

OH* chemiluminescence in the H₂-NO₂ and H₂-N₂O systems

Clayton R. Mulvihill*, Eric L. Petersen

J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA

ARTICLE INFO

Article history:

Received 3 April 2019

Revised 2 June 2019

Accepted 13 November 2019

Keywords:

Shock tubes

Emission

Hydrogen

Nitrogen dioxide

Nitrous oxide

ABSTRACT

Shock-tube experiments were performed in a mixture of 0.222% H₂/0.392% NO₂/Ar between 1535 and 2003 K near 1.1 atm. Time histories of OH* chemiluminescence from the A→X band near 307 nm were recorded and showed poor agreement with predictions from a recent hydrocarbon/NO_x model when only the OH*-forming reactions N₂O + H ⇌ N₂ + OH* (R2) and O + H (+M) ⇌ OH* (+M) (R3) were included. Since chemiluminescence is strongly correlated with heat release and since the reaction NO₂ + H ⇌ NO+OH is known to be primarily responsible for heat release during H₂-NO₂ oxidation, the chemiluminescent reaction

was proposed for the first time. By fitting the experimental OH* data, a best-fit rate constant was obtained as $k_1 = 7.0 \times 10^{13} \exp(-27.680/T)$, with k_1 in $\text{cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ and T in K. This expression for k_1 is valid in the experimental temperature range of 1535 to 2003 K. The fitted k_1 value is dependent on the base NO_x mechanism used. OH* profiles were also acquired in a mixture of 0.333% H₂/0.666% N₂O/Ar between 1448 and 1776 K near 1.1 atm. The introduction of the new reaction R1 into the mechanism had no effect on the modeling of either the newly acquired H₂-N₂O OH* data or previous H₂-N₂O OH* data from the literature. Finally, R1 and R2 violate a long-held assumption concerning the exothermicity of such reactions, suggesting that the exothermicity criteria used to evaluate potential chemiluminescent reactions could be relaxed in future studies. Instead, a new methodology based on both the enthalpy of reaction and the entropy of reaction could be employed to identify new chemiluminescent reactions. To the best of the authors' knowledge, this is the first detailed study of OH* chemiluminescence kinetics in the H₂-NO₂ system.

© 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

The H₂-NO₂ and H₂-N₂O systems are of interest for a number of reasons. Many of the elementary reactions related to NO_x formation/mitigation are key reactions in these simple fuel systems, making them insightful from a fundamental standpoint. From a practical perspective, H₂-NO₂ kinetics are important in rocket-propellant applications [1], while H₂-N₂O kinetics are of interest in safety considerations related to semiconductor manufacturing and nuclear waste management [2].

Emission near 307 nm from excited-state OH (OH*) corresponding to the A 2Σ⁺→X 2Π transition can serve as a marker of heat release in a variety of fuel/oxidizer systems, and its appearance is often used as an indicator of ignition onset. Furthermore, OH* emission diagnostics are low-cost and relatively simple to operate. For these reasons, OH* diagnostics are broadly used across the

combustion community and can provide meaningful insights into the kinetics of reacting systems [3].

The H₂-N₂O system has seen a handful of OH* chemiluminescence studies in shock tubes. Early work involved the low-pressure studies by Soloukhin et al. [4,5] and Hidaka et al. [6]. Soloukhin and Van Tiggelen [4] first proposed the reaction

as being responsible for OH* formation in the H₂-N₂O system. Hidaka et al. then proposed an expression for the rate constant k_2 for R2. The importance of R2 was later corroborated in a number of H₂-N₂O shock-tube studies at higher pressures by Mevel et al. [7–9] and also by Mathieu and Petersen [10]. Mathieu and Petersen used mixtures of NH₃ and O₂ but nonetheless found R2 to be important in predicting the shapes of their OH* time histories.

While there are studies of H₂-O₂ mixtures sensitized by small amounts of NO₂ (e.g., [11–14]), the present work focuses on H₂ oxidation with NO₂ as the sole oxidizer. In the 1950s, Ashmore and Levitt used a broadband NO₂ absorption diagnostic to study

* Corresponding author.

E-mail address: cmulvihill@tamu.edu (C.R. Mulvihill).

the global ignition behavior of $\text{H}_2\text{-NO}_2$ mixtures between 684 and 843 K within a static reactor [15–17]. Concurrently, Rosser and Wise used a similar diagnostic to study $\text{H}_2\text{-NO}_2$ oxidation between 600 and 700 K, also within a static reactor [18]. Both Ashmore and Levitt and Rosser and Wise identified important reaction steps in the $\text{H}_2\text{-NO}_2$ mechanism, such as $\text{NO}_2 + \text{H} \rightleftharpoons \text{NO} + \text{OH}$ and $\text{H}_2 + \text{OH} \rightleftharpoons \text{H} + \text{H}_2\text{O}$. Sawyer and Glassman later performed a flow reactor study of $\text{H}_2\text{-NO}_2$ oxidation between 850 and 1100 K by measuring temperature profiles using a thermocouple inserted into the flow [19]. More recently, Park et al. studied $\text{H}_2\text{-NO}_2$ oxidation between 602 and 954 K in a quartz reactor, measuring NO_2 and NO time histories and ultimately extracting several rate coefficients from their data [20]. Mueller et al. performed a flow reactor study of the $\text{H}_2\text{-NO}_2$ reaction by measuring NO , NO_2 , and H_2O time histories and provided a single rate coefficient measurement of the reaction $\text{H}_2 + \text{NO}_2 \rightleftharpoons \text{HONO} + \text{H}$ at 833 K [21].

Several studies of $\text{H}_2\text{-NO}_2$ detonation, both experimental and theoretical, have also been performed to investigate the two-step heat release associated with fuel-rich $\text{H}_2\text{-NO}_2$ mixtures [22–25]. These detonation studies identified the reaction $\text{NO}_2 + \text{H} \rightleftharpoons \text{NO} + \text{OH}$ as the primary heat-releasing reaction in both fuel-rich and fuel-lean $\text{H}_2\text{-NO}_2$ mixtures. Very recently, Mulvihill et al. utilized H_2O laser absorption to measure H_2O time histories between 917 and 1782 K near 1 atm in dilute $\text{H}_2\text{-NO}_2$ mixtures in what seems to be the first shock-tube study of the $\text{H}_2\text{-NO}_2$ system [26].

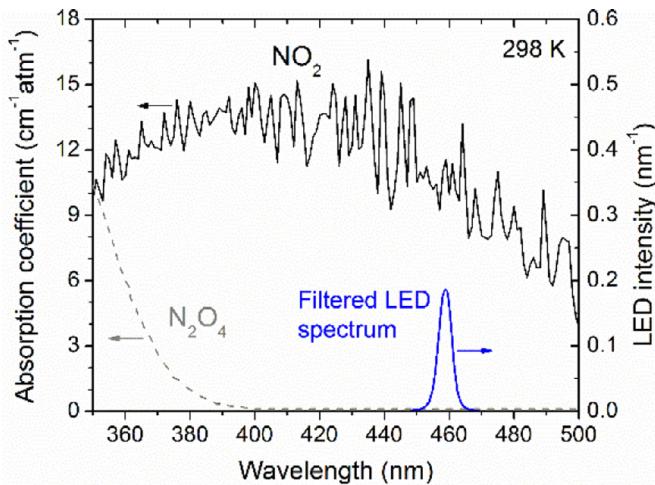
However, there appear to be no studies of OH^* chemiluminescence in the $\text{H}_2\text{-NO}_2$ system. Such unique data can further the understanding of $\text{H}_2\text{-NO}_2$ kinetics and, as discussed later, can provide insight on chemiluminescent reactions in general. Therefore, the goal of this paper is to provide new OH^* measurements in a shock tube. Presented first are descriptions of the experimental apparatus, with special attention given to $\text{H}_2\text{-NO}_2$ mixture preparation. The modeling considerations are then outlined, including new or updated rates for OH^* -quenching reactions. Results for both the $\text{H}_2\text{-NO}_2$ and $\text{H}_2\text{-N}_2\text{O}$ mixtures are then presented, followed by a discussion of the new chemiluminescent reaction identified from these data. The proposed OH^* sub-mechanism for the $\text{H}_2\text{-NO}_2$ and $\text{H}_2\text{-N}_2\text{O}$ systems is given in tabular form, and comparisons to selected literature data are made.

2. Experiment

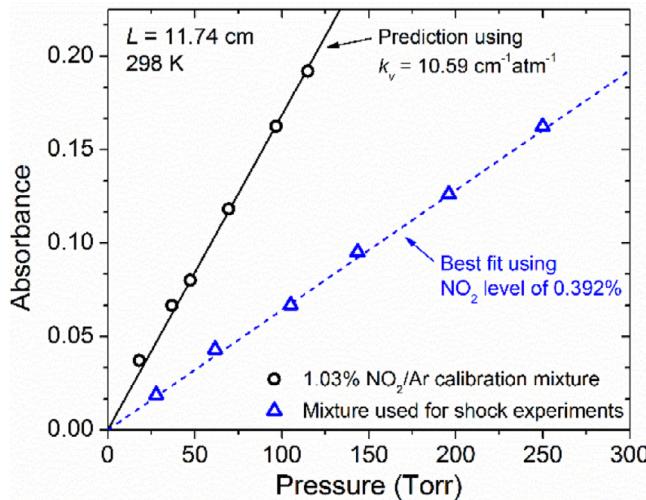
2.1. Shock tube

All experiments were performed in a stainless steel shock tube with a driver section of length 3.25 m and inner diameter 7.62 cm with a driven section of length 7.88 m and inner diameter 16.24 cm. Polycarbonate diaphragms of thickness 0.254 mm were burst using He or He/air as the driver gas. The driven section was vacuumed to ultimate pressures of $\sim 10^{-5}$ Torr prior to each experiment using a turbomolecular pump. Five fast-response, piezoelectric pressure transducers (PCB 113A) were used to track the passage of the incident shock wave and calculate the incident-shock velocity, v_s . The 1-D normal shock wave relations were then used to calculate the temperature (T_5) and pressure (P_5) behind the reflected shock wave using v_s and the measured temperature and pressure of the driven section gas prior to the experiment. Due to uncertainty in v_s , uncertainties in T_5 and P_5 are estimated to be $\pm 0.8\%$ and $\pm 1.0\%$, respectively. The last PCB transducer (1.6 cm from the endwall) was also used to monitor the sidewall pressure and was shielded using RTV silicone to mitigate heat transfer effects which can alter measured pressure time histories. Time zero was defined by the arrival of the reflected shock wave at the sidewall pressure transducer and was determined with an estimated uncertainty of $\pm 1\ \mu\text{s}$.

Mixtures were prepared manometrically in a 40-L, stainless steel mixing tank. Partial pressures of constituents were measured using gauges of ranges 0–10 Torr, 0–1000 Torr, or 0–13,000 Torr. Prior to mixture preparation, the mixing tank was vacuumed to ultimate pressures of $\sim 10^{-6}$ Torr using the turbomolecular pump. After mixture preparation, mixtures were allowed to mix for at least 60 min prior to experiments. Gases were supplied by Praxair with the following purity levels: 99.999% for Ar, 99.999% for H_2 , 99.5% for N_2O , and 99.5% for NO_2 . The NO_2 was supplied as a mixture of 1.03% NO_2 in balance Ar; this $\text{NO}_2\text{-Ar}$ mixture was used to prepare all mixtures containing NO_2 . The composition of the $\text{H}_2\text{-NO}_2$ mixture was 0.222% H_2 /0.392% NO_2 /99.386% Ar ($\varphi = 0.28$), while the composition of the $\text{H}_2\text{-N}_2\text{O}$ mixture was 0.333% H_2 /0.666% N_2O /99.001% Ar ($\varphi = 0.50$).


2.2. LED-based NO_2 diagnostic

In a recent study by the authors [26], it was observed that $\text{H}_2\text{-NO}_2$ mixtures were found to contain less NO_2 than expected according to partial pressure calculations. It was originally suspected this lower-than-expected NO_2 concentration was due to NO_2 dimerization to N_2O_4 (i.e., $2\text{NO}_2 \rightleftharpoons \text{N}_2\text{O}_4$). Regardless of the mechanism causing the lower NO_2 concentration, the authors chose for the present study to simply measure the amount of NO_2 in the final mixture directly. To assess the mixture concentrations, Mulvihill et al. [26] employed two methods of determining the NO_2 concentration: an inference method using a laser absorption diagnostic for H_2O and a direct measurement method using an LED-based diagnostic for NO_2 . The LED diagnostic was described briefly by Mulvihill et al. and is described in more detail below. The two diagnostics demonstrated excellent agreement in terms of the NO_2 mole fraction in the mixtures. Note that the H_2O diagnostic also served to validate the accurate H_2 content of the $\text{H}_2\text{-NO}_2$ mixtures used by Mulvihill et al., one of which was nearly identical to the $\text{H}_2\text{-NO}_2$ mixture used herein.


A blue LED was supplied by a benchtop power supply at 3.5 V and ~ 70 mA. LED light traversed an 11.74-cm aluminum absorption cell with sapphire windows and terminated on a silicon photodetector (Newport 2032) operated with a gain of 2×10^6 V/A; the slight detector voltage offset was subtracted from the measured intensity to obtain the true intensity. A series of collimating lenses was employed, and an aperture eliminated stray light. A bandpass filter with center wavelength $\lambda_c = 459$ nm and full-width at half-maximum FWHM = 5 nm was also placed in the beam path. The spectral density of the filtered LED light was measured with a spectrometer (Ocean Optics HR2000+) as shown in Fig. 1. The spectrometer was calibrated using a Hg/Ar pen lamp (Oriel 6035).

N_2O_4 presents a negligible level of absorption near 460 nm, making this LED ideal for NO_2 measurements that are free from N_2O_4 interference (Fig. 1). Although the absorption coefficients (k_v) in Fig. 1 were not obtained using Ar as the bath gas, prior work [29] has demonstrated that k_v for NO_2 in this region is insensitive to pressure in the range of interest (0 to ~ 250 Torr), suggesting that the identity of the collisional partner has a negligible effect on k_v . The product of the NO_2 spectrum and the LED spectrum (normalized to an area of 1) was integrated to obtain an effective k_v of $10.59\ \text{cm}^{-1}\ \text{atm}^{-1}$.

To validate k_v , a calibration mixture of 1.03% $\text{NO}_2\text{/Ar}$ was utilized. This mixture was prepared by Praxair using the gravimetric method, which is insensitive to N_2O_4 dimerization. The absorbance A was measured by recording the light intensity on the photodetector with (I_t) and without (I_0) varying pressures of mixture in the absorption cell using the Beer-Lambert law $A = -\ln(I_t/I_0)$. A is defined as $A = k_v P X_{abs} L$, where P is the pressure, X_{abs} is the mole fraction of the absorbing species, and L is the path length. The val-

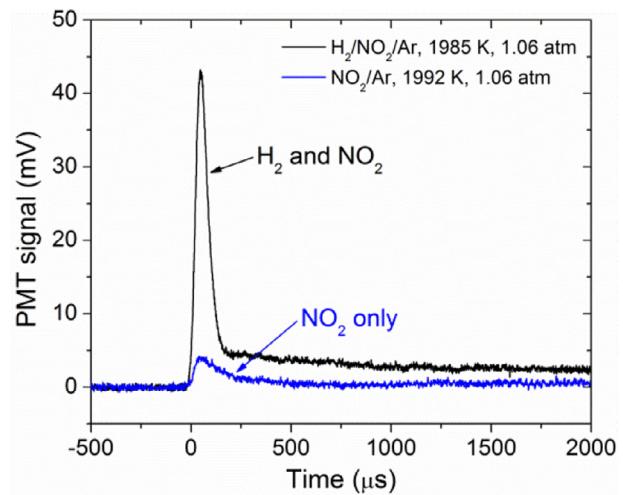

Fig. 1. Literature values of room-temperature absorption coefficients of NO_2 [27] and N_2O_4 [28]. The measured spectrum of the filtered LED (normalized to an area of 1) is also shown.

Fig. 2. Room-temperature absorbance of NO_2 -containing mixtures using the LED diagnostic. Symbols: measured values, solid line: prediction using $k_v = 10.59 \text{ cm}^{-1} \text{ atm}^{-1}$ and $X_{abs} = 1.03\%$, dashed line: best fit to measured data obtained using $k_v = 10.59 \text{ cm}^{-1} \text{ atm}^{-1}$ and $X_{abs} = 0.392\%$. Uncertainty bars ($\pm 2\%$, assuming $\pm 1 \text{ mV}$ uncertainty in I_t and I_0) are smaller than symbols.

ues of A measured in the calibration mixture and the prediction of A using $X_{abs} = 1.03\%$ and $k_v = 10.59 \text{ cm}^{-1} \text{ atm}^{-1}$ typically agreed within 1% (Fig. 2), validating the calculated k_v . Another calibration with a known mixture of 1.02% NO_2 /Ar further confirmed the calculated k_v .

Figure 2 also shows the measured absorbance data for the mixture used during shock-tube experiments as well as the best fit to these data, which was obtained using $X_{abs} = 0.392\%$ and $k_v = 10.59 \text{ cm}^{-1} \text{ atm}^{-1}$. The value of 0.392% was therefore used as the NO_2 mole fraction for the $\text{H}_2/\text{NO}_2/\text{Ar}$ mixture, with a conservatively estimated uncertainty of $\pm 4\%$. The expected NO_2 concentration in this mixture, based on partial pressure calculations, was 0.444%. The final mixture composition was 0.222% H_2 /0.392% NO_2/Ar . As mentioned earlier, the NO_2 and H_2 compositions in $\text{H}_2/\text{NO}_2/\text{Ar}$ mixtures were confirmed by the authors in a separate work via direct measurements using the NO_2 diagnostic and via indirect measurements using an H_2O laser absorption diagnostic. The two diagnostics demonstrated excellent agreement regarding

Fig. 3. Comparison of raw PMT signals with (0.222% H_2 /0.392% NO_2/Ar) and without (0.392% NO_2/Ar) H_2 in the mixture. Identical optical configurations were used for both experiments (bandpass filter: $\lambda_c = 300 \text{ nm}$, FWHM = 40 nm).

the NO_2 content in the mixtures; see Mulvihill et al. [26] for more details.

Even at 250 Torr, room-temperature chemical equilibrium calculations indicate that the mole fraction of N_2O_4 is only 2.2% that of NO_2 , which is well within the $\pm 4\%$ uncertainty. This minimal influence of dimerization on the measurements in Fig. 2 decreases with pressure: the calculated amount of N_2O_4 drops to 0.9% of the NO_2 mole fraction at 100 Torr. Therefore, NO_2 dimerization had a minimal impact on the NO_2 measurements in the absorption cell.

2.3. OH^* diagnostic

Light emission from the shock tube exited a sapphire window port located 1.6 cm from the endwall (in the same plane as the sidewall pressure transducer). After passing through a 2.0-mm slit (1.5 mm for the $\text{H}_2\text{--N}_2\text{O}$ experiments due to higher signal levels), the light was focused via a mirror ($f = 25 \text{ cm}$) and lens ($f = 10 \text{ cm}$) onto a photomultiplier tube (PMT) (Hamamatsu 1P21). The PMT was supplied by a power supply at voltages between 500 and 830 V; care was taken to keep the output of the PMT below the linearity limit associated with the selected power supply voltage. The PMT was fitted with a bandpass filter: $\lambda_c = 300 \text{ nm}$, FWHM = 40 nm for the $\text{H}_2\text{--NO}_2$ experiments due to low emission levels and $\lambda_c = 307 \text{ nm}$, FWHM = 10 nm for the $\text{H}_2\text{--N}_2\text{O}$ experiments. Data obtained at lower temperatures were digitally filtered during post-processing to remove electrical noise due to low signal levels.

2.4. NO_2 interference

Although previous works on high-temperature NO_2 emission suggest that NO_2 emission declines rapidly below 330–390 nm [30, 31], several checks were performed to characterize such emission. Figure 3 shows the raw PMT voltage obtained by shock-heating the $\text{H}_2/\text{NO}_2/\text{Ar}$ mixture used herein. A mixture with no H_2 was then shock-heated to similar conditions using the same optical setup. A small amount of NO_2 interference was observed at this wavelength; the NO_2 emission in Fig. 3 is $\sim 9\%$ of the OH^* signal. A similar pair of experiments were performed at $\sim 2050 \text{ K}$, and the NO_2 emission at this higher temperature was $\sim 14\%$ of the OH^* signal, suggesting that the NO_2 interference increased with temperature. Since the conditions of Fig. 3 were at the high-temperature end of this study, the upper limit on NO_2 interference in the measured OH^* profiles was conservatively 10%, although it was likely

Table 1

The OH* sub-mechanism used in the present study. Reaction rates given in the form $k = AT^n \exp(-E_a/RT)$. Units are cal, mol, cm^3 , and s.

No.	Reaction	A	n	E_a	Reference
1	$\text{NO}_2 + \text{H} \rightleftharpoons \text{NO} + \text{OH}^*$	7.00×10^{13}	0	55,000	This study
2	$\text{N}_2\text{O} + \text{H} \rightleftharpoons \text{N}_2 + \text{OH}^*$	1.60×10^{14}	0	50,300	[6]
3	$\text{O} + \text{H} (+\text{M}) \rightleftharpoons \text{OH}^* (+\text{M})$	1.50×10^{13}	0	5975	[34]
4	$\text{H} + \text{OH}^* \rightleftharpoons \text{H} + \text{OH}$	1.31×10^{13}	0.5	-167	[35]
5	$\text{H}_2 + \text{OH}^* \rightleftharpoons \text{H}_2 + \text{OH}$	2.95×10^{12}	0.5	-445	[35]
6	$\text{H}_2\text{O} + \text{OH}^* \rightleftharpoons \text{H}_2\text{O} + \text{OH}$	5.93×10^{12}	0.5	-862	[35]
7	$\text{N}_2 + \text{OH}^* \rightleftharpoons \text{N}_2 + \text{OH}$	1.08×10^{11}	0.5	-1240	[35]
8	$\text{OH} + \text{OH}^* \rightleftharpoons \text{OH} + \text{OH}$	6.01×10^{12}	0.5	-763	[35]
9	$\text{O}_2 + \text{OH}^* \rightleftharpoons \text{O}_2 + \text{OH}$	2.10×10^{12}	0.5	-483	[35]
10	$\text{Ar} + \text{OH}^* \rightleftharpoons \text{Ar} + \text{OH}$	1.30×10^{10}	0.5	-199	This study
11	$\text{NH}_3 + \text{OH}^* \rightleftharpoons \text{NH}_3 + \text{OH}$	9.00×10^{12}	0.5	-596	This study
12	$\text{N}_2\text{O} + \text{OH}^* \rightleftharpoons \text{N}_2\text{O} + \text{OH}$	6.00×10^{12}	0.5	-556	This study
13	$\text{NO} + \text{OH}^* \rightleftharpoons \text{NO} + \text{OH}$	6.00×10^{12}	0.5	-397	This study
14	$\text{NO}_2 + \text{OH}^* \rightleftharpoons \text{NO}_2 + \text{OH}$	6.00×10^{12}	0.5	-556	This study ^a
15	$\text{OH}^* \rightarrow \text{OH}$	1.45×10^6	0	0	[36]

^a Assumed to be the same as for N_2O .

much less than this at lower temperatures. The NO_2 emission was not thermal, as confirmed by an emission check at 335 nm that revealed no emission; see Fig. S10 of the Supplementary Material (SM). It is worth noting the $\text{H}_2\text{--NO}_2$ and NO_2 systems possess different O-atom time histories (according to numerical predictions), so the comparison of the two systems may not be valid. However, the comparison shown in Fig. 3 seemed to be the best option available to the authors.

As another check for NO_2 interference, a comparison between two bandpass filters ($\lambda_c = 307 \text{ nm}$, FWHM = 10 nm and $\lambda_c = 300 \text{ nm}$, FWHM = 40 nm) was performed; see Fig. S11 of the SM. The shapes of the two normalized OH* profiles were very similar, and the small differences observed were likely due to slight differences in T_5 and P_5 . The similar time histories demonstrated that the NO_2 interference did not significantly alter the shapes of the measured emission profiles and also justified the use of the filter with FWHM = 40 nm.

3. Modeling

Modeling was performed using the Closed Homogenous Batch Reactor within the CHEMKIN software suite. The constant-internal energy, constant-volume assumption was utilized, which produces identical results to the constant-enthalpy, constant-pressure assumption for the dilute mixtures used herein. The recent modeling work of Zhang et al. [32] was chosen as the base NOx mechanism, with the minor modifications proposed by Mulvihill et al. [2,33]. The OH* sub-mechanism included by Zhang et al. was replaced with that of the current study, which is given in Table 1. Kinetic data on OH* includes three types of reactions that are discussed below: OH*-forming (i.e., chemiluminescent) reactions, OH*-quenching reactions, and radiative decay. These three classes of reactions can also be generalized to other chemiluminescent species (e.g., CH^*).

3.1. OH*-forming reactions ($A + B \rightleftharpoons C + \text{OH}^*$)

Reactions that result in the formation of OH may possess an analogous OH*-forming (i.e., chemiluminescent) reaction. The chemiluminescent reactions considered in the present study were

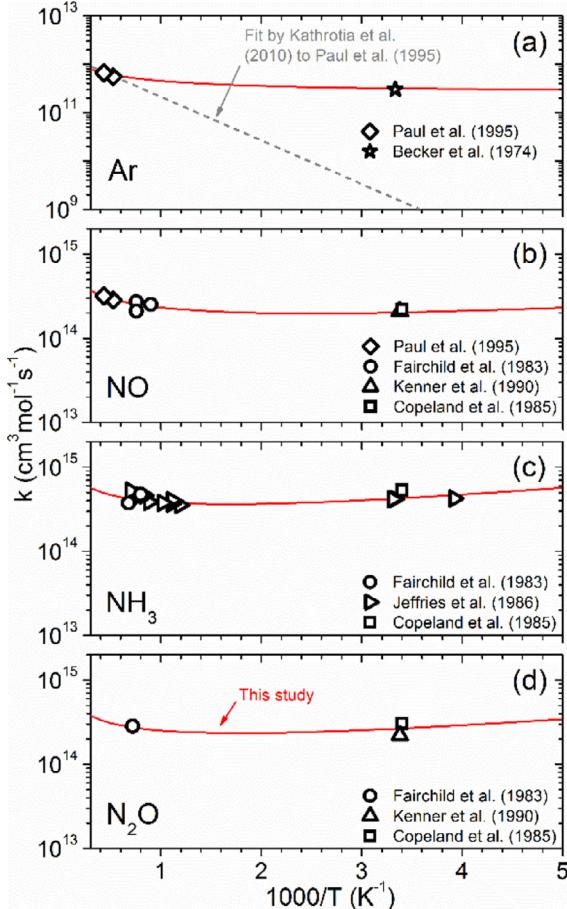
The rates for R2 and R3 were taken from Hidaka et al. [6] and Kathrotia et al. [34], respectively, while R1 is proposed in this study for the first time.

3.2. OH*-quenching reactions ($\text{OH}^* + A \rightleftharpoons \text{OH} + A$)

OH* can return to the $X^2\Pi$ ground state via collisional quenching by other molecules. Many data exist on OH* quenching by various molecules, and the review by Tamura et al. [35] provides fits to such data. In the present work, quenching rates for H, H_2 , H_2O , N_2 , OH, and O_2 were taken directly from Tamura et al.

Ar is often used as a bath gas in shock-tube experiments, but an expression for OH* quenching by Ar was not given by Tamura et al. [35]. In the present study, an expression was fit to the available quenching data for Ar that accounts for both the high- and low-temperature literature data for quenching by Ar (Fig. 4(a)). Additionally, due to the present interest in modeling $\text{H}_2\text{--NO}_2$ and $\text{H}_2\text{--N}_2\text{O}$ chemistry, reactions for OH* quenching by NO, NH_3 , and N_2O were fitted to literature data (Fig. 4(b)–(d)). No data on OH* quenching by NO_2 could be found, so the OH* quenching for NO_2 was assumed to be equal to that for N_2O . The rates for all quenching reactions in Table 1 follow similar trends ($n = 0.5$, $E_a < 0$) based upon the harpooned collisional complex model of Paul [37].

In their Table 2, Kathrotia et al. [34] erroneously transcribed the pre-exponential factor of k_4 (H quenching) from Tamura et al. [35] (although Fig. 1(a) of Kathrotia et al. correctly plots k_4). However, calculations at the conditions of the absolute OH* calibration used by Kathrotia et al. (3000 K, 2 atm, 1% H_2 /1% O_2 /Ar) using their $\text{H}_2\text{--O}_2$ mechanism showed only a 1.8% change in the OH* level when using the correct versus incorrect value of k_4 . Consequently, even if Kathrotia et al. did use the incorrect value of k_4 , it would have had a negligible effect on their OH* calibration, and so the conclusions of Kathrotia et al. seem reliable. The correct k_4 parameters from Tamura et al. [35] are given in Table 1.


3.3. Radiative decay ($\text{OH}^* \rightarrow \text{OH}$)

OH* can also return to the $X^2\Pi$ ground state via spontaneous emission. The observed OH* emission is due to this process. The radiative lifetime of OH* was taken from Dimpfl and Kinsey [36].

4. Results

4.1. $\text{H}_2\text{--NO}_2$ experiments

Figure 5 shows several normalized OH* profiles from the $\text{H}_2\text{--NO}_2$ mixture. The dashed lines indicate predictions of the

Fig. 4. Rate coefficients of quenching of the OH $A\ 2\Sigma^+$ state by (a) Ar, (b) NO, (c) NH_3 , and (d) N_2O . Symbols: experimental data, solid lines: fits used in this study, dashed line: fit used by Kathroli et al. [34]. Data are from Paul et al. [38], Becker et al. [39], Fairchild et al. [40], Kenner et al. [41], Copeland et al. [42] (rotational quantum number $N = 0$), and Jeffries et al. [43].

Zhang et al. mechanism [32] supplemented with the current OH* sub-mechanism but without R1 included. These predictions exhibit large deficiencies, particularly at higher temperatures. However, when the best-fit R1 is included in the model, the predictions are strikingly improved. The presence/absence of R2 in the mechanism had no effect on these predictions since there is a negligible amount of N_2O produced in this mixture. Additional experimental data are provided in the SM, and the considerations used in the fitting of k_1 are described in Section 5.1.

Figure 6(a) shows the peak OH* values from the $\text{H}_2\text{-NO}_2$ tests. Since an absolute OH* calibration was not performed in this study, the peak OH* values were normalized to the hottest run (2003 K). To ensure accurate relative OH* values, differences in PMT amplification were accounted for, and care was taken to ensure that the optical setup remained undisturbed during these tests. Figure 6(b) shows the time required for the OH* to decrease to 50% of the peak value. Also shown in Fig. 6 are the same model predictions as in Fig. 5. With the addition of R1, the peak OH* values are moderately improved while the time to 50% reductions are significantly improved, particularly at higher temperatures. Since quantitative observations are masked by normalization in Fig. 6(a), it is worth noting that the predicted absolute peak OH* values of the solid line are ~10 times higher than those of the dashed line at the high-temperature extreme.

For the $\text{H}_2\text{-NO}_2$ experiments, a slight amount of OH* emission was observed prior to the arrival of the reflected shock wave,

particularly for the hotter experiments (almost no such effects were observed for the $\text{H}_2\text{-N}_2\text{O}$ experiments due to both the lower shock-wave velocity and the smaller slit width). A sample case of this premature emission is illustrated in Fig. 7. Considerations of the PMT supply voltages and the calculated post-incident-shock conditions (T_2 and P_2) revealed that the premature emission was not due to OH* formation at T_2 and P_2 but was rather due to convolution of the OH* emission with the relatively wide slit (i.e., due to OH* emission from the region upstream of the window port). To consider the effect of this convolution, model predictions were convolved with a Gaussian profile to represent the temporal slit function created by the reflected shock wave relative to the stationary PMT optics, as shown in Fig. 7. The convolved model in Fig. 7 generally resembles the experimentally observed premature emission. Furthermore, the convolution brings the model into slightly better agreement with the data by shifting the timing of the peak OH* closer to the data and also slightly smoothing out the dip in OH* that is not observed in the data.

It may be possible to deconvolve the experimental data to obtain OH* profiles that are unaffected by slit effects. However, such deconvolution was not pursued for two reasons. First, the unavoidable noise fluctuations in the experimental OH* profiles are greatly magnified upon deconvolution. While a Wiener filter [44] can be used to overcome some of these noise magnifications, initial attempts with a Wiener filter produced unsatisfactorily noisy deconvolved profiles. Second, the case shown in Fig. 7 is the highest-temperature experiment for which the reflected shock speed is a maximum and, therefore, the convolution effects are a maximum. However, even in this worst-case scenario, the convolution effects are quite minor. Ultimately, slit convolution effects had no impact on the best-fit k_1 from the present study.

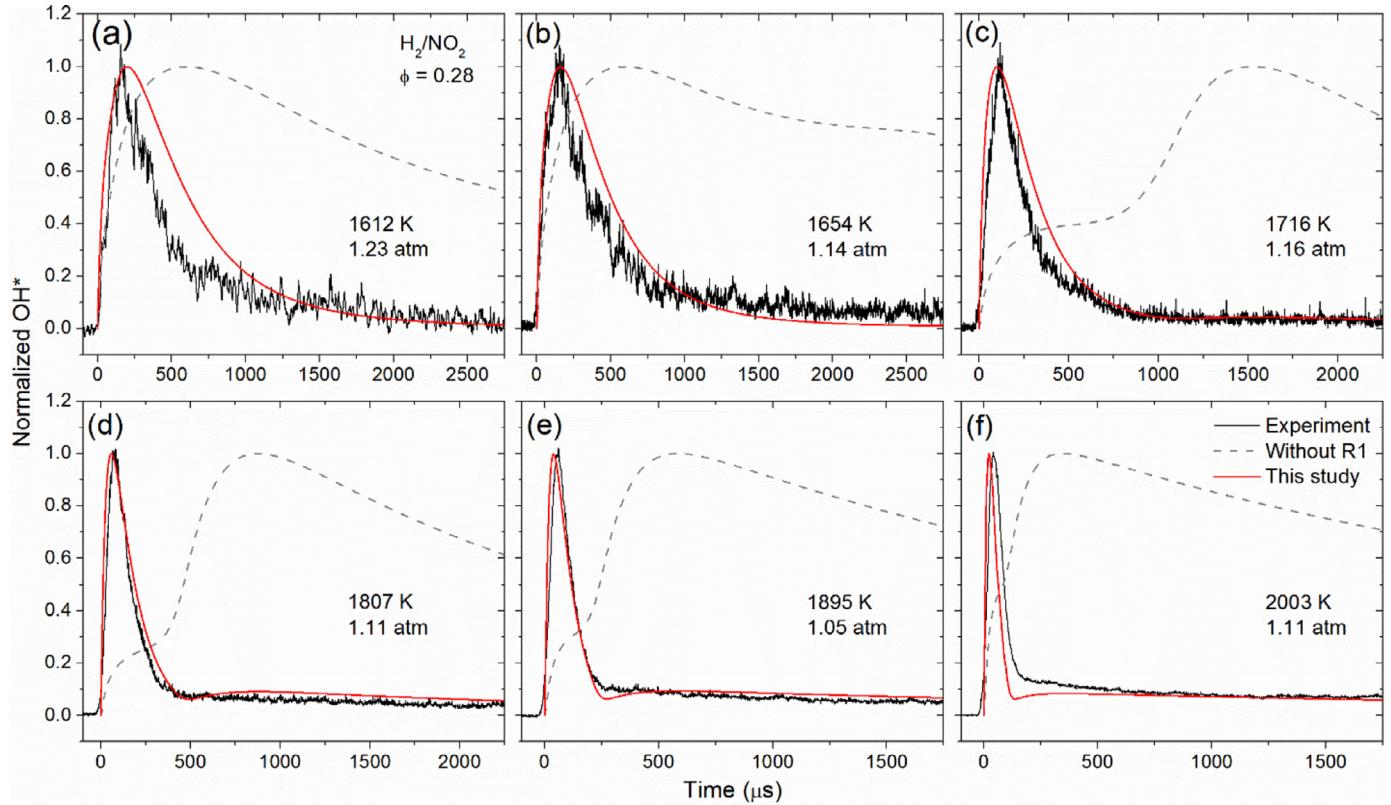

4.2. $\text{H}_2\text{-N}_2\text{O}$ experiments

Figure 8 shows several normalized OH* profiles from the $\text{H}_2\text{-N}_2\text{O}$ mixture. The dashed lines indicate predictions of the Zhang et al. mechanism [32] supplemented with the current OH* sub-mechanism, but with R1 excluded. When the best-fit R1 is included (solid lines), the predictions are completely unchanged so that the two mechanism predictions are indistinguishable. Figure 9(a) shows the peak OH* values that have been normalized to the hottest run (1776 K), while Fig. 9(b) shows the time required to reach the peak OH*. As in Fig. 8, the two mechanism predictions in Fig. 9 are indistinguishable, demonstrating that the addition of the best-fit R1 to the mechanism has no effect on OH* kinetics in the $\text{H}_2\text{-N}_2\text{O}$ system at these conditions.

5. Discussion

5.1. Fitting of $\text{NO}_2 + \text{H} \rightleftharpoons \text{NO} + \text{OH}^*$ (R1)

Chemiluminescence is strongly associated with heat release [3], and, in some cases, may be produced by a reaction with a ground-state analog that is a primary heat-releasing reaction. For example, the ground-state reaction $\text{N}_2\text{O} + \text{H} \rightleftharpoons \text{N}_2 + \text{OH}$ is known to be the primary source of heat release during the oxidation of $\text{H}_2\text{-N}_2\text{O}$ mixtures [8,25,45], and the chemiluminescent form of this reaction, R2, has been identified as the primary source of OH* in $\text{H}_2\text{-N}_2\text{O}$ mixtures [5,6,8]. By analogy to R2, the new chemiluminescent reaction R1 was postulated based on the known importance of its ground-state analog, $\text{NO}_2 + \text{H} \rightleftharpoons \text{NO} + \text{OH}$, to heat release in $\text{H}_2\text{-NO}_2$ mixtures [22,24,25]. It should be noted that the association with heat release is not the case for every chemiluminescent reaction. For example, the reactions $\text{CH} + \text{O}_2 \rightleftharpoons \text{OH} + \text{CO}$, $\text{C}_2 + \text{OH} \rightleftharpoons \text{CH} + \text{CO}$, and $\text{C}_2\text{H} + \text{O} \rightleftharpoons \text{CH} + \text{CO}$ are unimportant for heat release yet they possess chemiluminescent analogs.

Fig. 5. Normalized OH* profiles in a mixture of 0.222% H₂/0.392% NO₂/Ar. Thick solid lines: mechanism of [32] plus the OH* sub-mechanism of this study, dashed lines: [32] plus the OH* sub-mechanism of this study with R1 removed.

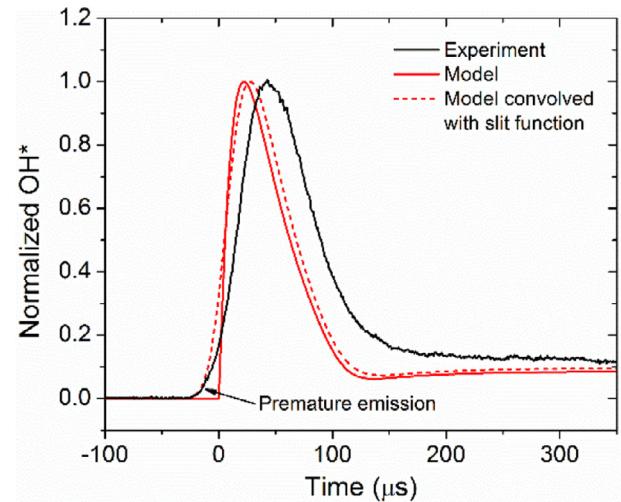
Using the Zhang et al. [32] mechanism as the base NO_x mechanism, the pre-exponential factor A for k_1 was determined by matching the model predictions to the shapes of the experimental OH* time histories (Fig. 5), while the best-fit activation energy E_a was determined by matching the model predictions to the slope of the normalized peak OH* data (Fig. 6(a)). The sensitivity of the OH* predictions to the value of k_1 is demonstrated in Fig. 10. The value of k_1 affects the amount of peak OH* produced, which indirectly affects the shape of the profile in the tail region due to normalization of the OH* profile.

The collision limits for the forward and backward rate coefficients of R1 were calculated using the hard-sphere data from Svehla [46] and are compared to the best-fit forward and backward rate coefficients of R1, k_{1f} and k_{1b} , in Fig. 11. k_{1b} is faster than k_{1f} across the temperature range of the present study since R1 is highly endothermic ($\Delta H_R^0 = 64.4$ kcal/mol), making violation of the collision limit of concern for k_{1b} . However, Fig. 11 shows that in the temperature range of the present study, k_{1b} remains a factor of 20 below the backward collision limit. The negative activation energy of k_{1b} in Fig. 11 is characteristic of reactions for which ΔH_R^0 exceeds E_a . Additionally, k_{1f} (i.e., k_1) is ~7 orders of magnitude slower than its ground-state counterpart (NO₂ + H \rightleftharpoons NO + OH); this is in general accord with R2 and R3, whose rate constants are respectively ~4 and ~3 orders of magnitude slower than their ground-state counterparts in the temperature range of the present study.


The evolution of the OH* profiles in the present H₂-NO₂ experiments can be explained by investigating the predicted time histories of H, O, and NO₂, which are shown in Fig. 12(a) for a sample case. A rate-of-production analysis using the Zhang et al. [32] mechanism revealed H is formed initially by H₂ + O \rightleftharpoons H + OH and then later by H₂ + OH \rightleftharpoons H + H₂O, and is con-

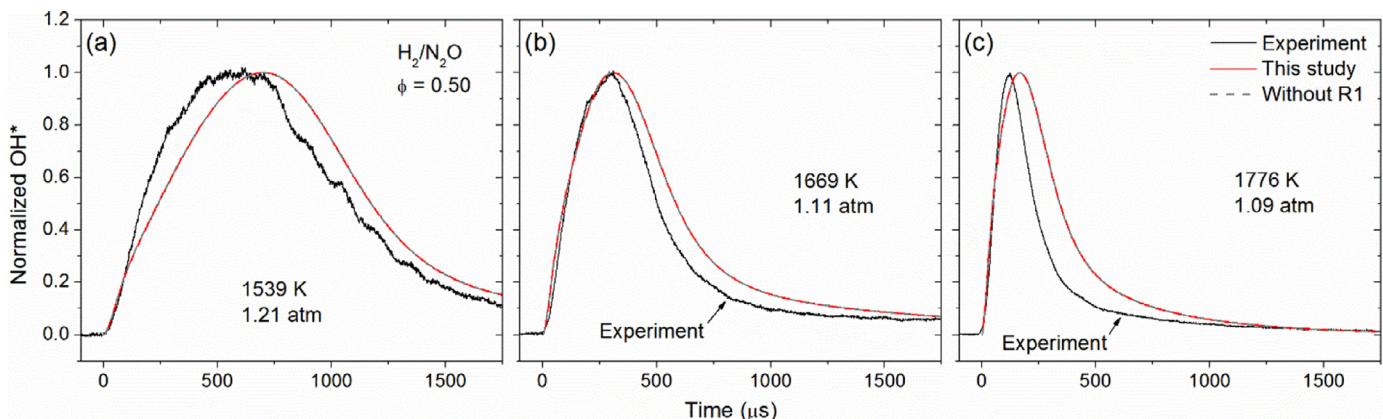
sumed almost exclusively by NO₂ + H \rightleftharpoons NO + OH. Oxygen atoms are formed immediately by NO₂ (+M) \rightleftharpoons NO + O (+M) and, to a much lesser extent, by NO₃ (+M) \rightleftharpoons NO₂ + O (+M). O-atom consumption arises primarily from the reactions NO₂ + O \rightleftharpoons NO + O₂ and H₂ + O \rightleftharpoons H + OH. At later times (~600 μ s for the case in Fig. 12(a)), a slight increase in O-atom production arises from the reaction O + H₂O \rightleftharpoons OH + OH in reverse. NO₂ consumption begins immediately due to NO₂ (+M) \rightleftharpoons NO + O (+M), but the reaction NO₂ + H \rightleftharpoons NO + OH quickly becomes the dominant pathway for NO₂ destruction. The reaction NO₂ + O \rightleftharpoons NO + O₂ also plays a small role in NO₂ consumption.

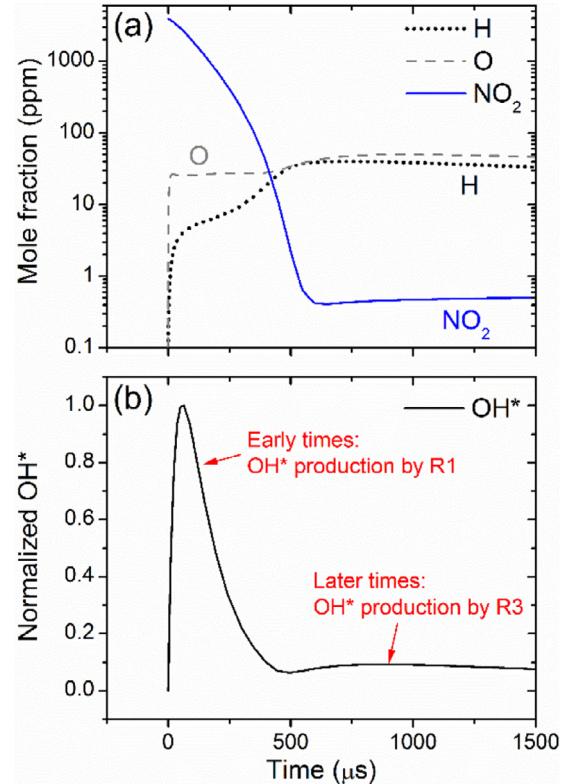
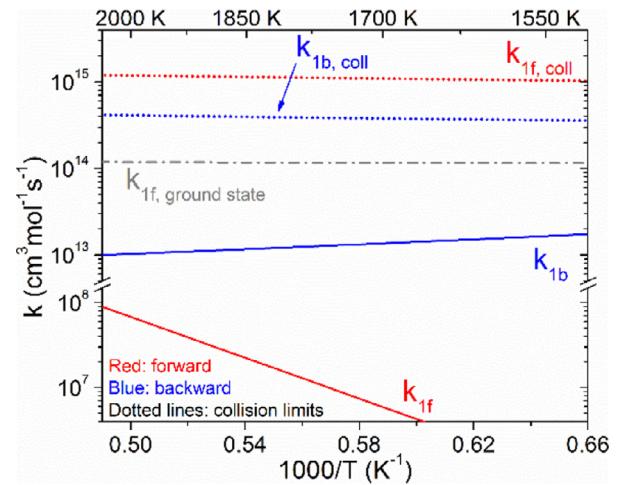
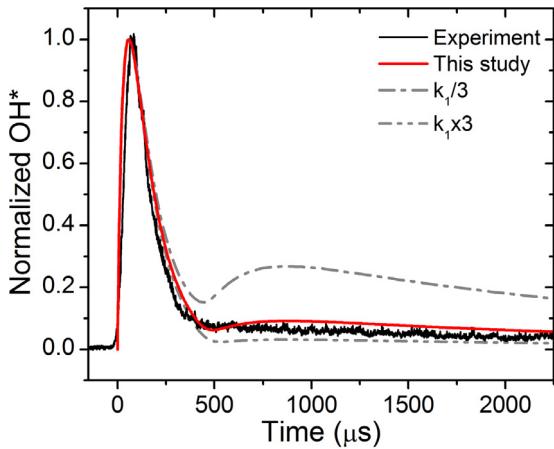
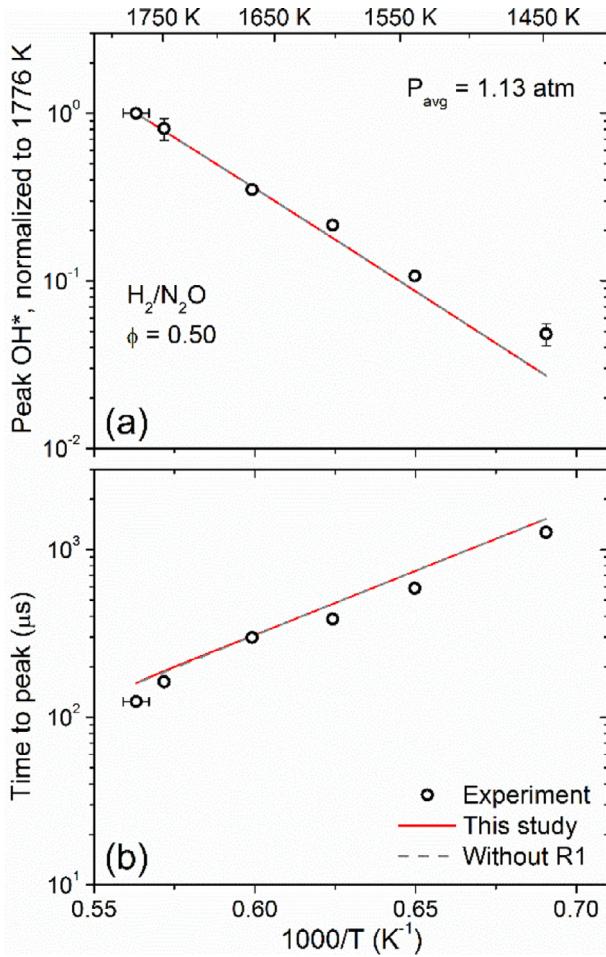
As highlighted in Fig. 12(b), the OH* production at early times originates from R1. As the NO₂ concentration decreases rapidly, OH* production by R1 concomitantly decreases. The increases in O and H concentrations at later times cause a slight rise in OH* concentration due to OH* production by R3.


5.2. Effect of R1 on the modeling of the H₂-N₂O system

A matter of potential concern was that the modeling of data in the H₂-N₂O system would be degraded upon the introduction of R1 to the kinetic mechanism. However, this concern for diminished performance with N₂O as the oxidizer was found to be unwarranted. Figures 8 and 9 demonstrate the lack of effect of R1 on modeling of the H₂-N₂O data from the present study: the mechanism predictions with and without R1 are identical. Further evidence of the lack of effect of R1 on modeling H₂-N₂O kinetics was found by utilizing the absolute peak OH* data of Hidaka et al. [6]. Hidaka et al. acquired quantitative peak OH* data in three H₂-N₂O mixtures, which are shown in Fig. 13. Also shown in Fig. 13 are the model predictions of the current study both with and without R1 included in the mechanism. In an identical fashion to

Fig. 6. (a) Normalized peak OH^* values and (b) time to 50% reduction values in a mixture of 0.222% H_2 /0.392% NO_2 /Ar. Solid lines: mechanism of [32] plus the OH^* sub-mechanism of this study, dashed lines: [32] plus the OH^* sub-mechanism of this study with R1 removed. Y-axis uncertainty bars are (a) $\pm 15\%$ and (b) experiment-specific and are smaller than the symbols if not visible.


Figs. 8 and 9, the two model predictions in Fig. 13 are identical, further demonstrating the introduction of R1 into the mechanism has no effect on the modeling of these $\text{H}_2\text{-N}_2\text{O}$ data. The inclusion of R1 was also found to have no effect on modeling of OH^* data in the $\text{NH}_3\text{-O}_2$ system; see the SM for details.





Fig. 7. Effect of convolving the model predictions with a slit function. Thick solid line: mechanism of [32] plus the OH^* sub-mechanism of this study, short dashed line: [32] plus the OH^* sub-mechanism of this study convolved with a Gaussian slit function with $\text{FWHM} = 26 \mu\text{s}$. Conditions and experimental data are those of Fig. 5(f) (2003 K, 1.11 atm).

5.3. Mechanism-dependent nature of fitting k_1

An unavoidable aspect of the k_1 fitting is its mechanism-dependent nature; similar dependences have been discussed, for example, by Kathrota et al. [34]. To demonstrate this mechanism dependence, a repeat fitting of k_1 was performed using Glarborg et al. [47] as the base mechanism. The best-fit k_1 using the Glarborg et al. mechanism was 5 times lower than the best-fit k_1 obtained with the Zhang et al. [32] mechanism. This difference in the best-fit k_1 resulted primarily from differences in predictions of H-atom concentrations and also O-atom concentrations due to different rate coefficients employed by Zhang et al. and Glarborg et al. Sensitivity analyses at the conditions of Fig. 10 using both mechanisms revealed that predictions of H , O , and NO_2 are all chiefly sensitive to the reaction $\text{NO}_2 (+\text{M}) \rightleftharpoons \text{NO} + \text{O} (+\text{M})$ in the first $\sim 500 \mu\text{s}$. Zhang et al. utilized the rate constant from Tsang and Herron [1], while Glarborg et al. recommend the expression from Yarwood et al. [48] for $\text{M} = \text{Ar}$. The two expressions are identical to within 1% at the low-temperature end of the present study but the Yarwood et al. expression is 30% larger at the high-temperature end of the present study. Further details on the differences between Zhang et al. and Glarborg are provided in the SM. The Zhang

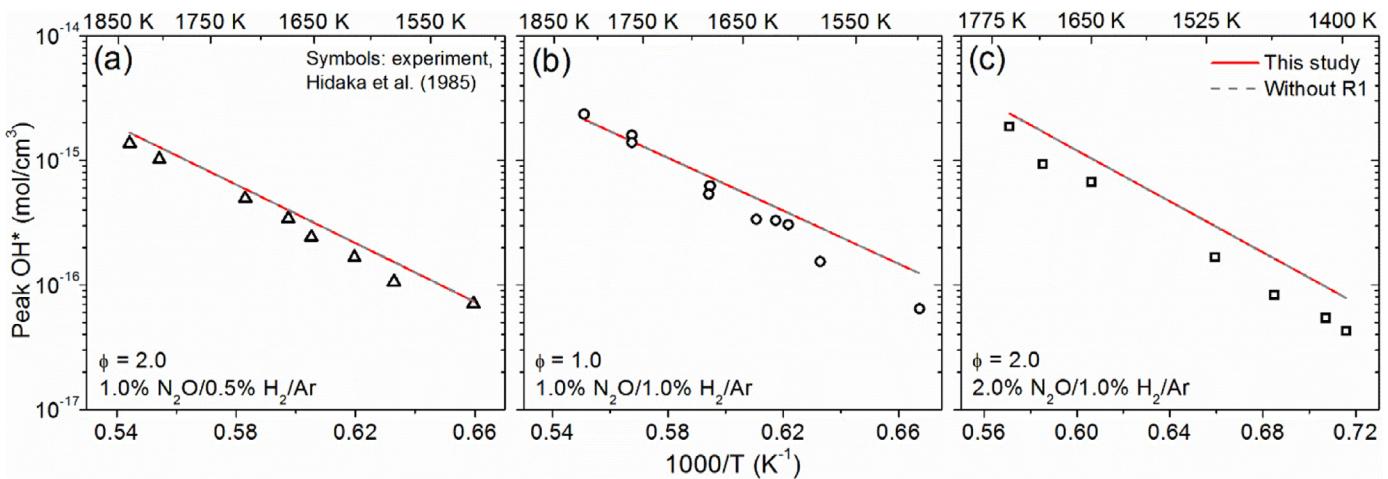
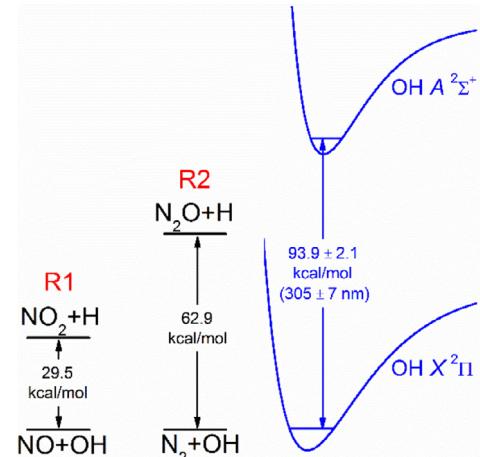


Fig. 8. Normalized OH^* profiles in a mixture of 0.333% H_2 /0.666% N_2O /Ar. Thick solid lines: mechanism of [32] plus the OH^* sub-mechanism of this study, dashed lines: [32] plus the OH^* sub-mechanism of this study with R1 removed. The two mechanism predictions are indistinguishable.

et al. mechanism was ultimately chosen as the base mechanism in the present study since the agreement with the experimental data was improved over that of the Glarborg et al. mechanism; see the SM for a demonstration of the best fit obtained with Glarborg et al.

An additional source of mechanism dependence is the rate constant for the chemiluminescent reaction R3. The value of k_3 proposed by Hall and Petersen [49] was tested during the fitting of k_1 . This rate is 5.4 and 7.5 times greater than the Kathrotia et al.

Fig. 13. Quantitative peak OH^* levels in three $\text{H}_2\text{-N}_2\text{O}$ mixtures. Symbols: experiments from Hidaka et al. [6], solid lines: mechanism of [32] plus the OH^* sub-mechanism of this study, dashed lines: [32] plus the OH^* sub-mechanism of this study with R1 removed. The two mechanism predictions are indistinguishable. The average pressure was not explicitly given by Hidaka et al. but was assumed to be 2 atm.


[34] rate at the low- and high-temperature ends of this study, respectively. Employing the Hall and Petersen value for k_3 would produce a best-fit k_1 nearly an order of magnitude higher than was obtained using the Kathrothia et al. value for k_3 due to higher OH^* production in the tails of the profiles. This larger best-fit k_1 would bring the backward rate constant of k_1 much closer to the backward collision limit (Fig. 11). To keep the backward rate constant well below its collision limit in the temperature range of the present study, the authors chose to use the Kathrothia et al. value of k_3 .

5.4. Energetic considerations for chemiluminescent reactions

Since at least 1951 [50], a common practice in searching for possible chemiluminescent reactions has been to only consider reactions for which the standard-state heat of reaction (ΔH_R^0) of the ground-state form of the reaction exceeds the ΔE associated with the wavelength of the chemiluminescence. For emission at wavelength λ , the associated ΔE is given by $\Delta E = -N_A h c / \lambda$, where N_A is Avogadro's number, h is Planck's constant, and c is the speed of light. Assuming $\lambda = 305 \pm 7 \text{ nm}$ for the $\text{OH} A \rightarrow X$ band, ΔE is $-93.9 \pm 2.1 \text{ kcal/mol}$. ΔH_R^0 for the ground-state forms of both R1 (-29.5 kcal/mol) and R2 (-62.9 kcal/mol) are well below this limit, as illustrated in Fig. 14. The presence of R2 has been repeatedly confirmed by previous studies (Section 1), while R1 is being proposed herein for the first time. The original paper of Soloukhin [4] suggested R2 but did not comment on its endothermicity, while Hidaka et al. [6] briefly mentioned the endothermicity of R2. The present results support the endothermicity of R2.

In light of the large exothermicity of the other well-known chemiluminescent reactions, a search of the exothermic, OH -producing reactions in the NO_x kinetic system was conducted. However, even considering reactions with $\Delta H_R^0 \geq -50 \text{ kcal/mol}$, none of the proposed chemiluminescent reactions other than R1 were able to suitably model the experimental while also remaining below the forward and backward collision limits (see the SM for more details on exothermic, OH -producing reactions and the attempted fitting with such reactions). Furthermore, out of the exothermic, OH -producing reactions in the NO_x system, only $\text{NO}_2 + \text{H} \rightleftharpoons \text{NO} + \text{OH}$ is known to be strongly correlated with heat release. Therefore, R1 seems to be the strongest candidate for the OH^* formation observed in the $\text{H}_2\text{-NO}_2$ experiments.

The notion that ΔH_R^0 should exceed ΔE follows from simple intuition. However, such a stipulation does not account for the exis-

Fig. 14. Illustrations of ΔH_R^0 for the ground-state forms of R1 and R2 alongside an illustration of ΔE for the $\text{OH} A \rightarrow X$ transition (potential energy curves for OH not drawn to scale).

tence of energetic transition states which may permit the creation of excited-state species from less-exothermic reactions. Of course, since it is difficult to imagine a reaction which is endothermic in the ground state creating electronically excited species and since chemiluminescence is associated with heat release, it still seems reasonable to only permit reactions which are exothermic in the ground state to create excited-state species. Based on the results herein (which corroborate the existence of R2), the requirement that ΔH_R^0 for the ground-state reaction exceed ΔE could be relaxed so as to permit less-exothermic reactions to form excited-state species.

5.5. Identifying new chemiluminescent reactions

Lacking in the literature is a systematic framework for identifying new chemiluminescent reactions. To aid in the development of such a framework, an investigation of ΔH_R^0 and the standard-state entropy of reaction (ΔS_R^0) of several well-known chemiluminescent reactions for OH^* , CH^* , and CO_2^* and their ground-state analogs was performed and is summarized in Table 2. Other than the reactions R1 and R2, the ground-state forms of the chemiluminescent reactions possess a ΔH_R^0 which surpasses ΔE in magnitude.

Table 2

Emitted λ , associated ΔE , ΔH_R^0 , and ΔS_R^0 for chemiluminescent reactions involving OH^* , CH^* , and CO_2^* as well as their ground-state analogs. Thermochemistry for OH^* and CH^* is from Burcat and Ruscic [51]; other thermochemistry is from Glarborg et al. [47]; see footnotes regarding CO_2^* .

Reaction	λ (nm)	ΔE (kcal/mol)	ΔH_R^0 (kcal/mol)	ΔS_R^0 (cal/mol K)	ΔH_R^0 , ground state (kcal/mol)	ΔS_R^0 , ground state (cal/mol K)	Reference
$\text{NO}_2 + \text{H} \rightleftharpoons \text{NO} + \text{OH}^*$	305	-93.9	64.4	8.4	-29.5	9.5	This study
$\text{N}_2\text{O} + \text{H} \rightleftharpoons \text{N}_2 + \text{OH}^*$	305	-93.9	31.0	8.6	-62.9	9.7	[6]
$\text{O} + \text{H} (+\text{M}) \rightleftharpoons \text{OH}^* (+\text{M})$	305	-93.9	-8.8	-23.1	-102.7	-22.0	[34]
$\text{CH} + \text{O}_2 \rightleftharpoons \text{CO} + \text{OH}^*$	305	-93.9	-66.0	-2.7	-159.9	-1.6	[49]
$\text{C}_2 + \text{OH} \rightleftharpoons \text{CO} + \text{CH}^*$	427	-66.9	-23.9	-1.7	-91.0	-0.6	[52]
$\text{C}_2\text{H} + \text{O} \rightleftharpoons \text{CO} + \text{CH}^*$	427	-66.9	-12.2	0.4	-79.3	1.5	[52]
$\text{CO} + \text{O} (+\text{M}) \rightleftharpoons \text{CO}_2^* (+\text{M})$	415 ^a	-68.9	-58.3	-34.6 ^b	-127.2	-34.6	[53]

^a CO_2^* exhibits a broadband emission from ~340 to ~650 nm. In the referenced work, both 415 and 458 nm were used to monitor CO_2^* .

^b S^0 for CO_2^* was assumed to be equal to that of CO_2 as was assumed by Kopp et al. [53].

As for the ΔS_R^0 values in Table 2, no unmistakable trend can be observed; the values range from -34.6 to 9.7 cal/mol K with no obvious correlation to any other parameters in Table 2. However, a more-subtle trend may be present. It appears ground-state reactions for which ΔH_R^0 is larger in magnitude than ΔE can possess a chemiluminescent analog despite having a negative ΔS_R^0 , while ground-state reactions for which ΔH_R^0 is smaller in magnitude than ΔE may still possess a chemiluminescent analog if ΔS_R^0 is positive. In light of these observations, the following set of criteria are tentatively proposed for identifying new chemiluminescent reactions:

- Consider exothermic reactions that produce the ground-state form of the chemiluminescent species
- Give preference to more-exothermic reactions for which the magnitude of ΔH_R^0 is larger than that of ΔE , regardless of the sign of ΔS_R^0
- Give secondary preference to less-exothermic reactions for which the magnitude of ΔH_R^0 is smaller than that of ΔE if ΔS_R^0 is positive

The values of ΔH_R^0 and ΔS_R^0 in the criteria above refer to those of the ground-state reaction. An additional consideration is that neither the forward nor backward collisional limits of a proposed chemiluminescent rate coefficient should be exceeded; this is related to the concentrations of the reactants and products. Finally, reactions which produce the ground-state form of the chemiluminescent species and are known to be important for heat release may further suggest the existence of a chemiluminescent analog, although this is not always the case (Section 5.1).

One could imagine that the inadequacy of the ΔH_R^0 screening technique for identifying possible chemiluminescent reactions might be due to the fact that ΔH_R^0 is typically evaluated at room temperature rather than flame temperatures. Actually, ΔH_R^0 is generally a rather weak function of temperature. For example, evaluating ΔH_R^0 at 2000 K for the ground-state form of R1 using the thermochemistry of Glarborg et al. [47] yields -32.5 kcal/mol, which is within 10% of the value of -29.5 kcal/mol. Evaluating ΔS_R^0 at 2000 K for the ground-state form of R1 yields 6.8 cal/mol K, which is a ~30% reduction from the value of 9.5 cal/mol K.

6. Conclusions

OH^* profiles were obtained behind reflected shock waves in a mixture of $\text{H}_2\text{-NO}_2$ for the first time. Using these unique data, the new OH^* -forming reaction $\text{NO}_2 + \text{H} \rightleftharpoons \text{NO} + \text{OH}^*$ (R1) was identified. The identification of R1 was based on the known importance of the ground-state analog to heat release in $\text{H}_2\text{-NO}_2$ mixtures, analogy to $\text{N}_2\text{O} + \text{H} \rightleftharpoons \text{N}_2 + \text{OH}^*$ (R2), and detailed kinetic modeling efforts. OH^* profiles were also obtained in a mixture of $\text{H}_2\text{-N}_2\text{O}$. The addition of R1 had no effect on the modeling of the newly obtained $\text{H}_2\text{-N}_2\text{O}$ data, nor on previously obtained $\text{H}_2\text{-N}_2\text{O}$ data from Hidaka et al. [6]. The addition of R1 also had no effect on

the modeling of previously acquired OH^* data in the $\text{NH}_3\text{-O}_2$ system (see the SM). The lack of effect of R1 in modeling these two fuel systems suggested the introduction of R1 should not degrade the predictions of other OH^* data in the literature.

The best-fit k_1 was dependent on the choice of the base (i.e., ground-state) $\text{H}_2\text{-NO}_x$ mechanism, with the mechanism dependence arising from different predictions of H , O , and NO_2 concentrations. The best-fit k_1 using the mechanism of Glarborg et al. [47] was 5 times lower than the preferred value of k_1 obtained using the mechanism of Zhang et al. [32]. The best-fit k_1 remained below the forward and backward collision limits in the temperature range of the present study; the backward rate constant begins to exceed the backward collision limit near 750 K. The proposed expression for k_1 is valid in the temperature range of the present study (1535–2003 K).

The ground-state form of R1 is insufficiently exothermic to satisfy the oft-used criterion that ΔH_R^0 of the ground-state reaction be greater than the change in energy associated with the chemiluminescent emission. This finding, in conjunction with the similar findings of Hidaka et al. [6] regarding the endothermicity of R2, implies that this minimum-energy-release criterion can be relaxed in future searches for chemiluminescent reactions such that less-exothermic reactions can be considered as possible chemiluminescent reactions. Based on the considerations of the ground-state forms of R1 and R2 discussed herein, a better method of identifying reactions with a possible chemiluminescent analog is to consider the values of ΔS_R^0 , ΔH_R^0 , and ΔE for exothermic reactions that produce the ground-state forms of the excited-state species according to the criteria proposed in this paper.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors wish to thank Prof. W.D. Kulatilaka for the use of the spectrometer. Funding for this work came from the National Science Foundation under award number CBET-1706825. The authors also acknowledge insightful comments from the reviewers pertaining to the identification of R1 and the importance of ΔS_R^0 .

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.combustflame.2019.11.010.

References

- [1] W. Tsang, J.T. Herron, Chemical kinetic data base for propellant combustion I. Reactions involving NO, NO₂, HNO, HNO₂, HCN and N₂O, *J. Phys. Chem. Ref. Data* 20 (1991) 609–663.
- [2] C.R. Mulvihill, O. Mathieu, E.L. Petersen, The unimportance of the reaction H₂ + N₂O \rightleftharpoons H₂O + N₂: a shock-tube study using H₂O time histories and ignition delay times, *Combust. Flame* 196 (2018) 478–486.
- [3] V. Sick, High speed imaging in fundamental and applied combustion research, *Proc. Comb. Inst.* 34 (2013) 3509–3530.
- [4] R.I. Soloukhin, P.J. Van Tiggelen, Shock tube study of the induction lag in nitrous oxide-hydrogen system, *Bulletin des Sociétés Chimiques Belges* 78 (1969) 179–189.
- [5] R.I. Soloukhin, High-temperature oxidation of hydrogen by nitrous oxide in shock waves, *Symp. (Int.) Combust.* 14 (1973) 77–82.
- [6] Y. Hidaka, H. Takuma, M. Suga, Shock-tube study of the rate constant for excited OH* ($^2\Sigma^+$) formation in the N₂O–H₂ reaction, *J. Phys. Chem.* 89 (1985) 4903–4905.
- [7] R. Mével, F. Lafosse, L. Catoire, N. Chaumeix, G. Dupré, C.-E. Paillard, Induction delay times and detonation cell size prediction of hydrogen-nitrous oxide-diluent mixtures, *Comb. Sci. Tech.* 180 (2008) 1858–1875.
- [8] R. Mével, S. Javoy, F. Lafosse, N. Chaumeix, G. Dupré, C.-E. Paillard, Hydrogen-nitrous oxide delay times: shock tube experimental study and kinetic modelling, *Proc. Comb. Inst.* 32 (2009) 359–366.
- [9] R. Mével, S. Pichon, L. Catoire, N. Chaumeix, C.-E. Paillard, J.E. Shepherd, Dynamics of excited hydroxyl radicals in hydrogen-based mixtures behind reflected shock waves, *Proc. Comb. Inst.* 34 (2013) 677–684.
- [10] O. Mathieu, E.L. Petersen, Experimental and modeling study on the high-temperature oxidation of ammonia and related NO_x chemistry, *Combust. Flame* 162 (2015) 554–570.
- [11] A. Snyder, J. Robertson, D. Zanders, G. Skinner, Shock-tube studies of fuel-air ignition characteristics, Monsanto Research Corporation, 1965 Report No. AFAPL-TR-65-93.
- [12] O. Mathieu, A. Levacque, E.L. Petersen, Effects of NO₂ addition on hydrogen ignition behind reflected shock waves, *Proc. Comb. Inst.* 34 (2013) 633–640.
- [13] M.A. Mueller, R.A. Yetter, F.L. Dryer, Flow reactor studies and kinetic modeling of the H₂/O₂/NO_x and CO/H₂O/O₂/NO_x reactions, *Int. J. Chem. Kin.* 31 (1999) 705–724.
- [14] G. Dayma, P. Dagaut, Effects of air contamination on the combustion of hydrogen—Effect of NO and NO₂ addition on hydrogen ignition and oxidation kinetics, *Comb. Sci. Tech.* 178 (2006) 1999–2024.
- [15] P.G. Ashmore, B.P. Levitt, The thermal reaction between hydrogen and nitrogen dioxide. Part 2. Experimental work on the kinetics of the reaction, *Trans. Faraday Soc.* 52 (1956) 835–848.
- [16] P.G. Ashmore, B.P. Levitt, The thermal reaction between hydrogen and nitrogen dioxide. Part 3. Further experimental work on the kinetics: reaction mechanism, *Trans. Faraday Soc.* 53 (1957) 945–954.
- [17] P.G. Ashmore, B.P. Levitt, The thermal reaction between hydrogen and nitrogen dioxide. Part 4. Thermal ignitions of hydrogen and nitrogen dioxide, *Trans. Faraday Soc.* 54 (1958) 390–393.
- [18] W.A. Rosser, H. Wise, Kinetics of reaction between hydrogen and nitrogen dioxide, *J. Chem. Phys.* 26 (1957) 571–576.
- [19] R.F. Sawyer, I. Glassman, The reactions of hydrogen with nitrogen dioxide, oxygen, and mixtures of oxygen and nitric oxide, *Symp. (Int.) Combust.* 12 (1969) 469–479.
- [20] J. Park, N.D. Giles, J. Moore, M.C. Lin, A comprehensive kinetic study of thermal reduction of NO₂ by H₂, *J. Phys. Chem. A* 102 (1998) 10099–10105.
- [21] M.A. Mueller, J.L. Gatto, R.A. Yetter, F.L. Dryer, Hydrogen/nitrogen dioxide kinetics: derived rate data for the reaction H₂ + NO₂ = HONO + H at 833 K, *Combust. Flame* 120 (2000) 589–594.
- [22] F. Joubert, D. Desbordes, H.-N. Presles, Detonation cellular structure in NO₂/N₂O₄-fuel gaseous mixtures, *Combust. Flame* 152 (2008) 482–495.
- [23] F. Virot, B. Khasainov, D. Desbordes, H.-N. Presles, Numerical simulation of the influence of tube diameter on detonation regime and structure in mixtures with two-step energy release and double cellular structure, *Combust. Explos. Shock Waves* 45 (2009) 435–441.
- [24] F. Virot, B. Khasainov, D. Desbordes, H.N. Presles, Two-cell detonation: losses effects on cellular structure and propagation in rich H₂-NO₂/N₂O₄-Ar mixtures, *Shock Waves* 20 (2010) 457–465.
- [25] D. Davidenko, R. Mével, G. Dupré, Numerical study of the detonation structure in rich H₂-NO₂/N₂O₄ and very lean H₂-N₂O mixtures, *Shock Waves* 21 (2011) 85–99.
- [26] C.R. Mulvihill, O. Mathieu, E.L. Petersen, H₂O time histories in the H₂-NO₂ system for validation of NO_x hydrocarbon kinetics mechanisms, *Int. J. Chem. Kin.* 51 (2019) 669–678.
- [27] W. Schneider, G.K. Moortgat, G.S. Tyndall, J.P. Burrows, Absorption cross-sections of NO₂ in the UV and visible region (200–700 nm) at 298 K, *Journal of Photochem. Photobiol. A* 40 (1987) 195–217.
- [28] T.C. Hall, F.E. Blacet, Separation of the absorption spectra of NO₂ and N₂O₄ in the range of 2400–5000 Å, *J. Chem. Phys.* 20 (1952) 1745–1749.
- [29] J.T.C. Liu, R.K. Hanson, J.B. Jeffries, High-sensitivity absorption diagnostic for NO₂ using a blue diode laser, *J. Quant. Spec. Rad. Trans.* 72 (2002) 655–664.
- [30] B.P. Levitt, Thermal emission from nitrogen dioxide, *Trans. Faraday Soc.* 58 (1962) 1789–1800.
- [31] D.E. Paulsen, W.F. Sheridan, R.E. Huffman, Thermal and recombination emission of NO₂, *J. Chem. Phys.* 53 (1970) 647–658.
- [32] Y. Zhang, O. Mathieu, E.L. Petersen, G. Bourque, H.J. Curran, Assessing the predictions of a NO_x kinetic mechanism on recent hydrogen and syngas experimental data, *Combust. Flame* 182 (2017) 122–141.
- [33] C.R. Mulvihill, O. Mathieu, E.L. Petersen, Corrigendum to “The unimportance of the reaction H₂ + N₂O \rightleftharpoons H₂O + N₂: a shock-tube study using H₂O time histories and ignition delay times”, *Combust. Flame* 196 (2018) 478–486 *Combust. Flame* 204 (2019) 430.
- [34] T. Kathrotia, M. Fikri, M. Bozkurt, M. Hartmann, U. Riedel, C. Schulz, Study of the H+O+M reaction forming OH*: kinetics of OH* chemiluminescence in hydrogen combustion systems, *Combust. Flame* 157 (2010) 1261–1273.
- [35] M. Tamura, P.A. Berg, J.E. Harrington, J. Luque, J.B. Jeffries, G.P. Smith, D.R. Crosley, Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames, *Combust. Flame* 114 (1998) 502–514.
- [36] W.L. Dimpfl, J.L. Kinsey, Radiative lifetimes of oh($a^2\Sigma$) and Einstein coefficients for the α - χ system of OH and OD, *J. Quant. Spec. Rad. Trans.* 21 (1979) 233–241.
- [37] P.H. Paul, A model for temperature-dependent collisional quenching of OH $a^2\Sigma^+$, *J. Quant. Spec. Rad. Trans.* 51 (1994) 511–524.
- [38] P.H. Paul, J.L. Durant, J.A. Gray, M.R. Furlanetto, Collisional electronic quenching of OH $A^2\Sigma$ ($v'=0$) measured at high temperature in a shock tube, *J. Chem. Phys.* 102 (1995) 8378–8384.
- [39] K.H. Becker, D. Haaks, T. Tatarczyk, The natural lifetime of OH ($^2\Sigma^+$, $v=0$, $\pi=2$, $j=32$) and its quenching by atomic hydrogen, *Chem. Phys. Lett.* 25 (1974) 564–567.
- [40] P.W. Fairchild, G.P. Smith, D.R. Crosley, Collisional quenching of $A^2\Sigma^+$ OH at elevated temperatures, *J. Chem. Phys.* 79 (1983) 1795–1807.
- [41] R.D. Kenner, F.P. Capetanakis, F. Stuhl, Kinetic isotope effects in the electronic quenching of OD/OH($a^2\Sigma^+$, $v=0$) at 296 ± 4 K, *J. Phys. Chem.* 94 (1990) 2441–2446.
- [42] R.A. Copeland, M.J. Dyer, D.R. Crosley, Rotational-level-dependent quenching of $A^2\Sigma^+$ OH and OD, *J. Chem. Phys.* 82 (1985) 4022–4032.
- [43] J.B. Jeffries, R.A. Copeland, D.R. Crosley, Quenching of OH($a^2\Sigma^+$, $v'=0$) by NH₃ from 250 to 1400 K, *J. Chem. Phys.* 85 (1986) 1898–1903.
- [44] G. Blanchet, *Digital Signal and Image Processing Using MATLAB*, 1, Wiley, London, UK, 2014 *Fundamentals*.
- [45] R. Mével, F. Lafosse, N. Chaumeix, G. Dupré, C.E. Paillard, Spherical expanding flames in H₂-N₂O-Ar mixtures: flame speed measurements and kinetic modeling, *Int. J. Hydrogen Energy* 34 (2009) 9007–9018.
- [46] R.A. Svehla, Estimated viscosities and thermal conductivities of gases at high temperatures, NASA, 1962 Report No. TR R-132.
- [47] P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Modeling nitrogen chemistry in combustion, *Prog. Energ. Comb. Sci.* 67 (2018) 31–68.
- [48] G. Yarwood, J.W. Sutherland, M.A. Wickramaratne, R.B. Klemm, Direct rate constant measurements for the reaction O + NO + Ar \rightarrow NO₂ + Ar at 300–1341 K, *J. Phys. Chem.* 95 (1991) 8771–8775.
- [49] J.M. Hall, E.L. Petersen, An optimized kinetics model for OH chemiluminescence at high temperatures and atmospheric pressures, *Int. J. Chem. Kin.* 38 (2006) 714–724.
- [50] K.J. Laidler, K.E. Shuler, Elementary reactions in the gas phase involving excited electronic states, *Chem. Rev.* 48 (1951) 153–224.
- [51] A. Burcat, B. Ruscic, Third millennium ideal gas and condensed phase thermochemical database for combustion, Argonne National Lab and Technion-Israel Institute of Technology, 2005 Report No. ANL-05/20 and TAE 960.
- [52] V.N. Nori, J.M. Seitzman, CH* chemiluminescence modeling for combustion diagnostics, *Proc. Comb. Inst.* 32 (2009) 895–903.
- [53] M. Kopp, M. Brower, O. Mathieu, E. Petersen, F. Güthe, CO₂* chemiluminescence study at low and elevated pressures, *App. Phys. B* 107 (2012) 529–538.