International Journal of Disaster Risk Reduction 51 (2020) 101757

e 4

ELSEVIER

Contents lists available at ScienceDirect
International Journal of Disaster Risk Reduction

journal homepage: http://www.elsevier.com/locate/ijdrr

Machine-learning methods for identifying social media-based requests for

urgent help during hurricanes

Ashwin Devaraj, Dhiraj Murthy , Aman Dontula

The University of Texas at Austin, Austin, TX, USA

Check for

updates

ARTICLE INFO ABSTRACT

Keywords:

Text classification
Deep learning

Social media analysis
Disaster response
2010 MSC:

00-01

99-00

Social media is increasingly used by people during large-scale natural disasters to request emergency help.
Previous work has had success in applying machine-learning classifiers to detect tweets in coarse-grained cat-
egories, such as disaster type and relevance. However, there is a dearth of work that focuses on detecting tweets
containing requests for help that are actionable by first responders. Using over 5 million tweets posted during
2017’s Hurricane Harvey in Houston, U.S., we show that though such requests are uncommon, their often life-or-
death nature justifies the development of tweet classifiers to detect them. We find that the best-performing
classifiers are a convolutional neural network (CNN) trained on word embeddings, support vector machine

(SVM) trained on average word embeddings, and multilayer perceptron (MLP) trained on a combination of
unigrams and part-of-speech (POS) tags. These models achieve F1 scores of over 0.86, confirming their efficacy in
detecting urgent tweets. We highlight the utility of average word embeddings for training non-neural models,
and that such features produce results competitive with more traditional n-gram and POS features.

1. Introduction

Social media is used during various types of disasters to disseminate
relevant information to a large audience [1]. Some of the reasons for
communicating on social media are to raise awareness, express sympa-
thies, discuss causes, assign blame, and offer/request assistance [2].
Another important, but severely understudied, category of tweets posted
during natural disasters is truly urgent calls for help that indicate
life-threatening situations [3,4]. According to Glass [5], first-responders
often arrive too late in emergency situations affecting multiple sites due
to the overwhelming volume of calls and the consequent difficulty in
coordinating an emergency response. During Hurricane Harvey in 2017,
for example, many people were rescued not by first-responders but by
fellow citizens responding to requests for help on social media [6].
Developing classifiers capable of distinguishing requests of help on
Twitter would thus aid in the emergency response to large-scale di-
sasters by allowing the public to better identify and assist those who
need urgent help.

Numerous studies have been conducted regarding the classification
of tweets into categories including offensiveness and sentiment using
machine learning methods. Some have explored the use of traditional
text features used in natural language processing (NLP), including n-

* Corresponding author.

grams, lexicon features, and part-of-speech (POS) tags [7], while others
have incorporated features from topic models generated using statistical
techniques like Latent Dirichlet Allocation (LDA) [8] to build classifiers
[9]. Recent studies have strongly skewed towards deep learning
methods, specifically through the use of deep convolutional neural
networks (CNNs) [10-12] and recurrent neural networks (RNNs) [13].

Machine-learning classification tasks conducted on disaster-related
tweets have, for the most part, addressed whether tweets are about
crises or not [14], the type of disaster [14], the type of information being
conveyed [14,15], informativeness [16], and general sentiment polarity
[17]. Though these labeling schemes could help first responders
cherry-pick useful tweets from a large dataset, none of them tackle the
problem of specifically detecting urgent tweets that should elicit a first
response (i.e., calls for help or reports of specific people requiring help
from first responders).

The closest any labeling scheme comes to making the distinction
between urgent and non-urgent tweets is by Imran et al. [15], in which
the “Injured or dead people” and “Missing, trapped, or found people”
categories include tweets of people requesting help or reporting that
specific people need help. However, even these categories are too broad
to be directly useful to first responders since they include tweets of
evacuations and rescues after the fact and do not exclude news sources.

E-mail addresses: ashwin.devaraj@utexas.edu (A. Devaraj), dhiraj.murthy@austin.utexas.edu (D. Murthy), adontula@utexas.edu (A. Dontula).

https://doi.org/10.1016/j.ijdrr.2020.101757

Received 8 March 2020; Received in revised form 1 July 2020; Accepted 2 July 2020

Available online 20 July 2020
2212-4209/© 2020 The Authors.

(http://creativecommons.org/licenses/by-ne-nd/4.0/).

Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

mailto:ashwin.devaraj@utexas.edu
mailto:dhiraj.murthy@austin.utexas.edu
mailto:adontula@utexas.edu
www.sciencedirect.com/science/journal/22124209
https://http://www.elsevier.com/locate/ijdrr
https://doi.org/10.1016/j.ijdrr.2020.101757
https://doi.org/10.1016/j.ijdrr.2020.101757
https://doi.org/10.1016/j.ijdrr.2020.101757
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijdrr.2020.101757&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Devaraj et al.

In this study, we start to fill this gap by building classifiers specif-
ically designed to determine whether tweets posted during 2017’s
Hurricane Harvey contain information actionable by first responders.
This includes only personal requests for help and reports of other people
who need help. In both cases an address or location is specified. Using a
subset of 2474 tweets from our original dataset, we build models using
both traditional text features used in natural language processing (NLP),
including n-grams and POS tags, as well as word embeddings (all terms
we explain later in the paper).

Word embeddings are a representation of words (and tokens in
general, as elaborated in the Methods section) as vectors such that words
with similar semantic meanings have vectors with a small angle of
separation between them [18-20]. Each dimension of an embedding
represents some semantic attribute of the associated word, though what
exactly that attribute is may not be interpretable by humans. The main
benefit of word embeddings is that they allow machine-learning models
to generalize well to texts with words not seen in the training dataset,
since if those new words have similar meanings to previously-seen
words, their embeddings have values close to those of the embeddings
of the seen words.

In the domain of text classification, word embeddings have tradi-
tionally been used as inputs to deep CNNs, wherein the text is input as a
matrix of word embeddings [10,11,14]. Such an input format allows
CNNs to use the ordering of words to make classification decisions,
something that traditional NLP features like n-grams do not permit. To
our knowledge, the application of word embeddings to
non-convolutional text classification has not been explored in the liter-
ature. In this study we investigate the performance of non-convolutional
classifiers trained on average word embeddings (i.e., the average of the
embeddings corresponding to words in a tweet). Although average
embeddings do not preserve the identities of every word in a tweet or
their ordering, we hypothesize that since tweets are relatively short (at
most 280 characters long), averaging does not discard too much infor-
mation about the content of the tweets, and each dimension of the
average vector effectively summarizes that respective semantic attribute
of the entire tweet.

One challenging trait of our dataset is that only a small fraction
(about 7%) of it consists of urgent tweets, probably owing to the fact that
requests for help are infrequent in comparison to general tweets about
the disaster, such as comments, reactions, and requests for donations.
Imbalanced datasets can be a problem when building classifiers as the
classifiers may naively classify every input as a member of the majority
class to achieve high accuracy. To alleviate this problem, we experi-
mented with oversampling, in which urgent tweets were artificially
duplicated in the training dataset to prevent models from naively clas-
sifying them as not urgent.

In this study, we consider whether it is possible to successfully
extract information useful to first responders from public tweets during
a hurricane. Previous work has refined the process of classifying
disaster-related tweets into categories [7,9,14-16]. However, our study
is novel in its explicit focus on classifying tweets from people actively
asking for help and those who provide enough information for first re-
sponders to act on.

2. Related work

Extensive prior research has been done on disaster-related tweet
classification and more general sentence classification using both
traditional textual features like n-grams, POS tags, and LDA topic models
[7,9,21], as well as the more recently-developed word embedding fea-
tures [10,11,19,20].

Kouloumpis et al. [7] conducted an exhaustive study analyzing the
relative efficacy of n-gram, POS, and various binary features (such as the
existence of abbreviations and words in all caps) in tweet sentiment
classification and concluded that a combination of n-gram and binary
features yields the best AdaBoost [22] classifiers.

International Journal of Disaster Risk Reduction 51 (2020) 101757

Among previous work on disaster-related tweet classification,
Ashktorab et al. [21] used unigram features to build a logistic regression
model to determine whether tweets from 12 different natural disasters
referenced infrastructural damage or human casualties. Imran et al. [23]
used a naive Bayes classifier trained on unigram, bigram, POS, and bi-
nary features to classify tweets from the 2011 tornado in Joplin, Mis-
souri as informative or not (achieving an F1 score of 0.78). They then
built a classifier to categorize the informative tweets as “caution,”
“donation,” “advice,” or “information source.”

Imran et al. [15] built naive Bayes, random forest, and SVM models
to classify tweets from 19 different natural disasters (e.g., floods and
earthquakes) into different information types. These categories include
information about injured or deceased individuals, displaced in-
dividuals, sympathy and emotional support, and irrelevant topics.

A major shortcoming of n-gram and binary features is that they are
too sparse and noisy for certain tasks like profanity classification [9].
Xiang et al. [9] took a different approach for profanity classification
using Latent Dirichlet Allocation [8] to generate topic features. They
built a topic model from a large dataset of tweets (collected from Twitter
users with very high and low records of using profanity) and then
created a feature vector for each tweet by concatenating its probability
distribution over the generated topics and binary features indicating the
presence of offensive words in a dictionary. Their logistic regression
model outperformed models using only keyword features by 6% with
respect to true positive rate while maintaining false positive rates below
4%.

Although LDA produces features that are less sparse than n-gram and
binary features, it is still a bag-of-words model that treats each word as
an independent entity, with no notion of semantic distance between
words. Bengio et al. [18] developed a way to jointly learn a vector
representation of words in a dictionary (i.e., the word embeddings) and
a model that uses these embeddings to generate a probability distribu-
tion of the next word in a sentence given n previous words. These em-
beddings are a compact representation of a word and the distances
between them correspond to the semantic distances between the asso-
ciated words. Mikolov et al. [19] and Pennington et al. [20] extended
these methods to efficiently train better-performing word embeddings.

More recently, research in short text classification has emphasized
the use of deep neural networks trained on word embeddings to dras-
tically improve model performance [10,11,14]. One such class of deep
neural networks are CNNs, which are especially well-suited for
spatially-organized data like image pixels, since their convolution layers
apply a fixed filter across inputs in a manner inspired by biological vi-
sual neurons in living organisms [12]. Kim [11] developed a simple and
popular CNN architecture for sentence classification, and Dos Santos and
Gatti [10] developed a CNN trained on both word and character-level
embeddings for the same task. Zhang et al. [24] provide a detailed
guide on how to tune Kim’s hyperparameters, including reasonable
feature ranges to grid search over and sensitivity analysis. All of these
CNN networks take as input a matrix of embeddings dependent on the
word order in tweets (see the Methods section for a more detailed
discussion).

Recent work in text classification has also explored the use of RNNs,
which are neural networks containing recurrent layers whose outputs
depend on their own outputs from the previous time step. For example,
Lai et al. [13] developed a recurrent analog of the CNN that out-
performed Kim’s CNN model in text classification on 3 different data-
sets. Hassan et al.’s [25] approach is inspired by Kim’s [11] framework
and replaces the max-pooling layer after the convolutional one with a
bi-directional long short-term memory (LSTM) module [26], which is a
type of RNN with additional gating parameters that control the relative
contributions of the current input versus inputs from previous time steps
to stabilize model training. Hassan et al.’s [25] use of an LSTM allows
their model to take as input tweets of arbitrary length and to capture
distant semantic dependencies in sentences. Their model slightly out-
performs Kim’s CNN [11] on the Stanford Sentiment Treebank dataset

A. Devaraj et al.

[27] in both fine-grained and binary classification accuracy.

In the domain of disaster tweet classification, Burel et al. [14] used
Kim’s [11] architecture to accurately classify disaster-related tweets
from the CrisisLexT26 dataset [28] based on relevance, type of disaster,
and type of information conveyed [31]. Nguyen et al. [49] used a CNN
architecture similar to Kim [11] trained on custom word embeddings
generated from a crisis-specific corpus to classify tweets from (Cri-
sisNLP, CrisisLex, and Artificial Intelligence for Disaster Response
(AIDR))'the CrisisNLP dataset [15] based on informativeness and type
of information conveyed, achieving high area under curve (AUC) scores
(explained in the Machine-learning Models portion of the Methods
section).

Prior work has focused on the classification of disaster tweets into
different information types [14,15] but has not dealt with the task of
detecting tweets with specific information about people requiring
emergency assistance from first responders. In other words, while useful
for separating tweets relevant to the disaster from the vast majority of
unrelated tweets, previous work does not focus on classifying tweets
from individuals asking for help. For example, Burel et al.’s “affected
individuals” category [14]—inspired by the categories in the explor-
atory study by Olteanu et al. [31]—and Imran et al.’s “missing, trapped,
or found people” category [15] both include tweets that contain specific
information about people needing rescue. However, they do not make a
distinction between the presence of requests for help/ongoing crises and
reports of situations that have already been resolved.

3. Research questions

Our study investigates the performance of both non-convolutional
and convolutional machine-learning classifiers on the task of deter-
mining whether tweets posted during Hurricane Harvey contain current
information about people requesting emergency assistance that first
responders can act upon. Although prior work does include categories
encompassing these urgent tweets, like “affected individuals” and
“missing, trapped, or found people,” existing work does not acknowl-
edge urgent tweets as a separate category [14,15]. The lack of existing
classifiers focused on detecting these urgent tweets motivates the
following research questions.

RQ1: How prevalent are requests for urgent help on Twitter during
natural disasters like Hurricane Harvey?

RQ2: How well do both non-convolutional and convolutional ma-
chine learning models trained on a dataset of tweets posted during
Hurricane Harvey perform as urgent tweet classifiers?

We pursue this second research question since an initial manual in-
spection of our dataset indicates that the vast majority of tweets do not
contain specific requests for help that would be useful to first re-
sponders. Therefore, there is a clear need to evaluate whether we can
create machine learning models that can successfully detect urgent
tweets from among the millions posted during a disaster, rather than
leaving this time-intensive task to human labelers.

RQ3: How does the performance of non-convolutional urgent tweet
classifiers trained on average word embeddings compare to that of
non-convolutional classifiers trained on traditional textual features
like n-grams?

We explore this question because prior work using average embed-
dings as features in text classification tasks was not identified. Therefore,
we evaluate whether our models perform well with these features

1 See Alam et al. [30] for a more detailed discussion of these data sets; Table 1
provides a quantitative comparison of these and other established crisis tweets
data sets.

International Journal of Disaster Risk Reduction 51 (2020) 101757

despite the loss of word ordering information. If so, average embeddings
could be another feature type that researchers consider when building
disaster-related text classifiers.

4. Methods

We now describe our method of processing the dataset, running our
machine learning models on the dataset, and evaluating their perfor-
mance. The code for these steps can be found here.

4.1. Data

For this study, we use a subset of 2,072,715 unique tweets after the
removal of duplicates that was sampled from a much larger dataset of
tweets directly purchased from Twitter via its data reseller, GNIP.
5,604,200 tweets were provided by Twitter for the following query:

from: Harvey, OR hurricane, OR flood, -is:retweet, -RT, -follow, -like,
-new, -movie, -show, -gouging, -billion, -million, -redcross lang:en
since:2017-08-22 until:2017-08-29.

This query is given in the syntax used by Twitter Advanced Search
and translates into the following:

e from: No parameter is provided, so there is no restriction on the
identity of the user who sent a tweet.

Harvey, OR hurricane, OR flood: Only include tweets containing at
least one of the words “harvey,” “hurricane,” or “flood.” This re-
striction is not case-sensitive, so for example a tweet containing the
word “HaRveY” would be included. We included this constraint to
favor tweets related to Hurricane Harvey and its consequences (e.g.
floods).

o -is:retweet: Exclude retweets. We do this since we want to create a
dataset of unique requests for help.

-RT, -follow, -like, -new, -movie, -show, -gouging, -billion,
-million, -redcross: Exclude tweets containing any of the listed
words. The word “RT” is found in retweets.

since:2017-08-22 until:2017-08-29: Only allow tweets sent be-
tween August 22, 2017 and August 29, 2017. We included this
constraint since this time range captures the peak of Hurricane
Harvey’s activity, since the storm achieved hurricane status on
August 24 and receded from Texas on August 28.

Data was delivered as zipped JSON files containing tweets and
associated metadata, including the time of creation, username, lan-
guage, and a unique id. Since the focus of our study is to classify tweets
based solely on the text, we only keep the text of each tweet. Random,
manual inspection of this large dataset shows almost no urgent tweets,
with most tweets being completely unrelated to emergency response or
requests for help. We therefore filter our dataset by hashtags, specifically
those containing at least one of the following keywords: ‘“help,”
“rescue,” and “911.” We choose “help” and “rescue” since nearly every
urgent tweet we encounter contains a hashtags with one of these words
(e.g., #needhelp and #needwaterrescue), and we choose “911” based on
our own judgment that tweets referencing emergency services are more
likely contain requests for help from first-responders.

Filtering by these rescue-related keywords and removing tweets with
duplicate text bodies produces a much smaller dataset of around 5000
tweets, which upon further manual inspection contains a much higher
proportion of urgent tweets. Of these tweets, we manually label 2474 of
them to produce our final dataset.

4.2. Labeling process

The entire dataset was manually labeled by 2 authors, with inter-
coder reliability measured to be 1.0 (i.e., 100% agreement) on a random
sample of 70 tweets. This extremely high level of intercoder reliability is
the result of a detailed and well understood codebook. Labeling was not

https://github.com/AshOlogn/hurricane-urgent-tweet-detection

A. Devaraj et al.

delegated to a third-party service like Amazon’s Mechanical Turk given
the presence of personal data such as addresses in some of the tweets.
Moreover, our own labeling of the dataset provided an opportunity to
continually refine the definition of urgency. Ultimately, our final la-
beling taxonomy can be used by future researchers to reliably outsource
labeling to other services.

4.3. Labeling taxonomy

The following is our definition of “urgent” tweets, which we then use
to label our dataset and build the classifiers:

e Urgent: The user is urgently requesting help for themselves or on a
specific person’s/people’s behalf. The tweet suggests that people’s
lives are in danger and/or a rescue is necessary. Specific information
about the danger is included in the tweet text. Requests for animal
rescues are excluded.

e Not urgent: All other tweets.

The following are the most common tweet types that are not
considered urgent but may be mistaken for urgent requests for help:
donation requests, general descriptions of hardship, descriptions of
property damage without references to specific people and bodily harm,
and requests for help for pets.

4.4. Preprocessing

4.4.1. Tokenization and lemmatization

Raw text is not easily interpretable by machine learning models, so
the preprocessing of our pipeline involves the conversion of the raw text
of a tweet into a numeric form that can be fed into a classifier. The first
step in this process is to split the tweet text into tokens. Tokens are the
individual logical symbols that make up human language, such as
words, numbers, and punctuation. For example, the sentence “The cat
ate 5 rats yesterday!” is made up of the list of tokens [‘the’, ‘cat’, ‘ate’,
‘5, ‘rats’, ‘yesterday’, ‘!’]. To tokenize a tweet, we first make it lower-
case and then use the Python Natural Language Toolkit’s (NLTK) [32]
TweetTokenizer class.

We represent Twitter user handles (e.g. @alice, @bob), URLs,
numbers with generic <user>, <url>, and <number> tokens, since
there are too many different users, numbers, and URLs to represent
individually with distinct tokens. We experimentally determined that
replacing hashtags with the designated hashtag token provided by
GloVe hurts model performance, so we instead just replace hashtags
with a word token excluding the hashtag (e.g. “#hurricane” becomes
“hurricane”). Finally, we remove all non-word tokens except for the
Twitter-specific ones just mentioned. For example, our tokenization
method would convert the tweet “@alice @bob 12 donuts is a dozen!
www.donuts.com #donuts” into the list of tokens ['<user>’, ‘<user>’,
‘<number>’, ‘donuts’, ‘is’, ‘a’, ‘dozen’, ‘<url>’, ‘donuts’].

We then apply lemmatization, which is a procedure that takes a word
token and replaces it with its “lemma,” or simplest form. For example, in
English lemmatization replaces verbs with their infinitive tense without
the word “to” (e.g. the infinitive of “running” is “to run,” so lemmati-
zation outputs “run”) and replaces nouns with their singular form
(“mice” becomes “mouse”). We use the WordNet Lemmatizer found in
the NLTK library for this step. Since tweets often contain misspelled and
joined words, we use a Python implementation of the SymSpell word
segmentation tool [33,34] to attempt to correct incorrectly-spelled and
run-on words in each tweet.

4.4.2. Word embeddings features

After converting each tweet into a cleaned-up list of tokens, we
replace each token with a 100-dimensional vector representing its
meaning, called a word embedding. Word embeddings are vector rep-
resentations of tokens (not just word tokens, despite the name) that are

International Journal of Disaster Risk Reduction 51 (2020) 101757

learned using a neural network such that tokens with closer meanings
have vectors with high cosine similarity (a metric based on how small
the acute angle between 2 vectors is). Furthermore, the vector repre-
sentations of word meanings are often linear, so that meanings can be
altered with addition and subtraction. For example, when word em-
beddings are trained using the word2vec method [19], subtracting the
vector of the word “Spain” from that of its capital “Madrid” and adding
the vector for “France” produces a new embedding vector that is closest
to the capital of France, “Paris.” The benefit of using word embeddings
to represent words in machine learning is that they allow models to
better generalize to new inputs [18]. Even if an input text contains
words not seen by the model during training, if those words are
conceptually related to previously-seen words, then their embeddings
would be similar to the seen words, allowing the model to effectively
generalize what it learned during training to the new input.

For our models, we use 100-dimensional GloVe word embeddings
pretrained on a corpus of 2 billion tweets [20]. These embeddings
provide vectors not just for words and punctuation, but also for the
aforementioned Twitter-specific tokens, URL tokens, and number
tokens.

The CNN model just takes a matrix of embeddings, where the rows of
the matrix are the tokens in the tweet in order and the 100 columns
specify the embedding vector of each token. The CNN is designed to take
fixed-length inputs, that is, matrices with a fixed number of rows and
columns. The number of columns is equal to the dimensionality of the
embeddings and is thus fixed at 100. The number of rows equals the
number of tokens in a tweet, which can vary. Since the longest tweet in
our dataset contains 27 tokens after preprocessing, we just pad each
tweet to this maximum length with vectors containing all zeros (since
GloVe does not provide a dedicated <pad> token). We expect that
during training the CNN can learn the semantic meaning of the zero
padding vector. For the non-convolutional models, embedding vectors
for the tokens in each tweet are averaged together component-wise (e.g.,
[1,2,3] and [0,0,0] averaged produce the vector [0.5,1,1.5]) to produce
a fixed-length vector of 100 numerical features.

4.4.3. “Traditional” NLP features

To compare the performance of our use of average word embeddings
to the use of more “traditional” features like n-grams and POS tags, we
train the non-convolutional models on these other types of features and
compare their performance with respect to F1, precision, recall, and
accuracy (defined later in the Evaluation Metrics subsection).

One of the types of features we use is n-grams with and without
negation detection [7,35]. An n-gram is merely a sequence of n words
observed in a piece of text. For example, the sentence “The cat ate the
rat.” has the following bigrams (i.e., 2-grams): [‘the’, ‘cat’], [‘cat’, ‘ate’],
[‘ate’, ‘the’], and [‘the’, ‘rat’]. N-gram features are generated by
assigning each piece of text in a dataset a binary vector with a length
equal to the number of distinct n-grams in the dataset. An entry in the
binary vector is 1 if that n-gram is found in the piece of text and 0 if not.
We generate n-gram features after tokenizing the dataset and removing
stopwords.

Negation detection is implemented by not representing negation
words as individual tokens but rather merging them with the immedi-
ately adjacent word [35]. The example provided by Pak et al. [35] is to
tokenize the phrase “I do not like fish” into bigrams as: “I do + not,” “do
+ not like,” and “not + like fish.” In accordance with the preprocessing
done by Pak et al. [35], we only remove articles (“a,” “an,” and “the”) as
stopwords, though we still use NLTK’s TweetTokenizer to split the raw
text into words. We experiment with the following combinations of
n-gram features with and without negation detection: just unigrams (n =
1); just bigrams (n = 2); just trigrams (n = 3); unigrams and bigrams
(n =1,2); and unigrams, bigrams and trigrams (n = 1, 2, 3). Our results
using just unigrams are consistently the best with and without negation
detection for nearly all the non-convolutional models (with the excep-
tion of the SVM, which performs only slightly better in other settings), so

https://www.donuts.com

A. Devaraj et al.

we only report the unigram results. To further regulate the volume of
results we report, we don’t implement any feature pruning (except when
POS features are added, discussed below) and just train the models on
the full feature set.

Another type of feature we use is POS tags, counts of the number of
words of different parts of speech for each tweet. These features are not
used in isolation but added to the above n-gram feature sets without
negation detection. To increase the influence of these features in model
behavior relative to n-gram features, we only select the top 1000 n-gram
features using the information gain metric when including POS features.
The number 1000 is experimentally determined in a sentiment analysis
setting by Kouloumpis et al. [7]. Once again, our results using POS
features with unigrams are the best across for all our models, so we only
report the results of the unigram case.

4.4.4. Oversampling

A potential hindrance to the development of classifiers using our
dataset is the infrequency of urgent tweets, which only make up 7% of
the dataset after hashtag filtration. This class imbalance problem is
common in machine learning and can cause models to learn to naively
classify everything as the majority class to achieve high accuracy. For
example, a model that classifies every tweet in our dataset as not urgent

International Journal of Disaster Risk Reduction 51 (2020) 101757

would achieve 93% accuracy. One approach we explore to alleviate class
imbalance is oversampling, by randomly duplicating urgent tweets in
the training set during each iteration of cross-validation (see the
Training and Evaluation subsection) until it consists of one-third urgent
tweets. This prevents models from naively classifying everything as not
urgent to achieve high accuracy. We experiment with both the regular
and oversampled datasets and compare their performances.

We choose to oversample after each train-test split in cross-
validation to prevent each test split from containing artificially dupli-
cated tweets, some of which could also be present in the training set.
Thus models cannot overfit to the test set by being exposed to some of
the same tweets at train time. Another concern related to overfitting is
that since the models are trained on relatively few distinct urgent tweets,
they could overfit to the specific urgent tweets in the training set and
perform poorly on the test set. However, our models’ cross-validated
performance scores indicate that this likely does not happen. In fact,
the performance of most models trained on word embeddings (averaged
in the non-convolutional case) is not significantly affected by over-
sampling, so we do not experiment with non-convolutional models
trained on traditional NLP features in the oversampled case.

Fig. 1 illustrates the pipeline we use to query the original data from
Twitter, filter it to increase the proportion of urgent tweets in the

Raw JSON data queried from Twitter

J

Extract just text data from JSON

J

and 911

Filter by hashtags containing at least
one of the following words: help, rescue,

Label a subset of around 2500 tweets
as urgent or not

Preprocess tweets:

Tokenization

Lemmatization

Stopword removal
Punctuation and capitalization
removal

Full word " ni hout
Ver nigr i
embeddings ebag:_ g;.imsdwt iu
embeddings negation detection
{only in CNN) 9 g

Unigrams and
POS tags

Unigrams with
negation detection

Feed into machine learning models and evaluate performance

Fig. 1. Project architecture.

A. Devaraj et al.

remaining dataset, preprocess the tweets into tokens, apply word em-
beddings or traditional NLP features, and feed these features into ma-
chine learning models.

4.5. Machine-learning models

The non-convolutional models we evaluate with the average
embedding, n-gram, and POS features are naive Bayes [36], decision
tree [37], AdaBoost [22], SVM [38], multilayer perceptron (MLP) [39],
logistic regression [40], and ridge regression [41]. We consider naive
Bayes due to its conceptual simplicity and ability to work well with small
datasets. We consider AdaBoost, logistic regression, and SVM for their
past successes in text classification [7,21]. The remaining models are
considered since they are widely used in machine learning and good
frames of reference to compare against.

The convolutional model we use with word embeddings is the CNN
designed by Kim [11], and the implementation we use is largely bor-
rowed from Trevett [42]. It takes as input an n x k real-valued matrix,
where n is the number of words in the tweet and k is the length of each
word’s embeddings (n = 27 and k = 100 in this study). The input layer
is followed by a single convolutional layer consisting of multiple filters
with lengths equal to the dimension of the embeddings and widths
spanning a window of words in each input tweet. The outputs of the
filters are then concatenated and fed to a max-pooling layer, which is
then followed by a fully-connected layer with dropout, to which the
softmax function is applied to output a probability distribution over the
possible labels (“urgent” or “not urgent”). The architecture is illustrated
in Fig. 2. We do not use average embedding, n-gram, or POS features
with the CNN since the CNN is designed for spatially-organized data, and
those features are not directly tied to the locations of words or n-grams
in a tweet.

The number of convolutional filters and their widths are hyper-
parameters that we tune. Another hyperparameter that we tune is the
choice of activation, which is the function applied to the output of a
node in a neural network layer before it is passed as input to the next
layer in the network. The two most popular activation functions for this
architecture are the hyperbolic tangent function (tanh) and rectified
linear unit (ReLU) [24]. We only report the results using tanh since we
experiment with both activations and find that tanh produces higher
final F1 scores.

Our main motivation for choosing Kim’s [11] architecture is that it is
a relatively simple network with only 1 convolutional layer that could
serve as a baseline to determine whether CNNs are effective for our
classification task. Furthermore, we judge that tweets are probably too
short to reap benefits from recurrent or LSTM modules as used by Hassan
et al. [25].

Input to Network

n-word input

k-dimensional embeddings

Concatenation

International Journal of Disaster Risk Reduction 51 (2020) 101757

4.6. Evaluation Metrics

The metrics with which we evaluate our models are F1, precision,
recall, accuracy, and AUC. The reason we use multiple metrics is that
due to the unbalanced nature of our dataset (with the vast majority of
tweets being “not urgent”), a model with high accuracy is not necessarily
desirable since it could achieve high accuracy by merely classifying
every tweet as not urgent. Thus, we need a notion of what fraction of the
few “urgent” examples the classifier correctly detects, as well as what
fraction of the tweets classified as “urgent” are in fact urgent. This is
where precision and recall are particularly relevant.

In the following discussion, let TP (true positive) denote the number
of correct urgent classifications, TN (true negative) denote the number
of correct not urgent classifications, FP (false positive) denote the
number of tweets incorrectly classified as urgent, and FN (false negative)
denote the number of tweets incorrectly classified as not urgent.

Recall is defined as the fraction of urgent tweets classified as urgent,
or mathematically:

TP

recall = ———
TP + FN

Precision is defined as the fraction of the tweets classified as urgent
that are actually urgent, or mathematically:

TP

precision =5

Recall favors models that successfully detect most of the positive
examples without any regard for how many negative examples are
falsely classified as positive along with the true positives. Precision, on
the other hand, favors classifiers that selectively classify examples as
positive to maintain a low false-positive rate. Clearly a strong classifier is
one that accurately detects a large percentage of the positive examples,
and an intermediate metric measuring this is F1, which is defined as the
harmonic mean of precision and recall:

Fl— 2.prec%s%0n X recall
precision + recall

AUC is the area under the receiver operating characteristic (ROC)
curve, which plots recall (the true positive rate) vs the false positive rate
(FPR) for different model decision thresholds.

FP

FPR=—————
FP+ TN

The decision threshold of a classifier is some value used along with
the model output to determine the output class. For example, in binary
classification logistic regression models output a single probability. The
output class of the model is determined by whether this probability is
higher or lower than a chosen decision threshold (usually 0.5). AUC is

T

\

Softmax

output

/

Max-pooling

Fig. 2. Architecture of the CNN as described by Kim [11].

A. Devaraj et al.

thus useful for determining how well a model is able to classify true
negatives as negatives and true positives as positives over all possible
decision thresholds (0.0-1.0 in the logistic regression case).

Both AUC and F1 are better metrics than accuracy since they take
into account different aspects of a model’s predictive ability. In this
study we focus on F1 since that metric is used in the related disaster
classification studies that we compare our results to, whereas AUC is not.
Since our study is the first to address the problem of detecting urgent
requests for help, we also provide AUC scores so that future work in this
area has the ability to assess the quality of their models comparative to
ours.

4.7. Training and Evaluation

A major hurdle to accurately estimating the performance of a ma-
chine learning model is that the performance score achieved on the
training dataset (the dataset to which the model parameters are fit) is
usually higher than that achieved on unseen data (the test dataset). One
method used to estimate generalization performance on unseen data is
k-fold cross-validation. In this method, the training dataset is split
evenly into k parts, and in each of k iterations, the model is trained on a
combined dataset of k — 1 of the parts and assessed on the 1 left out.
Finally, the k performance scores are averaged to yield a final estimate of
generalization error. This estimate of generalization performance is
more accurate than just training performance since in each iteration, the
model is tested on data that it was not trained on.

To train and evaluate the aforementioned models, we perform grid
search (training models with all possible parameter combinations) for
important hyperparameters for each model, using 10-fold cross-
validation to determine the best parameter combination with respect
to the F1 metric. The CNN model in particular has a very large number of
hyperparameters to search over, such as the convolutional filter widths
and parameters pertaining to training the network, like batch size and
number of epochs. To aid in the grid search, we use Zhang et al.’s [24]
recommendation which outlines parameters ranges to try on Kim’s [11]
architecture.

5. Results
5.1. RQI: Prevalence of urgent tweets

Urgent tweets were identified after manual inspection of tweets in
our collected data (described in detail under “Methodology™). We very
infrequently, but consistently, encountered tweets of individuals
expressing personal peril and requesting help at specific locations. The
tweets are distinct from more general reports like news updates and
donation requests since they contain specific, actionable information
about people in imminent danger that would be more useful to first
responders.

Our original dataset consists of 2,072,715 unique tweets, and after a
cursory examination of this dataset we determined that the urgent
tweets were too infrequent for us to manually pick out to approximate
the frequency of urgent tweets. For this reason, we choose to filter tweets
by hashtags containing specific words which we reasoned would be
more prevalent in urgent tweets. The first phrase we considered was just
the word “help.” We calculated the fraction of tweets containing each
hashtag and ranked the hashtags in decreasing order of frequency. This
revealed that the first hashtag with the word “help” in it is only the 80th
most frequent and found in just 0.034% of the tweets. Table 2 lists the
top 10 hashtags containing the word “help,” the percentage of tweets
they represent, and their frequency rank. The table illustrates that
tweets containing help-related hashtags are highly infrequent in the
data. Therefore, we expand our set of words to include “rescue” and
“911.” This results in a subsample of 4901 tweets. We then label a subset
of 2474 of these tweets as urgent or not urgent and find that 7.6% of
these hashtag-filtered tweets are urgent.

International Journal of Disaster Risk Reduction 51 (2020) 101757

Table 1

Examples of urgent and non-urgent tweets as per our definition. Personal in-
formation (e.g., phone numbers, specific addresses, etc.) are redacted using
asterisks.

Category Example

Urgent-personal call
for help

RT @OneofTwin: @HCSOTexas We need help in CE King
Parkway Forest Subdivision, Sherrywood Drive Hou,
Tx 77044, HELP. #harveyrescue #Har. . .

Please help my classmate and her elderly mom ****
Homewood 77078 #harveyhouston #HarveyFlood
#harvey #harvey2017texas ... #USCG #HarveyRescue
@JASONPAVA @AlyxandriaErryn #helpneedednow
#harvey if you are stuck - please try calling 713-**-#x*
ok * https://t.co/fF7sbfCsD9

Urgent-on others’
behalf

Not Urgent but
disaster-related

Table 2
Top 10 most frequent hashtags containing the word “help,” along with their
frequency in the dataset and rank when sorted by frequency.

Frequency Rank Hashtag % of Tweets
80 help 3.41-10°2
155 helphouston 1.76:10°2
446 houstonhelpneeded 5.92.10°3
447 harveyhelp 5.33.1073
709 helptexas 3.62:10°2
1101 texanshelpingtexans 2.14.10°3
1209 howtohelp 1.95.10°3
1276 helpers 1.87:1073
1400 needhelp 1.71-10°3
1633 houstonhelp 1.43.10°2

Though we do not have an exact estimate of the frequency of urgent
tweets in the original dataset, the fact that only 7.6% of even the filtered
dataset is urgent illustrates the rarity of urgent requests for help among
disaster-related tweets. It also illustrates that it is not feasible for
workers to manually pick out urgent tweets in even relatively small
datasets of a couple million tweets. Furthermore, the urgent tweets
include examples of highly urgent, life-or-death content (e.g., in-
dividuals trapped by flooding or experiencing a medical emergency).
Thus, despite their rarity, the high-stakes nature of these tweets confirms
the necessity to develop classifiers to detect them.

Table 3

Results of non-convolutional models trained on average word embeddings
(without oversampling) and CNN trained on full word embeddings (with over-
sampling). The error range given in Tables 3-7 is +1 standard deviation,
computed over the 10 folds of cross-validation.

Method F1 Precision Recall Accuracy AUC

CNN 0.87 + 0.84 + 0.92 + 0.98 + 0.99
0.04 0.08 0.06 0.01

SVM 0.87 £ 0.90 £ 0.85 + 0.98 + 0.99
0.04 0.06 0.07 0.01

MLP 0.82 + 0.84 + 0.81 + 0.97 + 0.98
0.06 0.06 0.08 0.01

AdaBoost 0.77 + 0.82 + 0.73 + 0.97 + 0.95
0.05 0.05 0.08 0.01

Logistic 0.74 + 0.87 + 0.67 + 0.97 + 0.98
Regression 0.09 0.09 0.13 0.01

Naive Bayes 0.50 + 0.34 + 0.93 + 0.86 + 0.96
0.03 0.03 0.06 0.02

Decision Tree 0.61 + 0.62 + 0.60 + 0.94 + 0.83
0.09 0.08 0.11 0.01

Ridge Classifier 0.61 + 0.84 + 0.49 + 0.95 + 0.97
0.13 0.09 0.13 0.01

https://t.co/fF7sbfCsD9

A. Devaraj et al.
5.2. RQ2: performance of machine-learning classifiers

Table 3 details the performance of our non-convolutional models
trained on average word embeddings (without oversampling) and the
CNN trained directly on word embeddings (with oversampling). We
found that the best performers are the SVM and CNN which received the
same F1 score of 0.87. The CNN has a significantly higher recall than the
SVM but at the cost of precision. This indicates that it prioritizes clas-
sifying tweets as urgent at the cost of a higher false positive rate.

We do not report the performance of the CNN without oversampling.
Given the heavy imbalance of the dataset, the CNN naively classifies
almost every tweet as not urgent and thus achieves a very low F1 score, a
behavior that has been observed in other disaster-related studies [43].

We also report the results of the non-convolutional models and CNN
training with oversampling in Table 4. The CNN achieves the highest F1
score of 0.87, and the SVM is a close second with an F1 of 0.86. The only
models that see a significant improvement in F1 when trained on the
oversampled data are the decision tree and ridge regressor. This is due to
an improvement in recall likely induced by the increased importance of
detecting urgent tweets due to oversampling. Most of the other models
in fact perform worse when trained on the oversampled data despite
achieving higher recall due to a decrease in precision that overall brings
down their F1 scores. For this reason, we do not report results for models
trained on traditional NLP features with oversampling.

The SVM performance across all four metrics is similar with the
introduction of oversampling. This is likely due to the fact that it learns a
decision boundary between urgent and non-urgent tweets in the feature
space and model accuracy is mainly determined by how accurately the
SVM classifies points near the boundary. Oversampling urgent tweets at
random—many of which are probably far from the decision boundar-
y—Tlikely does not improve crucial boundary point classification.

5.3. Average embeddings vs. traditional features

Tables 5-7 illustrate the performance of non-convolutional models
trained without oversampling on traditional unigrams, unigrams with
negation detection, and combined POS and unigram features respec-
tively. We find that in all 3 cases, the MLP achieves the highest F1 of the
non-convolutional models but a lower F1 than the CNN trained with
oversampling. We also find that the addition of negation detection does
not significantly affect the F1 scores of most of the classifiers, with the
one exception being the naive Bayes classifier, which exhibits more than
a double in F1. The inclusion of POS tags with unigrams also has little
effect, and the naive Bayes classifier exhibits none of the drastic increase
in F1 shown when negation detection is included.

The optimal hyperparameters for each of the models in Tables 5-7

Table 4
Results of non-convolutional models trained on average word embeddings and
CNN trained on full word embeddings, both with oversampling.

Method F1 Precision Recall Accuracy AUC

CNN 0.87 + 0.84 + 0.92 + 0.98 + 0.99
0.04 0.08 0.06 0.01

SVM 0.86 + 0.86 + 0.87 + 0.98 + 0.99
0.05 0.08 0.07 0.01

MLP 0.83 + 0.81 + 0.87 + 0.97 + 0.99
0.06 0.09 0.06 0.01

AdaBoost 0.75 + 0.75 + 0.76 + 0.96 + 0.96
0.05 0.09 0.09 0.01

Logistic 0.74 + 0.64 + 0.88 + 0.95 + 0.98
Regression 0.07 0.08 0.08 0.01

Naive Bayes 0.48 + 0.33 + 0.93 + 0.85 + 0.96
0.03 0.03 0.06 0.02

Decision Tree 0.66 + 0.63 + 0.69 + 0.94 + 0.82
0.09 0.11 0.09 0.02

Ridge Classifier 0.69 + 0.57 + 0.88 + 0.94 + 0.98
0.06 0.07 0.10 0.02

International Journal of Disaster Risk Reduction 51 (2020) 101757

Table 5
Results of non-convolutional models trained on unigrams without negation
detection and without oversampling.

Method F1 Precision Recall Accuracy AUC

SVM 0.83 £ 091 + 0.78 + 0.98 + 0.97
0.10 0.07 0.13 0.01

MLP 0.85 + 0.93 + 0.80 + 0.98 + 0.98
0.09 0.04 0.12 0.01

AdaBoost 0.77 + 0.87 + 0.71 + 0.97 + 0.93
0.09 0.07 0.12 0.01

Logistic 0.81 + 0.94 + 0.72 + 0.98 + 0.98
Regression 0.13 0.06 0.16 0.01

Naive Bayes 0.39 + 0.26 + 0.77 + 0.82 + 0.79
0.04 0.02 0.10 0.01

Decision Tree 0.73 £ 0.79 + 0.69 + 0.96 + 0.83
0.09 0.11 0.12 0.01

Ridge Classifier 0.80 + 0.94 + 0.72 + 0.98 + 0.98
0.14 0.05 0.17 0.01

Table 6
Results of non-convolutional models trained on unigrams with negation detec-
tion and without oversampling.

Method F1 Precision Recall Accuracy AUC

SVM 0.81 £ 0.90 £ 0.75 + 0.98 + 0.97
0.13 0.07 0.16 0.01

MLP 0.85 + 0.94 + 0.79 + 0.98 + 0.98
0.09 0.04 0.12 0.01

AdaBoost 0.77 + 0.87 + 0.70 + 0.97 + 0.92
0.06 0.06 0.09 0.01

Logistic 0.80 + 0.94 + 0.71 + 0.97 + 0.98
Regression 0.12 0.06 0.14 0.01

Naive Bayes 0.81 + 0.86 + 0.77 + 0.97 + 0.89
0.05 0.08 0.08 0.01

Decision Tree 0.74 + 0.80 + 0.69 + 0.96 + 0.84
0.09 0.10 0.12 0.01

Ridge Classifier 0.79 + 0.96 + 0.69 + 0.97 + 0.98
0.13 0.04 0.16 0.01

Table 7
Results of models trained on n-gram and POS features, with the top 1000 n-gram
features selected using the y? statistic (without oversampling).

Method F1 Precision Recall Accuracy AUC

SVM 0.83 £ 091 £ 0.78 + 0.98 + 0.97
0.10 0.07 0.13 0.01

MLP 0.86 + 0.94 + 0.80 + 0.98 + 0.98
0.10 0.04 0.14 0.01

AdaBoost 0.77 + 0.87 + 0.71 + 0.97 + 0.93
0.09 0.08 0.12 0.01

Logistic 0.81 + 0.94 + 0.72 + 0.98 + 0.98
Regression 0.13 0.06 0.16 0.01

Naive Bayes 0.39 + 0.26 + 0.77 + 0.82 + 0.79
0.04 0.02 0.10 0.01

Decision Tree 0.74 + 0.81 + 0.70 = 0.96 + 0.84
0.09 0.10 0.13 0.01

Ridge Classifier 0.80 + 0.94 + 0.72 + 0.98 + 0.98
0.14 0.05 0.17 0.01

are provided in the Appendix. Fig. 3 compares the F1 score of each
model trained on average word embeddings without oversampling (with
the exception of the CNN, which is only evaluated with oversampling) to
the best F1 achieved by the model over all 3 n-gram feature variations
explored (again with the exception of the CNN, which is only trained on
word embeddings).

These results illustrate that whether average embeddings or n-gram
features are the better choice depends on the type of model and that
among the best-performing classifiers (SVM, MLP, and AdaBoost),
average embeddings are a competitive choice for identifying urgent
tweets from hurricane-related corpora. It would therefore be useful for
future researchers in disaster text classification to treat average

A. Devargj et al.

=1
(=]

F1

o
=

o
[N]

AdaBoost
Model

0.8 I II II I I I
0.0 II I I II I

Logistic Regression

International Journal of Disaster Risk Reduction 51 (2020) 101757

mmm Embeddings
mmm M-gram

Naive Bayes Decision Tree Ridge Classifier

Fig. 3. Comparison of F1 scores of models trained on word embeddings and unigrams.

embeddings as another viable option when choosing a feature repre-
sentation for the text.

5.4. Comparison to existing studies

Since we define a new classification problem that has not been
significantly explored elsewhere, our results are not directly comparable
to prior work. Purely as a frame of reference, we compare the scores of
our best-performing models (CNN trained on full word embeddings,
SVM trained on average embeddings, and MLP trained on unigrams and
POS tags) to those of other classifiers in the domain of classifying
disaster-related tweets.

We compare to Ashktorab et al. [21], who trained models on unig-
rams to classify tweets as mentioning specific infrastructure damage or
human casualties; Imran et al. [15], who used logistic regression,
random forests, and CNNs to classify tweets as relevant to a natural
disaster or not; and Burel et al. [14], who used SVMs, decision trees, and
CNNs (same architecture as Kim [11]) to classify tweets based on
relatedness (unrelated or related), disaster type (flood, earthquake,
bombing, etc.), and information type.

For brevity, we only report on 1 or 2 classification tasks from each
study and only a couple of models from those that report multiple re-
sults. The following are the specific classification tasks and models
examined from each study, along with the respective abbreviations as
used in Table 8. The models trained in our study are not qualified with
abbreviations.

e Ashktorab et al. (ASH): mentions infrastructure damage or human
casualties

e Imran et al. (IMR): Relevant to Cyclone PAM or not

e Burel et al.: Related to crisis or not (BUR-R) and type of disaster
referenced in the tweet (BUR-TD)

Table 8
Comparison of model performance from different studies on disaster text clas-
sification tasks.

Model F1 Precision Recall Accuracy AUC
CNN 0.87 0.84 0.92 0.98 0.99
SVM 0.87 0.90 0.85 0.98 0.99
MLP 0.86 0.94 0.8 0.98 0.98
SVM-BUR-TD 0.995 0.995 0.995 - -
CNN-BUR-TD 0.983 0.983 0.983 - -
SVM-BUR-R 0.829 0.833 0.83 - -
CNN-BUR-R 0.838 0.839 0.838 - -
CNN-IMR - - - - 0.94

Logistic Regression-ASH 0.65 0.78 0.57 0.86 0.88

The results in Table 8 indicate that our models perform the urgent
tweet classification task better than most other models in the literature
perform on their respective tasks. The one study with results far better
than ours is the disaster type classification study conducted by Burel
et al. [14], but they qualify those results with the claim that some event
types contain very specific vocabulary that likely helps simplify the task.

6. Discussion

Unlike previous work on disaster-related social media classification,
we focus exclusively on those individuals who are using Twitter to ask
for help and provide enough information for first responders to act on (i.
e., those who send what we define as “urgent” tweets). Our results
indicate that we can accurately identify urgent tweets that are action-
able by first responders using tweets posted during Hurricane Harvey.
Additionally, our study uniquely trains non-convolutional machine
learning models using average word embeddings and provides a per-
formance comparison with those trained with more traditional POS and
n-gram features. We also confirm the efficacy of Kim’s [11] convolu-
tional neural network (CNN) architecture in detecting relevant disaster
tweets, as Burel et al. [14] did previously. This provides further evidence
for disaster-related text classification to utilize Kim’s [11] methods.

Furthermore, we highlight that urgent requests for help are very
uncommon among tweets posted during a natural disaster (in our spe-
cific case, Hurricane Harvey), but that with pre-processing by hashtags,
a sample can be generated with a small but non-negligible percentage of
urgent tweets. Furthermore, we provide examples of these urgent tweets
and illustrate that their life-or-death content merits the development of
classifiers to detect them in the event of a large-scale disaster. The
identification of these posts during a disaster could be of immense value
to first responders and other emergency response stakeholders.

We test several different methods of identifying truly urgent tweets
that would be useful to first responders in a disaster situation. The
support vector machine (SVM) trained on average word embeddings
without oversampling and CNN trained on full word embeddings with
oversampling achieve equal F1 scores of 0.87, though the CNN has
higher recall and the SVM has higher precision. Since the cost of a false
positive (falsely classifying a non-urgent tweet as urgent) is lower than
that of a false negative (ignoring an urgent tweet), the higher recall of
the CNN is generally preferable.

Comparing our best models’ F1 scores to the scores of other disaster
classification models indicate that our models’ performance is compet-
itive with prior work classifying disaster-related tweets. Our models lag
only behind the CNN and SVM trained by Burel et al. [14], which tackle
the simpler task of identifying the type of disaster referenced in a tweet.

A. Devaraj et al.

However, we do define a new type of classification problem, so our
models are not fully comparable to the literature.

We find that representing tweets using average word embeddings
pretrained on Twitter data provides results comparable to the repre-
sentation of tweets with traditional n-grams and POS tags for the best-
performing non-convolutional models (SVM, MLP, AdaBoost), with the
SVM trained on average word embeddings achieving the best F1 score
along with the CNN. This suggests that average embeddings should be
added to the collection of NLP features considered by future researchers
designing methods to classify disaster-related text in social media
platforms.

7. Limitations and future work

For the task of identifying urgent tweets from Hurricane Harvey, the
CNN, SVM, and MLP all perform well. However, the models are
currently trained solely for data from Hurricane Harvey, and we have
not tested their ability to generalize to different disasters. Such gener-
alizability would be desired in practice, as the process of labeling
training data and developing models is time-consuming and not feasible
during an actual disaster.

We plan to create classifiers that are able to generalize and identify
urgent tweets across hurricanes and subsequently across any floods,
tornados, etc. (if requests for help are indeed present on Twitter for these
disasters). One potential approach is to replace instances of street and
disaster names (e.g. Sherrywood Drive, harvey, florence) with repre-
sentative word embeddings in the preprocessing step itself. Such word
embeddings would be an abstract representation of these names that
could be generalized past any individual disaster.

Another limitation of our current study is that our data consists
entirely of tweets relevant to Hurricane Harvey. In practice, our models
would have to detect urgent tweets from among numerous tweets that
may be completely unrelated to hurricanes, so it would be useful to train
our models on more diverse, “noisy” data to verify that they have not
just overfit a very specific type of tweet.

We believe there is also utility in evaluating whether the geographic
location from which a tweet is posted during a disaster influences how
likely it is to be urgent, as Neppalli et al.’s [17] sentiment analysis of
tweets sent during Hurricane Sandy indicated an overall stronger
negative sentiment in tweets sent in close proximity to the storm.
Although Twitter allows users to share their GPS coordinates, most do
not. Moreover, users who provide location information on their profile
often provide descriptions that are either fake or too broad to be very
useful (e.g., at the country level) [44]. Thus the geographic location of a
tweet would have to be inferred through other means, like user re-
lationships [45], n-grams [46], and specific keywords extracted using
named-entity recognition [44].

Future work could also use our approach, but by using location data
to broaden the scope of a search for people affected by a disaster. In
other words, rather than focus on specific people who need help, it
would be useful to be able to isolate small groups of people that are
affected by the hurricane based on their location data and movement
patterns.

8. Conclusion

In this study, we identify a specific type of urgent request for help

Appendix A. Optimal Hyperparameters

International Journal of Disaster Risk Reduction 51 (2020) 101757

posted on Twitter during disasters using the case study of Hurricane
Harvey in 2017. Prior work has not focused on the classification of ur-
gent requests for help that are actionable by first responders. A major
problem during large-scale disasters such as hurricanes is that emer-
gency phone services (e.g., 911 in the U.S.) often get overloaded with
requests. In the U.S., people now turn to social media platforms like
Twitter to make urgent requests for help. We underscore that though
urgent tweets are uncommon among the tweets posted during Hurricane
Harvey, the potential life-or-death nature of their content justifies the
development of classifiers capable of detecting them. This marks a de-
parture from the existing literature which either focuses on the detection
of tweets mentioning damage without specifically considering action-
ability or focuses on broader questions entirely, such as whether a tweet
is relevant to the disaster at all.

We then successfully develop classifiers to detect these urgent
tweets, and our best-performing models achieve F1 scores of 0.86 or
higher despite the highly unbalanced nature of the data. Our work
therefore establishes that urgent requests made on social media such as
Twitter can be detected using machine learning models and underscores
the need for future research on ways to create models that generalize to
future natural disasters. Such general models could then be used by
emergency services or relevant relief stakeholders to automatically
detect requests for help on social media in real-time as a disaster pro-
gresses. We also demonstrate that average word embeddings are a
feature type competitive with more traditional features in NLP like n-
grams and POS tags when used with non-convolutional models; they are
one more option for feature representation that future NLP researchers
can consider when building text classifiers.

Unlike previous work, this study focuses on specific and personal
requests for help, and our research questions do not exclusively evaluate
whether social media content is related or unrelated to Hurricane Har-
vey. Rather, we provide evidence not only that specific, urgent requests
for help are posted on Twitter during Harvey, but also that machine
learning models can be developed to accurately detect these requests.
Ultimately, despite these posts being “needles in a haystack,” identifying
any affected people during a hurricane can make a real difference to the
work of first responders and other relevant stakeholders.

Funding

This work was supported by the following grants from the U.S. Na-
tional Science Foundation: Award No. 1760453, project “RAPID: The
Changing Nature of “Calls” for Help with Hurricane Harvey: 9-1-1 and
Social Media” and Award No. 1902460, project “RAPID: Rural Loss Es-
timates of Hurricane Florence Enabled by Citizen Scientists”. Any
opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

Declaration of competing interest
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence
the work reported in this paper.

The following tables detail the optimal hyperparameters discovered for each model in each experiment following grid search with 10-fold cross-
validation. The parameter names are those used in the Scikit-learn library [47]. All parameters not listed take the default values as per the Scikit-learn
version 0.21.1 documentation. Each table corresponds to a single model type and contains the optimal parameters discovered in all the experiments
using that model type. The experiments are listed in the same order as discussed in the Results section.

A. Devaraj et al. International Journal of Disaster Risk Reduction 51 (2020) 101757
The following are explanations for what each of the CNN architecture hyperparameters mean, since the CNN is not implemented by Scikit-learn:

e dropout: The probability that one of the input nodes to the dropout layer is zeroed out
¢ n_filters: The number of convolutional filters of each size used
o filter sizes: The set of filter widths used, with n_filters number of each filter size in the architecture

For example, if n_filters = 100 and filter_sizes =[1,2], then the CNN has 200 filters in total, with 100 having a width of 1 word and 100 having a
width of 2 words.

Table Appendix A.1
Optimal hyperparameters for the CNN.

Experiment dropout n_filters filter_sizes epochs batch_size
Full word embeddings with oversampling 0.3 700 1,1,2,2 100 10
Table Appendix A.2
Optimal hyperparameters for the decision tree.
Experiment max_depth min_samples_leaf
Average word embeddings, no oversampling 5 1
Average word embeddings, with oversampling 20 1
Unigrams, no negation detection 20 1
Unigrams, with negation detection None 1
Unigrams and POS tags 50 1

Table Appendix A.3
Optimal hyperparameters for the SVM.

Experiment C gamma kernel
Average word embeddings, no oversampling 10 0.1 rbf
Average word embeddings, with oversampling 10 0.1 rbf
Unigrams, no negation detection 1 0.001 linear
Unigrams, with negation detection 1 0.001 linear
Unigrams and POS tags 1 0.001 linear

Table Appendix A.4
Optimal hyperparameters for the MLP.

Experiment activation alpha early_stopping
Average word embeddings, no oversampling relu 0.001 FALSE
Average word embeddings, with oversampling relu 0.1 FALSE
Unigrams, no negation detection logistic 0.0001 FALSE
Unigrams, with negation detection logistic 0.001 FALSE
Unigrams and POS tags logistic 0.0001 FALSE

Table Appendix A.5
Optimal hyperparameters for AdaBoost.

Experiment learning_rate n_estimators
Average word embeddings, no oversampling 1 50

Average word embeddings, with oversampling 1 100
Unigrams, no negation detection 1 100
Unigrams, with negation detection 1 100
Unigrams and POS tags 1 100

Table Appendix A.6
Optimal hyperparameters for the ridge classifier.

Experiment alpha
Average word embeddings, no oversampling 0.1
Average word embeddings, with oversampling 5
Unigrams, no negation detection 10
Unigrams, with negation detection 10
Unigrams and POS tags 10

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijdrr.2020.101757.

11

https://doi.org/10.1016/j.ijdrr.2020.101757

A. Devaraj et al.

References

[1]

[2]

[3]

[4

=

[5]

[6]

71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

D. Murthy, A. Gross, M. McGarry, Visual Social Media and Big Data. Interpreting
Instagram Images Posted on Twitte, Digital Culture & Society 2 (2) (2016)
113-134, https://doi.org/10.14361/dcs-2016-0208. https://transcript.degruyter.
com/view/journals/dcs/2/2/article-p113.xmlP.

J.B. Houston, J. Hawthorne, M.F. Perreault, E.H. Park, M. Goldstein Hode, M.

R. Halliwell, S.E. Turner McGowen, R. Davis, S. Vaid, J.A. McElderry, S.A. Griffith,
Social media and disasters: a functional framework for social media use in disaster
planning, response, and research, Disasters 39 (1) (2015) 1-22, https://doi.org/
10.1111/disa.12092, arXiv, https://onlinelibrary.wiley.com/doi/pdf/10.1111/d
isa.12092.

M.E. Phillips, Hurricane Harvey twitter dataset. https://digital.library.unt.edu/a
rk:/67531/metadc993940/, 2017.

N. Pourebrahim, S. Sultana, J. Edwards, A. Gochanour, S. Mohanty, Understanding
communication dynamics on Twitter during natural disasters: A case study of
Hurricane Sandy, Int. J. Disaster Risk Reduct. 37 (2019) 101176, https://doi.org/
10.1016/j.ijdrr.2019.101176. http://www.sciencedirect.com/science/article/pii/
$2212420918310434.

T.A. Glass, Understanding public response to disasters, Publ. Health Rep. 116
(Suppl 2) (2001) 69-73.

M. Rodhan, ‘Please Send Help.” Hurricane Harvey Victims Turn to Twitter and
Facebook, Time, 08/30/2017. https://time.com/4921961 /hurricane-harvey-twitt
er-facebook-social-media/.

E. Kouloumpis, T. Wilson, J. Moore, Twitter Sentiment Analysis: The Good the Bad
and the OMG!, in: Fifth International Association for the Advancement of Artificial
Intelligence Conference on Weblogs and Social Media, Barcelona, Spain, AAAI
Press, 2011, pp. 538-541.

D.M. Blei, A.Y. Ng, M.L. Jordan, Latent Dirichlet Allocation, J. Mach. Learn. Res. 3
(2003) 993-1022.

G. Xiang, B. Fan, L. Wang, J. Hong, C. Rose, Detecting offensive tweets via topical
feature discovery over a large scale twitter corpus, in: Proceedings of the 21st ACM
International Conference on Information and Knowledge Management, New York,
United States, Association for Computing Machinery, 2012, pp. 1980-1984.

C. dos Santos, M. Gatti, Deep Convolutional Neural Networks for Sentiment
Analysis of Short Texts, in: Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers, Dublin City University
and Association for Computational Linguistics, Dublin, Ireland, 2014, pp. 69-78.
https://www.aclweb.org/anthology/C14-1008.

Y. Kim, Convolutional Neural Networks for Sentence Classification, in: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Association for Computational Linguistics, Doha, Qatar, 2014,

Pp. 1746-1751. https://www.aclweb.org/anthology/D14-1181.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278-2324, https://doi.org/
10.1109/5.726791.

S. Lai, L. Xu, K. Liu, J. Zhao, Recurrent convolutional neural networks for text
classification, in: AAAI Conference on Artificial Intelligence, Austin, Texas, United
States, Association for Computing Machinery, 2015. https://www.aaai.org/ocs/
index.php/AAAI/AAAIL15/paper/view/9745.

G. Burel, H. Saif, M. Fernandez, H. Alani, On Semantics and Deep Learning for
Event Detection in Crisis Situations, in: Workshop on Semantic Deep Learning
(SemDeep), at the European Semantic Web Conference (ESWC) 2017, Elsevier,
2017. http://oro.open.ac.uk/49639/.

M. Imran, P. Mitra, C. Castillo, Twitter as a Lifeline: Human-annotated Twitter
Corpora for NLP ofCrisis-related Messages, in: Proceedings of the Tenth
International Conference on Language Resources and Evaluation (LREC 2016),
European Language Resources Association (ELRA), Portoroz, Slovenia, 2016.

L. Derczynski, K. Meesters, K. Bontcheva, D. Maynard, Helping Crisis Responders
Find the Informative Needle in the Tweet Haystack, in: ISCRAM 2018 Conference
Proceedings - 15th International Conference on Information Systems for Crisis
Response and Management, Rochester, New York, United States, Information
Systems for Crisis Response And Management, 2018, pp. 649-662. http://idl.iscra
m.org/files/leonderczynski/2018,/2139_LeonDerczynski_etal2018.pdf.

V.K. Neppalli, C. Caragea, A. Squicciarini, A. Tapia, S. Stehle, Sentiment analysis
during Hurricane Sandy in emergency response, Int. J. Disaster Risk Reduct. 21
(2017) 213-222, https://doi.org/10.1016/j.ijdrr.2016.12.011. http://www.scienc
edirect.com/science/article/pii/$2212420916302151.

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A neural probabilistic language
model, J. Mach. Learn. Res. 3 (2003) 1137-1645, 1155.

T. Mikolov, 1. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed
representations of words and phrases and their compositionality, in: C.J.C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, K.Q. Weinberger (Eds.), NIPS’13:
Proceedings of the 26th International Conference on Neural Information Processing
Systems 2, Curran Associates, Inc., 2013, pp. 3111-3119. http://papers.nips.cc
/paper/5021-distributed-representations-of-words-and-phrases-and-their-composit
ionality.pdf.

J. Pennington, R. Socher, C.D. Manning, GloVe: Global Vectors for Word
Representation, in: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, Association of Computing Machinery, Doha, Qatar,
2014, pp. 1532-1543.

Z. Ashktorab, C. Brown, M. Nandi, A. Culotta, Tweedr: Mining twitter to inform
disaster response, in: ISCRAM 2014 Conference Proceedings - 11th International

12

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[30]

[31]

[32]

[33]
[34]
[35]

[36]

[37]

[38]
[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[49]

International Journal of Disaster Risk Reduction 51 (2020) 101757

Conference on Information Systems for Crisis Response and Management,
Information Systems for Crisis Response and Management, Pennsylvania, United
States, 2014, pp. 354-358.

Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning
and an application to boosting, in: P. Vitanyi (Ed.), Computational Learning
Theory, Springer Berlin Heidelberg, Berlin, 660 Heidelberg, Germany, 1995,

pp. 23-37, https://doi.org/10.1006/jcss.1997.1504.

M. Imran, S. Elbassuoni, C. Castillo, F. Diaz, P. Meier, Extracting Information
Nuggets from Disaster-Related Messages in Social Media, in: ISCRAM 2013
Conference Proceedings - 10th International Conference on Information Systems
for Crisis Response and Management, Information Systems for Crisis Response and
Management, Baden-Baden, Germany, 2013, pp. 791-801.

Y. Zhang, B.C. Wallace, A sensitivity analysis of (and practitioners’ guide to)
convolutional neural networks for sentence classification. http://arxiv.org/abs/1
510.03820.

A. Hassan, A. Mahmood, Convolutional Recurrent Deep Learning Model for
Sentence Classification, IEEE Access 6 (2018) 13949-13957, https://doi.org/
10.1109/access.2018.2814818.

S. Hochreiter, J. Schmidhuber, Long Short-Term Memor, Neural Comput. 9 (8)
(1997) 1735-1780.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A.Y. Ng, C. Potts,
Recursive deep models for semantic compositionality over a sentiment treebank,
in: Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, Seattle, Washington, United States, 2013, pp. 1631-1642.

A. Olteanu, C. Castillo, F. Diaz, S. Vieweg, CrisisLex: A Lexicon for Collecting and
Filtering Microblogged Communications in Crises, in: Eighth International AAAI
Conference on Weblogs and Social Media, Ann Arbor, Michigan, United States,
AAAI Press, 2014.

F. Alam, H. Sajjad, M. Imran, F. Ofli, Standardizing and Benchmarking Crisis-
Related Social Media Datasets for Humanitarian Information Processing, arXiv,
2020, 06774. https://arxiv.org/abs/2004.06774.

A. Olteanu, S. Vieweg, C. Castillo, What to expect when the unexpected happens:
social media communications across crises, in: Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work & Social Computing, New
York, NY, USA, 2015, pp. 994-1009, https://doi.org/10.1145/2675133.2675242.
E. Loper, S. Bird, Nltk: the Natural Language toolkit, arXiv computing research
repository (CoRR). https://arxiv.org/abs/cs/0205028.

W. Garbe, Symspell, Aug. 2019. https://github.com/wolfgarbe/SymSpell.

L. mmb, Symspellpy, Aug. 2019. https://github.com/mammothb/symspellpy.

A. Pak, P. Paroubek, Twitter as a corpus for sentiment analysis and opinion mining,
in: Seventh International Conference on Language Resources and Evaluation,
Valletta, Malta, 2010, pp. 1320-1326.

1. Rish, et al., An empirical study of the naive bayes classifier, in: IJCAI 2001
Workshop on Empirical Methods in Artificial Intelligence, vol. 3, 2001, pp. 41-46.
S.R. Safavian, D. Landgrebe, A survey of decision tree classifier methodology, IEEE
transactions on systems, man, and cybernetics 21 (3) (1991) 660-674, https://doi.
org/10.1109/21.97458.

C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995)
273-297, https://doi.org/10.1007/BF00994018.

S. K. Pal, S. Mitra, Multilayer perceptron, fuzzy sets, classifiaction, IEEE Trans.
Neural Network. 3 (5).

C.-Y.J. Peng, K.L. Lee, G.M. Ingersoll, An introduction to logistic regression
analysis and reporting, J. Educ. Res. 96 (1) (2002) 3-14, https://doi.org/10.1080/
00220670209598786.

A.N. Tikhonov, On the stability of inverse problems, Dokl. Akad. Nauk SSSR 39
(1943) 195-198.

B. Trevett, Pytorch Sentiment Analysis, Aug. 2019. https://github.com/bentrevett/
pytorch-sentiment-analysis.

B.W. Robertson, M. Johnson, D. Murthy, W.R. Smith, K.K. Stephens, Using a
combination of human insights and ‘deep learning’ for real-time disaster
communication, Progress in Disaster Science 2 (2019) 100030, https://doi.org/
10.1016/j.pdisas.2019.100030. http://www.sciencedirect.com/science/article/
pii/S2590061719300304.

A. Kumar, J.P. Singh, Location reference identification from tweets during
emergencies: a deep learning approach, International Journal of Disaster Risk
Reduction 33 (2019) 365-375, https://doi.org/10.1016/j.ijdrr.2018.10.021.
http://www.sciencedirect.com/science/article/pii/S2212420918307799.

C.A. Davis Jr., G.L. Pappa, D.R.R. de Oliveira, F. de L. Arcanjo, Inferring the
location of twitter messages based on user relationships, Trans. GIS 15 (6) (2011)
735-751, https://doi.org/10.1111/j.1467-9671.2011.01297 x. https://onlin
elibrary.wiley.com/doi/abs/10.1111/j.1467-9671.2011.01297.x.

R. Priedhorsky, A. Culotta, S.Y. Del Valle, Inferring the origin locations of tweets
with quantitative confidence, in: Proceedings of the 17th ACM Conference on
Computer Supported Cooperative Work & Social Computing, CSCW ‘14,
Association for Computing Machinery, New York, NY, USA, 2014, pp. 1523-1536,
https://doi.org/10.1145/2531602.2531607.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: machine
learning in python, J. Mach. Learn. Res. 12 (Oct) (2011) 2825-2830.

Dat Nguyen, Shafiq Joty, Muhammad Imran, Hassan Sajjad, Prasenjit Mitra,
Applications of Online Deep Learning for Crisis Response Using Social Media
Information, arXiv (2016). https://arxiv.org/pdf/1610.01030.pdf.

https://doi.org/10.14361/dcs-2016-0208
https://transcript.degruyter.com/view/journals/dcs/2/2/article-p113.xmlP
https://transcript.degruyter.com/view/journals/dcs/2/2/article-p113.xmlP
https://doi.org/10.1111/disa.12092
https://doi.org/10.1111/disa.12092
https://onlinelibrary.wiley.com/doi/pdf/10.1111/disa.12092
https://onlinelibrary.wiley.com/doi/pdf/10.1111/disa.12092
https://digital.library.unt.edu/ark:/67531/metadc993940/
https://digital.library.unt.edu/ark:/67531/metadc993940/
https://doi.org/10.1016/j.ijdrr.2019.101176
https://doi.org/10.1016/j.ijdrr.2019.101176
http://www.sciencedirect.com/science/article/pii/S2212420918310434
http://www.sciencedirect.com/science/article/pii/S2212420918310434
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref5
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref5
https://time.com/4921961/hurricane-harvey-twitter-facebook-social-media/
https://time.com/4921961/hurricane-harvey-twitter-facebook-social-media/
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref7
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref7
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref7
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref7
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref8
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref8
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref9
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref9
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref9
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref9
https://www.aclweb.org/anthology/C14-1008
https://www.aclweb.org/anthology/D14-1181
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9745
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9745
http://oro.open.ac.uk/49639/
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref15
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref15
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref15
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref15
http://idl.iscram.org/files/leonderczynski/2018/2139_LeonDerczynski_etal2018.pdf
http://idl.iscram.org/files/leonderczynski/2018/2139_LeonDerczynski_etal2018.pdf
https://doi.org/10.1016/j.ijdrr.2016.12.011
http://www.sciencedirect.com/science/article/pii/S2212420916302151
http://www.sciencedirect.com/science/article/pii/S2212420916302151
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref18
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref18
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref20
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref20
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref20
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref20
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref21
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref21
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref21
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref21
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref21
https://doi.org/10.1006/jcss.1997.1504
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref23
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref23
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref23
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref23
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref23
http://arxiv.org/abs/1510.03820
http://arxiv.org/abs/1510.03820
https://doi.org/10.1109/access.2018.2814818
https://doi.org/10.1109/access.2018.2814818
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref26
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref26
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref27
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref27
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref27
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref27
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref28
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref28
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref28
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref28
https://arxiv.org/abs/2004.06774
https://doi.org/10.1145/2675133.2675242
https://arxiv.org/abs/cs/0205028
https://github.com/wolfgarbe/SymSpell
https://github.com/mammothb/symspellpy
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref35
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref35
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref35
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref36
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref36
https://doi.org/10.1109/21.97458
https://doi.org/10.1109/21.97458
https://doi.org/10.1007/BF00994018
https://doi.org/10.1080/00220670209598786
https://doi.org/10.1080/00220670209598786
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref41
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref41
https://github.com/bentrevett/pytorch-sentiment-analysis
https://github.com/bentrevett/pytorch-sentiment-analysis
https://doi.org/10.1016/j.pdisas.2019.100030
https://doi.org/10.1016/j.pdisas.2019.100030
http://www.sciencedirect.com/science/article/pii/S2590061719300304
http://www.sciencedirect.com/science/article/pii/S2590061719300304
https://doi.org/10.1016/j.ijdrr.2018.10.021
http://www.sciencedirect.com/science/article/pii/S2212420918307799
https://doi.org/10.1111/j.1467-9671.2011.01297.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9671.2011.01297.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9671.2011.01297.x
https://doi.org/10.1145/2531602.2531607
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref47
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref47
http://refhub.elsevier.com/S2212-4209(20)31259-0/sref47
https://arxiv.org/pdf/1610.01030.pdf

	Machine-learning methods for identifying social media-based requests for urgent help during hurricanes
	1 Introduction
	2 Related work
	3 Research questions
	4 Methods
	4.1 Data
	4.2 Labeling process
	4.3 Labeling taxonomy
	4.4 Preprocessing
	4.4.1 Tokenization and lemmatization
	4.4.2 Word embeddings features
	4.4.3 “Traditional” NLP features
	4.4.4 Oversampling

	4.5 Machine-learning models
	4.6 Evaluation Metrics
	4.7 Training and Evaluation

	5 Results
	5.1 RQ1: Prevalence of urgent tweets
	5.2 RQ2: performance of machine-learning classifiers
	5.3 Average embeddings vs. traditional features
	5.4 Comparison to existing studies

	6 Discussion
	7 Limitations and future work
	8 Conclusion
	Funding
	Declaration of competing interest
	Appendix A Optimal Hyperparameters
	Appendix B Supplementary data
	References

