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Abstract: Radar-based quantitative precipitation estimate (QPE) serves as input for flood forecasting, and its importance gets magnified
during catastrophic storms, e.g., Hurricane Harvey in 2017. The record-breaking rainfall from Hurricane Harvey covered vast spatial extents
and lasted for a 5-day period, providing a unique chance for evaluating radar errors, especially their spatiotemporal dependence. Using the
rainfall data of Hurricane Harvey, the authors utilize a new method for sampling ground-based rainfall measurements over radar pixels
(i.e., spatial reference rainfall) based on subpixel rainfall variability. The new method aims to enlarge the sample size and allow for com-
pressively evaluating the QPE. Two hourly QPE products, the Next Generation Weather Radar (NEXRAD) Stage IV and Multiradar
Multisensor (MRMS), are chosen for the evaluation due to their roles in major flood forecasting activities; and a dense rain gauge network
covering the whole of Harris County, Texas, provides the spatial rainfall reference in this analysis. Comparative analyses are conducted based
on Hurricane Harvey and other two flood-inducing storms occurring in 2015 and 2016 over Harris County. The results imply that the Stage IV
and MRMS overestimate and underestimate, respectively, the total rainfall by a small factor, while both QPEs tend to overestimate very light
precipitation. In addition, the study suggests that the spatial correlation of radar error from both QPEs be described as powered exponential
functions of interpixel distance. This study also includes hydrologic simulations for an urban watershed, demonstrating the importance of
both the accuracy and spatial resolution of QPE in representing the mean areal precipitation (MAP) over catchments. The insight gained from
this study provides guidance for further improving the QPE performance, and the new sampling approach for spatial reference rainfall can be
applied to comprehensively evaluate long-term radar rainfall data.DOI: 10.1061/(ASCE)NH.1527-6996.0000435.© 2020 American Society
of Civil Engineers.

Author keywords: Stage IV radar rainfall; Multiradar multisensor (MRMS) radar rainfall; Radar quantitative precipitation estimate (QPE)
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Introduction

Hurricane Harvey made landfall as a category 4 hurricane along
the middle Texas coast on August 25th, 2017. The storm then
stalled with its center near the Houston–Galveston area for 4 days,
generating historic amounts of rainfall (more than 60 in.) over
Southeastern Texas (Blake and Zelinsky 2018). The extreme pre-
cipitation of Hurricane Harvey caused catastrophic flooding,
inundating more than 300,000 structures and over 500,000 cars,
and necessitated 120,000 rescues (Blake and Zelinsky 2018;

FEMA 2017). During such chaos, the emergency management en-
tities were overwhelmed and in urgent need of assistance. Accurate
and timely flood forecasting could help emergency responders to
prioritize the limited resources at hand and make the most effective
decisions in crises. As the driving input for hydrological simula-
tions, good-quality precipitation measurements play a crucial role
in flood prediction. For instance, the rain gauge network has been
conventionally used for flood warning. But due to the lack of spa-
tial density of the rain gauge network, its role in various forecasting
activities has been gradually replaced by quantitative precipitation
estimate (QPE) from weather radar systems.

In the early to middle 1990s, the National Weather Service
(NWS) installed the Next Generation Weather Radar (NEXRAD)
system that currently comprises 160 WSR-88D radars across the
United States (NCEI 2018). Over almost two decades, the NEXRAD
precipitation products have undergone a series of improvements and
are currently in the fourth stage. NEXRAD precipitation products
(Stages I, II, III, and IV) from the River Forecast Centers (RFCs)
have been applied to hydrometeorology (Smith et al. 2001, 2002;
Zhang and Smith 2003), hydrologic analyses (Vieux and Bedient
1998; Bedient et al. 2000; Fang et al. 2008, 2011; Juan et al. 2015;
Torres et al. 2015; Bass et al. 2016; Gao and Fang 2018), and remote
sensing validation (Krajewski and Smith 2002; Habib and Krajewski
2002). The Stage IV product is a national mosaic of regional multi-
sensor (combination of quality-controlled WSR-88D, satellite, and
rain gauge data) precipitation estimates that are produced hourly
at the NWS RFCs for operational hydrologic forecasting at the
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Hydrologic Rainfall Analysis Project (HRAP) grid of approxi-
mately 4 × 4 km2 spatial resolution (Lin and Mitchell 2005; Habib
et al. 2009).

As another emerging radar-based weather sensing/monitoring
system, the Multiradar Multisensor (MRMS) system has become
operational at the National Centers for Environmental Protec-
tion (NCEP) since September 2014 (Zhang et al. 2014, 2016).
By integrating over 180 radars, 7,000 hourly rain gauges, and
numerical weather prediction outputs across the continental United
States, MRMS has four types of QPE products including (1) radar-
only QPE, (2) gauge-only QPE, (3) local gauge bias-corrected radar
QPE (Q3gc), and (4) gauge and precipitation climatology merged
QPE (Zhang et al. 2016). The hourly rain gauge data used for
bias-correction in MRMS are quality-controlled from the HADS
(2017a). The new national water model (NWM) that has been op-
erational since August 2016 (NOAA 2016) utilizes hourly precipi-
tation forcing in real time from the MRMS system to improve
street-level water information services over the continental United
States.

Precipitation measurements should be taken at a sufficiently
high spatial and temporal resolution to represent the dynamic char-
acteristics of storms. However, due to the indirect nature of radar
measurement, radar-based rainfall products are subject to uncer-
tainties that are inevitably propagated through further hydrologic
simulations (Krajewski and Smith 2002). Therefore, previous stud-
ies were conducted to evaluate the radar rainfall products, espe-
cially the NEXRAD radar products. Habib et al. (2008) utilized a
dense rain gauge network in Mississippi to evaluate various aspects
of the errors in the Stage III products and the associated implica-
tions on streamflow simulation and concluded that bias adjustment
can improve runoff prediction significantly. Wang et al. (2008)
compared the Stage IV product with rain gauge measurements for
a watershed in Texas and found that Stage IV products were better
at rain detection than a rain gauge network for a studied watershed.
Habib et al. (2009) used a dense rain gauge network in Louisiana to
validate the Stage IV product and demonstrated its improved per-
formance mainly due to the continuous algorithm update. These
research efforts were motivated by a common focal point: how
can point measurements of rainfall (rain gauge data) be used to re-
present the surface rainfall over an HRAP pixel (4 × 4 km2) over a
small temporal scale (say an hour), or simply how can hourly sur-
face reference rainfall be accurately provided? Filtering criteria
have been applied in these previous studies to select qualified radar
pixels for evaluation, which might have resulted in the exclusion of
useful data samples. In this study, the authors intend to simultane-
ously acquire the accuracy and the size of spatial reference rainfall
data samples based on a new method and to demonstrate this ap-
proach with Hurricane Harvey (2017).

Hurricane Harvey was regarded as one of the most severe tropi-
cal cyclones in United States history according to spatial coverage
and peak rainfall amount. The highest total rainfall recorded by
a rain gauge during Hurricane Harvey was 154 cm (60.58 in.)
in Nederland, northeast of Houston, which was nearly 9 in. higher
than the previous record of 132 cm (52 in.) from Hurricane Hiki, in
August 1950 (Blake and Zelinsky 2018). Fig. 1 shows a compari-
son of the total precipitation over the Harris County generated by
Hurricane Harvey and other two flood-inducing storms in Houston
(2015 Memorial Day storm on May 25th, 2015, and 2016 Tax Day
storm on April 17th, 2016) based on the MRMS gauge-corrected
rainfall (Q3gc product). The comparison highlights the exceptional
total rainfall amount of Hurricane Harvey due to its intensity and,
more importantly, its 5-day duration. In addition, the areal extent of
heavy rainfall from Hurricane Harvey was truly overwhelming,
with almost the entire Harris County receiving over 70 cm (about

2.3 ft) of rainfall. From the perspective of QPE evaluation, any rain-
fall events with large areal coverages and long durations tend to
generate a large number of data samples. Therefore, Hurricane
Harvey provides an opportunity for the authors to investigate spa-
tial and temporal structures of radar errors that would otherwise be
hindered using small-scale short-duration storms.

Despite its importance, accurate QPE does not necessarily guar-
antee the optimal representation of precipitation as an input to
hydrologic models. This is because the mean areal precipitation
(MAP) is the actual input to catchments or grid boxes that make
up the watershed or model domain in hydrologic models. Given
that the true MAP cannot be measured easily, comparisons between
the simulated flow/stage from hydrologic models and the observed
values can indirectly reflect the uncertainty associated with MAP.
Previous research efforts have been invested in examining the
uncertainty within streamflow simulation induced by radar error
(e.g., Yilmaz et al. 2005; Habib et al. 2008; Gourley and Vieux
2005). These studies were conducted upon the premise that the
MAP is the primary, if not the only, contributor to the uncertainty
in model output. In other words, uncertainties from other sources
(e.g., model structure, model parameters, and state variables) need
to be minimized. For instance, if a hydrologic model is well cali-
brated for a highly urbanized watershed with saturated soil, the
uncertainty in simulated streamflow can then be linked to that in
MAP instead of an infiltration process. During Hurricane Harvey,
an urban watershed, Brays Bayou in Harris County, was considered
a sufficient study area, as heavy rainfall rendered the soil fully sa-
turated. Therefore in this study, the Brays Bayou watershed during
Hurricane Harvey was selected to investigate the implication of
MAP estimation on hydrologic simulation.

In this study, an innovative sampling approach is introduced to
increase the number of references for evaluating radar rainfall
products. More references in turn allow us to examine the condi-
tional performance of radar data as well as the spatial and tem-
poral structures of rainfall error. Given the importance of Stage
IV and MRMS hourly QPEs in operational flood forecasting,
the authors are motivated to comprehensively evaluate their per-
formance during Hurricane Harvey to achieve better preparedness
and decision making for future floods. Hurricane Harvey, as an
unprecedented tropical rainfall event, presented a unique research
opportunity for the authors to demonstrate the new sampling
method in terms of increasing sample size and a better understand-
ing of the spatiotemporal structure of radar error via the following
objectives:
1. To construct the spatial reference rainfall datasets over the scale

of the radar pixels from a dense rain gauge network during the
2015 Memorial Day storm, 2016 Tax Day storm, and 2017
Hurricane Harvey in Harris County, Texas;

2. To examine the radar errors in terms of bias, conditional depend-
ence on rainfall intensities, and spatiotemporal structure; and

3. To investigate the implication of radar errors for the accuracy of
hydrologic simulation and prediction by analyzing the runoff
behaviors simulated by hydrologic models of Brays Bayou in
Harris County.

Study Area and Data

Harris County is the third-most populous county in the United
States and includes the largest city in Texas—Houston. Fig. 2
shows the area of this study, which is Harris County with
4,602 km2 located in the State of Texas. Fig. 3 shows the Brays
Bayou watershed, where the hydrologic simulation is examined
in this study. As one of the flood-prone urban watersheds, Brays
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Bayou is 95% developed with a population of more than 722,000
people, making it one of the most urbanized watersheds in Harris
County, Texas (HCFCD 2017b). The high tendency of flooding in
this watershed is due to flat slopes, impermeable land surface and
clay soils, and the explosive rainfall (Bedient et al. 2003, 2007;
Fang et al. 2008, 2011, 2014; Bass et al. 2016; Gao and Fang
2018). There are four junctions with reliable streamflow observa-
tion during Hurricane Harvey from United States Geological
Survey (USGS) gauges (Junction 1/USGS8074760@Belle Park
Dr., Junction 2/USGS8074810@S. Gessner Rd., Junction 3/
USGS8075000@Main St., and Junction 4/USGS8075110@MLK
Blvd.).

The rain gauge observations were collected from the website of
the HCFWS (2017c). This flood warning system, which measures
rainfall amounts and monitors water levels in bayous and major
streams on a real-time basis, is operated and maintained by the
Harris County Flood Control District (HCFCD). The system relies
on 154 gauge stations strategically placed throughout Harris
County bayous and their tributaries. For QPE evaluation, the sur-
face reference rainfall needs to be independent of QPE products
(Habib et al. 2009). In other words, the rain gauges serving as truth
should not overlap those used by NWS in developing or adjusting
the bias of QPE estimates. Therefore, the HADS rain gauges (white
dots in Fig. 2) are not utilized for evaluating the radar QPE, as they

are already incorporated in processing the Stage IV and MRMS
hourly gauge-corrected products.

The radar rainfall data used in this study are the Stage IV prod-
uct and the MRMS Q3gc product, which are later referred to as
Stage IV and MRMS, respectively. The Stage IV data are provided
by the West Gulf River Forecast Center (WGRFC), whose service
boundary fully encompasses the study area, Harris County. The
MRMS are radar-only estimates locally adjusted by hourly HADS
gauge data using an inverse distance weighting (IDW) scheme
(Zhang et al. 2016; Cocks et al. 2017). As aforementioned, the
Stage IV and MRMS have the same temporal resolution of one
hour, but different spatial resolutions of 4 × 4 km2 and 1 × 1 km2,
respectively. From the available period of both Stage IV and
MRMS, three severe storm events, 2015 Memorial Day storm,
2016 Tax Day storm, and Hurricane Harvey were selected for analy-
sis, with their starting and ending times summarized in Table 1.

Approach and Methods

Surface Reference Rainfall

MRMS has a high spatial resolution of 1 × 1 km2 and thus are
directly compared with rain gauge measurements in this study.

Fig. 1. Cumulative rainfall based on the MRMS data of (a) 2015 Memorial Day storm on May 25th, 2015; (b) 2016 Tax Day storm on April 17th,
2016; and (c) Hurricane Harvey on August 25th, 2017, respectively.
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However, for Stage IV, it is recognized that rain gauges at hourly or
smaller scales may be limited by their near-point sampling and may
not provide an acceptable approximation of surface rainfall over the
4 × 4 km2 pixel (Habib et al. 2009). Therefore, the critical issue in
evaluating hourly Stage IV QPE has been how to get a measure-
ment representing the areal average rainfall over an HRAP pixel
(Kitchen and Blackall 1992). In previous studies, a high-density
rain gauge network (4–10 gauges within each HRAP pixel) has
been used (Ciach and Krajewski 1999; Habib and Krajewski 2002;
Ciach et al. 2003; Habib et al. 2004), which is however limited in
spatial coverage and costly to implement and maintain. Wang et al.
(2008) utilized a method to select Stage III hourly radar estimates
(also with 4 × 4 km2 resolution) only during uniform rainfall for
evaluation. Although Wang et al. (2008) managed to utilize even
sparse rain gauge network (e.g., one gauge per HRAP pixel), their
definition for uniform rainfall is not based on the spatial variability
of rainfall within the target radar pixel (subpixel variability) but
that among the target radar pixel and its eight neighboring pixels
(interpixel variability).

In order to make improvements, the authors investigate the
subpixel spatial variability of hourly rainfall within an HRAP pixel
and further determine if the gauge(s) within the HRAP pixel can
sufficiently represent its areal average rainfall intensity. This new

method features evaluating one type of radar QPE of coarser spatial
resolution (i.e., Stage IV) using another kind of radar QPE of finer
spatial resolution (i.e., MRMS). In essence, Stage IV pixels are
compared to the corresponding rain gauge value(s) only when rain-
fall is spatially uniform within this Stage IV pixel. This is condi-
tioned on the comparison between the MRMS QPE values at the
gauge(s) and those encompassed by the HRAP pixel boundary.
Fig. 4 illustrates this sampling scheme where the black square in
bold is an HRAP pixel of interest; the grey squares are the MRMS
pixels encompassed by the HRAP pixel, and the three shaded grey
squares represent MRMS pixels with rain gauges inside. At a given
hour, if the averaged MRMS rainfall of the grey squares (including
the shaded ones) is sufficiently close to (90%–110% of) the aver-
aged MRMS rainfall of the shaded grey squares, it will then be
determined that the averaged rain gauge measurements can re-
present the MAP of the HRAP pixel. Here, the authors employ a
10% threshold to determine if the mean of the rain gauge measure-
ments could approximate the MAP of the HRAP pixel. It is worth
noticing that this method does not necessarily assume that MRMS
QPE in the HRAP pixel is true or unbiased but that the MRMS QPE
can adequately preserve the spatial variability of rainfall within the
4 × 4 km scale. By applying the selection scheme to all the HRAP
pixels containing at least one rain gauge and for all the hours during

Fig. 2. Study area and the rain gauge network.
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storm events, the authors can then make the best use of data to com-
prehensively evaluate the QPEs via statistical metrics introduced in
the following section. In comparison, the new method can generate
a spatial reference rainfall sample three times the size of that from
the traditional method in which only the HRAP pixels with two or
more gauges are selected.

Statistical Metrics

Error
Error is defined as the deviation of radar rainfall estimates from the
rain gauge observations, as shown by Eq. (1)

ε ¼ Re

Ro
ð1Þ

where Re and Ro = hourly rainfall intensities from radar QPEs and
rain gauges, respectively. Due to Eq. (1), an error that is greater
(smaller) than 1 means overestimation (underestimation).

Overall Bias

In order to investigate the systematic performance of the QPEs,
overall bias (OB) is used to measure the averaged deviation of the
rainfall estimates (Re) from observations (Ro), as represented by
Eq. (2)

OB ¼ E½Re�
E½Ro�

ð2Þ

In this study, OB is calculated with respect to individual storms,
which means expectation (E½�) is calculated by temporally averag-
ing the estimates or observations over the duration of a storm event.
To examine the spatial variability of OB, the authors calculate OBs
for each radar pixel separately. In addition, for radar pixels that en-
compass multiple rain gauges, the Ro is the arithmetic mean of the
values from corresponding gauges.

Conditional Bias

It has been found by previous researchers that radar rainfall
bias can depend on the magnitude of estimated rainfall intensity

Fig. 3. Brays Bayou watershed, Houston, Texas.

Table 1. Starting and ending times for the three selected historical storms

Storm
Start time
(CDT)

End time
(CDT)

Duration
(h)

2015 Memorial Day Storm May 25, 2015 19:00 May 27, 2015 7:00 36
2016 Tax Day Storm April 17, 2016 13:00 April 19, 2016 6:00 41
2017 Hurricane Harvey August 25, 2017 00:00 August 30, 2017 00:00 120

© ASCE 04020057-5 Nat. Hazards Rev.
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(Ciach et al. 2000). Using moving average windows, the authors
calculate the conditional bias (CB) using Eq. (3)

CB ¼ E½Reja < Re ≤ b�
E½Roja < Ro ≤ b� ð3Þ

where a and b = lower and upper limits of the moving average
window.

Spatial and Temporal Autocorrelations of Error

In addition to bias analysis, spatial and temporal dependence of
error need to be assessed to infer the adequacy of bias adjustment
in improving radar QPEs. The authors estimate the spatial autocor-
relations of ε from marginal samples of ε at each time step, while
the temporal autocorrelations are based on marginal samples of ε at
all selected pixels. Eq. (4) is the Moran’s I (Moran 1950), as a mea-
sure of the spatial autocorrelation

IðdÞ ¼
1
W

P
n
i¼1

P
n
j¼1 wijðεi − ε̄Þðεj − ε̄Þ

1
n

P
n
i¼1 ðεi − ε̄Þ2 ð4Þ

where IðdÞ = Moran’s I as a function of distance d; εi and εj =
errors at location i and j; wij = weight of 0 or 1, 1 meaning that
εi and εj are within a given distance class and 0 being all the other
cases; and W = sum of all wij; and n = sample size. The temporal
autocorrelation (Box and Jenkins 1976) is defined as Eq. (5):

rðτÞ ¼
P

m−τ
i¼1 ðεi − ε̄Þðεiþτ − ε̄ÞP

m
i¼1 ðεi − ε̄Þ2 ð5Þ

where rðτÞ = autocorrelation of lag τ ; εi and εiþτ = errors at ith
hour and (iþ τ ) th hour; and m = sample size. It should be noted
that only the marginal samples with sufficient size (> ¼ 200) are
included in the analysis. This is the very reason why Hurricane
Harvey provided an opportunity for investigating the spatiotempo-
ral structure of radar error, as the storm covered vast areas and
lasted for a total of 5 days, generating large samples of radar error
information. In previous studies (Kessler and Neas 1994; Habib
et al. 2001b), sample size has been a limitation for estimating cor-
relations at large spatial and temporal lags. However, the authors
take advantage of Hurricane Harvey and present a more complete
spatiotemporal structure of radar error during this event.

Hydrologic Simulation

A hydrologic (Hydrologic Engineering Center Hydrologic Model-
ing System, HEC-HMS) model is used to simulate the hydrologic
response from Brays Bayou during Hurricane Harvey. The HEC-
HMS model is part of the products from the Tropical Strom Allison
Recovery Project (TSARP), which was initiated by the devastating
impact from Tropical Storm Allison (2001). Calibration effort was
invested to improve the hydrologic simulation of this model in sev-
eral studies (Fang et al. 2011; Bass et al. 2016; Gao and Fang
2018). Fang et al. (2011) conducted an analysis using storm events
with accumulated rainfall ranging from 3.3 cm (1.3 in.) to 19.5 cm
(7.8 in.) and found that the model had predicted floods with an
average of 3.6% difference in peak flows and an R2 value of 0.90
for the overall performance from 2002 to 2010. Bass et al. (2016)
updated soil/land use information in the model to best represent
the actual land use conditions. Gao and Fang (2018) validated the
model performances at all four USGS gauge locations during the
2015 Memorial Day storm and the 2016 Tax Day storm using
the MRMS Q3gc product. With the well-calibrated HEC-HMS
model, the authors compare simulated hydrographs from three rain-
fall input data, i.e., Stage IV, MRMS, and rain gauge. The two radar
QPE products (Stage IVand MRMS) are processed into time series
of MAP for each subbasin using the Hydrologic Engineering
Center Meteorological Visualization Utility (HEC-MetVUE) pro-
gram, while the rain gauge records are allocated into each subbasin
using the Thiessen Polygon method (Brassel and Reif 1979). Using
the runoff volume received by the most downstream USGS gauge
and cumulative basin-averaged rainfall (rain gauge), the runoff co-
efficient is estimated to be 91%. This is largely due to the fact that
Brays Bayou is 95% developed and 72% impervious and most im-
portantly because of the enormous rain volume from Hurricane
Harvey. Given the minor role of infiltration, the initial soil moisture
is assumed to be fully saturated in the Green and Ampt method.
Four statistics are used to quantitatively evaluate model perfor-
mance in runoff and streamflow, as shown in Eqs. (6)–(9)

Runoff volume error:Ve ¼
P

n
i¼1 Q

sim
iP

n
i¼1 Q

obs
i

− 1 ð6Þ

Peak flow error:Pe ¼
Qsim

max

Qobs
max

− 1 ð7Þ

Rootmean square error ðRMSEÞ∶RMSE

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðQobs
i −Qsim

i Þ2
s

ð8Þ

Fig. 4. Selection scheme for hourly spatial reference rainfall.
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Nash-Sutcliffe model efficiency coefficient ðNSEÞ∶NSE

¼ 1 −
P

n
i¼1 ðQsim

i −Qobs
i Þ2P

n
i¼1 ðQobs

i −Qobs
i Þ2

ð9Þ

where n = number of hours in the hydrographs; Q = runoff dis-
charge, with the subscript ‘max’ denoting the peak value; and the
superscripts ‘sim’ and ‘obs’ = simulation and observation, respec-
tively. The operator ¯Qobs

i is the arithmetic averaging of the dis-
charge observation.

Results and Discussion

As an overview of all data samples involved in this analysis, Fig. 5
shows the scatter plots of Stage IVand MRMS hourly QPE against
rain gauge data for the three investigated storm events (2015
Memorial Day storm, 2016 Tax Day storm, and 2017 Hurricane
Harvey), along with the coefficient of determination (R2), root
square mean error (RMSE), and sample size (upper right table).
The difference in sample size results from the Stage IV selection
scheme that filters out about 50% of the data samples. The results
show that both QPEs (Stage IVand MRMS) reached high R2 values

(over 0.8), showing good overall performance during the storms.
Given that there is no clear indication of biases for either QPE
solely based on the scatter plot, the authors conduct the following
analysis in OB.

Overall Bias

OB is quantified based on Eq. (2) for each radar pixel and each
storm to examine any spatial variability and inter-storm variability.
Figs. 6 and 7 show the maps for OB calculated at selected radar
pixels of Stage IV and MRMS for the 2015 Memorial Day storm
(6A and 7A), 2016 Tax Day storm (6B and 7B), and 2017 Hurri-
cane Harvey (6C and 7C). The figures show that there is no distinct
spatial pattern of OB for either QPE or any storm event. The mean
OB values from individual storms and all storms combined indicate
overestimation by Stage IVand underestimation by MRMS, except
for the case of Stage IV during the 2016 Tax Day storm. In the case
of Stage IV, approximately 43%, 66%, and 30% of the data samples
have OB values smaller than 1 (signified by the white dots) for
the 2015 Memorial Day storm, 2016 Tax Day storm, and 2017
Hurricane Harvey, respectively. In comparison, the majority of the
OB values for MRMS are smaller than 1, with 95%, 90%, and 90%
of the data samples represented by white dots for the three storms.

R2 RMSE Sample Size

Stage IV 0.812 0.293 4614

MRMS 0.837 0.217 9934

Fig. 5. Scatter plots of Stage IV and MRMS hourly QPE from the three storm events combined.
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The statistics, including average, min, max, and total sample size of
the OB values for each storm separately and for all storms com-
bined are also summarized in Table 2. It is worth noticing that
the distinctly large sample size from Hurricane Harvey (2017)

for both QPEs is due to the vast spatial coverage and long duration
of the storm. In summary, MRMS shows the tendency of underes-
timating precipitation by a factor of 12% (OB ¼ 0.88) for three
storms combined, while Stage IV shows better performance in

Harris County Boundary
Subwatersheds

Overall Bias
< 0.8
0.8 – 0.9
0.9 – 1.0
1.0 – 1.1
1.1 – 1.2
1.2 – 1.3
> 1.3

(a) (b)

(c)

Fig. 6. OB of Stage IV for (a) 2015 Memorial Day Storm; (b) 2016 Tax Day Storm; and (c) 2017 Hurricane Harvey, respectively.

Fig. 7. OB of MRMS for (a) 2015 Memorial Day Storm; (b) 2016 Tax Day Storm; and (c) 2017 Hurricane Harvey, respectively.
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capturing the mean (temporally averaged) rainfall amount with an
overestimation of 2% (OB ¼ 1.02).

Conditional Behavior of Radar Error

While overall bias represents the average behavior of radar error,
the conditional behavior of radar error depending on the rainfall
intensity has been demonstrated by previous researchers and thus
needs to be investigated (Ciach et al. 2000, 2007; Habib et al.
2008). Therefore, in this study, the authors also examine the radar
errors conditioned on hourly rainfall intensity from rain gauges.
Since this analysis is event-based and lacks a large volume of data,
it is important to consider the distribution of utilized data samples
before investigating the conditional behavior of radar error. There-
fore, the authors present a 2D histogram of the combined data
samples from all three storms plotted on log-scale radar error and
log-scale hourly gauge rainfall intensity for Stage IVand MRMS in
Figs. 8(a and b) respectively. The log-scale axes are used in plotting
because both radar error and rainfall intensity are log-normally dis-
tributed. The results show that the two data samples (Stage IV and
MRMS) share a similar distribution pattern along the X-axis, mean-
ing Stage IV data samples, though smaller in size, do capture the
same distribution of rainfall intensities as the MRMS data samples.
Figs. 8(a and b) show that the sample population is divided by a gap
located just above 1.5 mm=h. This is because readings from tipping
bucket rain gauges are the number of tipping multiplied by the
unit volume of each tip (in this case 0.04 in. or 1.016 mm). As for
Stage IV [Fig. 8(a)], these data samples mostly show overesti-
mation with radar errors over one, while in the case of MRMS
[Fig. 8(b)], they seem to evenly distribute around one.

Keeping the data sample distribution in perspective, the authors
further calculate the CB for both QPEs using the same measures to
divide the sample population (equal interval in log-scale) as in the
2D histograms. Figs. 9(a and b) show the CB against the hourly
gauge rainfall intensity both plotted in log-scale for Stage IV and
MRMS, respectively. The results show that Stage IVoverestimates
very light rainfall (<1.5 mm=h), and the overestimation decreases
with increasing rainfall intensity; Stage IVexhibits steady and good
performance with a slight overestimation when rainfall ranges from
3.5 to 25 mm=h. In comparison, MRMS shows a small overesti-
mation for rainfall lighter than 1.5 mm=h and a steady but slight
underestimation for rainfall from 3.5 to 25 mm=h. Despite the lim-
ited spatial and temporal extent of data in this analysis, the findings
echo with those reported by previous researchers. For instance,
Nelson et al. (2016) conducted a comprehensive assessment of
Stage IV for the Continental United States (CONUS) over the
period 2002–2012 and found that larger overestimation exists for
light rainfall for all RFCs and all seasons. The overestimation of
light rainfall by the MRMS was founded by Cocks et al. (2017),
who evaluated the MRMS Q3gc (gauge corrected) products east
of the Rockies during the 2014 warm seasons. For both Stage IV

and MRMS, this common issue of overestimating light rainfall is
probably due to precipitation evaporating before reaching the gauge
and gauge wetting losses, as speculated by previous researchers
(Catizone et al. 2014; Cocks et al. 2017).

Spatial and Temporal Structure of Radar Error

Although the conditional behavior of radar error is recognized in
the prior section, it is unclear whether the radar errors have distinct
spatial and temporal dependence. As shown in Figs. 6 and 7, the
maps of OB show no explicit spatial pattern in terms of the aver-
aged deviation from the radar estimates to the gauge measurements.
However, it is still possible that the radar errors can exhibit cluster-
ing patterns in space; therefore, it is necessary to decipher the spa-
tial dependence of the radar error using spatial autocorrelations.
Figs. 10(a and b) respectively show the spatial autocorrelation
coefficients (Moran’s I) of Stage IV and MRMS radar errors (ε)
calculated based on Eq. (4) at intervals of radar pixel size (4 km for
Stage IVand 1 km for MRMS) for the three storms. The sample size
used for calculating each coefficient is also presented as the in-
verted bars in Figs. 10(a and b). The results show that Moran’s I
values are based on marginal samples collected at all time steps and
only those with sample sizes larger than 200 are displayed; the re-
markably larger sample size from Hurricane Harvey, as shown in
both Figs. 10(a and b), is mainly caused by its 5-day duration. Due
to the clear difference in sample size, Hurricane Harvey ought to
yield the most representative result among the three storms. For
Hurricane Harvey (2017), the Moran’s I values for both QPEs are
relatively high at short spatial lag, with Stage IV yielding 0.68 at
4 km and MRMS yielding 0.7 at 2 km. In addition, the Moran’s I
values, in all six cases (two QPEs and three storms), are fitted to
powered exponential functions, meaning that the correlation of the
radar error ε decays exponentially with increasing spatial spacing.
This finding widely echoes with previous studies in radar error
modeling where the spatial correlation function is parameterized
by fitting a two-parameter power exponential function (Mandapaka
et al. 2010; Dai et al. 2014; Ko et al. 2018).

In a similar fashion as Figs. 10(a and b), the temporal autocor-
relations of radar error are presented in Figs. 11(a and b), except
that the only results from Stage IV during Hurricane Harvey and
MRMS during the 2016 Tax Day storm and Hurricane Harvey are
displayed because of the sample size limit (>200). Due to its vast
spatial coverage, Hurricane Harvey generates the most marginal
samples collected at the selected radar pixels, as indicated by the
inverted bars. The results show that no significant autocorrelation
exists at any temporal lag for the storms or for either QPE, meaning
that no persistence is observed in the temporal variation of radar
error. Previous studies seemed to diverge regarding the temporal
structure of radar errors: some found insignificant temporal corre-
lations as this study does (e.g., Habib et al. 2008); while other stud-
ies on radar error modeling utilized autoregressive lag-one model

Table 2. OB summary table

Rainfall product Storm event Average OB Minimum OB Maximum OB Total sample size

MRMS 2015 Memorial Day 0.85 0.63 1.20 952
2016 Tax Day 0.78 0.43 1.07 1,377

2017 Hurricane Harvey 0.92 0.67 1.14 7,607
All 0.88 0.43 1.20 9,936

Stage IV 2015 Memorial Day 1.12 0.62 3.70 417
2016 Tax Day 0.93 0.49 2.08 520

2017 Hurricane Harvey 1.06 0.77 1.28 3,677
All 1.02 0.49 3.70 4,614
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assuming positive correlation at small time step (e.g., Ko et al.
2018). In spite of the differences among the previous studies, most
of them lacked sufficient observations to firmly support any con-
clusion or assumption on the temporal structure of radar errors.
More research is thereby needed to understand the spatiotemporal
correlations of radar errors for various types of rainfall and radar

data (Peleg et al. 2013). Herein, the authors intend to emphasize
that sample size is vital for estimating the correlation coefficients
and thus should be maximized (Kessler and Neas 1994; Habib et al.
2001a). Therefore, to augment and verify the findings from this
study, the authors will apply the new sampling approach to long-
term radar and rain gauge data in a future study.

Fig. 8. 2D histogram of radar error from the three storm events combined for (a) Stage IV; and (b) MRMS.
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Hydrologic Simulation

Because of the model calibration effort and the minor role of in-
filtration, the runoff simulation error is assumed to be mainly
caused by the MAP estimation error instead of other modeling
and parameter uncertainties. The calibrated HEC-HMS model
was used to simulate runoff during Hurricane Harvey with three
types of rainfall inputs, i.e., Stage IV, MRMS, and rain gauge.

Comparisons are made between the simulated streamflow and
the observed at four junctions along Bray Bayou (Junction 1/
USGS8074760@Belle Park Dr.; Junction 2/USGS8074810@S.
Gessner Rd.; Junction 3/USGS8075000@Main St.; and Junction
4/USGS8075110@MLK Blvd.) (see Fig. 3). Differences between
simulated and observed hydrographs are summarized statistically
(Table 3) using Eqs. (6)–(9) and presented visually in Fig. 12.
Based on RMSE, NSE, and hydrograph shape, simulations driven

Fig. 9. CB from the three storm events combined for (a) Stage IV; and (b) MRMS.
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by MRMS and rain gauge equally generate better overall matches
with the observations than those from Stage IV at all junctions.
The Pe and Ve values indicate that peak flow and runoff volume
are overestimated in the Stage IV hydrographs at most junctions,
while the MRMS and rain gauge data generate better Pe and Ve
with small overestimations or underestimations. The systematic

overestimation by Stage IV-driven stimulation is expected as it
aligns with the rainfall amount comparison.

To further dissect MAP estimation, it is decomposed into rain-
fall error and spatial resolution. Table 4 summarizes these two
factors in the three rainfall inputs: (1) OB being the averaged
OB (OB) of the rainfall measurements enclosed by the Bray Bayou

Fig. 10. Spatial autocorrelation coefficients of radar errors from the three storm events separately for (a) Stage IV; and (b) MRMS.
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boundary; and (2) spatial resolution being the area of radar pixel in
the cases of QPEs and the average area of Theissen polygons in the
case of rain gauge. According to OB values, Stage IV and MRMS
overestimate (OB ¼ 1.11) and underestimate (OB ¼ 0.94) the
rainfall in Brays Bayou, respectively, which corresponds to their
Ve values of 28% and −5% at Junction 4 (near the watershed
outlet). Furthermore, it is worthwhile noticing the implication of

spatial resolution on the accuracy of MAP estimation. Of all three
rainfall inputs, MRMS has a superior spatial resolution, while
Stage IVand rain gauge are coarser. When combining OB and spa-
tial resolution, one can find that Stage IV produces lesser MAP
estimation, as it has the largest OB and coarsest spatial resolution.
The difference in spatial resolution also explains why the hy-
drologic simulations driven by rain gauge and MRMS perform

Fig. 11. Temporal autocorrelation coefficients of radar errors from the three storm events separately for (a) Stage IV; and (b) MRMS.
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similarly despite that the rain gauge measurement is unbiased
(OB ¼ 1).

Using one watershed (Brays Bayou) in Harris County, the
authors cannot simply determine the better QPE product (Stage
IV or MRMS) for flow simulations during Hurricane Harvey but
would like to emphasize the significance of spatial resolution of
QPE in MAP estimation. When rainfall estimates are unbiased,
the uncertainty in MAP estimation can be analytically decomposed
into two components: (1) the fractional coverage of rainfall over
catchments, and (2) the spatial variability of rainfall itself, or inner
variability (Entekhabi and Eagleson 1989; Barancourt et al. 1992;

Table 3. Summary of hydrograph comparison

Statistic measures Junction No. Stage IV MRMS Rain gauge

Ve (%) 1 16 −18 −10
2 38 0 9
3 23 −8 0
4 28 −5 3

Pe (%) 1 30 −5 3
2 74 40 53
3 2 −8 −7
4 21 10 11

RMSE (m3=s) 1 33 19 17
2 141 61 82
3 164 71 91
4 220 90 82

NSE 1 0.68 0.89 0.91
2 0.15 0.84 0.71
3 0.78 0.96 0.93
4 0.63 0.94 0.95
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Fig. 12. Simulated and observed hydrographs for Hurricane Harvey in Brays Bayou at (a) Junction 1/USGS8074760@Belle Park Dr.; (b) Junction
2/USGS8074810@S. Gessner Rd.; (c) Junction 3/USGS8075000@Main St.; and (d) Junction 4/USGS8075110@MLK Blvd.

Table 4. Averaged OB and spatial resolution of rainfall inputs

Rainfall input OB Spatial resolution (km2)

Stage IV 1.11 ∼16
MRMS 0.94 ∼1
Rain gauge 1 13
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Seo and Smith 1996; Zhang and Seo 2017). Uncertainty in estimat-
ing the first component depends on the spatial resolution of QPE in
a way that QPE with a higher resolution better represents the frac-
tional coverage of rainfall over catchments.

Conclusions and Future Work

The authors investigate the performances of two hourly radar
QPEs, the NEXRAD Stage IV and the MRMS Q3gc products, be-
cause of their important roles as precipitation input in major opera-
tional river forecasting activities. A new sampling approach for
spatial reference rainfall is introduced in this study, which features
resolving spatial variability of one QPE at the subpixel level by
using another QPE with finer spatial resolution. Due to the vast
spatial coverage and long duration, Hurricane Harvey (2017) pro-
vides a unique opportunity to demonstrate this new methodology.
In comparison to the other two flood-inducing storm events (2015
Memorial Day storm and 2016 Tax Day storm) occurring in Harris
County, Texas, Hurricane Harvey shows not only its exceptional
rainfall magnitude but also the importance of sample size in study-
ing the spatiotemporal characteristics of radar error. Thanks to the
expixelent spatial scale and density of the HCFCD rain gauge net-
work, the authors manage to effectively collect sufficient spatial
reference rainfall samples with the new approach and then evaluate
the radar errors in terms of bias, conditional dependence on rainfall
intensities, and spatiotemporal structure. Several major findings
from this study are summarized as follows:
1. Serving as truth in QPE evaluation, sufficient spatial reference

rainfall samples are vital for truthfully revealing the perfor-
mance of QPE as well as various aspects of radar error. The
collection of spatial reference rainfall should be based on spatial
rainfall variability at a subpixel level.

2. The Stage IV and MRMS QPEs perform fairly well during the
three investigated storms: with Stage IV overestimating and
MRMS underestimating the hourly rainfall by 2% and 12%, re-
spectively. Both QPEs tend to overestimate very light rainfall.

3. Spatial correlation of radar errors from both QPEs can be de-
scribed as powered exponential functions of interpixel distance.
No significant temporal correlation of radar errors is found in
this study for either QPE at any temporal lags.

4. Spatial resolution of QPE determines the estimation of MAP as
the inputs to hydrologic simulations.
The insight gained from investigating radar error will enable us

to further improve QPE performance in two ways: (1) to improve
the rainfall estimation algorithm accounting for CBs; and (2) to
model radar error as a spatially and temporally correlated random
process. In addition, the sampling approach of spatial reference
rainfall is not limited to Stage IVand MRMS as long as two utilized
QPE products have different spatial resolutions and overlapping
spatial and temporal extents. Therefore, this approach can be ap-
plied more broadly. For instance, provided available rain gauge re-
cords, 20 years of the multisensor precipitation estimates (MPE,
4 × 4 km2) covering the CONUS can be evaluated by utilizing the
corresponding reflectivity product (1 × 1 km2) converted to rainfall
intensity using the radar reflectivity–rainfall rate (Z–R) relation-
ship. Such research will be presented in a forthcoming paper.
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