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Abstract. Generating the state space of any finite discrete-state sys-
tem using symbolic algorithms like saturation requires the use of deci-
sion diagrams or compatible structures for encoding its reachability set
and transition relations. For systems that can be formally expressed us-
ing ordinary Petri Nets(PN), implicit relations, a static alternative to
decision diagram-based representation of transition relations, can sig-
nificantly improve the performance of saturation. However, in practice,
some systems require more general models, such as self-modifying Petri
nets, which cannot currently utilize implicit relations and thus use deci-
sion diagrams that are repeatedly rebuilt to accommodate the changing
bounds of the system variables, potentially leading to overhead in satu-
ration algorithm. This work introduces a hybrid representation for tran-
sition relations, that combines decision diagrams and implicit relations,
to reduce the rebuilding overheads of the saturation algorithm for a gen-
eral class of models. Experiments on several benchmark models across
different tools demonstrate the efficiency of this representation.

Keywords: Petri nets, Self-modifying nets, Decision Diagrams, Satura-
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1 Introduction

With rapid progress in the development of automated systems, formal verifica-
tion techniques have increasingly aided in building thorough and reliable au-
tomation. One such technique, model checking, involves an exhaustive analysis
of all possible systemic behavior, conventionally defined in terms of its variables
and events, for a design to be verified. This motivates the need for efficient
state-space generation methods, in spite of the fact that the reachability set of
a system can be extremely large due to state explosion problem.

State-of-the-art symbolic techniques for state-space generation, such as sat-
uration [4], are time- and memory-efficient with respect to the explicit methods.
Several implementations of the saturation algorithm demonstrate that the tech-
nique has been often fine-tuned to perform efficiently with different sub-classes
of discrete-state systems. The most generic implementation of the saturation
algorithm utilizes multi-valued decision-diagrams (MDDs)[13] as the underlying
data structure for representation of reachable states and extensible matrix di-
agrams (MxDs) [4, 20] for representation of system events where the bounds of



the states variables are not known a priori. For systems that can be represented
in terms of Kronecker products, a static encoding for the events, such as implicit
relation forests [3], is an efficient alternative that aids saturation by eliminating
the need to rebuild transition relations as state variable sizes increase, thereby
allowing the algorithm to focus completely on generation of reachability set.

In the real world, however, systems may have some events that are not ex-
pressible as Kronecker products, or are expressible as Kronecker products except
for a few components. Such models would require either to use matrix diagrams
entirely, or to split events until each event is expressible as a Kronecker product
so that implicit relation forests may be used. The aim of the paper is to explore a
hybrid relation, that allows the mixture of implicit nodes (from implicit relation
forests) and matrix diagram nodes in the same forest. This makes it possible
to simultaneously use implicit nodes for (portions of) events expressible as a
Kronecker product, and matrix diagram nodes for the more general case.

The remainder of the paper is organized as follows. Section 2 describes the
formalism for the class of models befitting the proposed methodology, the sat-
uration algorithm and briefly discusses the various saturation-compatible data
structures available in the literature. Section 3 introduces hybrid relation forests,
describes their construction from a model, and formulates a modified saturation
algorithm that works with events represented in a hybrid relation forest. Sec-
tion 4 evaluates the proposed method experimentally by comparing its perfor-
mance with existing techniques in the literature. Finally, Section 5 concludes the
paper and presents some directions for future work.

2 Background and related work

In order to describe the problem domain, we use a standard definition of extended
Petri nets, which are quite general and include inhibitor arcs and marking-
dependent arc cardinalities, as a high-level formalism to define the class of finite
discrete-state models.

Definition 1 (Extended Petri Net). The high-level formalism of a modelM
as an extended Petri net is defined as a tuple (P, T ,F−,F+,Fo, i0) where:

– P = {p1, p2, . . . , p|P|} is a finite set of places that encode the state variables
of M. Each place can contain a natural number of tokens. A marking i =
(i1, i2, . . . , i|P|) ∈ N|P| represents the number of tokens in each place.

– T = {t1, t2, . . . , t|T |} is a finite set of transitions of the net that represent
the events of M.

– F− : P × T × N|P| → N, F+ : T × P × N|P| → N, and Fo : P × T ×
N|P| → N ∪ {∞} are the marking-dependent input, output, and inhibitor
arcs, respectively.

– i0 ∈ N|P| is the initial marking of the net.

A transition t is enabled on a marking i iff ∀p ∈ P, F−(p, t, i) ≤ ip <
Fo(p, t, i). When multiple transitions are enabled on a marking, the choice for



t2

t1

p1 p4

p2 p3 p5

1 1

2

2 1 1

#p1 #p3

p5

p’5

p4

p’4

p3

p’3

p2

p’2

p1

p’1

p5

p4

p3

p2

p1

δ(i)=i-1,
∀i > 0

δ(i)=i-1,
∀i > 0

δ(i)=i+2,
∀i

11

3 2 1

1 32

0 1 2

0 21

2 3 4

24 3

Fig. 1: A Petri net model with marking-dependent arcs, with 2L-level MDD and
implicit relation representation of transition t2.

firing a transition is made non-deterministically. On firing an enabled transition t
on i, a new marking j is obtained, where jp = ip−F−(p, t, i)+F+(t, p, i), ∀p ∈ P .

The next-state function Nt(I) = {j : i ∈ I and i
t−→ j} represents the next

set of markings obtained when transition t is fired on a given set of markings, I.
The support-set of a next-state function, defined as supp(Nt) = {p ∈ P : ∃i ∈
N|P|,F−(p, t, i) > 0 ∨ F+(t, p, i) > 0 ∨ Fo(p, t, i) <∞}, is the set of places that
could affect the enabling of t, or could affect or be affected by the firing of t.

Given the initial marking i0, a marking i′ is said to be reachable if there exists
a finite sequence of transitions which when fired in succession starting from i0
can lead to i′. The set of all possible reachable markings of a Petri net, denoted
by S ⊆ N|P|, is the least fixed point such that S = {i0} ∪

⋃
t∈T
Nt(S)

The objective of this work is to generate the set S using saturation-based
symbolic state-space generation. The algorithms in the paper are based on the as-
sumption that S is finite. Therefore, all state variables of the model are bounded,
but these bounds do not need to be known a priori as they are discovered during
execution of the algorithm.

2.1 Symbolic representation of state space and transition relations

The state-space of a model is a set of all reachable states, represented symboli-
cally as an indicator function encoded using decision diagrams [19].



Definition 2 (Multi-valued Decision Diagram [13]). Defined over an or-
dered sequence of L domain variables (vL, . . . , v1) such that vk+1 � vk and the
variable-specific domains are denoted as Dk = {0, 1, . . . , nk}, an ordered MDD
is a directed acyclic graph where :

– Terminal nodes are labeled 0 or 1 and are associated with a special variable
v0 such that any domain variable vk � v0.

– Every non-terminal node p is associated with some domain variable p.var =
vk � v0 and has Dk child pointers denoted by p[ik] such that p.var �
p[ik].var.

Two nodes, p and q, in an MDD are said to be duplicates if p.var = q.var =
vk and ∀ik ∈ Dk, p[ik] = q[ik]. If all pointers of a node point to the same child,
then the parent node is termed as redundant node. To correctly interpret the
unknown but finite variable bounds which are explored during generation, on-
the-fly saturation requires the use of quasi-reduced MDDs, which forbid duplicate
nodes but require redundant nodes except for all 0 children: for every non-
terminal node p and for every child ik, either p[ik] = 0 or p[ik].var = p.var − 1.

Similar to MDDs, a transition relation of a model can be encoded in the form
of a set of pairs of states and their next-states using 2L-level MDDs where an
indicator function is defined over (Dk × Dk) × . . . × (D1 × D1) → {0,1}. The
first set in each pair corresponds to unprimed or “from” state of variable and
the second set refers to primed or “to” state of variable.

Given a Petri net encoding (P, T ,F−,F+,Fo, i0) of a model, its reachability
set, S and transition relation, N can be encoded using MDDs :

– The domain variables (vL, . . . , v1) of the MDD correspond to the Petri net
P = (p1, p2, . . . p|P|) such that each variable vk is associated with one pi, for
simplicity.

– The next-state function, Nt(i) = j can be represented by a 2L-level MDD
where nodes corresponding to unprimed level and primed level of variable
vk encode the pair (ik, jk).

Nodes in a 2L-level MDD can be redundant or duplicate under same def-
initions as above. While a 2L-level MDD can be reduced as per any choice of
reduction rule, the proposed work requires the use of Fully-Fully [7] reduced
2L-level MDD which results in skipping of redundant nodes.

Figure 1 shows a small Petri net (left), and symbolic encodings of the re-
lation for transition t2 using a both a 2L-level MDD (middle) and an implicit
relation (right). It is noticed that for a Petri net transition where the modified
value of a state variable is a function of the variable itself, the 2L-level MDD
of the transition assumes a peculiar shape, wherein every edge from the nodes
associated with some primed variable v′k points to the same child node. This
structure creates an unnecessary overhead for on-the-fly saturation as it requires
to be rebuilt each time the variable bound expands. In order to encode Nt of
such PNs efficiently, [3] proposes an alternate representation, implicit relation.
The full encoding of N contains |T | implicit relations uniquely identified by their
topmost nodes, forming an implicit relation forest.



Definition 3 (Implicit Relation). An implicit relation defined over the se-
quence of L domain variables (vL, . . . , v1) is a compact version of a 2L-level
MDD where the unprimed and primed levels of a variable are combined into a
single node, relation node which encodes the local effect of the transition on that
variable. Each relation node r has a single downward pointer r.ptr to another
node such that r.var � r.ptr.var.

Previous works of Couvreur et. al [9] have proposed homomorphisms as an
alternative approach to symbolically encode transition relations that works well
with Data Decision Diagrams (DDD) [9] and Hierarchical Set Decision Diagrams
(SDD) [11] for reachability generation. Homomorphisms are a class of operators
which are used on DDDs to encode the function represented by the transition
relation. Additionally, this representation is generic and is designed well [10] for
extended Petri nets like 2L-level MDDs. Molnar et. al in [14] proposed abstract
next-state diagrams that encode the transition relations via the use of level-wise
descriptors to capture the local effect of the transitions. While the domain of
models and the key idea of abstracting Petri net transitions is similar to that
of implicit relations, the facility with implicit relations to skip the encoding for
non-support variables of transitions provides a computational advantage during
saturation. The various symbolic representations of transition relations discussed
in this section are used as benchmark techniques for performance comparison of
the proposed work.

2.2 Saturation

Saturation is a symbolic algorithm for state-space generation that uses DAG-
type data structures like decision diagrams or implicit relations for storing and
computing operations on the data. In order to calculate the state-space of any
system, a breadth first iteration on the fixed point equation S = {i0} ∪ N (S),
whereN (S) =

⋃
t∈T
Nt(S) is an explicit method and is computationally inefficient.

However, the strategy of node saturation computes the fixed point recursively by
exploring reachable states through continuous computation of relational product
between S and N in a bottom-up fashion. The algorithm is described in proce-
dure Saturate of Fig 4. On-the-fly saturation [5, 15, 16] is a variation that explores
the variable bounds during reachability set generation and eliminates the need
for knowing the variable bounds a priori. However, this dynamic expansion of
variable bounds involves certain overhead due to re-construction of N . Extensible
decision diagrams [20] were introduced to alleviate some of these overheads.

3 Hybrid Relations

Taking into consideration the generality of real-world discrete-state systems and
the need to encode these models for efficient execution of on-the-fly saturation
techniques, this section formulates an ensemble of decision diagrams and im-
plicit relations for representation of next-state functions where the existence of



dependency among variables in the functions and the choice of partitioning tech-
nique for the transition relations determine the data structure to be used. This
representation combines the power of generalization from 2L-level MDDs and
the efficiency of static description from implicit relations. We also modify the
on-the-fly saturation algorithm to work with the hybrid relations.

Definition 4 (Hybrid relation). Given a transition t ∈ T of a Petri net with a
conjunctively-partitioned next-state function Nt =

⋂mt

i=1Nt,ci , a hybrid relation
encoding of t has a corresponding set of mt DAGs as follows.

– Each DAG encodes one of the sub-relations Nt,c, using either an implicit
relation or a 2L-level MDD. Each DAG is uniquely identified by its top-
most node.

– Every 2L-level MDD obeys FF-reduction rule for skipping nodes associated
with variables v /∈ supp(Nt,c).

– Every implicit relation contains a single non-terminal relation node with
pointer to the terminal 1.

– The interpretation of skipped levels is based on the overall hybrid relation
of the transition: if a skipped variable v affects the transition at all, then
v ∈ supp(Nt), and thus v ∈ supp(Nt,c) for some c. In this case, the FF-
reduction ensures that the intersection is handled appropriately. If instead v
does not affect the transition ad v 6∈ supp(Nt), then v 6∈ supp(Nt,c) for any
c and the interpretation is “v is not changed by the firing of t”.

3.1 Constructing next-state functions

We construct the DAG for each sub-relation Nt,c based on the number of vari-
ables in its support. The case supp(Nt,c) = ∅ corresponds to state variables that
do not affect, and are not affected by, the firing of t in the sub-relation; we as-
sume that this case is already handled (because each such variable v will either
not affect t at all because v 6∈ supp(Nt), or will affect t but then v ∈ supp(Nt,c′)
for some other c′). When supp(Nt,c) = {v}, Nt,c can be represented using an
implicit relation node r where r.var = v, the partial function r.δ encodes the sub-
relation and r.ptr = 1. In practice, the implicit relation nodes can be compacted
(conjuncted) to form a single implicit relation, which will be the original implicit
nodes chained together. This has a performance advantage since it decreases the
number of sub-relations that needs to be kept track of during saturation for
their symbolic conjunction. When |supp(Nt,c)| > 1, Nt,c must be encoded using
a 2L-level MDD over the domain variables in supp(Nt,c).

Different methods may be used for partitioning a transition relation Nt into
its sub-relations. One method [16] is to use the finest possible partition, such that
each state variable belongs to the support of at most one sub-relation. Another
method [7] separates the transition enabling and firing conditions, and then uses
the finest possible partition so that each variable is modified in at most one sub-
relation (but may appear, read-only, in other sub-relations). These methods are
illustrated in Figure 2 for transition t1 from the PN in Figure 1. The left side uses
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Fig. 2: Hybrid relation-based encodings of transition t1 from Figure 1 when par-
titioning techniques Θ◦ (left) and Θ (right) are used.

the method from [16], and obtains two sub-relations: one as a chain of implicit
nodes, representing p′4 = p4+1 and p′2 = p2+2, and one as an MDD, representing
(p5 ≥ p3) ∧ (p′5 = p5 − p3) ∧ (p′3 = p3 + p1) ∧ (p1 ≥ 1) ∧ (p′1 = p1 − 1). The right
side uses the method from [7], and obtains three sub-relations: one representing
p′3 = p3 + p1, one representing (p5 ≥ p3)∧ (p′5 = p5− p3), and a chain of implicit
nodes representing p′4 = p4 + 1, p′2 = p2 + 2, and (p1 ≥ 1) ∧ (p′1 = p1 − 1).

Algorithm BuildHybrid, shown in Figure 3, constructs an overall hybrid rela-
tion for a given transition t ∈ T , as a set of DAGs. This should be called once,
for each transition, before saturation is invoked. The set of sub-relation DAGs
for transition t is denoted by Nt.nodes. Note that the overall transition relation
Nt is not computed, but rather is evaluated during the saturation algorithm on
the fly. The hybrid relations are updated during saturation as new local states
are discovered, using algorithm Confirm, also shown in Figure 3.

3.2 Saturation using hybrid relations

Saturating a node for variable vk requires repeatedly firing transitions in Tk, the
set of transitions whose top-most variable is vk (i.e., supp(Nt) ∩ {vL, . . . , vk} =
{vk}), until a fixed point is reached. The algorithm is shown in Figure 4. Pro-
cedures RecFire and Saturate are similar to those of saturation using MxDs [16]
(using either a single DAG per transition, or a single DAG for all of Tk), except all
nodes of the hybrid relation for a transition are traversed simultaneously. Thus,
in addition to the MDD node encoding the set of states, procedure RecFire re-
quires a set of hybrid relation nodes, rather than a single MxD node (as used in
[16]) or a transition identifier (as used in [5]). This also means that the compute
table entries for RecFire must include the set of hybrid relation nodes (c.f. lines
2 and 15).



BuildHybrid(transition t)
• Builds hybrid relation for Petri net transition t

1: Partition Nt into Nt,c1 ,Nt,c2 , . . .Nt,cmt

2: n← 1;
3: for each Nt,c s.t. |supp(Nt,c)| = 1, from bottom up, do
4: r ← new relation node;
5: r.var ← Nt,c.var ;
6: r.δ ← Nt,c.∆ ;
7: r.ptr ← n;
8: n← r.ptr;
9: Nt.nodes← {n} \ {1};

10: for each Nt,c s.t |supp(Nt,c)| > 1 do
11: sfrom ← s0;
12: sto ← Nt,c(sfrom);
13: Nt,c.updateHybrid(sfrom, sto);
14: Nt.nodes← Nt.nodes ∪Nt,c.node;

Confirm(level k, index i)
• Updates relevant relations Nt, Nt,c if local state vk = i is new

1: if i 6∈ Dk then
2: Dk ← Dk ∪ {i};
3: for each t ∈ T do
4: for each Nt,c s.t. |supp(Nt,c)| > 1 and k ∈ supp(Nt,c) do
5: Nt.nodes← Nt.nodes \ Nt,c.node;
6: for each sfrom ∈ Nt,c.buildState(k, i);
7: sto ← Nt,c(sfrom) ;
8: Nt,c.updateHybrid(sfrom, sto)
9: Nt.nodes← Nt.nodes ∪ {Nt,c.node};

Fig. 3: Algorithms for building a Hybrid Relation.

The actual firing with a set of hybrid relation nodes is handled in helper
procedure Fire, also shown in Figure 4. This takes in a set of hybrid relation
nodes, and determines the set of nodes to follow one level below, by examining
each node in the set and following its downward pointer (h[i][j] in line 4), unless
the current level is skipped, in which case the current node is used again (line 3).
Note that h[i][j] must be determined differently, based on if h is an implicit node,
or an MDD node. If the set of downward pointers contains terminal node 0, then
the intersection of the sub-relations will be empty, and in this case no states
will be reached (line 5). Otherwise, the traversal continues by calling RecFire
recursively (line 6). If the reached set of states is non-empty, then local state
variable j must be confirmed [5] if it is new (line 7).



mdd Fire(mdd n,nodeset H, index i, j)
• Fire hybrid relation nodes H on node n, from i to j.

1: H′ ← ∅; • Determine next-level relation nodes
2: for each h ∈ H do
3: if n.var > h.var then H′ ← H′ ∪ {h};
4: else H′ ← H′ ∪ {h[i][j]};
5: if H′ = ∅ or 0 ∈ H′ then return 0;
6: f ← RecFire(n[i],H′);
7: if f 6= 0 then Confirm(n.var, j);
8: return f ;

Saturate(level k,mdd n)
• Saturate node n at level k using Tk.

1: Q ← {i : n[i] 6= 0};
2: while Q 6= ∅ do
3: i← Choose(Q);
4: Q ← Q \ {i};
5: for each t ∈ Tk
6: ht ← topmost(Nt.nodes);
7: for each j s.t. ht[i][j] 6= 0 do
8: f ← Fire(n,Nt.nodes, i, j);
9: u← Union(f, n[j])

10: if u 6= n[j] then
11: n[j]← u;
12: Q ← Q∪ {j};

mdd RecFire(mdd n,nodeset H)
• Fire H on node n and then saturate

1: if n = 0 or H = {1} then return n;
2: if (RecF, n,H,m) ∈ CT then return m;
3: ht ← topmost(H);
4: k ← max(n.var, ht.var);
5: m← new MDD node for variable vk;
6: if n.var > ht.var then
7: for each i ∈ Dk do
8: m[i]← RecFire(n[i],H);
9: else

10: for each i, j s.t. n[i] 6= 0, ht[i][j] 6= 0
11: f ← Fire(n,H, i, j);
12: m[j]← Union(m[j], f);
13: Saturate(k,m);
14: m← UniqueInsert(m);
15: CT ← CT ∪ (RecF, n,H,m);
16: return m;

Fig. 4: Saturation using hybrid relations

4 Experimental Results

4.1 Setup

We implemented the hybrid relation-based saturation algorithm, HybSat, using
the relation partitioning method of [16] in SMART [6], using Meddly [2] as the
underlying decision diagram library. We conducted two groups of experiments
to compare the performance of HybSat,

– Group I, with the existing “on-the-fly saturation with matrix diagrams”
approach (OtfSat) from SMART and with DDD/SDD-based reachability set
generation from ITS-Tools (ITSTools) for extended PN models on identical
static variable order.

– Group II, with the saturation algorithm based on a generalized representa-
tion of next-state functions (AbstractDesc) from [17] for ordinary PN models
obtained from [1] using SOUPS [18] ordering for variables.



All experiments are run on a server of Intel Xeon CPU 2.13GHz with 48G
RAM under Linux Kernel 4.9.9 with timeout for each run set to 20 minutes. The
suite of extended PNs used are listed in the Appendix.

4.2 Observations

Table 1 and Table 2 summarize the experiments run on extended PNs and or-
dinary PNs respectively. The metrics used for performance comparison include
the time taken by the reachability generation algorithm and the total number
of peak nodes required by the execution for encoding the transition relations.
For experiments conducted under Group I (see Table 1), the observations from
OtfSat and HybSat reveal that models that have transitions with tightly-bound
sub-relation effects, force the HybSat to build 2L-level MDDs leading to similar
metric values and often these values are worse with respect to ITSTools. For ex-
ample, models like Stack, the sub-relations display a chain-dependency among
the variables leading to creation of a full 2L-level MDD for encoding the relation.
For models such as FMS, where all but four transitions have constant arc car-
dinalities, HybSat performs better than ITSTools but shows similar performance
with OtfSat. The overall results in these experiments indicate that higher the
number of relation nodes in the encoding, better is the performance of HybSat.
However, the ability of HybSat to encode general transitions make it as versatile
as OtfSat and ITSTools

The observations of Group II experiments that are summarized in Table 2,
confirm that within a given model, the ratio of execution times of saturation al-
gorithm in the Java implementation of AbstractDesc to that of HybSat in SMART
is fairly constant. While these encodings and algorithms are conceptually similar,
the significant yet constant difference in the execution times can be attributed
to the implementational details and underlying language. Note that the number
of nodes in case of AbstractDesc is higher compared to HybSat because the for-
mer does not skip descriptors that encode identity relations and it counts every
pair of “from” and “to” local states as defined by the descriptors. The number
of nodes encoded for N by HybSat for is at most equal to the number of arcs
in the Petri net definition. Since HybSat pre-determines the encoding strategy
for each transition, for all models under this experiment group, their transitions
are represented as relation nodes. Hence, the comparison metrics for reachabil-
ity generation in HybSat and ImplSat are exactly the same and therefore, the
observations of ImplSat are omitted. The missing fields refer to timeout of the
experimental run.

5 Conclusions

In this paper, we introduced hybrid relations, an ensemble data-structure, for
symbolic encoding of transition relations in a general class of discrete-state sys-
tems. The translation of a system event into its corresponding hybrid relation,



Performance comparison of reachability generation among SMART (OtfSat,
HybSat) and ITSTools from ITS-tools over benchmark of extended PN models

Instance |S| Time (in sec) Peak Nodes: N
OtfSat ITSTools HybSat OtfSat ITSTools HybSat

Swap

10 3.6× 106 2.7× 10−01 9× 10−01 3.3× 10−01 1149 58 1091

12 4.8× 108 3.0× 1000 9.5× 1000 3.5× 1000 1890 70 1861

Stack

D8 V5 3.9× 105 2.7× 1000 6.0× 10−02 2.7× 1000 290 41 242

D10 V3 5.2× 1047 6.3× 102 5.0× 1000 5.7× 102 2763 409 2120

Leader

6 2.39× 107 4.0× 1001 5.8× 1001 6.1× 1001 1109 79 476

8 3.0× 108 1.9× 1002 2.3× 1002 2.7× 1002 1676 105 735

Flexible Manufacturing System

15 2.7× 1011 2.9× 10−01 5.3× 10−01 1.7× 10−01 1544 118 355

20 6.0× 1012 4.2× 10−01 1.29× 1000 3.9× 10−01 1660 118 505

30 7.7× 1014 9.1× 10−01 5.51× 1000 1.1× 1000 2800 118 880

Tiles

N3M3 1.8× 1005 1.4× 1000 8.9× 1000 2.2× 1000 952 154 362

N5M5 1.8× 1006 1.5× 1001 5.5× 1001 1.3× 1001 1223 168 433

Tower of Hanoi

D8 6.5× 1003 3.7× 1000 5.9× 1000 4.3× 1000 4566 40 1219

D10 5.9× 1004 5.4× 1001 7.0× 1001 5.9× 1001 9837 40 2481

Satellite

X 100 Y 3 7.6× 1004 2.1× 1001 1.1× 1001 1.9× 1001 3207 98 737

involves structural analysis of the event in terms of dependencies among the vari-
ables of the event. This prior system review to assign a suitable data-structure for
encoding each (sub)event rewards during saturation, since unnecessary overhead
costs of managing the compute-table entries for 2L-level MDD operations and
saturation are eliminated. The efficiency and validity of the proposed saturation
algorithm is empirically evaluated with respect to several versions of saturation
algorithm.

Although this paper briefly discusses the use of event partitioning techniques
for building hybrid relations, the consequence of each technique on the efficiency
of hybrid relations based saturation algorithm is yet to be explored. This can
pave way for applying desirable partitioning methods for each event instead of
making an apriori choice for all events. Building and incorporating compatible
data structures into hybrid relations that can optimally utilize certain event
behaviors can make the representational formalism more powerful and efficient
for saturation-based symbolic reachability generation.



Performance comparison of reachability generation among SMART (ImpSat,
HybSat) and AbstractDesc over benchmark of ordinary PN models

Model |S| Time (in sec) Peak Nodes for encoding N
AbstractDesc HybSat AbstractDesc HybSat

Eratosthenes

200 1.1× 1046 4.09× 10−01 2.27× 10−02 441 603

500 4.1× 10121 2.32× 1000 2.35× 10−01 2820 1875

Philosophers

1000 1.3× 10477 2.24× 1001 3.98× 1000 62410 15000

2000 4.0× 102385 7.03× 1001 2.41× 1001 124917 30000

SwimmingPool

10 3.4× 1010 5.87× 1001 3.97× 1001 721877 20

Kanban

200 3.2× 1022 1.26× 1001 1.92× 1000 44028 39

500 7.1× 1026 1.51× 1002 2.94× 1001 260027 39

HouseConstruction

20 1.4× 1013 1.27× 1001 3.06× 1000 279043 51

50 1.6× 1019 1.74× 1002 4.37× 1001 2280222 51

SmallOperatingSystem

MT512 DC128 1.0× 1011 1.51× 1002 4.05× 1001 348039 22

MT512 DC256 2.5× 1011 3.13× 1002 1.03× 1002 594183 22

GPPP

C10 N100 1.8× 1011 7.25× 1000 1.34× 1001 194454 79

Referendum

100 5.2× 1047 4.48× 10−01 1.57× 10−02 2701 460

200 2.7× 1095 3.14× 1001 9.07× 1000 529255 940

TCPcondis

15 5.4× 1012 −− 8.48× 1001 4519532 90

20 5.6× 1014 −− 3.03× 1002 −− 90

Raft

6 2.9× 1026 −− 1.87× 1001 −− 620

7 3.6× 1035 −− 1.46× 1002 −− 829
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Appendix : List of Extended Petri Nets

– Swap model where given a list of N distinct integers, operations are to ex-
change two neighboring integers.

– Stack model that generates the count of possible combination of D objects
that can be have values in the range 1 to N.

– A simplified version of Leader election protocol [12] that designates a sin-
gle process as the leader among a ring of N processes by determining the
maximum of the unique ids transmitted by the processes.

– A non-stochastic version of FMS (Flexible Manufacturing System) from [8]
that has N number of 3 different kinds of parts fitted on three machines.

– Tiles that models a N × M rectangular puzzle with movable tiles.
– Tower of Hanoi models D disks of different sizes that can move across three

rods with constraints on sizes of the disks that can be placed on a rod.
– A modified version of SatelliteMemory, an ordinary PN from [1], where the

constant arc cardinalities are converted to constant places and markings of
these places are used to define the arc cardinalities.


