesian models that utilize both individual- and species-level trait data, and compare these 
models with models only using individual-level data.
•  Key Results  We show that trait–growth relationships measured at the individual level vary across species, are 
often weak using commonly measured traits and do not align with the results of analyses conducted at the species 
level. However, when we construct individual-level models of growth using leaf area ratio approximations and 
integrated phenotypes, we generated strong predictive models of tree growth.
•  Conclusions  Here, we have shown that individual-level models of tree growth that are built using integrative 
traits always outperform individual-level models of tree growth that use commonly measured traits. Furthermore, 
individual-level models, generally, do not support the findings of trait–growth relationships quantified at the spe-
cies level. This indicates that aggregating trait and growth data to the species level results in poorer and probably 
misleading models of how traits are related to tree performance.
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INTRODUCTION

The structure and dynamics of communities ultimately emerge 
from differential individual-level performance. Tropical forests 
play a major role in the global carbon cycle, thereby making 
our understanding of forest dynamics critical for models of 
our future (e.g. Malhi and Phillips, 2004; Fyllas et al., 2014). 
Models of individual- or population-level tree performance 
often utilize trait information (e.g. Uriarte et al., 2010; Fyllas 
et al., 2014; Liu et al., 2016; Katabuchi et al., 2017). The traits 
utilized are chosen because they represent a common currency 
that can be measured and compared across systems (Westoby, 
1998; Westoby et al., 2002; Reich, 2014) and because they are 
believed to represent fundamental life history trade-offs that 
should be related to performance (e.g. McGill et al., 2006).

In practice, trait data are often collected on a handful of in-
dividuals in a population and averaged. These population- or 
species-level average data are then used for downstream ana-
lyses ranging from models of individual-level tree performance 
to correlations of average trait values with average demo-
graphic rate values (e.g. Hérault et al., 2011; Kraft et al., 2015;  

Paine et  al., 2015). While collecting trait data from a small 
number of individuals may be a pragmatic approach, particu-
larly in diverse systems (Swenson, 2013), the analysis of popu-
lation- or species-mean trait data is conceptually misaligned 
with the vast evolutionary ecology literature relating traits to 
individual performance (Swenson et al., 2020) and it may lead 
to weak or misleading models and inferences (e.g. Liu et al., 
2016; Yang et al., 2018).

Relating traits to performance outcomes is foundational 
to ecology and evolutionary biology (Arnold, 1983; McGill 
et al., 2006). In evolutionary ecology, the trait distribution in 
a population through time is shaped by the relationship be-
tween individual-level trait values and fitness (Conner and 
Hartl, 2004). Specifically, the relative fitness values of indi-
viduals are commonly regressed against the standardized trait 
data to derive fitness functions (Fig.  1). Positive or negative 
relationships implicate directional selection, whereas concave-
down and concave-up relationships implicate stabilizing and 
diversifying selection, respectively. Ecologists using traits to 
predict performance outcomes of an entire population certainly 
do not measure the lifetime fitness of individuals, but the fitness 
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function framework, nonetheless, should be utilized in their 
work more frequently for multiple reasons (Swenson et  al., 
2020). First, an evolutionary ecology framework is focused on 
individuals as the unit of study, whereas much of trait-based 
ecology focuses on trait and performance data aggregated to the 
population or species level. Secondly, this evolutionary ecology 
framework explicitly considers the possibility of concave trait–
performance relationships, whereas most trait-based ecology 
searches for simple positive or negative relationships between 
traits and performance. It may be reasonable to expect that con-
cave relationships between traits and performance should be 
common as natural selection is not only directional. Thirdly, 
an evolutionary ecology framework serves as a unifying con-
ceptual and analytical language that could be used to encourage 
communication between ecology and evolutionary biology.

Individual-centric analysis of traits as they relate to plant 
performance not only permit a connection with evolutionary 
ecology, but they can also facilitate a second major challenge 
in trait-based ecology. This second challenge concerns the im-
portance of phenotypic integration. Specifically, a trait may not 
be a strong predictor of plant performance by itself and its im-
portance is only understood in the context of other trait values 
from the individual (Yang et al., 2018). Such a context is crit-
ical for modelling the performance of large and long-lived indi-
vidual organisms such as trees. Existing theory built upon first 

principles can be leveraged to direct our analyses of growth as 
it relates to phenotypic integration. For example, the growth 
of photosynthetic organisms is expected to isometrically scale 
with photosynthetic mass (Niklas and Enquist, 2001). In a hypo-
thetical tree where the leaves are the only photosynthetic tissue, 
we can deconstruct the photosynthetic mass into multiple trait 
axes an ecologist may measure. Specifically, the 2-D crown 
area of a tree combined with the average tree-level leaf area 
index (LAI; a measure of the amount of leaf area above an area 
of ground) provides an estimate of the leaf area for that tree. 
This value, combined with one of the most widely measured 
leaf traits, leaf mass per area (LMA; the inverse of specific leaf 
area), provides a rough estimate of the photosynthetic mass of 
a tree. This value standardized by the body size of the tree (i.e. 
an estimate of leaf mass divided by tree diameter) is expected to 
predict the relative growth rate (i.e. growth standardized by tree 
diameter) (Yang et  al., 2018). Measuring the traits discussed 
above (i.e. crown area and LAI) requires the measurement of 
traits on individuals as allocation traits are uniformative when 
averaged across a population or species. This is because in-
dividuals within and across species vary widely in their allo-
cation due to differences in ontogeny and other factors (e.g. 
microenvironmental differences). Additionally, integrating 
phenotypes using data from multiple individuals or averaged 
data will result in an inadvertent and erroneous loss or gain of 
trait–trait relationships in the phenotype, resulting in poorer 
models of growth. In sum, individual-level concepts and ana-
lyses permit a clearer modelling of tree growth that is informed 
by theory derived from first principles.

In this work, we consider the relationship between traits and, 
for tropical trees, relative growth rates (RGRs). We focus on 
20 species of trees in a Chinese rain forest where we have col-
lected individual-level trait and growth data on hundreds of in-
dividuals. The analyses we present are designed to compare the 
outcomes of species- and individual-level analyses of growth. 
To do this, we constructed Bayesian models of growth informed 
by theory derived from first principles and we constructed 
hierarchical Bayesian models that utilize both individual- and 
species-level trait data, and compare these models with models 
only using individual-level data. The specific questions we ask 
are as follows. (1) Are the results of trait–RGR analyses con-
ducted at the species level consistent with those obtained from 
individual-level analyses? (2) Is there evidence for non-linear 
trait–RGR relationships within species? (3) Do models that 
consider phenotypic integration outperform models that do 
not? (4) Do models that partially rely on species-level data per-
form as well as those that only use individual-level data?

MATERIALS AND METHODS

Study location

The study was conducted in the 20 ha Xishuangbanna forest 
dynamics plot (FDP) in a seasonal tropical rain forest of South-
west China (21°37′08″N, 101°35′07″E), characterized as a 
monsoonal climate, with a distinct dry season (November to 
April) and wet season (May to October). The annual average 
temperature is 21.0 °C and the annual mean rainfall is 1493 mm 
in the forest. A total of 1256 mm, 84 % of the annual average, of 
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Fig. 1.  A conceptual figure of how traits should be related to growth that is 
similar to analysing fitness functions in evolutionary ecology (Conner and 
Hartl, 2004). Here, we propose that one should regress a growth deviation 
against a standardized trait value. Each data point should be an individual tree 
(not species), and linear and second-order polynomial fits to the relationship 
should be compared. The growth deviation is the difference in the individual-
level growth from the mean growth of the population. Thus, positive values are 
higher than average growth, and negative values are lower than expected. The 
standardized trait value is the z-scaled trait value for the individual. The graphs 
are analogous to fitness functions where relative fitness is regressed onto stand-
ardized trait values. Under that framework, (A) concave-down relationships in-
dicate stabilizing selection, (B) concave-up relationships indicate diversifying 
selection and (C, D) linear relationships indicate directional selection. Here, we 
stress that growth is not a clear or reliable metric of fitness, but we do propose 
plotting growth and trait data in this way, and explicitly considering polynomial 
relationships between traits and growth should help trait-based ecology grow 
conceptually and empirically while allowing for a clearer integration with the 

evolutionary ecology literature.
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rainfall occurs in the wet season (Cao et al., 2006). This forest 
is dominated by large individuals of Parashorea chinensis 
(Dipterocarpaceae). All freestanding woody stems ≥1 cm diam-
eter at breast height (dbh), i.e. 130  cm from the ground, are 
measured, tagged, identified and mapped. A detailed descrip-
tion of the climate, geology and flora of this plot can be found 
in Cao et al. (2008).

Tree growth and trait measurements

This study used a sub-set of evergreen trees in the forest 
plot that have growth monitored by dendrometer bands. The 
stainless steel dendrometer bands were installed in the plot 
in January 2009 following a standardized protocol (Muller-
Landau and Dong, 2008); since then the dendrometers have 
been re-measured every 3  months. The RGRs used in this 
study were calculated by ln(dbhf/dbhi)/(tf – ti) from August 
2009 to August 2018, where t is year and the subscripts f and 
i are final and initial values of the dbh. To guarantee data ac-
curacy, we discarded the cases where (1) the tree had damaged 
dendrometer bands; (2) the tree died during the study period; 
or (3) the tree had incomplete trait or growth data. In total, our 
study included 510 individual trees from 20 species varying in 
the number of individuals measured per species from nine to 
104 (Supplementary data Table S1).

We collected seven functional traits [leaf area, leaf chloro-
phyll content, leaf dry matter content (LDMC), leaf thickness, 
leaf toughness, leaf mass per area (LMA) and wood specific 
resistance (WSR)] for each tree with a dendrometer band using 
the standard protocols described in Cornelissen et al. (2003) or 
based upon the information below for leaf chlorophyll content 
and wood-specific resistance. Leaf chlorophyll content is dir-
ectly related to the photosynthetic rate of plants (Vaieretti et al., 
2007). Because SPAD readings and extractable chlorophyll 
content are highly correlated (Maderia et al., 2003), we meas-
ured relative leaf chlorophyll content using the Chlorophyll 
Meter SPAD-502Plus (Konica Minolta, Osaka, Japan). Wood 
density represents a trade-off between volumetric growth rate 
and mechanical strength (Cornelissen et al., 2003), but coring 
trees in the long-term forest dynamics plot is not allowed. Thus, 
we measured the WSR for each individual using a Resistograph 
(Rinntech Co., Germany), an electronically controlled drill 
that measures the relationship between drilling resistance and 
stem density (Isik and Li, 2003; Yang et al., 2014). The WSR 
of an individual is strongly correlated with the more commonly 
measured wood density, while being a less destructive meas-
urement on individuals undergoing long-term monitoring (Isik 
and Li, 2003).

To examine crown allocation, we measured the dimensions 
of tree crowns to estimate the 2-D crown area and LAI values 
for each individual tree. In 2009, crown width and length were 
measured using a laser telemeter attached to an altimeter pole 
following the protocols described in Iida et al. (2012) to calcu-
late the superficial area of an ellipsoid:

Crown surface area = π[(R1 + R2) /2]2

where R1 is the crown width and R2 is the crown length. We 
used the crown surface area measures to estimate the leaf area 

ratio (LAR) for each tree. Here, we define LAR as the crown 
surface area divided by the tree diameter at the time of the 
crown measurement. LAR is typically measured as total plant 
leaf area divided by total plant mass. Thus, we are presenting a 
rough estimate of the actual LAR. An LAI-2200 Plant Canopy 
Analyzer (LI-COR Inc., Lincoln, NE, USA) was used to esti-
mate the LAI under each focus tree, and measurements were 
taken following the LiCor protocols in the manual. The LAI in 
this study is the average number of leaves above any point on 
the ground below the tree and, therefore, is not equivalent to 
LAR and it does not have to be correlated with LAR.

Modelling growth: species- vs. individual-level data

The first goal of this study was to quantify the relationship 
between RGR and functional traits at the species level. The 
traits utilized for this set of analyses include LMA, LAR, leaf 
chlorophyll content, leaf thickness, leaf toughness, WSR, and 
LDMC. The trait and RGR data were collected on every indi-
vidual tree in the study, but for this first analysis we calculated 
an average RGR and trait value for each species. The species-
mean RGR values were then regressed onto the species-mean 
trait data. This approach was used to simulate the widely used 
practice of analysing RGR and trait data aggregated at the 
species level. For each RGR–trait relationship, we generated 
a linear regression model and a second-order polynomial re-
gression model and recorded the r2 and Akaike information cri-
terion (AIC) for both models.

The second goal of this study was to conduct an analysis that 
models individual-level growth as a function of individual-level 
traits. These analyses were designed to be analogous to fitness 
function analyses in quantitative genetics (Conner and Hartl, 
2004), with the recognition that we are not measuring fitness 
in this study. These analyses first quantified the deviation of 
the individual-level RGR from the mean value for the species, 
which we call the ‘growth deviation’. The growth deviation 
data were then regressed onto the individual-level trait data that 
were centred and scaled (i.e. z-transformed or standardized). 
This was repeated for each species. As with the previous ana-
lyses, we generated linear regression and second-order polyno-
mial regression models and recorded the r2 and AIC values for 
both models.

Modelling growth: building individual-level phenotypically 
integrated models

An alternative to blindly building models of trait–RGR re-
lationships is to build and evaluate models of RGR that are 
informed by an understanding of phenotypic integration and 
functional ecology (Garnier 1991; Enquist et al., 2007; Yang 
et  al., 2018). Thus, the third goal of this study was to build 
models of individual-level RGR that build from simple, and 
theoretically supported, expectations of how traits should im-
pact RGR. Specifically, it is expected that the overall photosyn-
thetic biomass of a plant relative to body mass should predict 
RGR (Niklas and Enquist 2001). For this portion of the study, 
we utilized hierarchical Bayesian models of RGR.
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We began with a simple model regressing individual-level 
LAR onto individual-level RGR data with species-level random 
slopes and intercepts. This base model had the form of:

µi,j = αj + β1,j × LARi,j

where µi,j is the expected RGR of individual i in species j, αj and 
β1,j are the intercept and slope for species j, and LARi,j is the 
LAR of individual i in species j.

As the LAR is a measure of the canopy surface area rela-
tive to biomass on a 2-D plane, we built additional models that 
modified the above base model by including one piece of the 
individual-level LAI and LMA data at a time and in unison with 
and without an interaction between LAI and LMA. The form 
of these models, full model descriptions (including priors), dir-
ected acyclic graphs of the models and R code for running the 
models are provided in Supplementary data Appendices 1–4. 
The models were evaluated using STAN via the R package rstan 
(Stan Development Team, 2019). Each model was run with un-
informative priors, run using four chains with 10 000 iterations 
and a warm up of 5000 iterations. A WAIC (Watanabe–Akaike 
information criterion; Watanabe, 2010) was calculated for 
each model, as was the posterior distribution of the pseudo-R2 
(Gelman et al., 2019).

Modelling growth: building models that mix individual- and 
species-level data

The final portion of this study aimed to determine whether 
models of RGR that applied a mixture of individual-level and 
species-level trait data were comparable with models of RGR 
that utilized only individual-level data. This was meant to simu-
late a situation where a researcher has individual-level data on 
tree structure (i.e. LAR and LAI), but species-level data for a 
leaf trait (i.e. LMA). Such a situation would occur if one had 
remotely sensed data (e.g. LiDAR) regarding tree structure, but 
could only measure LMA on a few individuals per species. To 
accomplish this, we began by modelling individual-level RGR 
as a function of individual-level LAR data with species-specific 
intercepts and slopes. These species-specific slopes and inter-
cepts were modelled as a function of species-level LMA data. 
This hierarchical model had the form of:

µi,j = αj + β1,j × LARi,j

α,j = γ α+ γβ × LMAj

β1,j = δα + δβ × LMAj

where µi,j is the expected RGR of individual i in species j, αj 
and β1,j are the intercept and slope for species j, LARi,j is the 
LAR of individual i in species j, γα and γβ are the intercept 
and slope of the model of αj as a function of the species-mean 
LMA values, LMAj, and δα and δβ δα are the intercept and 
slope of the model of β β1,j as a function of LMAj. Building 
from this model, we added individual-level LAI data in a 
second model as shown in Table 1. The full model descrip-
tions (including priors), directed acyclic graphs of the models 
and R code for running these models are also provided in 
Supplementary data Appendices 1–4. As in the previous 
analyses, the models were evaluated using STAN via the R 
package rstan (Stan Development Team, 2019). We recorded 
the WAIC and the posterior distribution of the pseudo-R2 
values for each model. Each model was run with uninforma-
tive priors, run using four chains with 10 000 iterations and a 
warm up of 5000 iterations.

RESULTS

Species-level growth–trait correlations

The RGR was significantly correlated with LMA, leaf tough-
ness, wood resistance and LDMC at the species level (Fig. 2). 
We compared linear and second-order polynomial model fits 
using AIC. If a model had an AIC two or more units smaller 
than another, it was selected. The best RGR–leaf tough-
ness, RGR–wood resistance and RGR–LDMC models were 
all linear. On the other hand, the best RGR–LMA model was 
concave up (Fig. 2, r2 = 0.58). The leaf toughness and wood 
resistance decreased linearly with increasing RGR (Fig.  2, 
r2 = 0.2, r2 = 0.17); however, the LDMC increased linearly with 
increasing RGR (Fig. 2, r2 = 0.22). Thus, species with low leaf 
toughness, low wood resistance and higher LDMC tended to 
grow faster.

Table 1.  Form of growth models at the individual level and hierarchical models using a mixture of species- and individual-level data

Type of Data Model WAIC Pseudo-R2 (95 % CI)

All individual-level data µi,j = αj + β1,j × LARi,j
–1889.4 0.292 (0.231 – 0.350)

µi,j = αj + β1,j × LARi,j × LAIi,j –1890.9 0.297 (0.234 – 0.356)
µi,j = αj + β1,j × LARi,j + β2,j × LAIi,j –1893.5 0.307 (0.245 – 0.363)
µi,j = αj + β1,j × LARi,j + β2,j × LAIi,j × LMAi,j –1910.2 0.329 (0.266 – 0.387)
µi,j = αj + β1,j × LARi,j + β2,j × LAIi,j + β3,j × LMAi,j –1912.6 0.339 (0.277 – 0.397)

Species average LMA and 
individual-level data

µi,j = αj + β1,j × LARi,j × β2,j × LAIi,j,j  
α,j = γ α + γ β × LMAj  
β 1,j = δ α + δ β × LMAj  

–1888.9 0.312 (0.255 – 0.363)

µ i,j = αj + β1,j × LARi,j  
αj = γ α + γβ × LMAj  
β1,j = δ α + δβ × LMAj 

–1887.9 0.295 (0.232 – 0.350)

The WAIC and pseduo-R2 values are provided for each model.
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Individual-level growth–trait correlations

Next, we generated linear and second-order polynomial re-
gression models of RGR regressed onto LMA, leaf chlorophyll 
content, leaf thickness, leaf toughness, wood resistance and 
LDMC at the individual level. Again, we used AIC to select 
the best model for each trait. In most cases, we did not find a 
relationship between RGR and a trait value at the individual 
level (Table 2; Supplementary data Table S2). We found evi-
dence for three concave-down RGR–trait relationships (Fig. 3). 
Specifically, LMA for the species Archidendron kerrii, Colona 
thorelii and Nephelium chryseum had a concave-down relation-
ship. Thus, extreme trait values had negative growth deviations 
(i.e. lower RGR than the population mean) and intermediate trait 
values had the highest growth deviations (i.e. higher RGR than 
the population mean) (Fig. 3; Supplementary data Table S2).  

We found two concave-up relationships in our analyses. 
Specifically, chlorophyll content and LDMC had concave-up 
relationships with r2 values of 0.45 and 0.06, respectively 
(Supplementary data Table S2). This indicates that species with 
extreme values for these traits had higher than average growth 
in the population.

We found two positive relationships between RGR and 
LMA, two negative and one positive RGR–leaf chlorophyll re-
lationship, two positive RGR–leaf thickness relationships, one 
positive RGR–leaf toughness relationship, one negative and 
one positive RGR–wood resistance relationship, and one nega-
tive and two positive RGR–LDMC relationships. The r2 values 
for these linear regressions ranged from 0.04 to 0.56 with a 
mean of 0.32. In sum, there were few relationships detected 
even when using individual-level data for these traits; the slopes 

0.12

–1 0
Leaf mass per area Leaf area ratio Leaf chlorophyll

content

1 2 –2 –1 0 1

Leaf toughness
–0.5 0.5 1.5 2.5

Wood resistence
–1 0 1 2

Leaf dry matter content
–1 0 1 2

–2 –1 0 21
Leaf thickness

–2 –1 0 1

0.08

R
G

R

0.04

0.12

0.08

R
G

R

0.04

r2 = 0.58

r2 = 0.20 r2 = 0.17 r2 = 0.22

Fig. 2.  The relationship between relative growth rate (RGR) and functional trait values. Each data point is a species in the data set. Three models had no relation-
ship using a linear or second-order polynomial regression. Three models had significant linear relationships and one had a significant concave-up second-order 
polynomial relationship. Regression lines are only shown for significant relationships. The values on the x-axis are z-scaled (i.e. centred and scaled) transform-

ations and are, therefore, unitless.

Table 2.  Linear regression results for trait–RGR relationships at the individual level 

LMA CHOL THICK TOUGH WOOD LDMC

Species M r2 m r2 m r2 m r2 m r2 m r2

ALSEPE   – 0.28   + 0.44 – 0.32   
CASTEC + 0.10   + 0.05     – 0.04
CASTHY           + 0.14
DIOSHA   – 0.51         
FICULA     + 0.37       
KNEMTE + 0.56           
MACRDI           + 0.48
MALLGA   + 0.28         
MANGFO         + 0.53   

m, sign of the slope; LMA, leaf mass per area; CHOL, leaf chlorophyll content; THICK, leaf thickness; TOUGH, leaf toughness; WOOD, wood specific resist-
ance; LDMC. leaf dry matter content. 

Blank cells indicate a relationship no different from zero (P > 0.05).
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for significant models did vary for a few traits and the amount 
of variation explained was highly variable.

Individual-level growth–LAR correlations

Next, we regressed individual-level RGR onto our measures 
of individual-level LAR. There were 17 species that had a sig-
nificant RGR–LAR relationship out of the 20 in total. Fourteen 
of these models were positive linear relationships. An add-
itional two were concave-up second-order polynomial relation-
ships and one was a negative linear relationship (Table 3). The 
positive linear relationships had r2 values ranging from 0.04 to 
0.93 with an average of 0.42 (Table 3; Fig. 4).

Individual-level phenotypically integrated models

We used a Bayesian model evaluation approach to model 
individual-level RGR. We began with a model using only LAR 
with species-specific slopes and intercepts (Table  1). This 
model had a pseudo-R2 value of 0.292 [confidence interval (CI) 
0.231–0.350]. We then added individual-level LAI and LMA 
data to this base model additively or using an interaction be-
tween LAR and LAI. We compared models using their WAIC 
values because model fit will improve simply by adding more 
parameters. The WAIC, like the AIC, penalizes for this, and 
lower WAIC values are preferred. We defined the superior 
models as those models that had a WAIC value that was two 
or more times lower than the model with which it was being 
compared. The best model identified in our individual-level 
analyses was an additive model including LAR, LAI and LMA 
[WAIC = –1912.6; pseudo-R2 = 0.339 (CI 0.277–0.397)]. The 
additive model of µ i,j = αj + β1,j × LARi,j + β2,j × LMAi,j was the 
second ranked model and nearly as good as the model including 
all three independent variables (i.e. µ i,j = αj + β1,j × LARi,j + β2,j 
× LAIi,j + β3,j × LMAi,j; Table 1).

Mixed individual- and species-level trait models

We used a Bayesian approach to evaluate hierarchical 
models of individual-level RGR with individual-level LAR or 
LAR and LAI data as independent variables. In these models, 
we modelled the species-specific intercept and slope of LAR as 
a function of the species-level LMA value (Table 1). Using both 

Table 3.  Regression results for trait–RGR relationships at the 
individual level using linear and second-order order polynomial 

models 

LAR

 Linear Poly

Species m r2 m r2

ALSEPE + 0.48   
ARCHKE + 0.42   
BACCRA   u 0.43
CASTEC   u 0.01
CASTHY + 0.04   
CASTIN + 0.14   
CINNBE – 0.34   
COLOTH + 0.23   
DIOSHA + 0.74   
ELAEGL     
FICULA + 0.27   
GARCCO + 0.49   
KNEMTE + 0.56   
MACRDI + 0.56   
MALLGA     
MANGFO + 0.41   
NEPHCH     
OROPLA + 0.18   
PHOELA + 0.93   
PITTKE + 0.32   

m, sign of the slope for linear regressions; u, concave up for polynomial 
models. 

Blank cells indicate a relationship no different from zero (P > 0.05).
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WAIC and pseudo-R2 as guides, we found that these models 
were not superior to the individual-level models. They were in-
distinguishable in quality from one another and from the most 
simple LAR-based individual-level model (Table  1). These 
hierarchical models were inferior to all other non-LAR-based 
individual-level models, indicating that adding species-level 
trait data to an individual-level base model did not improve it 
and in some cases it noticeably reduced the quality of the model 
(Table 1).

DISCUSSION

Trait-based ecology is built upon the premise that differential 
performance can be attributed to variation in traits, and that 
differential performance (McGill et  al., 2006) should scale 
up to explain emergent patterns such as community and eco-
system structure and dynamics (Reich, 2014). In many – but 
not all – cases, researchers aggregate trait data to generate 
species-level means that are used in downstream analyses 
(e.g. Kraft et al., 2010; Uriarte et al., 2010; Paine et al., 2015; 
Katabuchi et al., 2017), but relying on only inter-specific vari-
ation and ignoring intra-specific variation may have critical 
conceptual and empirical consequences (Yang et  al., 2018; 
Swenson et al., 2020). The results provided herein show that 
models of individual-level tree growth in a tropical rain forest 
were greatly improved when using individual-level trait data 
and when growth models are built upon first principles. These 
results not only inform us on how we should model tree 
growth upon the basis of traits in future work, but they also 
indicate that trait-based ecology should rethink how it con-
ceptually and analytically aligns with evolutionary ecology. 
In the following, we discuss the results and their implications 
in more detail.

The shape and strength of trait–growth relationships

Our first series of analyses focused on simple trait-based 
regression models of tree RGR. We generated models where 
species-mean RGR was modelled as a function of species-mean 
trait values and models where individual-level RGR and trait 
data were used. The species-level analyses found negative rela-
tionships between RGR and leaf toughness and wood resistance 
(Fig. 2). Tougher leaves and wood are considered conservative 
traits that are expected to lead to lower growth rates, making 
these results consistent with expectations from the previous 
literature (e.g. Coley, 1988; Chave et al., 2009; Kitajima and 
Poorter, 2010; Kitajima et al., 2012). We found a positive rela-
tionship between LDMC and RGR, which was not consistent 
with our expectation as higher LDMC is a conservative trait 
strategy. The positive relationship between RGR and LDMC 
may be explained by reduced herbivory levels in high LDMC 
species. However, the negative relationship between RGR and 
leaf toughness would suggest otherwise. These three rela-
tionships each explained about 20 % of the variation in RGR. 
Interestingly, we found a concave-up relationship between 
RGR and LMA that explained 58 % of the variation in RGR 
(Fig. 2). This may indicate that species with intermediate LMA 
values perform less well in this forest as compared with those 
with very acquisitive (i.e. low) or conservative (i.e. high) LMA 
values. This may be due to inter-specific partitioning of light 
gradients within the forest. The other three traits considered, 
LAR, leaf chlorophyll content and leaf thickness, had no rela-
tionship to RGR at the species level (Fig. 2).

The individual-level analyses regressed the growth deviation 
of an individual tree against the centred and scaled trait data 
from that tree. Recall, the growth deviation is the deviation in 
RGR of the individual tree from the mean RGR for the spe-
cies. Thus, positive values indicate a tree with a faster RGR 
than average in the population. For all traits, except LAR, there 
were a few species with a linear or polynomial relationship with 
RGR. For example, two species had positive LMA–RGR re-
lationships and two species had positive leaf thickness–RGR 
relationships (Table 2). Additionally, species varied in the sign 
of their trait–RGR relationship for three traits – leaf chlorophyll 
content, wood resistance and LDMC. These linear relationship 
indicate that traits on one extreme of the population-level trait 
distribution conferred a growth advantage during the study 
period. This contrasts with a handful of polynomial relation-
ships we uncovered. Specifically, two species had concave-
down LMA–RGR relationships, one species had a concave-up 
leaf chlorophyll content–RGR relationship, one species had 
a very weak concave-down leaf thickness–RGR relationship 
and one species had a very weak concave-up LDMC–RGR re-
lationship (Supplementary data Table S2). The concave-down 
relationships indicate that extreme trait values in the popula-
tion conferred a growth disadvantage, whereas concave-up re-
lationships indicated that trait values on both extremes of the 
population-level trait distribution were advantageous. While we 
underscore, again, that our measurement of RGR over the study 
period is not a reliable predictor of individual fitness, we do 
argue that ecologists conducting trait-based analyses of plant 
performance should more routinely analyse their data on the in-
dividual level and place them into the present analytical context 
as it allows a clearer pathway for the integration of concepts 
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and empiricism between trait-based population and community 
ecology and evolutionary ecology.

Our results from the individual-level LAR–RGR analyses 
differed dramatically from those using other traits. Specifically, 
17 out of 20 species had significant linear (n = 15) or polyno-
mial models (n  =  2). Both polynomial models were concave 
up, with one being quite weak. All but one of the linear rela-
tionships were positive (Table  3). The variance explained by 
the linear models was frequently higher than 30 % and in two 
cases exceptionally high (>70 %). Out of the 17 species with 
significant LAR models, 12 had r2 values higher than any r2 
from a model using any other trait (Tables 2 and 3). From these 
results, we draw a few conclusions. First, we found trait–RGR 
relationships that varied in their shape, strength and sign across 
species. This, as with the other results, indicates that expecting 
consistent relationships between a single trait and RGR across 
species is unrealistic. It also may support the work of others 
indicating that interactions between traits or alternative traits 
should be considered (Iida et al., 2016; Swenson et al., 2017, 
2020; Zambrano et al., 2017; Worthy et al. 2020). Secondly, 
LAR, while not totally consistent across species in its rela-
tionship with RGR, was clearly the best and most reliable pre-
dictor of tree RGR in this study. Importantly, when this trait 
is aggregated to a mean at the species level, it did not predict 
species-mean RGR (Fig. 2), which indicates that this trait can 
only be logically used at the individual level. Thirdly, while 
there is good reason to believe that the important trade-offs that 
occur at the organ or tissue scale such as leaf or wood eco-
nomics traits (Reich et al., 1997; Chave et al., 2009) should be 
related to growth, the importance of allocation information and 
trade-offs at the organismal scale are underappreciated in most 
current trait-based studies of plant performance despite their 
importance being underscored in the plant growth literature 
(e.g. Poorter, 1989; Garnier, 1991; Enquist et al., 2007). Thus, 
models of tree growth that incorporate individual-level allo-
cation information and integrate this information with organ-
level, leaf-level in particular, traits representing key trade-offs 
should be a major focus going forward.

Individual-level phenotypically sintegrated models of growth

The results of our individual-level models showed that 
LAR was a strong, if not the strongest, trait predictor of RGR. 
Indeed, the amount of variation in RGR explained by this 
single trait is higher than most of the traits in the literature 
(Yang et al., 2018). Theory indicates that plant growth should 
scale with total photosynthetic mass (Niklas and Enquist, 
2001), which may explain why LAR would predict RGR. 
However, this estimate of LAR is an imperfect measurement 
both of total crown leaf area and of leaf mass. Rather, the total 
leaf area in a crown would be better estimated by integrating 
our measure of LAR with a measure of LAI, which is the 
average number of leaves in a canopy per unit ground area. 
Adding an average LMA for the individual tree to a model 
including LAR and LAI would provide an estimate of the 
photosynthetic mass weighted by body size, which should 
produce improved models of RGR.

The results showed that our model of RGR that included 
LAR, LAI and LMA was superior, in terms of both WAIC and 
pseudo-R2, to any of the other sub-models that included some 
combination of LAR and LAI or LMA, or just LAR (Table 1). 
Additive models of LAR with LAI or LMA were superior to 
a model of RGR that just included LAR, but a model that in-
cluded only an interaction between LAR and LAI did not pro-
vide a notable improvement over a model only including LAR 
(Table 1). Thus, a model that was based on a first principles 
integration of how crown properties and a leaf-level trait should 
impact growth outperformed a univariate model only consid-
ering LAR. We do note that the pseudo-R2 values for these 
Bayesian models with slopes and intercepts for species mod-
elled as random effects were generally lower than the r2 values 
found for many of the species-specific ordinary least squares 
regression models of LAR onto RGR.

Hierarchical models of growth mixing individual- and species-
level trait data

The models discussed to this point clearly demonstrate the 
importance of individual-level measurements of crown dimen-
sions (i.e. LAR and LAI). Such data are not commonly meas-
ured in functional trait inventories, but they are not particularly 
hard to measure as they do not require leaf collection. As re-
mote sensing (e.g. LiDAR) becomes more commonly utilized, 
we anticipate that estimates of LAR and LAI at the individual 
level may become commonplace. Our work shows that models 
of RGR that include these two variables perform well, but are 
slightly inferior to models that include individual-level LMA 
data. LMA can be challenging to collect in forests due to the 
difficulty in obtaining leaves from tall individuals. Thus, the 
collection of LAR and LAI may be able to scale easily, but 
LMA may remain difficult to collect. We therefore wanted to 
determine whether models of RGR that utilized individual-level 
LAR and LAI data, but species-level LMA data, were compar-
able with models that utilized individual-level LMA data.

We built hierarchical Bayesian models of RGR where the 
species-specific intercept and the slope on the LAR term were, 
themselves, modelled as a function of species-level LMA 
values (Table 1; Supplementary data Appendices 1–4). We gen-
erated two models using this approach – one with only LAR and 
one with LAR and LAI. These models were indistinguishable 
from one another in their quality (Table 1). Furthermore, nei-
ther of these models was an improvement on any of the models 
that utilized individual-level LAR and LAI data (Table 1). In 
other words, including species-mean LMA data in models 
with individual-level LAR and LAI data did not provide an 
improvement over models that did not have this information 
(Table 1). Taken together, these results show that our attempts 
to improve individual-level models by adding in additional 
species-level trait data were unsuccessful. This further under-
scores the importance of individual-level data for modelling 
tree RGR. Thus, the challenge moving forward will be to de-
termine which methods can obtain individual-level data beyond 
the shape of canopies and LAI. Recent work indicates that traits 
such as LMA may be robustly estimated using remote sensing 
data products (Marconi et al., 2019a, b) and this may allow for 
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a viable and scalable approach for modelling individual-level 
tree growth based upon individual-level traits of known import-
ance on stand to regional scales.

Conclusions

The key advantages of functional trait-based ecology are that 
the traits measured are representative of fundamental trade-offs 
and they are relatively easy to measure across systems. However, 
these advantages would be weakened if the traits collected did 
not convey information regarding the performance of individ-
uals and, therefore, populations. The trait literature frequently 
utilizes mean trait values to represent all individuals in a popu-
lation or species. This approach greatly reduces the resources 
needed for trait inventories, but the negative consequences of 
such data aggregation are not well established. Here, we have 
shown, using detailed individual-level trait and growth data for 
>500 rain forest trees, that models of RGRs suffer when species-
level mean trait data are used. When individual-level data are 
utilized and we integrate individual-level trait data, our models 
of tree growth perform very well. This indicates that trait-based 
approaches are particularly powerful for modelling tree growth 
when collected and analysed at the individual level. Data col-
lection or analyses that aggregate data to the population or spe-
cies level will provide some insights, but these insights will be 
limited in most cases when modelling plant performance and, 
in some cases, misleading. Thus, the next great challenges will 
be developing phenotypically integrative models of tree growth 
parameterized at the individual level that will be made possible 
by scalable data collection methods.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. Table S1: the 20 
focal species used in this study and the number of trees with 
dendrometers. Table S2: second-order polynomial regression 
results for trait–RGR relationships at the individual level. 
Appendices 1 and 2: model description and directed acyclic 
graph (DAG) for the base model regressing individual-level 
leaf area ratio onto relative growth rate. Appendices 3 and 4: 
the STAN code utilized via the rstan package in R to run the 
base model regressing individual-level leaf area ratio onto rela-
tive growth rate.
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