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A B S T R A C T   

Social media is increasingly used by people during large-scale natural disasters to request emergency help. 
Previous work has had success in applying machine-learning classifiers to detect tweets in coarse-grained cat
egories, such as disaster type and relevance. However, there is a dearth of work that focuses on detecting tweets 
containing requests for help that are actionable by first responders. Using over 5 million tweets posted during 
2017’s Hurricane Harvey in Houston, U.S., we show that though such requests are uncommon, their often life-or- 
death nature justifies the development of tweet classifiers to detect them. We find that the best-performing 
classifiers are a convolutional neural network (CNN) trained on word embeddings, support vector machine 
(SVM) trained on average word embeddings, and multilayer perceptron (MLP) trained on a combination of 
unigrams and part-of-speech (POS) tags. These models achieve F1 scores of over 0.86, confirming their efficacy in 
detecting urgent tweets. We highlight the utility of average word embeddings for training non-neural models, 
and that such features produce results competitive with more traditional n-gram and POS features.   

1. Introduction 

Social media is used during various types of disasters to disseminate 
relevant information to a large audience [1]. Some of the reasons for 
communicating on social media are to raise awareness, express sympa
thies, discuss causes, assign blame, and offer/request assistance [2]. 
Another important, but severely understudied, category of tweets posted 
during natural disasters is truly urgent calls for help that indicate 
life-threatening situations [3,4]. According to Glass [5], first-responders 
often arrive too late in emergency situations affecting multiple sites due 
to the overwhelming volume of calls and the consequent difficulty in 
coordinating an emergency response. During Hurricane Harvey in 2017, 
for example, many people were rescued not by first-responders but by 
fellow citizens responding to requests for help on social media [6]. 
Developing classifiers capable of distinguishing requests of help on 
Twitter would thus aid in the emergency response to large-scale di
sasters by allowing the public to better identify and assist those who 
need urgent help. 

Numerous studies have been conducted regarding the classification 
of tweets into categories including offensiveness and sentiment using 
machine learning methods. Some have explored the use of traditional 
text features used in natural language processing (NLP), including n- 

grams, lexicon features, and part-of-speech (POS) tags [7], while others 
have incorporated features from topic models generated using statistical 
techniques like Latent Dirichlet Allocation (LDA) [8] to build classifiers 
[9]. Recent studies have strongly skewed towards deep learning 
methods, specifically through the use of deep convolutional neural 
networks (CNNs) [10–12] and recurrent neural networks (RNNs) [13]. 

Machine-learning classification tasks conducted on disaster-related 
tweets have, for the most part, addressed whether tweets are about 
crises or not [14], the type of disaster [14], the type of information being 
conveyed [14,15], informativeness [16], and general sentiment polarity 
[17]. Though these labeling schemes could help first responders 
cherry-pick useful tweets from a large dataset, none of them tackle the 
problem of specifically detecting urgent tweets that should elicit a first 
response (i.e., calls for help or reports of specific people requiring help 
from first responders). 

The closest any labeling scheme comes to making the distinction 
between urgent and non-urgent tweets is by Imran et al. [15], in which 
the “Injured or dead people” and “Missing, trapped, or found people” 
categories include tweets of people requesting help or reporting that 
specific people need help. However, even these categories are too broad 
to be directly useful to first responders since they include tweets of 
evacuations and rescues after the fact and do not exclude news sources. 
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In this study, we start to fill this gap by building classifiers specif
ically designed to determine whether tweets posted during 2017’s 
Hurricane Harvey contain information actionable by first responders. 
This includes only personal requests for help and reports of other people 
who need help. In both cases an address or location is specified. Using a 
subset of 2474 tweets from our original dataset, we build models using 
both traditional text features used in natural language processing (NLP), 
including n-grams and POS tags, as well as word embeddings (all terms 
we explain later in the paper). 

Word embeddings are a representation of words (and tokens in 
general, as elaborated in the Methods section) as vectors such that words 
with similar semantic meanings have vectors with a small angle of 
separation between them [18–20]. Each dimension of an embedding 
represents some semantic attribute of the associated word, though what 
exactly that attribute is may not be interpretable by humans. The main 
benefit of word embeddings is that they allow machine-learning models 
to generalize well to texts with words not seen in the training dataset, 
since if those new words have similar meanings to previously-seen 
words, their embeddings have values close to those of the embeddings 
of the seen words. 

In the domain of text classification, word embeddings have tradi
tionally been used as inputs to deep CNNs, wherein the text is input as a 
matrix of word embeddings [10,11,14]. Such an input format allows 
CNNs to use the ordering of words to make classification decisions, 
something that traditional NLP features like n-grams do not permit. To 
our knowledge, the application of word embeddings to 
non-convolutional text classification has not been explored in the liter
ature. In this study we investigate the performance of non-convolutional 
classifiers trained on average word embeddings (i.e., the average of the 
embeddings corresponding to words in a tweet). Although average 
embeddings do not preserve the identities of every word in a tweet or 
their ordering, we hypothesize that since tweets are relatively short (at 
most 280 characters long), averaging does not discard too much infor
mation about the content of the tweets, and each dimension of the 
average vector effectively summarizes that respective semantic attribute 
of the entire tweet. 

One challenging trait of our dataset is that only a small fraction 
(about 7%) of it consists of urgent tweets, probably owing to the fact that 
requests for help are infrequent in comparison to general tweets about 
the disaster, such as comments, reactions, and requests for donations. 
Imbalanced datasets can be a problem when building classifiers as the 
classifiers may naively classify every input as a member of the majority 
class to achieve high accuracy. To alleviate this problem, we experi
mented with oversampling, in which urgent tweets were artificially 
duplicated in the training dataset to prevent models from naively clas
sifying them as not urgent. 

In this study, we consider whether it is possible to successfully 
extract information useful to first responders from public tweets during 
a hurricane. Previous work has refined the process of classifying 
disaster-related tweets into categories [7,9,14–16]. However, our study 
is novel in its explicit focus on classifying tweets from people actively 
asking for help and those who provide enough information for first re
sponders to act on. 

2. Related work 

Extensive prior research has been done on disaster-related tweet 
classification and more general sentence classification using both 
traditional textual features like n-grams, POS tags, and LDA topic models 
[7,9,21], as well as the more recently-developed word embedding fea
tures [10,11,19,20]. 

Kouloumpis et al. [7] conducted an exhaustive study analyzing the 
relative efficacy of n-gram, POS, and various binary features (such as the 
existence of abbreviations and words in all caps) in tweet sentiment 
classification and concluded that a combination of n-gram and binary 
features yields the best AdaBoost [22] classifiers. 

Among previous work on disaster-related tweet classification, 
Ashktorab et al. [21] used unigram features to build a logistic regression 
model to determine whether tweets from 12 different natural disasters 
referenced infrastructural damage or human casualties. Imran et al. [23] 
used a naive Bayes classifier trained on unigram, bigram, POS, and bi
nary features to classify tweets from the 2011 tornado in Joplin, Mis
souri as informative or not (achieving an F1 score of 0.78). They then 
built a classifier to categorize the informative tweets as “caution,” 
“donation,” “advice,” or “information source.” 

Imran et al. [15] built naive Bayes, random forest, and SVM models 
to classify tweets from 19 different natural disasters (e.g., floods and 
earthquakes) into different information types. These categories include 
information about injured or deceased individuals, displaced in
dividuals, sympathy and emotional support, and irrelevant topics. 

A major shortcoming of n-gram and binary features is that they are 
too sparse and noisy for certain tasks like profanity classification [9]. 
Xiang et al. [9] took a different approach for profanity classification 
using Latent Dirichlet Allocation [8] to generate topic features. They 
built a topic model from a large dataset of tweets (collected from Twitter 
users with very high and low records of using profanity) and then 
created a feature vector for each tweet by concatenating its probability 
distribution over the generated topics and binary features indicating the 
presence of offensive words in a dictionary. Their logistic regression 
model outperformed models using only keyword features by 6% with 
respect to true positive rate while maintaining false positive rates below 
4%. 

Although LDA produces features that are less sparse than n-gram and 
binary features, it is still a bag-of-words model that treats each word as 
an independent entity, with no notion of semantic distance between 
words. Bengio et al. [18] developed a way to jointly learn a vector 
representation of words in a dictionary (i.e., the word embeddings) and 
a model that uses these embeddings to generate a probability distribu
tion of the next word in a sentence given n previous words. These em
beddings are a compact representation of a word and the distances 
between them correspond to the semantic distances between the asso
ciated words. Mikolov et al. [19] and Pennington et al. [20] extended 
these methods to efficiently train better-performing word embeddings. 

More recently, research in short text classification has emphasized 
the use of deep neural networks trained on word embeddings to dras
tically improve model performance [10,11,14]. One such class of deep 
neural networks are CNNs, which are especially well-suited for 
spatially-organized data like image pixels, since their convolution layers 
apply a fixed filter across inputs in a manner inspired by biological vi
sual neurons in living organisms [12]. Kim [11] developed a simple and 
popular CNN architecture for sentence classification, and Dos Santos and 
Gatti [10] developed a CNN trained on both word and character-level 
embeddings for the same task. Zhang et al. [24] provide a detailed 
guide on how to tune Kim’s hyperparameters, including reasonable 
feature ranges to grid search over and sensitivity analysis. All of these 
CNN networks take as input a matrix of embeddings dependent on the 
word order in tweets (see the Methods section for a more detailed 
discussion). 

Recent work in text classification has also explored the use of RNNs, 
which are neural networks containing recurrent layers whose outputs 
depend on their own outputs from the previous time step. For example, 
Lai et al. [13] developed a recurrent analog of the CNN that out
performed Kim’s CNN model in text classification on 3 different data
sets. Hassan et al.’s [25] approach is inspired by Kim’s [11] framework 
and replaces the max-pooling layer after the convolutional one with a 
bi-directional long short-term memory (LSTM) module [26], which is a 
type of RNN with additional gating parameters that control the relative 
contributions of the current input versus inputs from previous time steps 
to stabilize model training. Hassan et al.’s [25] use of an LSTM allows 
their model to take as input tweets of arbitrary length and to capture 
distant semantic dependencies in sentences. Their model slightly out
performs Kim’s CNN [11] on the Stanford Sentiment Treebank dataset 
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[27] in both fine-grained and binary classification accuracy. 
In the domain of disaster tweet classification, Burel et al. [14] used 

Kim’s [11] architecture to accurately classify disaster-related tweets 
from the CrisisLexT26 dataset [28] based on relevance, type of disaster, 
and type of information conveyed [31]. Nguyen et al. [49] used a CNN 
architecture similar to Kim [11] trained on custom word embeddings 
generated from a crisis-specific corpus to classify tweets from (Cri
sisNLP, CrisisLex, and Artificial Intelligence for Disaster Response 
(AIDR))1the CrisisNLP dataset [15] based on informativeness and type 
of information conveyed, achieving high area under curve (AUC) scores 
(explained in the Machine-learning Models portion of the Methods 
section). 

Prior work has focused on the classification of disaster tweets into 
different information types [14,15] but has not dealt with the task of 
detecting tweets with specific information about people requiring 
emergency assistance from first responders. In other words, while useful 
for separating tweets relevant to the disaster from the vast majority of 
unrelated tweets, previous work does not focus on classifying tweets 
from individuals asking for help. For example, Burel et al.’s “affected 
individuals” category [14]—inspired by the categories in the explor
atory study by Olteanu et al. [31]—and Imran et al.’s “missing, trapped, 
or found people” category [15] both include tweets that contain specific 
information about people needing rescue. However, they do not make a 
distinction between the presence of requests for help/ongoing crises and 
reports of situations that have already been resolved. 

3. Research questions 

Our study investigates the performance of both non-convolutional 
and convolutional machine-learning classifiers on the task of deter
mining whether tweets posted during Hurricane Harvey contain current 
information about people requesting emergency assistance that first 
responders can act upon. Although prior work does include categories 
encompassing these urgent tweets, like “affected individuals” and 
“missing, trapped, or found people,” existing work does not acknowl
edge urgent tweets as a separate category [14,15]. The lack of existing 
classifiers focused on detecting these urgent tweets motivates the 
following research questions. 

RQ1: How prevalent are requests for urgent help on Twitter during 
natural disasters like Hurricane Harvey? 
RQ2: How well do both non-convolutional and convolutional ma
chine learning models trained on a dataset of tweets posted during 
Hurricane Harvey perform as urgent tweet classifiers? 

We pursue this second research question since an initial manual in
spection of our dataset indicates that the vast majority of tweets do not 
contain specific requests for help that would be useful to first re
sponders. Therefore, there is a clear need to evaluate whether we can 
create machine learning models that can successfully detect urgent 
tweets from among the millions posted during a disaster, rather than 
leaving this time-intensive task to human labelers. 

RQ3: How does the performance of non-convolutional urgent tweet 
classifiers trained on average word embeddings compare to that of 
non-convolutional classifiers trained on traditional textual features 
like n-grams? 

We explore this question because prior work using average embed
dings as features in text classification tasks was not identified. Therefore, 
we evaluate whether our models perform well with these features 

despite the loss of word ordering information. If so, average embeddings 
could be another feature type that researchers consider when building 
disaster-related text classifiers. 

4. Methods 

We now describe our method of processing the dataset, running our 
machine learning models on the dataset, and evaluating their perfor
mance. The code for these steps can be found here. 

4.1. Data 

For this study, we use a subset of 2,072,715 unique tweets after the 
removal of duplicates that was sampled from a much larger dataset of 
tweets directly purchased from Twitter via its data reseller, GNIP. 
5,604,200 tweets were provided by Twitter for the following query: 

from: Harvey, OR hurricane, OR flood, -is:retweet, -RT, -follow, -like, 
-new, -movie, -show, -gouging, -billion, -million, -redcross lang:en 
since:2017-08-22 until:2017-08-29. 

This query is given in the syntax used by Twitter Advanced Search 
and translates into the following:  

• from: No parameter is provided, so there is no restriction on the 
identity of the user who sent a tweet.  

• Harvey, OR hurricane, OR flood: Only include tweets containing at 
least one of the words “harvey,” “hurricane,” or “flood.” This re
striction is not case-sensitive, so for example a tweet containing the 
word “HaRveY” would be included. We included this constraint to 
favor tweets related to Hurricane Harvey and its consequences (e.g. 
floods).  

• -is:retweet: Exclude retweets. We do this since we want to create a 
dataset of unique requests for help.  

• -RT, -follow, -like, -new, -movie, -show, -gouging, -billion, 
-million, -redcross: Exclude tweets containing any of the listed 
words. The word “RT” is found in retweets. 

• since:2017–08–22 until:2017–08–29: Only allow tweets sent be
tween August 22, 2017 and August 29, 2017. We included this 
constraint since this time range captures the peak of Hurricane 
Harvey’s activity, since the storm achieved hurricane status on 
August 24 and receded from Texas on August 28. 

Data was delivered as zipped JSON files containing tweets and 
associated metadata, including the time of creation, username, lan
guage, and a unique id. Since the focus of our study is to classify tweets 
based solely on the text, we only keep the text of each tweet. Random, 
manual inspection of this large dataset shows almost no urgent tweets, 
with most tweets being completely unrelated to emergency response or 
requests for help. We therefore filter our dataset by hashtags, specifically 
those containing at least one of the following keywords: “help,” 
“rescue,” and “911.” We choose “help” and “rescue” since nearly every 
urgent tweet we encounter contains a hashtags with one of these words 
(e.g., #needhelp and #needwaterrescue), and we choose “911” based on 
our own judgment that tweets referencing emergency services are more 
likely contain requests for help from first-responders. 

Filtering by these rescue-related keywords and removing tweets with 
duplicate text bodies produces a much smaller dataset of around 5000 
tweets, which upon further manual inspection contains a much higher 
proportion of urgent tweets. Of these tweets, we manually label 2474 of 
them to produce our final dataset. 

4.2. Labeling process 

The entire dataset was manually labeled by 2 authors, with inter
coder reliability measured to be 1.0 (i.e., 100% agreement) on a random 
sample of 70 tweets. This extremely high level of intercoder reliability is 
the result of a detailed and well understood codebook. Labeling was not 

1 See Alam et al. [30] for a more detailed discussion of these data sets; Table 1 
provides a quantitative comparison of these and other established crisis tweets 
data sets. 
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delegated to a third-party service like Amazon’s Mechanical Turk given 
the presence of personal data such as addresses in some of the tweets. 
Moreover, our own labeling of the dataset provided an opportunity to 
continually refine the definition of urgency. Ultimately, our final la
beling taxonomy can be used by future researchers to reliably outsource 
labeling to other services. 

4.3. Labeling taxonomy 

The following is our definition of “urgent” tweets, which we then use 
to label our dataset and build the classifiers:  

• Urgent: The user is urgently requesting help for themselves or on a 
specific person’s/people’s behalf. The tweet suggests that people’s 
lives are in danger and/or a rescue is necessary. Specific information 
about the danger is included in the tweet text. Requests for animal 
rescues are excluded.  

• Not urgent: All other tweets. 

The following are the most common tweet types that are not 
considered urgent but may be mistaken for urgent requests for help: 
donation requests, general descriptions of hardship, descriptions of 
property damage without references to specific people and bodily harm, 
and requests for help for pets. 

4.4. Preprocessing 

4.4.1. Tokenization and lemmatization 
Raw text is not easily interpretable by machine learning models, so 

the preprocessing of our pipeline involves the conversion of the raw text 
of a tweet into a numeric form that can be fed into a classifier. The first 
step in this process is to split the tweet text into tokens. Tokens are the 
individual logical symbols that make up human language, such as 
words, numbers, and punctuation. For example, the sentence “The cat 
ate 5 rats yesterday!” is made up of the list of tokens [‘the’, ‘cat’, ‘ate’, 
‘5’, ‘rats’, ‘yesterday’, ‘!’]. To tokenize a tweet, we first make it lower
case and then use the Python Natural Language Toolkit’s (NLTK) [32] 
TweetTokenizer class. 

We represent Twitter user handles (e.g. @alice, @bob), URLs, 
numbers with generic <user>, <url>, and <number> tokens, since 
there are too many different users, numbers, and URLs to represent 
individually with distinct tokens. We experimentally determined that 
replacing hashtags with the designated hashtag token provided by 
GloVe hurts model performance, so we instead just replace hashtags 
with a word token excluding the hashtag (e.g. “#hurricane” becomes 
“hurricane”). Finally, we remove all non-word tokens except for the 
Twitter-specific ones just mentioned. For example, our tokenization 
method would convert the tweet “@alice @bob 12 donuts is a dozen! 
www.donuts.com #donuts” into the list of tokens [’<user>’, ‘<user>’, 
‘<number>’, ‘donuts’, ‘is’, ‘a’, ‘dozen’, ‘<url>’, ‘donuts’]. 

We then apply lemmatization, which is a procedure that takes a word 
token and replaces it with its “lemma,” or simplest form. For example, in 
English lemmatization replaces verbs with their infinitive tense without 
the word “to” (e.g. the infinitive of “running” is “to run,” so lemmati
zation outputs “run”) and replaces nouns with their singular form 
(“mice” becomes “mouse”). We use the WordNet Lemmatizer found in 
the NLTK library for this step. Since tweets often contain misspelled and 
joined words, we use a Python implementation of the SymSpell word 
segmentation tool [33,34] to attempt to correct incorrectly-spelled and 
run-on words in each tweet. 

4.4.2. Word embeddings features 
After converting each tweet into a cleaned-up list of tokens, we 

replace each token with a 100-dimensional vector representing its 
meaning, called a word embedding. Word embeddings are vector rep
resentations of tokens (not just word tokens, despite the name) that are 

learned using a neural network such that tokens with closer meanings 
have vectors with high cosine similarity (a metric based on how small 
the acute angle between 2 vectors is). Furthermore, the vector repre
sentations of word meanings are often linear, so that meanings can be 
altered with addition and subtraction. For example, when word em
beddings are trained using the word2vec method [19], subtracting the 
vector of the word “Spain” from that of its capital “Madrid” and adding 
the vector for “France” produces a new embedding vector that is closest 
to the capital of France, “Paris.” The benefit of using word embeddings 
to represent words in machine learning is that they allow models to 
better generalize to new inputs [18]. Even if an input text contains 
words not seen by the model during training, if those words are 
conceptually related to previously-seen words, then their embeddings 
would be similar to the seen words, allowing the model to effectively 
generalize what it learned during training to the new input. 

For our models, we use 100-dimensional GloVe word embeddings 
pretrained on a corpus of 2 billion tweets [20]. These embeddings 
provide vectors not just for words and punctuation, but also for the 
aforementioned Twitter-specific tokens, URL tokens, and number 
tokens. 

The CNN model just takes a matrix of embeddings, where the rows of 
the matrix are the tokens in the tweet in order and the 100 columns 
specify the embedding vector of each token. The CNN is designed to take 
fixed-length inputs, that is, matrices with a fixed number of rows and 
columns. The number of columns is equal to the dimensionality of the 
embeddings and is thus fixed at 100. The number of rows equals the 
number of tokens in a tweet, which can vary. Since the longest tweet in 
our dataset contains 27 tokens after preprocessing, we just pad each 
tweet to this maximum length with vectors containing all zeros (since 
GloVe does not provide a dedicated <pad> token). We expect that 
during training the CNN can learn the semantic meaning of the zero 
padding vector. For the non-convolutional models, embedding vectors 
for the tokens in each tweet are averaged together component-wise (e.g., 
[1,2,3] and [0,0,0] averaged produce the vector [0.5,1,1.5]) to produce 
a fixed-length vector of 100 numerical features. 

4.4.3. “Traditional” NLP features 
To compare the performance of our use of average word embeddings 

to the use of more “traditional” features like n-grams and POS tags, we 
train the non-convolutional models on these other types of features and 
compare their performance with respect to F1, precision, recall, and 
accuracy (defined later in the Evaluation Metrics subsection). 

One of the types of features we use is n-grams with and without 
negation detection [7,35]. An n-gram is merely a sequence of n words 
observed in a piece of text. For example, the sentence “The cat ate the 
rat.” has the following bigrams (i.e., 2-grams): [‘the’, ‘cat’], [‘cat’, ‘ate’], 
[‘ate’, ‘the’], and [‘the’, ‘rat’]. N-gram features are generated by 
assigning each piece of text in a dataset a binary vector with a length 
equal to the number of distinct n-grams in the dataset. An entry in the 
binary vector is 1 if that n-gram is found in the piece of text and 0 if not. 
We generate n-gram features after tokenizing the dataset and removing 
stopwords. 

Negation detection is implemented by not representing negation 
words as individual tokens but rather merging them with the immedi
ately adjacent word [35]. The example provided by Pak et al. [35] is to 
tokenize the phrase “I do not like fish” into bigrams as: “I do + not,” “do 
+ not like,” and “not + like fish.” In accordance with the preprocessing 
done by Pak et al. [35], we only remove articles (“a,” “an,” and “the”) as 
stopwords, though we still use NLTK’s TweetTokenizer to split the raw 
text into words. We experiment with the following combinations of 
n-gram features with and without negation detection: just unigrams (n =

1); just bigrams (n = 2); just trigrams (n = 3); unigrams and bigrams 
(n = 1, 2); and unigrams, bigrams and trigrams (n = 1, 2,3). Our results 
using just unigrams are consistently the best with and without negation 
detection for nearly all the non-convolutional models (with the excep
tion of the SVM, which performs only slightly better in other settings), so 
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we only report the unigram results. To further regulate the volume of 
results we report, we don’t implement any feature pruning (except when 
POS features are added, discussed below) and just train the models on 
the full feature set. 

Another type of feature we use is POS tags, counts of the number of 
words of different parts of speech for each tweet. These features are not 
used in isolation but added to the above n-gram feature sets without 
negation detection. To increase the influence of these features in model 
behavior relative to n-gram features, we only select the top 1000 n-gram 
features using the information gain metric when including POS features. 
The number 1000 is experimentally determined in a sentiment analysis 
setting by Kouloumpis et al. [7]. Once again, our results using POS 
features with unigrams are the best across for all our models, so we only 
report the results of the unigram case. 

4.4.4. Oversampling 
A potential hindrance to the development of classifiers using our 

dataset is the infrequency of urgent tweets, which only make up 7% of 
the dataset after hashtag filtration. This class imbalance problem is 
common in machine learning and can cause models to learn to naively 
classify everything as the majority class to achieve high accuracy. For 
example, a model that classifies every tweet in our dataset as not urgent 

would achieve 93% accuracy. One approach we explore to alleviate class 
imbalance is oversampling, by randomly duplicating urgent tweets in 
the training set during each iteration of cross-validation (see the 
Training and Evaluation subsection) until it consists of one-third urgent 
tweets. This prevents models from naively classifying everything as not 
urgent to achieve high accuracy. We experiment with both the regular 
and oversampled datasets and compare their performances. 

We choose to oversample after each train-test split in cross- 
validation to prevent each test split from containing artificially dupli
cated tweets, some of which could also be present in the training set. 
Thus models cannot overfit to the test set by being exposed to some of 
the same tweets at train time. Another concern related to overfitting is 
that since the models are trained on relatively few distinct urgent tweets, 
they could overfit to the specific urgent tweets in the training set and 
perform poorly on the test set. However, our models’ cross-validated 
performance scores indicate that this likely does not happen. In fact, 
the performance of most models trained on word embeddings (averaged 
in the non-convolutional case) is not significantly affected by over
sampling, so we do not experiment with non-convolutional models 
trained on traditional NLP features in the oversampled case. 

Fig. 1 illustrates the pipeline we use to query the original data from 
Twitter, filter it to increase the proportion of urgent tweets in the 

Fig. 1. Project architecture.  
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remaining dataset, preprocess the tweets into tokens, apply word em
beddings or traditional NLP features, and feed these features into ma
chine learning models. 

4.5. Machine-learning models 

The non-convolutional models we evaluate with the average 
embedding, n-gram, and POS features are naive Bayes [36], decision 
tree [37], AdaBoost [22], SVM [38], multilayer perceptron (MLP) [39], 
logistic regression [40], and ridge regression [41]. We consider naive 
Bayes due to its conceptual simplicity and ability to work well with small 
datasets. We consider AdaBoost, logistic regression, and SVM for their 
past successes in text classification [7,21]. The remaining models are 
considered since they are widely used in machine learning and good 
frames of reference to compare against. 

The convolutional model we use with word embeddings is the CNN 
designed by Kim [11], and the implementation we use is largely bor
rowed from Trevett [42]. It takes as input an n × k real-valued matrix, 
where n is the number of words in the tweet and k is the length of each 
word’s embeddings (n = 27 and k = 100 in this study). The input layer 
is followed by a single convolutional layer consisting of multiple filters 
with lengths equal to the dimension of the embeddings and widths 
spanning a window of words in each input tweet. The outputs of the 
filters are then concatenated and fed to a max-pooling layer, which is 
then followed by a fully-connected layer with dropout, to which the 
softmax function is applied to output a probability distribution over the 
possible labels (“urgent” or “not urgent”). The architecture is illustrated 
in Fig. 2. We do not use average embedding, n-gram, or POS features 
with the CNN since the CNN is designed for spatially-organized data, and 
those features are not directly tied to the locations of words or n-grams 
in a tweet. 

The number of convolutional filters and their widths are hyper
parameters that we tune. Another hyperparameter that we tune is the 
choice of activation, which is the function applied to the output of a 
node in a neural network layer before it is passed as input to the next 
layer in the network. The two most popular activation functions for this 
architecture are the hyperbolic tangent function (tanh) and rectified 
linear unit (ReLU) [24]. We only report the results using tanh since we 
experiment with both activations and find that tanh produces higher 
final F1 scores. 

Our main motivation for choosing Kim’s [11] architecture is that it is 
a relatively simple network with only 1 convolutional layer that could 
serve as a baseline to determine whether CNNs are effective for our 
classification task. Furthermore, we judge that tweets are probably too 
short to reap benefits from recurrent or LSTM modules as used by Hassan 
et al. [25]. 

4.6. Evaluation Metrics 

The metrics with which we evaluate our models are F1, precision, 
recall, accuracy, and AUC. The reason we use multiple metrics is that 
due to the unbalanced nature of our dataset (with the vast majority of 
tweets being “not urgent”), a model with high accuracy is not necessarily 
desirable since it could achieve high accuracy by merely classifying 
every tweet as not urgent. Thus, we need a notion of what fraction of the 
few “urgent” examples the classifier correctly detects, as well as what 
fraction of the tweets classified as “urgent” are in fact urgent. This is 
where precision and recall are particularly relevant. 

In the following discussion, let TP (true positive) denote the number 
of correct urgent classifications, TN (true negative) denote the number 
of correct not urgent classifications, FP (false positive) denote the 
number of tweets incorrectly classified as urgent, and FN (false negative) 
denote the number of tweets incorrectly classified as not urgent. 

Recall is defined as the fraction of urgent tweets classified as urgent, 
or mathematically: 

recall =
TP

TP + FN 

Precision is defined as the fraction of the tweets classified as urgent 
that are actually urgent, or mathematically: 

precision =
TP

TP + FP 

Recall favors models that successfully detect most of the positive 
examples without any regard for how many negative examples are 
falsely classified as positive along with the true positives. Precision, on 
the other hand, favors classifiers that selectively classify examples as 
positive to maintain a low false-positive rate. Clearly a strong classifier is 
one that accurately detects a large percentage of the positive examples, 
and an intermediate metric measuring this is F1, which is defined as the 
harmonic mean of precision and recall: 

F1 = 2⋅
precision × recall
precision + recall 

AUC is the area under the receiver operating characteristic (ROC) 
curve, which plots recall (the true positive rate) vs the false positive rate 
(FPR) for different model decision thresholds. 

FPR =
FP

FP + TN 

The decision threshold of a classifier is some value used along with 
the model output to determine the output class. For example, in binary 
classification logistic regression models output a single probability. The 
output class of the model is determined by whether this probability is 
higher or lower than a chosen decision threshold (usually 0.5). AUC is 

Fig. 2. Architecture of the CNN as described by Kim [11].  
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thus useful for determining how well a model is able to classify true 
negatives as negatives and true positives as positives over all possible 
decision thresholds (0.0–1.0 in the logistic regression case). 

Both AUC and F1 are better metrics than accuracy since they take 
into account different aspects of a model’s predictive ability. In this 
study we focus on F1 since that metric is used in the related disaster 
classification studies that we compare our results to, whereas AUC is not. 
Since our study is the first to address the problem of detecting urgent 
requests for help, we also provide AUC scores so that future work in this 
area has the ability to assess the quality of their models comparative to 
ours. 

4.7. Training and Evaluation 

A major hurdle to accurately estimating the performance of a ma
chine learning model is that the performance score achieved on the 
training dataset (the dataset to which the model parameters are fit) is 
usually higher than that achieved on unseen data (the test dataset). One 
method used to estimate generalization performance on unseen data is 
k-fold cross-validation. In this method, the training dataset is split 
evenly into k parts, and in each of k iterations, the model is trained on a 
combined dataset of k − 1 of the parts and assessed on the 1 left out. 
Finally, the k performance scores are averaged to yield a final estimate of 
generalization error. This estimate of generalization performance is 
more accurate than just training performance since in each iteration, the 
model is tested on data that it was not trained on. 

To train and evaluate the aforementioned models, we perform grid 
search (training models with all possible parameter combinations) for 
important hyperparameters for each model, using 10-fold cross- 
validation to determine the best parameter combination with respect 
to the F1 metric. The CNN model in particular has a very large number of 
hyperparameters to search over, such as the convolutional filter widths 
and parameters pertaining to training the network, like batch size and 
number of epochs. To aid in the grid search, we use Zhang et al.’s [24] 
recommendation which outlines parameters ranges to try on Kim’s [11] 
architecture. 

5. Results 

5.1. RQ1: Prevalence of urgent tweets 

Urgent tweets were identified after manual inspection of tweets in 
our collected data (described in detail under “Methodology”). We very 
infrequently, but consistently, encountered tweets of individuals 
expressing personal peril and requesting help at specific locations. The 
tweets are distinct from more general reports like news updates and 
donation requests since they contain specific, actionable information 
about people in imminent danger that would be more useful to first 
responders. 

Our original dataset consists of 2,072,715 unique tweets, and after a 
cursory examination of this dataset we determined that the urgent 
tweets were too infrequent for us to manually pick out to approximate 
the frequency of urgent tweets. For this reason, we choose to filter tweets 
by hashtags containing specific words which we reasoned would be 
more prevalent in urgent tweets. The first phrase we considered was just 
the word “help.” We calculated the fraction of tweets containing each 
hashtag and ranked the hashtags in decreasing order of frequency. This 
revealed that the first hashtag with the word “help” in it is only the 80th 
most frequent and found in just 0.034% of the tweets. Table 2 lists the 
top 10 hashtags containing the word “help,” the percentage of tweets 
they represent, and their frequency rank. The table illustrates that 
tweets containing help-related hashtags are highly infrequent in the 
data. Therefore, we expand our set of words to include “rescue” and 
“911.” This results in a subsample of 4901 tweets. We then label a subset 
of 2474 of these tweets as urgent or not urgent and find that 7.6% of 
these hashtag-filtered tweets are urgent. 

Though we do not have an exact estimate of the frequency of urgent 
tweets in the original dataset, the fact that only 7.6% of even the filtered 
dataset is urgent illustrates the rarity of urgent requests for help among 
disaster-related tweets. It also illustrates that it is not feasible for 
workers to manually pick out urgent tweets in even relatively small 
datasets of a couple million tweets. Furthermore, the urgent tweets 
include examples of highly urgent, life-or-death content (e.g., in
dividuals trapped by flooding or experiencing a medical emergency). 
Thus, despite their rarity, the high-stakes nature of these tweets confirms 
the necessity to develop classifiers to detect them. 

Table 1 
Examples of urgent and non-urgent tweets as per our definition. Personal in
formation (e.g., phone numbers, specific addresses, etc.) are redacted using 
asterisks.  

Category Example 

Urgent-personal call 
for help 

RT @OneofTwin: @HCSOTexas We need help in CE King 
Parkway Forest Subdivision, **** Sherrywood Drive Hou, 
Tx 77044, HELP. #harveyrescue #Har. . . 

Urgent-on others’ 
behalf 

Please help my classmate and her elderly mom **** 
Homewood 77078 #harveyhouston #HarveyFlood 
#harvey #harvey2017texas … #USCG #HarveyRescue 

Not Urgent but 
disaster-related 

@JASONPAVA @AlyxandriaErryn #helpneedednow 
#harvey if you are stuck - please try calling 713-***-**** or 
***-***-**** https://t.co/fF7sbfCsD9  

Table 2 
Top 10 most frequent hashtags containing the word “help,” along with their 
frequency in the dataset and rank when sorted by frequency.  

Frequency Rank Hashtag % of Tweets 

80 help 3.41⋅10− 2  

155 helphouston 1.76⋅10− 2  

446 houstonhelpneeded 5.92⋅10− 3  

447 harveyhelp 5.33⋅10− 3  

709 helptexas 3.62⋅10− 3  

1101 texanshelpingtexans 2.14⋅10− 3  

1209 howtohelp 1.95⋅10− 3  

1276 helpers 1.87⋅10− 3  

1400 needhelp 1.71⋅10− 3  

1633 houstonhelp 1.43⋅10− 3   

Table 3 
Results of non-convolutional models trained on average word embeddings 
(without oversampling) and CNN trained on full word embeddings (with over
sampling). The error range given in Tables 3–7 is ±1 standard deviation, 
computed over the 10 folds of cross-validation.  

Method F1 Precision Recall Accuracy AUC 

CNN 0.87 ±
0.04 

0.84 ±
0.08 

0.92 ±
0.06 

0.98 ±
0.01 

0.99 

SVM 0.87 ±
0.04 

0.90 ±
0.06 

0.85 ±
0.07 

0.98 ±
0.01 

0.99 

MLP 0.82 ±
0.06 

0.84 ±
0.06 

0.81 ±
0.08 

0.97 ±
0.01 

0.98 

AdaBoost 0.77 ±
0.05 

0.82 ±
0.05 

0.73 ±
0.08 

0.97 ±
0.01 

0.95 

Logistic 
Regression 

0.74 ±
0.09 

0.87 ±
0.09 

0.67 ±
0.13 

0.97 ±
0.01 

0.98 

Naïve Bayes 0.50 ±
0.03 

0.34 ±
0.03 

0.93 ±
0.06 

0.86 ±
0.02 

0.96 

Decision Tree 0.61 ±
0.09 

0.62 ±
0.08 

0.60 ±
0.11 

0.94 ±
0.01 

0.83 

Ridge Classifier 0.61 ±
0.13 

0.84 ±
0.09 

0.49 ±
0.13 

0.95 ±
0.01 

0.97  
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5.2. RQ2: performance of machine-learning classifiers 

Table 3 details the performance of our non-convolutional models 
trained on average word embeddings (without oversampling) and the 
CNN trained directly on word embeddings (with oversampling). We 
found that the best performers are the SVM and CNN which received the 
same F1 score of 0.87. The CNN has a significantly higher recall than the 
SVM but at the cost of precision. This indicates that it prioritizes clas
sifying tweets as urgent at the cost of a higher false positive rate. 

We do not report the performance of the CNN without oversampling. 
Given the heavy imbalance of the dataset, the CNN naively classifies 
almost every tweet as not urgent and thus achieves a very low F1 score, a 
behavior that has been observed in other disaster-related studies [43]. 

We also report the results of the non-convolutional models and CNN 
training with oversampling in Table 4. The CNN achieves the highest F1 
score of 0.87, and the SVM is a close second with an F1 of 0.86. The only 
models that see a significant improvement in F1 when trained on the 
oversampled data are the decision tree and ridge regressor. This is due to 
an improvement in recall likely induced by the increased importance of 
detecting urgent tweets due to oversampling. Most of the other models 
in fact perform worse when trained on the oversampled data despite 
achieving higher recall due to a decrease in precision that overall brings 
down their F1 scores. For this reason, we do not report results for models 
trained on traditional NLP features with oversampling. 

The SVM performance across all four metrics is similar with the 
introduction of oversampling. This is likely due to the fact that it learns a 
decision boundary between urgent and non-urgent tweets in the feature 
space and model accuracy is mainly determined by how accurately the 
SVM classifies points near the boundary. Oversampling urgent tweets at 
random—many of which are probably far from the decision boundar
y—likely does not improve crucial boundary point classification. 

5.3. Average embeddings vs. traditional features 

Tables 5–7 illustrate the performance of non-convolutional models 
trained without oversampling on traditional unigrams, unigrams with 
negation detection, and combined POS and unigram features respec
tively. We find that in all 3 cases, the MLP achieves the highest F1 of the 
non-convolutional models but a lower F1 than the CNN trained with 
oversampling. We also find that the addition of negation detection does 
not significantly affect the F1 scores of most of the classifiers, with the 
one exception being the naive Bayes classifier, which exhibits more than 
a double in F1. The inclusion of POS tags with unigrams also has little 
effect, and the naive Bayes classifier exhibits none of the drastic increase 
in F1 shown when negation detection is included. 

The optimal hyperparameters for each of the models in Tables 5–7 

are provided in the Appendix. Fig. 3 compares the F1 score of each 
model trained on average word embeddings without oversampling (with 
the exception of the CNN, which is only evaluated with oversampling) to 
the best F1 achieved by the model over all 3 n-gram feature variations 
explored (again with the exception of the CNN, which is only trained on 
word embeddings). 

These results illustrate that whether average embeddings or n-gram 
features are the better choice depends on the type of model and that 
among the best-performing classifiers (SVM, MLP, and AdaBoost), 
average embeddings are a competitive choice for identifying urgent 
tweets from hurricane-related corpora. It would therefore be useful for 
future researchers in disaster text classification to treat average 

Table 4 
Results of non-convolutional models trained on average word embeddings and 
CNN trained on full word embeddings, both with oversampling.  

Method F1 Precision Recall Accuracy AUC 

CNN 0.87 ±
0.04 

0.84 ±
0.08 

0.92 ±
0.06 

0.98 ±
0.01 

0.99 

SVM 0.86 ±
0.05 

0.86 ±
0.08 

0.87 ±
0.07 

0.98 ±
0.01 

0.99 

MLP 0.83 ±
0.06 

0.81 ±
0.09 

0.87 ±
0.06 

0.97 ±
0.01 

0.99 

AdaBoost 0.75 ±
0.05 

0.75 ±
0.09 

0.76 ±
0.09 

0.96 ±
0.01 

0.96 

Logistic 
Regression 

0.74 ±
0.07 

0.64 ±
0.08 

0.88 ±
0.08 

0.95 ±
0.01 

0.98 

Naïve Bayes 0.48 ±
0.03 

0.33 ±
0.03 

0.93 ±
0.06 

0.85 ±
0.02 

0.96 

Decision Tree 0.66 ±
0.09 

0.63 ±
0.11 

0.69 ±
0.09 

0.94 ±
0.02 

0.82 

Ridge Classifier 0.69 ±
0.06 

0.57 ±
0.07 

0.88 ±
0.10 

0.94 ±
0.02 

0.98  

Table 5 
Results of non-convolutional models trained on unigrams without negation 
detection and without oversampling.  

Method F1 Precision Recall Accuracy AUC 

SVM 0.83 ±
0.10 

0.91 ±
0.07 

0.78 ±
0.13 

0.98 ±
0.01 

0.97 

MLP 0.85 ±
0.09 

0.93 ±
0.04 

0.80 ±
0.12 

0.98 ±
0.01 

0.98 

AdaBoost 0.77 ±
0.09 

0.87 ±
0.07 

0.71 ±
0.12 

0.97 ±
0.01 

0.93 

Logistic 
Regression 

0.81 ±
0.13 

0.94 ±
0.06 

0.72 ±
0.16 

0.98 ±
0.01 

0.98 

Naïve Bayes 0.39 ±
0.04 

0.26 ±
0.02 

0.77 ±
0.10 

0.82 ±
0.01 

0.79 

Decision Tree 0.73 ±
0.09 

0.79 ±
0.11 

0.69 ±
0.12 

0.96 ±
0.01 

0.83 

Ridge Classifier 0.80 ±
0.14 

0.94 ±
0.05 

0.72 ±
0.17 

0.98 ±
0.01 

0.98  

Table 6 
Results of non-convolutional models trained on unigrams with negation detec
tion and without oversampling.  

Method F1 Precision Recall Accuracy AUC 

SVM 0.81 ±
0.13 

0.90 ±
0.07 

0.75 ±
0.16 

0.98 ±
0.01 

0.97 

MLP 0.85 ±
0.09 

0.94 ±
0.04 

0.79 ±
0.12 

0.98 ±
0.01 

0.98 

AdaBoost 0.77 ±
0.06 

0.87 ±
0.06 

0.70 ±
0.09 

0.97 ±
0.01 

0.92 

Logistic 
Regression 

0.80 ±
0.12 

0.94 ±
0.06 

0.71 ±
0.14 

0.97 ±
0.01 

0.98 

Naïve Bayes 0.81 ±
0.05 

0.86 ±
0.08 

0.77 ±
0.08 

0.97 ±
0.01 

0.89 

Decision Tree 0.74 ±
0.09 

0.80 ±
0.10 

0.69 ±
0.12 

0.96 ±
0.01 

0.84 

Ridge Classifier 0.79 ±
0.13 

0.96 ±
0.04 

0.69 ±
0.16 

0.97 ±
0.01 

0.98  

Table 7 
Results of models trained on n-gram and POS features, with the top 1000 n-gram 
features selected using the χ2 statistic (without oversampling).  

Method F1 Precision Recall Accuracy AUC 

SVM 0.83 ±
0.10 

0.91 ±
0.07 

0.78 ±
0.13 

0.98 ±
0.01 

0.97 

MLP 0.86 ±
0.10 

0.94 ±
0.04 

0.80 ±
0.14 

0.98 ±
0.01 

0.98 

AdaBoost 0.77 ±
0.09 

0.87 ±
0.08 

0.71 ±
0.12 

0.97 ±
0.01 

0.93 

Logistic 
Regression 

0.81 ±
0.13 

0.94 ±
0.06 

0.72 ±
0.16 

0.98 ±
0.01 

0.98 

Naïve Bayes 0.39 ±
0.04 

0.26 ±
0.02 

0.77 ±
0.10 

0.82 ±
0.01 

0.79 

Decision Tree 0.74 ±
0.09 

0.81 ±
0.10 

0.70 ±
0.13 

0.96 ±
0.01 

0.84 

Ridge Classifier 0.80 ±
0.14 

0.94 ±
0.05 

0.72 ±
0.17 

0.98 ±
0.01 

0.98  
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embeddings as another viable option when choosing a feature repre
sentation for the text. 

5.4. Comparison to existing studies 

Since we define a new classification problem that has not been 
significantly explored elsewhere, our results are not directly comparable 
to prior work. Purely as a frame of reference, we compare the scores of 
our best-performing models (CNN trained on full word embeddings, 
SVM trained on average embeddings, and MLP trained on unigrams and 
POS tags) to those of other classifiers in the domain of classifying 
disaster-related tweets. 

We compare to Ashktorab et al. [21], who trained models on unig
rams to classify tweets as mentioning specific infrastructure damage or 
human casualties; Imran et al. [15], who used logistic regression, 
random forests, and CNNs to classify tweets as relevant to a natural 
disaster or not; and Burel et al. [14], who used SVMs, decision trees, and 
CNNs (same architecture as Kim [11]) to classify tweets based on 
relatedness (unrelated or related), disaster type (flood, earthquake, 
bombing, etc.), and information type. 

For brevity, we only report on 1 or 2 classification tasks from each 
study and only a couple of models from those that report multiple re
sults. The following are the specific classification tasks and models 
examined from each study, along with the respective abbreviations as 
used in Table 8. The models trained in our study are not qualified with 
abbreviations.  

• Ashktorab et al. (ASH): mentions infrastructure damage or human 
casualties  

• Imran et al. (IMR): Relevant to Cyclone PAM or not  
• Burel et al.: Related to crisis or not (BUR-R) and type of disaster 

referenced in the tweet (BUR-TD) 

The results in Table 8 indicate that our models perform the urgent 
tweet classification task better than most other models in the literature 
perform on their respective tasks. The one study with results far better 
than ours is the disaster type classification study conducted by Burel 
et al. [14], but they qualify those results with the claim that some event 
types contain very specific vocabulary that likely helps simplify the task. 

6. Discussion 

Unlike previous work on disaster-related social media classification, 
we focus exclusively on those individuals who are using Twitter to ask 
for help and provide enough information for first responders to act on (i. 
e., those who send what we define as “urgent” tweets). Our results 
indicate that we can accurately identify urgent tweets that are action
able by first responders using tweets posted during Hurricane Harvey. 
Additionally, our study uniquely trains non-convolutional machine 
learning models using average word embeddings and provides a per
formance comparison with those trained with more traditional POS and 
n-gram features. We also confirm the efficacy of Kim’s [11] convolu
tional neural network (CNN) architecture in detecting relevant disaster 
tweets, as Burel et al. [14] did previously. This provides further evidence 
for disaster-related text classification to utilize Kim’s [11] methods. 

Furthermore, we highlight that urgent requests for help are very 
uncommon among tweets posted during a natural disaster (in our spe
cific case, Hurricane Harvey), but that with pre-processing by hashtags, 
a sample can be generated with a small but non-negligible percentage of 
urgent tweets. Furthermore, we provide examples of these urgent tweets 
and illustrate that their life-or-death content merits the development of 
classifiers to detect them in the event of a large-scale disaster. The 
identification of these posts during a disaster could be of immense value 
to first responders and other emergency response stakeholders. 

We test several different methods of identifying truly urgent tweets 
that would be useful to first responders in a disaster situation. The 
support vector machine (SVM) trained on average word embeddings 
without oversampling and CNN trained on full word embeddings with 
oversampling achieve equal F1 scores of 0.87, though the CNN has 
higher recall and the SVM has higher precision. Since the cost of a false 
positive (falsely classifying a non-urgent tweet as urgent) is lower than 
that of a false negative (ignoring an urgent tweet), the higher recall of 
the CNN is generally preferable. 

Comparing our best models’ F1 scores to the scores of other disaster 
classification models indicate that our models’ performance is compet
itive with prior work classifying disaster-related tweets. Our models lag 
only behind the CNN and SVM trained by Burel et al. [14], which tackle 
the simpler task of identifying the type of disaster referenced in a tweet. 

Fig. 3. Comparison of F1 scores of models trained on word embeddings and unigrams.  

Table 8 
Comparison of model performance from different studies on disaster text clas
sification tasks.  

Model F1 Precision Recall Accuracy AUC 

CNN 0.87 0.84 0.92 0.98 0.99 
SVM 0.87 0.90 0.85 0.98 0.99 
MLP 0.86 0.94 0.8 0.98 0.98 
SVM-BUR-TD 0.995 0.995 0.995 – – 
CNN-BUR-TD 0.983 0.983 0.983 – – 
SVM-BUR-R 0.829 0.833 0.83 – – 
CNN-BUR-R 0.838 0.839 0.838 – – 
CNN-IMR – – – – 0.94 
Logistic Regression-ASH 0.65 0.78 0.57 0.86 0.88  
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However, we do define a new type of classification problem, so our 
models are not fully comparable to the literature. 

We find that representing tweets using average word embeddings 
pretrained on Twitter data provides results comparable to the repre
sentation of tweets with traditional n-grams and POS tags for the best- 
performing non-convolutional models (SVM, MLP, AdaBoost), with the 
SVM trained on average word embeddings achieving the best F1 score 
along with the CNN. This suggests that average embeddings should be 
added to the collection of NLP features considered by future researchers 
designing methods to classify disaster-related text in social media 
platforms. 

7. Limitations and future work 

For the task of identifying urgent tweets from Hurricane Harvey, the 
CNN, SVM, and MLP all perform well. However, the models are 
currently trained solely for data from Hurricane Harvey, and we have 
not tested their ability to generalize to different disasters. Such gener
alizability would be desired in practice, as the process of labeling 
training data and developing models is time-consuming and not feasible 
during an actual disaster. 

We plan to create classifiers that are able to generalize and identify 
urgent tweets across hurricanes and subsequently across any floods, 
tornados, etc. (if requests for help are indeed present on Twitter for these 
disasters). One potential approach is to replace instances of street and 
disaster names (e.g. Sherrywood Drive, harvey, florence) with repre
sentative word embeddings in the preprocessing step itself. Such word 
embeddings would be an abstract representation of these names that 
could be generalized past any individual disaster. 

Another limitation of our current study is that our data consists 
entirely of tweets relevant to Hurricane Harvey. In practice, our models 
would have to detect urgent tweets from among numerous tweets that 
may be completely unrelated to hurricanes, so it would be useful to train 
our models on more diverse, “noisy” data to verify that they have not 
just overfit a very specific type of tweet. 

We believe there is also utility in evaluating whether the geographic 
location from which a tweet is posted during a disaster influences how 
likely it is to be urgent, as Neppalli et al.’s [17] sentiment analysis of 
tweets sent during Hurricane Sandy indicated an overall stronger 
negative sentiment in tweets sent in close proximity to the storm. 
Although Twitter allows users to share their GPS coordinates, most do 
not. Moreover, users who provide location information on their profile 
often provide descriptions that are either fake or too broad to be very 
useful (e.g., at the country level) [44]. Thus the geographic location of a 
tweet would have to be inferred through other means, like user re
lationships [45], n-grams [46], and specific keywords extracted using 
named-entity recognition [44]. 

Future work could also use our approach, but by using location data 
to broaden the scope of a search for people affected by a disaster. In 
other words, rather than focus on specific people who need help, it 
would be useful to be able to isolate small groups of people that are 
affected by the hurricane based on their location data and movement 
patterns. 

8. Conclusion 

In this study, we identify a specific type of urgent request for help 

posted on Twitter during disasters using the case study of Hurricane 
Harvey in 2017. Prior work has not focused on the classification of ur
gent requests for help that are actionable by first responders. A major 
problem during large-scale disasters such as hurricanes is that emer
gency phone services (e.g., 911 in the U.S.) often get overloaded with 
requests. In the U.S., people now turn to social media platforms like 
Twitter to make urgent requests for help. We underscore that though 
urgent tweets are uncommon among the tweets posted during Hurricane 
Harvey, the potential life-or-death nature of their content justifies the 
development of classifiers capable of detecting them. This marks a de
parture from the existing literature which either focuses on the detection 
of tweets mentioning damage without specifically considering action
ability or focuses on broader questions entirely, such as whether a tweet 
is relevant to the disaster at all. 

We then successfully develop classifiers to detect these urgent 
tweets, and our best-performing models achieve F1 scores of 0.86 or 
higher despite the highly unbalanced nature of the data. Our work 
therefore establishes that urgent requests made on social media such as 
Twitter can be detected using machine learning models and underscores 
the need for future research on ways to create models that generalize to 
future natural disasters. Such general models could then be used by 
emergency services or relevant relief stakeholders to automatically 
detect requests for help on social media in real-time as a disaster pro
gresses. We also demonstrate that average word embeddings are a 
feature type competitive with more traditional features in NLP like n- 
grams and POS tags when used with non-convolutional models; they are 
one more option for feature representation that future NLP researchers 
can consider when building text classifiers. 

Unlike previous work, this study focuses on specific and personal 
requests for help, and our research questions do not exclusively evaluate 
whether social media content is related or unrelated to Hurricane Har
vey. Rather, we provide evidence not only that specific, urgent requests 
for help are posted on Twitter during Harvey, but also that machine 
learning models can be developed to accurately detect these requests. 
Ultimately, despite these posts being “needles in a haystack,” identifying 
any affected people during a hurricane can make a real difference to the 
work of first responders and other relevant stakeholders. 
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Appendix A. Optimal Hyperparameters 

The following tables detail the optimal hyperparameters discovered for each model in each experiment following grid search with 10-fold cross- 
validation. The parameter names are those used in the Scikit-learn library [47]. All parameters not listed take the default values as per the Scikit-learn 
version 0.21.1 documentation. Each table corresponds to a single model type and contains the optimal parameters discovered in all the experiments 
using that model type. The experiments are listed in the same order as discussed in the Results section. 
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The following are explanations for what each of the CNN architecture hyperparameters mean, since the CNN is not implemented by Scikit-learn:  

• dropout: The probability that one of the input nodes to the dropout layer is zeroed out  
• n_filters: The number of convolutional filters of each size used  
• filter_sizes: The set of filter widths used, with n_filters number of each filter size in the architecture 

For example, if n_filters = 100 and filter_sizes =[1,2], then the CNN has 200 filters in total, with 100 having a width of 1 word and 100 having a 
width of 2 words.  

Table Appendix A.1 
Optimal hyperparameters for the CNN.  

Experiment dropout n_filters filter_sizes epochs batch_size 

Full word embeddings with oversampling 0.3 700 1, 1, 2, 2 100 10   

Table Appendix A.2 
Optimal hyperparameters for the decision tree.  

Experiment max_depth min_samples_leaf 

Average word embeddings, no oversampling 5 1 
Average word embeddings, with oversampling 20 1 
Unigrams, no negation detection 20 1 
Unigrams, with negation detection None 1 
Unigrams and POS tags 50 1   

Table Appendix A.3 
Optimal hyperparameters for the SVM.  

Experiment C gamma kernel 

Average word embeddings, no oversampling 10 0.1 rbf 
Average word embeddings, with oversampling 10 0.1 rbf 
Unigrams, no negation detection 1 0.001 linear 
Unigrams, with negation detection 1 0.001 linear 
Unigrams and POS tags 1 0.001 linear   

Table Appendix A.4 
Optimal hyperparameters for the MLP.  

Experiment activation alpha early_stopping 

Average word embeddings, no oversampling relu 0.001 FALSE 
Average word embeddings, with oversampling relu 0.1 FALSE 
Unigrams, no negation detection logistic 0.0001 FALSE 
Unigrams, with negation detection logistic 0.001 FALSE 
Unigrams and POS tags logistic 0.0001 FALSE   

Table Appendix A.5 
Optimal hyperparameters for AdaBoost.  

Experiment learning_rate n_estimators 

Average word embeddings, no oversampling 1 50 
Average word embeddings, with oversampling 1 100 
Unigrams, no negation detection 1 100 
Unigrams, with negation detection 1 100 
Unigrams and POS tags 1 100   

Table Appendix A.6 
Optimal hyperparameters for the ridge classifier.  

Experiment alpha 

Average word embeddings, no oversampling 0.1 
Average word embeddings, with oversampling 5 
Unigrams, no negation detection 10 
Unigrams, with negation detection 10 
Unigrams and POS tags 10  

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijdrr.2020.101757. 
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