Computers, Environment and Urban Systems 81 (2020) 101480

Contents lists available at ScienceDirect
Compurters
ENVIRONMENT
AND
URBAN SYSTEMS

Computers, Environment and Urban Systems

journal homepage: www.elsevier.com/locate/ceus

Sensitivity of sequence methods in the study of neighborhood change in the @ m)
United States Nt
Wei Kang™", Sergio Rey”, Levi Wolf’, Elijah Knaap”, Su Han"

2 Center for Geospatial Sciences, University of California, Riverside, USA
b School of Geographical Sciences, University of Bristol, UK

ARTICLE INFO ABSTRACT

There is a recent surge in research focused on urban transformations in the United States via empirical analysis
of neighborhood sequences. The alignment-based sequence analysis methods have seen many applications in
urban neighborhood change research. However, it is unclear to what extent these methods are robust in terms of
producing consistent and converging neighborhood sequence typologies. This article sheds light on this issue by
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g;z::ig applying four sequence analysis methods to the same data set — 50 largest Metropolitan Statistical Areas (MSAs)
Geo demp}r]aphics of the United States from 1970 to 2010, and finds that these methods do not provide converging neighborhood

sequence typologies, and their behavior varies across MSAs, thus prohibiting meaningful comparisons of similar
studies. MSAs with higher average household income in 1970 tend to be less sensitive to the choice of the SA
methods. In other words, when investigating neighborhood change in these MSAs, different SA methods tend to
produce a more converging neighborhood sequence typology. Comparatively, for MSAs hosting neighborhoods
which have experienced frequent changes during the period 1970-2010, they are less likely to produce similar
typologies with different SA methods. In addition, there is a big difference in the neighborhood sequence ty-
pology between applying the classic SA methods with varying costs and using the SA variant focusing on the
second-order sequence property. After comparing the behavior of these methods, we highlight one method
(“OMecenter”) which leverages the socioeconomic similarities of neighborhoods and suggest researchers con-
sider it as the building block towards designing a meaningful sequence analysis method for neighborhood change
research.

1. Introduction variables paradigm (Abbott, 1997), neighborhood changes are con-

ceptualized as ensembles of variables, and are evaluated based on the

There is a recent surge in research in the United States focused on
understanding urban transformations through empirical analyses of
neighborhood sequences (Delmelle, 2015, 2016, 2017; Li & Xie, 2018;
Ling & Delmelle, 2016; Patias, Rowe, & Cavazzi, 2019; Zwiers,
Kleinhans, & Van Ham, 2017). Driven by an interest in the social and
economic restructuring of cities and the associated consequences like
gentrification and displacement, this work uncovers emergent patterns
in the evolution of neighborhood socioeconomic characteristics within
a contextual mode of analysis. Instead of measuring and tracking the
numerical changes to specific variables or composite indices, like
median household income or education attainment, within the

change of type. As demonstrated by Spielman and Singleton (2015),
this latter approach is especially promising to address statistical con-
cerns introduced by small area estimates of commonly used census
surveys (e.g. ACS 5-year estimates at the census tract level).
Typically, this work uses census tracts as proxies for neighborhoods
and consists of two stages: the first stage classifies neighborhoods into a
set of discrete types based on selected socioeconomic attributes,
yielding for each neighborhood a temporal sequence of discrete types;
the second stage employs sequence analysis (SA) methods to further
investigate these neighborhood sequences, providing insights in
neighborhood change.' Two types of SA methods are at researchers'
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! Lee et al. (2017a, 2017b); Greenlee (2019) adopted a similar strategy to investigate the neighborhood sequences experienced by households. We note that in these
studies, the sequence was not organized around a focal neighborhood whose location is “fixed” over time (place-based), but rather were organized based on which
neighborhood the focal household was located at (or moved into if household experienced the displacement) (household-based). Our focus in this article is on place-

based neighborhood change.
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disposal: “stepwise approaches,” such as Markov Chains, view the se-
quence as being generated stochastically and model the probabilities of
transitions between neighborhood types over time (Delmelle, 2015);
“whole sequence approaches,” mainly the optimal matching (OM)
analysis, meanwhile, view the sequence from a holistic perspective and
evaluate the pairwise similarity between neighborhood sequences in a
study region (Abbott, 1995). The latter method produces a sequence
similarity matrix, which can be further distilled with a clustering al-
gorithm into a typology of prototypical neighborhood sequences.
Compared with the former, the “whole sequence approaches” fall
within the pattern recognition data modeling tradition, and could
identify predominant as well as irregular “outlier” neighborhood
change pathways, which could have important implications for the
development of the neighborhood change theory.

The OM method, originally developed for matching protein and
DNA sequences in biology (Carrillo & Lipman, 1988; Wong, Suchard, &
Huelsenbeck, 2008) and used extensively for analyzing strings in
computer science, has become the dominant SA technique in the
neighborhood literature (Delmelle, 2016, 2017; Li & Xie, 2018; Patias
et al., 2019). It generally works by finding the minimum cost for
aligning one sequence to match another using a combination of op-
erations including substitution, insertion, deletion, and transposition.
The cost of each operation can be parameterized differently and may be
theory-driven or data-driven. Applications in the neighborhood litera-
ture often adopt the data-driven approach based either on socio-
economic dissimilarities in contemporary experience (Li & Xie, 2018) or
empirical transition probabilities between neighborhood types over two
consecutive time points (Delmelle, 2016, 2017; Patias et al., 2019).

The fact that the OM algorithm relies on multiple assumptions about
the evolution of the sequences makes it an easy target of criticism. In
bioinformatics, Wong et al. (2008) showed that the alignment of
genomic data and thus the resultant similarity values were greatly af-
fected by small changes in the operation parameters such as substitu-
tion, insertion, and deletion costs. There is also an ongoing debate on
the adequacy of the OM method in the life course research, and the
social sciences more generally. Biemann (2011) argued that the direct
application of OM analyses to life course data was inappropriate since
the life course was an unfolding process, whereas DNA sequences for
which OM was designed originally, shared common ancestors. Variants
of OM should be proposed which take account of characteristics specific
to life courses.

Several simulation studies have been conducted to shed light on the
behavior of OM and its variants in terms of revealing differences of
sequences in timing, duration, and sequencing which are important in
life course research (Ritschard & Studer, 2018; Robette & Bry, 2012;
Studer & Ritschard, 2016; Studer, Ritschard, Tabin, & Perriard, 2014).
Though much could be borrowed from life course research when it
comes to the application of the SA methods to neighborhood change
research, it should be noted that the latter is usually concerned with a
very short sequence (of length 5 at most in the case of the United States)
due to data availability while the former deals with a longer sequence
(sequences of length 20 were simulated in Studer, Struffolino, and
Fasang (2018)). The other major difference is that the neighborhood
types constituting a sequence in neighborhood change research are
constructs from a specified clustering algorithm with selected neigh-
borhood-level attributes. Thus, valuable information such as the dis-
tance between clusters could be used as the prior knowledge for de-
fining parameters in sequence analysis. This information is unavailable
in life course studies as the sequence is comprised of natural states such
as employment, unemployment, and school, the difference between
which is hardly straightforward to quantify.

This article focuses on the application of the SA methods to neigh-
borhood change research and explores two related issues. We examine
the relationship between neighborhood sequence typology and opera-
tion costs. We are particularly interested in the sensitivity of neigh-
borhood sequence typology to the choice of operation costs in the OM
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algorithm, that is, whether a small change in the operation costs will
result in a much different typology. We are also interested in whether
such sensitivity displays spatial heterogeneity. In other words, whether
cities with certain characteristics are less sensitive to the choice of
operation costs.

We examine these issues through an empirical analysis of four SA
methods, the cost of substitution, insertion or deletion for each of which
is varied, which are considered applicable for uncovering neighborhood
sequence patterns from different aspects. Three of them fall within the
classic OM scheme with different choices of cost operations while the
fourth operationalizes the OM scheme on sequences of transitions of
neighborhoods, utilizing the second-order property of a sequence. We
applied these methods to the same data set — the 50 largest
Metropolitan Statistical Areas (MSAs) of the United States at census
years 1970, 1980, 1990, 2000, and 2010. We have found that the
neighborhood sequence typology varies with the choice of operation
costs as well as the MSA under study. In other words, the typology of
neighborhood sequence is sensitive to the operation cost and this sen-
sitivity displays spatial heterogeneity. MSAs with higher average
household income in the beginning year (1970) tend to be less sensitive
while if they hosted neighborhoods experiencing frequent changes
during the period 1970-2010, they are less likely to reach a converging
typology with different SA methods. There is a big difference in the
neighborhood sequence typology between applying the classic OM
methods with varying costs and using the OM variant focusing on the
second-order sequence property. While the former reflects con-
temporaneous experiences and/or the order, the latter emphasizes the
stability characteristic of the neighborhood sequence. In terms of se-
lecting the cost of substituting one neighborhood type with another, we
recommend researchers to utilize the valuable information provided by
the continuous tract-level variables — more specifically, basing the
substitution costs on (at least partially) distances between neighbor-
hood segmentation (cluster) centers.

The rest of the article proceeds as follows. We provide a description
of SA and a review of its application in neighborhood change research
in Section 2. Section 3 introduces the longitudinal census data, the
neighborhood segmentation method, four SA methods to be compared,
and the sequence clustering method. We provide results of the neigh-
borhood sequence typologies based on selected SA methods and the
evaluation of the sensitivity in Section 4, and we conclude the article in
Section 5 with a discussion of the key implications of our findings and
the identification of directions for future research.

2. Neighborhood change and sequence analysis
2.1. Urban neighborhood change and the theory

Urban researchers from across the social sciences have long sought
to understand the social and political processes that delineate and
modify conceptions of “neighborhoods”. Such processes include not
only those which form neighborhoods, like housing development and
urban design, but those which transform and circumscribe neighbor-
hoods through residential sorting and social exchange, like segregation,
gentrification, and disinvestment. Given the considerable breadth of the
urban studies, neighborhood research over the last 100 years has bur-
geoned, and is currently in a sort of renaissance, thanks to growing
attention to the importance of neighborhood effects and the dramatic
patterns of gentrification that are beginning to fundamentally reshape
cities in many Western nations (Beauregard, 1990; Schwirian, 1983;
Temkin & Rohe, 1996). Over the last few decades, a growing body of
empirical work has attempted to provide insight into these important
trends through a wide variety of modeling strategies, and in recent
years these efforts have been bolstered by new computational methods
and techniques from data science.

One particularly promising technique for modeling neighborhood
change is the application of sequence analysis methods that consume
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time series of neighborhood data to examine how each neighborhood
moves through a sequence of discrete “types” or “states” (Delmelle,
2015, 2016; Patias et al., 2019; Wei & Knox, 2014). Although these
methods rely on emerging analytical techniques, they are also moti-
vated by longstanding theory in urban ecology originally posited by
Chicago School sociologists in the early 1900s. Chicago School theorists
posited that cities tend to fragment into “natural” areas delineated by
race and class, and that urban dynamics can be understood as the
process by which households translate socioeconomic gains into spatial
advantages. Put differently, urban space is partitioned into areas that
indicate the social status of their residents, and as city dwellers climb
the social hierarchy, they tend to move into correspondingly higher
“social areas” of the city (Schwirian, 1983). Neighborhood sequence
analysis is designed to help shed light on these processes by examining
how places move through the social hierarchy over time.

2.2. Sequence analysis

Sequence analysis consists of two general types, “stepwise” and
“whole sequence”, each of which views and models the sequence from a
different perspective. In this article, we focus on the latter, which holds
a holistic perspective by considering the sequence as a whole and at-
tempting to measure the distance between every pair of sequences.
Based on whether the computation of the distance requires sequence
alignment, the “whole sequence approaches” can be further divided
into alignment-free (Cha, 2007; Vinga & Almeida, 2003; Zielezinski,
Vinga, Almeida, & Karlowski, 2017) and alignment-based methods. The
former consists of the distance measures between longitudinal dis-
tributions such as Euclidean distance and y? distance which focus on
the frequency of each type while neglecting sequencing and exact
timing of the neighborhood type. The latter consists of the OM method
and its variants. Aisenbrey and Fasang (2010) and Studer and Ritschard
(2016) provided comparative surveys of these methods in the study of
life courses such as professional careers and distinguished them from
those applied to other domains including biology and computer science.
Since OM has become the dominant approach in the research of
neighborhood change, we focus on OM and its variants in the rest of the
paper.

OM measures the distance between two sequences as the minimum
cost of transforming one sequence to be one exactly like the other. The
operations involved in the transformation are substitution, insertion,
and deletion, each of which is parameterized with a prior cost-the
values of which are vital to the algorithm's performance (Hollister,
2009). For example, if we are to calculate the OM distance between two
short sequences - ‘2,2,3,2,1’ and ‘1,3,1,1,3’ as shown in Fig. 1, we could
arrive at two divergent matching processes ((a) and (b)) and thus dif-
ferent resultant OM distances by giving different substitution and/or
insertion/deletion (indel) costs. For both of them, the cost of sub-
stituting any number with a different number is 1, while (a) has a larger
cost of inserting or deleting (indel) any number - 2, and (b) has a
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Fig. 1. A small example of calculating OM distance between two short se-
quences. (a) The cost of substituting any number with a different one is 1 while
the cost of inserting or deleting (indel) any number is 2. (b) The cost of sub-
stituting any number with a different one is 1 and the cost of inserting or de-
leting any number is also 1.

Computers, Environment and Urban Systems 81 (2020) 101480

smaller cost — 1. Because of the large indel cost, matching process (a)
does not involve operations of insertion and deletion, and the OM
distance is 5. In contrast, (b) shifts the sequence ‘1,3,1,1,3’ slightly to
the right, insert ‘2’ to the left, and delete the rightmost ‘3’. With a
combination of 2 substitutions, 1 insertion and 1 deletion, (b) arrives at
the OM distance of 4, which is smaller than (a). It is obvious that a
change in the indel cost makes a difference to the OM process and
distance, and it should also be noted that the alignment involved in (b)
reflects a distortion in time and by doing so it allows for the matching of
two sequences experiencing similar development stages but at different
time periods. Comparatively, (a) focuses solely on the contemporaneous
experience.

In practice, OM is usually stated as a dynamic programming pro-
blem. Through a series of simulation experiments, Studer and Ritschard
(2016) showed that specific characteristics of a sequence could be
picked up by appropriately selecting the operation costs or the OM
variants, including contemporaneous similarity, sequencing, and
duration of a state. Naturally, if the research focus lies in the con-
temporary similarity between sequences, a very large value for the in-
sertion and deletion costs should be selected so that only substitutions
are possible in the OM process. Even so, the selection of the substitution
costs is still a serious issue as different values could lead to divergent
results. The extent to which OM-based SA methods are robust techni-
ques in their ability to produce consistent and converging results has
been a pervasive issue in the literature (Robette & Bry, 2012) and is also
the focus of this article.

There have been a series of studies employing the OM algorithm to
analyze neighborhood sequences which could provide insights into
neighborhood change from a holistic perspective compared with the
stochastic Markov Chains approaches (Schwirian, 1983). More specifi-
cally, SA methods are used to assess the similarity between each pair of
neighborhood sequences based on socioeconomic characteristics. To-
gether with cluster analysis, the research is aimed at identifying the
predominant sequences in which neighborhoods change as well as
producing a typology of neighborhood sequences (Delmelle, 2017). To
date, the selection of operation costs is mostly data-driven. For ex-
ample, in a study of neighborhood sequences in Chicago and Los An-
geles from 1970 to 2010, Delmelle (2016) basesd substitution costs on
empirical transition rates across census years. If the empirical transition
rate between two neighborhood types was large, the cost of substituting
one with the other was small. Later, Delmelle (2017) employed a var-
iant of OM which focused on sequences of transitions between neigh-
borhood types in 50 U.S. MSAs from 1980 to 2010. Other similar re-
search in the U.S. (Lee, Smith, & Galster, 2017a, 2017b) and the
Netherlands (Zwiers et al., 2017) adopted another variant of OM which
led to a subsequence based distance measure and was more sensitive to
differences in the order of neighborhood types.

Despite a growing body of research, the application of SA methods
to the study of neighborhood evolution is not straightforward and in-
volves another layer of uncertainty. Unlike life course research where
the life states constitute a sequence directly, neighborhood “types” (or
“states”) are unknown and are usually determined by employing mul-
tivariate clustering algorithms in a process known as “geodemographic
segmentation” (Reibel, 2011; Rey et al., 2011; Singleton & Spielman,
2014). Uncertainty comes from the geodemographic cluster assignment
process where various clustering algorithms could lead to different re-
sults (Singleton, Pavlis, & Longley, 2016). We do not intend to in-
vestigate this uncertainty, but rather produce an baseline neighborhood
segmentation scheme which will be used for the comparison between
several SA methods. On the other hand, we do note that this specific
aspect of neighborhood research provides abundant information for
selecting the operation costs, which life course research does not afford.
In other words, the distances between neighborhood segmentations are
very meaningful indicators of costs taken to substitute one neighbor-
hood type with another.
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3. Data and methods

To examine how neighborhood change classification is sensitive to
the choice of the SA method, we selected four SA methods and applied
each to a decennial census data set in the United States from 1970 to
2010. Several evaluation measures were employed to compare the
neighborhood sequence clustering results to shed light on the sensitivity
of each SA method as well as the spatial variation of such sensitivity. In
this section, we introduce the complete workflow of the empirical
comparisons including the census data set, the neighborhood segmen-
tation algorithm, the four SA approaches measuring the pairwise si-
milarity of neighborhood sequences as well as the subsequent sequence
clustering algorithm, and the final evaluation indices.

3.1. Study area and data

Following many existing neighborhood segmentation and neigh-
borhood change analyses (Delmelle, 2015, 2016, 2017; Li & Xie, 2018;
Mikelbank, 2011; Wei & Knox, 2014), we adopted the census tract as
the primitive unit in constructing neighborhood definitions. We ex-
pected to compare the SA methods based on a large spatial and tem-
poral extent, but the limited availability of census tract data in earlier
years such as 1970 and 1980 prevented us from a consideration of all
urban areas in the United States. Therefore, we selected 50 MSAs with
the largest population in 2010 as reported by the U.S. census bureau in
September 20127 to ensure that most tracts can be traced back to the
decennial censuses in earlier years.

Because the boundaries of many census tracts changed between
decennial censuses due to population change, a comparison across
various years to reveal neighborhood change cannot be made directly.
To overcome this challenge, we use the Geolytics Neighborhood
Change DataBase 2010 (NCDB 2010)° which provides census tracts in
1970, 1980, 1990, and 2000 with boundaries and attributes re-
calculated and normalized to 2010. The 2010 sources are a mixture of
2010 long-form census and 2006-2010 American Community Survey
(ACS) estimates.

Following earlier studies on geodemographics (Li & Xie, 2018;
Singleton & Longley, 2009; Singleton & Spielman, 2014), we selected
fourteen variables covering demographic, socioeconomic, and housing
characteristics as shown in Table 1 to depict neighborhoods. Some of
these variables were directly extracted from NCDB 2010 including
CHILD and OLD, while others were constructed from relevant variables
available in NCDB 2010 such as BL300OLDPRO.

3.1.1. Data cleaning

The total number of census tracts within the 50 largest MSAs based
on the 2010 boundaries is 38,453. Because the Decennial U.S. Censuses
in 1970 and 1980 do not cover all the tracts, we limited our analysis to
include only the tracts whose data have been consistently collected
since 1970. Further, following the strategy of Wei and Knox (2014),
tracts with a population less than 500 were excluded to avoid bias from
small samples. After dropping miscoded or missing values, our final
dataset contained 25,961 census tracts for each of the 5 census years.
The analysis, therefore, proceeded with 129,805 total observations in
the initial geodemographic segmentation, yielding 25,961 neighbor-
hood trajectories of length 5 to enter the SA process.

3.2. Neighborhood segmentation

Geodemographic segmentation was based on the k-means clustering
algorithm to assign each census tract at each of five decennial census

2 https://www.census.gov/library/publications/2012/dec/c2010sr-01.html
3 http://www.geolytics.com/USCensus,Neighborhood-Change-Database-
1970-2000,Products.asp
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years to one of k neighborhood types.* We applied the clustering al-
gorithm to all 129,805 tracts at once to produce k neighborhood types
which were consistent and comparable across space and time. Since
feature scaling can impact clustering results significantly, we trans-
formed each variable using z-score standardization relative to each
census year.

Performance of the k-means clustering algorithm is contingent on
the choice of k — number of clusters. We relied on the average silhouette
coefficient to select an “appropriate” number of clusters. This coeffi-
cient is defined as follows:

_1  (di—c)
§= n z max(d;, ¢;) 1)

i=1

where n is the number of observations, d; is the shortest average dis-
tance of observation i to all points in each of other clusters to which i
does not belong, and ¢; is the average distance between i and any other
observations within the same cluster. S lies within the range [-1,1]. A
larger S indicates a better clustering. We calculated average silhouette
coefficients for clustering results with k ranging from 2 to 15 and se-
lected the number which maximized the coefficient. We note that this
process does not necessarily result in the “optimal” or “correct”
neighborhood classification, but rather produces a set of neighborhood
labels as the basis of the further sequence analysis and comparison.

3.3. Neighborhood sequence analysis

After neighborhood segmentation, we obtained one categorical
cluster label for each census tract at each census year. We then orga-
nized labels for each tract into a chronological sequence, resulting in
25,961 neighborhood sequences of length 5. These constituted our
observations for sequence analyses. We select ed four SA methods, or
more specifically four global alignment methods, for the empirical
comparison displayed in Table 2. They differ in either the choice of the
operation costs, or the formation of the sequence. A small value of the
insertion/deletion cost allows for a certain level of time distortion while
heterogeneous substitution costs across different pairs of neighborhood
types indicate researchers' belief of different dissimilarity across pairs.
For instance, a downtown neighborhood where poor black live could be
considered more different from a suburb where white middle class
concentrate than a multiethnic neighborhood.

3.3.1. Hamming

Our first SA method uses the classic Hamming edit distance to
evaluate sequence similarity. It can be viewed as a classic OM approach
with a constant substitution cost (=1) and an infinitely large cost for
insertion or deletion. The application of this OM distance metric to
neighborhood sequences assumes that the distance between any pair of
distinct neighborhood types is identical with a strict focus on con-
temporaneous similarity between neighborhood sequences. It should be
noted that the infinitely large cost for insertion or deletion is equivalent
to any value no less than twice the constant substitution cost.

3.3.2. OMtranr

We also examined the “OMtranr” method in which the substitution
costs are based on and usually negatively correlated with empirical
transition rates between neighborhood types over time. For example,
the empirical transition rate from neighborhood type i to j is computed
by dividing the number of transitions from i to j by the total number of
transitions from i. The transition rate from i to j (p;) is usually different
from the pj; — the empirical rate of transitioning from j to i. To arrive at a
symmetric substitution cost matrix which requires the cost of

*We used the k-means algorithm for the initial round of clustering simply
because it is a convenient and scalable clustering algorithm. Other multivariate
clustering algorithms are equally applicable here.
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Table 1
List of fourteen variables to depict neighborhoods.
Category Variable Description
Demographic CHILD % persons who are children under 18 years old
OLD % persons who are 65+ years old
SHRWHT % white population
SHRBLK % black/African American population
Socioeconomic UNEMPRT % persons 16+ years old who are in the civilian labor force and unemployed
PRFE % persons 16 + years old employed in manufacturing, transportation, and public administration
POVRAT % total persons below the poverty level last year
EDUC % persons 25+ years old with at least a 4-year degree
Housing BL30OLDPRO % total housing units built MORE than 30 years ago
TTMULTI % total multiunit structures
YRMV10PRO % occupied housing units where household heads moved in less than 10 years ago
MNVALHS Mean value of specified owner-occupied housing units
OWNO % total owner-occupied housing units
VACHUPRO % total vacant year-round housing units
Table 2 transformed into a sequence of neighborhood transitions of length 5.

Selected sequence analysis approaches for empirical comparison.

Insertion/
deletion costs

Index Name Substitution costs

1 Hamming 1 + oo

2 OMtranr Pij + bji 1
Sj=1= "5

3 OMecenter  Euclidean distance between cluster max(dy)

centers dj
stable-stable = 0, change-change = 0, + o
stable-change = 1

4 OMstran

substituting i with j to be identical to the cost of substituting j with i,
common practice is to average p; and pj; and then subtract it from 1.
That is, the substitution cost between i and j is 5 = 1 — w. The cost
of inserting or deleting any neighborhood type is set to be 1, which is
close to the maximum of the varying substitution costs to allow for a
certain degree of time warping. This method has been criticized on the
grounds that temporal transition rates may not be a good proxy for the
similarity between two types (Studer & Ritschard, 2016). We consider it
here regardless because it has been used elsewhere for similar work
(Delmelle, 2016; Patias et al., 2019).

3.3.3. OMecenter

Since we do not expect the similarity/distance between any two
neighborhood types to be identical, our third approach relaxes this
assumption in a different manner than “OMtranr”. One natural choice
of assessing the distance is the Euclidean distances between cluster
centers which can be easily obtained from the previous neighborhood
segmentation step. Natural choice as it seems, it has been rarely used in
the neighborhood change research. One reason is that the object of DNA
or life course research where SA methods have been widely applied is
sequence of discrete values where an extraction of similarity between
discrete values is hardly possible. Aside from utilizing very useful in-
formation from neighborhood socioeconomic differences, we also
slightly adjust the emphasis of contemporaneous similarity and allow
for a low degree of insertion and deletion. Here, the largest Euclidean
distance between any two neighborhood cluster centers is adopted as
the cost of insertion and deletion. This novel OM variant is named
“OMecenter”.

3.3.4. OMstran

The last method, “OMstran”, views neighborhood change as an
unfolding process explicitly, which is different from the common an-
cestor view of DNA sequences (Biemann, 2011). Rather than aligning
sequences of neighborhood types, “OMstran” attempts to align se-
quences of transitions, pairs of neighborhood types over two con-
secutive periods. Each sequence of neighborhood types of length 5 is

For example, sequence ‘1, 1, 1, 1, 1’ is transformed into
‘§1,11,11,11,11’ where ‘S' represents the start of a sequence. The (k, k)
substitution cost matrix for classic OM algorithms is extended in this
case to (k(k + 1),k(k + 1)), in which each element represents the cost
of substituting a transition (e.g. ‘11’) in one sequence with a transition
(e.g. ‘21°) in another sequence.

To illustrate, assume that we have two other sequences ‘3, 2, 3, 3, 3’
and ‘1, 2, 3, 1, 2’, and we would like to calculate the respective dis-
tances from the focal sequence ‘1, 1, 1, 1, 1’. We first transform them
into sequences of transitions ‘S3, 32, 23, 33, 33’ and ‘S1, 12, 23, 31, 12".
As we focus on whether the neighborhood has been stable over time, we
define the substitution costs in such a way that there is no cost of
matching two ‘stable’ transitions of neighborhood types (e.g. ‘11’ and
‘33”) and two ‘unstable’ transitions of neighborhood types (e.g. ‘12’ and
‘32’), while the cost of matching a ‘stable’ transition with a ‘unstable’
transition (e.g. ‘11’ and ‘32’) is 1. Assuming the deletion and insertion
of a transition pair is infinitely large, the “OMstran” method produces 3
for the distance between neighborhood sequences ‘1, 1, 1, 1, 1’ and ‘3,
2, 3, 3, 3, and 4 for the distance between ‘1,1,1,1,1’and ‘1, 2, 3, 1, 2".
Comparatively, the Hamming distance will produce distances of 5 for
the former and 3 for the latter.

Among the four methods, “OMecenter” and “OMtranr” are data-
dependent, meaning that the costs of substitution between neighbor-
hood types, as well as the insertion and deletion are determined by the
available neighborhood sequences. We will elaborate on the costs after
introducing the method for segmenting neighborhood trajectories.

3.4. Classifying neighborhood sequences

The distance matrix between neighborhood sequences produced by
each of the four SA methods was fed into the agglomerative hierarchical
clustering for acquiring clusterings of neighborhood sequences.
Compared with the k-means clustering algorithm used for neighbor-
hood segmentation, the agglomerative hierarchical clustering algorithm
starts by considering each observation (a neighborhood sequence) as a
cluster and merges clusters at each step based on distances as well as a
selected criterion. Here, Ward's minimum variance criterion was
adopted which is aimed at minimizing the total within-cluster variance
at each merging step (Ward, 1963). The hierarchical clustering process
can be visualized by a dendrogram which also displays the distances
between merged clusters. Since a large jump in distance is typically
related to distinct clusters, an appropriate number of clusters could be
obtained based on the selection of a distance cutoff by inspecting the
dendrogram together with the average silhouette coefficient S. It should
be noted that the resultant “optimal” number of neighborhood se-
quence clusters can vary across four SA methods, but to reach a fair
comparison we restricted this number to be identical.
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3.5. Evaluation measures

We adopted two indices to evaluate the differences/similarities in
the distances between neighborhood sequences and the sequence
clustering assignments between the four SA methods respectively.

3.5.1. Mantel test

Mantel test is a commonly used statistical test of the correlation
between a pair of distance matrices (Guillot & Rousset, 2013; Mantel,
1967; Robette & Bry, 2012). For two 25,961 X 25,961 distance ma-
trices of neighborhood sequences (e.g. X and Y) based on two SA
methods, we first vectorize them into two vectors vecX and vecY and
then calculate the Pearson correlation coefficient as follows:

_ cov(vecX, vecY)

OvecX Ovecy (2)

where cov is the covariance and o is the standard deviation. p is within
the range of [ —1,1] with negative values indicating negative correla-
tion between two distance matrices and positive values indicating po-
sitive correlation. If p > 0, a larger p indicates a higher similarity
between two distance matrices of neighborhood sequences. Mantel test
adopts a random permutation scheme to evaluate the significance of p
while accounting for the fact that each matrix is symmetric and the
matrix elements (distances) are dependent on each other — meaning
that shortening the distance between two sequences might incur an
increase in other distances.”

3.5.2. Adjusted Rand index

The Rand index assesses the similarity of two clusterings by
counting all pairs of observations whose assignments agree between the
two clusterings (Rand, 1971). If for n observations, a is the number of
pairs of observations which are in the same cluster in both clusterings
and b is the number of pairs of observations which are in different
clusters in both clusterings, then Rand Index (RI) is defined as follows
(Eq. (3)):

R = 2@+b)
nn-1) 3)

We adopted an extension of RI, the adjusted Rand Index (ARI)
(Hubert & Arabie, 1985) which is corrected for chance as an evaluation
measure for the neighborhood sequence clusterings. ARI is defined in
Eq. (4):

AR = _ RIZE®D
max(RI) — E(RI) ()]
where E(RI) is the expectation of RI and max(RI) is the maximum of RI.
ARI = 1 means the two clusterings under comparison are identical,
whereas ARI being close to 0 suggests the two clusterings are far from
identical and can be considered as independent of each other. A large
ARI value is an indication of a high level of robustness of the SA
methods under comparison. It suggests that these SA methods find si-
milar neighborhood sequence characteristics. In addition to calculating
one ARI value for the study area (all the 50 MSAs), we applied the index
to individual MSAs to look at the spatial variations in this index. It is
possible that some MSAs present very similar neighborhood sequence
clusterings based on different SA methods and thus it does not matter
much in terms of the SA method selection, while other MSAs are very
sensitive to the choice of the SA method.

SFor a detailed explanation of the permutation-based inference of Mantel
test, refer to Mantel (1967); Robette and Bry (2012).
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Table 3
Neighborhood classifications and compositions.

Index Composition Classification

1 White, educated, wealthy, owners White Elite

2 Black, high poverty, high unemployment, renters, Black Poor
older homes

3 White, less educated, blue collar White Laborer

4 Black, medium poverty and unemployment, less Black Owner

vacant and older homes

5 Few kids, multiunit housing, renters, recent in-movers New Renters

6 Old residents, white, vacant homes Aging Suburban

7 Mixed race, blue collar Poor Mixed Race

8 Kids, owners, single-family homes, new homes Newer Suburban
4. Results

4.1. Neighborhood types and compositions

After applying the k-means clustering to 25,961 % 5 census tracts
with 14 variables while varying the number of clustersk = 2, 3, ..., 15,
we obtained 14 clusterings, each of which could be the potential
neighborhood segmentation scheme. When k = 2 and 3, the resulting
clusterings gave the largest average silhouette coefficients, 0.276 and
0.216 respectively. The coefficient dropped to 0.148 and 0.147 for
k = 4 and 5; as k continued to increase, the coefficient increased —
0.156, 0.156 and 0.157 for k = 6,7,8. For k = 9, the coefficient
dropped to 0.128 and failed to increase to 0.15 as k continued to in-
crease. Based on the pattern of the average silhouette coefficients, we
considered k = 8 as the “appropriate” number of clusters for the
neighborhood segmentation since it was a local maxima for the average
silhouette coefficient and offered more details than k = 2 or 3. Fig. Al
displays the median z-scores of all 14 variables for each of the 8
neighborhood clusters.

It should be noted that the ordering of the neighborhood clusters (or
types) is arbitrary and clusters with numerically closer labels should not
be interpreted as being more similar. A descriptive summary of the
composition of each neighborhood type is given in Table 3. Looking at
the histogram of the neighborhood classifications per census year in
Fig. 2, we observe that White Laborer and Newer Suburban are more
common in the 50 MSAs under study from 1970 to 2010 while Aging
Suburban is the least common.

As mentioned in Section 3, “OMecenter” and “OMtranr” are data-
dependent. After completing the neighborhood segmentation, we cal-
culated the substitution costs for each of them. These costs are dis-
played in Fig. 3(a) and (b). It is obvious that both “OMecenter” and
“OMtranr” allow for certain levels of heterogeneity in the substitution
costs. For example, “OMecenter” makes it hard to substitute White Elite
with Black Poor than with White Laborer. While this is also the case with
“OMtranr”, the difference is much smaller. The fact that all the sub-
stitution costs between different types for “OMtranr” are close to 1
makes “OMtranr” more similar to “Hamming”.

4.2. Neighborhood sequence patterns

4.2.1. Descriptive statistics

Since there were eight unique neighborhood types over five periods,
potentially there could be 8% = 32,768 unique neighborhood sequences
of length 5. However, for 25,961 sequences within the 50 largest U.S.
MSAs we examined, we observed only 2,958 unique sequences,
meaning that only 9% potential unique sequences were realized. Fig. 4
shows the histogram of the top 20 most common neighborhood se-
quences: 4 are sequences exempt from any change meaning that the
tract remained in the same neighborhood type across all four decades
(White Laborer (‘3”), Newer Suburban (‘8”), Poor Mixed Race (‘7’) and New
Renters (‘5%)), and the other 16 experienced two neighborhood types. 14
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year
1970
1980
1990
2000
2010

8000

count

White Elite Black Poor White Laborer
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Fig. 2. Histogram of neighborhood segmentations per census year.

neighborhood sequences are characterized by one state change in the
last decade 2010. For instance, about 900 neighborhoods started from
Newer Suburban in 1970, stayed there for four decades, and then tran-
sitioned to White Laborer in 2010. Another set of transition happened in
1980 (from Newer Suburban to White Laborer) instead of changing in
2010. The last set of neighborhood sequences ranking top 20 involves
two changes, one happened in 1980 from White Laborer to Newer Sub-
urban while the other happened in 2010 involving transitioning back to
White Laborer. At first sight, it appears that the census tracts were quite
stable in terms of the neighborhood composition. However, the top 20
most common sequences accounted for only 3% of the 25,961 se-
quences. Meanwhile, 2117 out of 2853 unique sequences contained less
than 3 successive identical values which we interpret as having ex-
perienced “frequent” changes.

4.2.2. Clusterings of neighborhood sequences

The four SA methods were then applied to the neighborhood se-
quences to acquire four sequence distance matrices. Each distance
matrix was then used in the agglomerative hierarchical clustering with
Ward's minimum variance criterion. We obtained the appropriate
number of clusters by visually inspecting the hierarchical clustering
dendrogram and truncating the dendrogram with a distance cutoff
where there is a large gap in the tree together with the help of the
average silhouette coefficient. To reach a reasonable comparison be-
tween four sequence methods, we adopted an eight-cluster solution
which was deemed to be appropriate for most of them.®

6 As the reviewers noted, the current neighborhood sequence typologies are
coarse and contain much heterogeneity. We do want to point out that there is
not a perfect index based on which the “best” number of clusters can be se-
lected. A larger number is favorable to reduce heterogeneity but the inter-
pretation of a lot more neighborhood sequence types could be formidable. We
have experimented with a range of numbers for sequence clusters (k = [6, 50])

For “Hamming”, “OMtranr”, and “OMecenter”, each of the eight
clusters of neighborhood sequences is dominated by one neighborhood
type though there are some small variations in terms of which cluster a
weakly dominated sequence belongs to. For instance, while sequence
“Newer Suburban — Newer Suburban — White Laborer — White Laborer —
White Elite” is assigned to the cluster dominated by stable Newer
Suburban with “Hamming”, it belongs to the cluster dominated by
stable White Laborer with the latter two methods. In contrast, the
clusterings based on “OMstran” which evaluates the distance between
sequences of transitions across neighborhood types over time produces
very different compositions.” Here, none of the eight neighborhood
sequence clusters is dominated by sequences experiencing one neigh-
borhood type for several census years. The clusters are differentiated by
the frequency of changes in neighborhood types over time as well as the
timing of the changes. For instance, one cluster is primarily comprised
of sequences which were stable from 1970 to 2000 but experienced a
change in 2010 irrespective of the stable neighborhood type in the in-
itial census year (1970) and the type in 2010, while another cluster is
mainly comprised of sequences experiencing more changes — in both
1980 and 2010. As it stands, the interpretation of the clustering based

(footnote continued)
with the pairwise ARI values shown in Fig. A2. If a small number of clusters is
selected, “OMstran” is very dissimilar to the other three methods, while as the
number increases, it becomes more and more similar. It should be noted that
when the number of clusters is pretty large (> 30) meaning that neighborhood
sequence clusters are more internally homogeneous, “OMecenter” becomes one
least similar to the others potentially due to its heterogeneous substitution
costs. This further corroborates our advice of utilizing the valuable information
offered by the continuous tract-level socioeconomic variables when setting the
OM operation costs.

7 These neighborhood sequence clusters are visualized in a set of index plots
and are available upon request.
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Fig. 3. Substitution costs between every pair of neighborhood types for two data-dependent sequence approaches: (a) “OMecenter” (b) “OMtranr”.
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Fig. 4. Histogram of top 20 most common neighborhood trajectories 1970-2010.

on “OMstran” is considerably different from the others, and the choice
of the method should be guided by the research question. We shall
adopt two indices to quantify the difference in the sequence clusterings
in the next subsection.

4.2.3. Similarity between neighborhood sequences clusterings

We applied the Mantel test to each pair of neighborhood sequence
distance matrices to test for similarity. It turns out that all tests are
rejected at the 1% significance level and the test statistics are positive as
shown in Fig. 5(a). Two distance matrices of neighborhood sequences
produced by applying “Hamming” and “OMtranr” are very similar. The
very high similarity is a result of “OMtranr”’s highly homogeneous and
close to 1 substitution costs which were constructed based on empirical
transition rates as shown in Fig. 3(b). Because the observed transition
rates between distinct neighborhood types are pretty small, substitution
costs between any pair are quite similar which turns out to be quite
uninformative. This is also part of the reason why transition rates-based
costs are not suggested in empirical studies such as the life course re-
search (Studer & Ritschard, 2016). The difference in the insertion/de-
letion costs does not seem to produce a huge difference though “OM-
tranr” allows for a mild level of time warping by setting the cost to be 1
while “Hamming” does not allow time warping at all. “OMecenter”,
which utilizes the Euclidean distances between neighborhood cluster
centers, gives a much different distance matrix. The OM variant

“OMstran” leads to a distance matrix very different from the others as
expected.

In addition, we attempted to quantify the differences in neighbor-
hood sequence clusterings conditional on the cluster scheme (eight-
cluster solution) introduced in Section 4.2.2. We calculated ARIs be-
tween any pair of clusterings as displayed in Fig. 5(b). We observe that
the similarity for any pair dropped at this cluster scheme, which is
especially true for that between “Hamming” and “OMtranr”. The most
similar pair is “OMtranr” and “OMecenter”, both of which allow for a
certain level of time warping though the latter comes with more het-
erogeneous substitution costs. Looking at Fig. A2 which visualizes the
relationship between a wide range of sequence clusters (ke [6, 50]) and
pairwise ARI values, we notice a change in the dominant power from
the difference in insertion/deletion costs (time warping) at a smaller k
to the difference in substitution costs at a larger k.

4.2.4. Spatial variations and determinants

We further investigated the spatial variations of pairwise similarity
between neighborhood sequence clusterings across 50 MSAs at the
eight-cluster scheme. It appears that ARI varies substantially as shown
in Fig. 6. For instance, the ARI between clusterings based on “Ham-
ming” and “OMtranr” reaches as high as 0.9 for the Raleigh-Cary MSA,
and as low as 0.41 for the Milwaukee MSA. Similarly, the ARI between
clusterings based on “OMtranr” and “OMecenter” has a wide range
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Fig. 5. Pairwise similarities of neighborhood sequence: (a) Mantel test (sequence distance matrices); (b) ARI (sequence cluster assignments).

Hamming_OMtranr

Hamming_OMecenter

Hamming_OMstran . .
OMtranr_OMecenter . .
OMtranr_OMstran
oveceee ovree AN EEEEEEE NN
L XOIJI>O0OSZIIXQSkEXzZIJN><Zx D
o»—g<z|zq>§,;gg»—g§0;—~,%¥|20;4%
i 4 2 5 < 6O Z v 6 €E 5 ST ET IO g T D5
2365832255853 c52eE=3828¥X=7
8o fSZ21cav@sL8eszo< I
5322 3 E ;08 EcE35>83c2C g €EEFa
2=2pT 2T =235 62280 256 ¢E 3 °
s ch £5 8 x3 S s Q< 95 0 o ¥ . g8 4 ¢
h T D 5920 ¢ 3220 L 5 0 H 53T 2 snOE
opnp 5298 o2 0o 5 £T@ E 8 casgPgLlchE o
£ 2B dzx Foqm s ¢ SwWwsg 226G g EE
S8E£c£925e8235y 2533 § 8§82
" P SEESS 52 ¢ T 3868 T o B L =G
> mE S8 £ 82 =8 s < S E 2 ¢ @ 5} @
T T 0 E 3B 5 L0 e T > £ =) T
€ ¢ a o S g r s Q8D =4 22
S 5} 28 3 o g1 @ S 9 2
5 3 Q Q4 c g 2 S 3 = 5]
@ ¢ : b & £ 0 = 5 ? S TS ]
ol 5 £ & © s A B 3 E1
T £ S 5 S £ o 2 3 235 ©
& % 2 = =0 > © © 3 &l
Z 3 ) g0 T 2 - T
<2 5 g < iy
I} 8 é
= — T
=

Milwaukee-Waukesha-West Allis, WI

|| N [
BN ] ]
m m
[ | [ | [ | [ ] 04
ENEEEEEEE NN EEEE o
0.0
§Z<<X—‘D§<<<O<<<£P~X<<<<—‘O>
> - Ja o= u_g§z>ooox:>l—ooo§'-‘-zg
Z 52 37000025862 g5 <A
£8 28 Wwe oo gg9 z 4 4 o g <o
227826580255 §=82885823¢8>¢
E582a5258 082 EE88e58508¢¢4¢
BricE5%302sep59e3sL2c2838382
£ ieB8 2 ¢ FEg-nx e D s5EDG52Z20
ESSSs g8 =053 S o0 g 3o 8 Lt
9 8 o 2 X 5 2 I & S o B 2L S ERS G
S 8220 E& ¢8> LD 3 8 zgx 2 g55¢¢g
o o c ? D 5 o 5 c 9 s 8T T S a 2§
I 0 & O o £ X > L & < S 25z 083 2
TEST Y¥E§ 33 @ < §reclhezcs
t385 §s8 g o ) tS 3522 =3
258 2%&£ 5 3= <380 8% 2%
a L93% T & > 3 P < c S E 62 B S &
6 o 3 2 = 3 3 Z 2 ¢ S o 8 g N D=z 3§
5823 ©F 3 7 2 58 g:iB
a s 2 ] I e 5 & c c ¢ g8 £
T @ z o £ c 22 § 85 £ 8 <
o 8 ? s 9 > 3B G o Z
c Q £ © a2 X o F a3
; @ 2 g
£ 2 2 £ ) S 85
= 5 z = = c g
2 S © a n 5 g
z 3 > £
g Z 2 N
5 o
= 3 S z
=
()
-

Geographic area

Fig. 6. Pairwise similarities between cluster assignments (ARI) of neighborhood sequences for each MSA. Each row represents a pair of sequence methods and each

column represents a MSA.

[0.49, 0.9], while the smallest ARI (—0.028) is found between “Ham-
ming” and “OMstran” in the Raleigh-Cary MSA, which indicates two
divergent neighborhood sequence typologies.®

We further conducted a regression analysis to explore potential
factors which could help explain the observed variations in ARI values.
We estimated a fixed effect regression model where SA pair fixed effects
were included to control for any unobserved method pair-specific
characteristics:

5
D 5SP + e

ARL =B, + ) X; +
i j=1

()

Here, the dependent variable is the ARI between a pair of SA
methods for each MSA, SP; is the dummy variable constructed for
each pair of four SA methods (e.g.,, Hamming OMecenter,
OMtranr OMarbitr). The dummy variable for the SA pair
OMtranr_ OMstran was dropped to avoid perfect multicollinearity. XX;
is a bunch of predictor variables at the MSA level which could help

8 The five maps of neighborhood types from 1970 to 2010 for all 50 MSAs
together with their five clusterings of trajectories are available upon request.

explain the variations in observed ARI. It is possible that characteristics
of neighborhood sequences experienced by each MSA are important.
One such characteristic is the sequence complexity which could be
measured by the entropy of the state distribution in the sequence, the
number of transitions (changes) in the sequence, or a combination of
these two indices (Gabadinho, Ritschard, Miiller, & Studer, 2011).
Another characteristic is the sequence turbulence proposed by Elzinga
and Liefbroer (2007). Generally, a sequence which has more distinct
states and more state changes is considered more turbulent. Since these
measures are sequence-wise, we obtained the MSA averages which were
used as predictor variables in the regression model. In addition to the
sequence-wise characteristics, we also explored aggregate sequence
properties at the MSA level, including the number of unique sequences
within each MSA. Several socioeconomic characteristics of each MSA at
the initial census year (1970) were also included to help explain the
variations, such as the population, the average median household in-
come, the income inequality among neighborhoods (measured by Gini),
and the education attainment proxied by the college educated residents.
The increments of these variables across the study period (1970-2010)
were included as predictor variables as well.

We first removed variables which induced multicollinearity
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Table 4

MSA-level ARI regression results.
Variables ARI
Average Household Income 1970 0.0145%
Average Household Income Change 1970-2010 —0.0066
Spatial Gini Change 1970-2010 0.0515
Population in 1970 —0.0044
Population Change 1970-201 0.0012
Average number of transitions in a Neighborhood Sequence —0.5128***
Hamming_OMecenter 0.6057+
Hamming_OMstran —0.0069
Hamming OMtranr 0.6377+*
OMecenter_OMstran —0.0009
OMtranr_OMecenter 0.6584"**
Intercept 0.2640**
Observations 300
F-statistic 637.7*+*
Adj. R-squared 0.959

Note: ***, ** and * indicate significance at the 1%, 5%, and 10% levels
spectively.

—

e-

problem. We did so by inspecting the variance inflation factor for each
predictor variable, a widely used indicator for multicollinearity. We
ended up with six variables as shown in Table 4. We then estimated the
fixed effect model, the result of which is displayed in the table. It turns
out that the MSA population, population change, spatial income in-
equality change, as well as the income change are insignificant. In
contrast, the initial average household income is highly significant and
positive, indicating that MSAs where richer households resided in 1970
tend to be less sensitive to the choice of the SA methods. In other words,
when investigating neighborhood change in these MSAs, different SA
methods tend to produce a more converging neighborhood sequence
typology. Comparatively, for MSAs hosting neighborhoods which have
experienced frequent changes during the period 1970-2010, they are
less likely to produce similar typologies with different SA methods.

5. Discussion and conclusion

The alignment-based sequence analysis (SA) methods represent a
useful toolkit for uncovering emergent patterns in the evolution of
neighborhood socioeconomic characteristics and recently have seen
many applications to neighborhood change research. However, the fact
that these methods rely on multiple assumptions about the evolution of
the sequences makes them subject to potential criticism. This article
attempts to shed light on the extent to which several SA methods are
robust in their ability to provide consistent and converging neighbor-
hood sequence typology and how this robustness (or non-robustness)
presents spatial heterogeneity.

We applied four alignment-based SA methods to a common long-
itudinal census data set in the U.S. — the 50 largest MSAs at census years
1970, 1980, 1990, 2000 and 2010. While three of them fall within the
classic OM scheme focusing on the contemporaneous similarity with a
certain level of time warping with the difference only in the choice of
operations costs such as the cost of substituting one neighborhood type
with another, and the cost of inserting or deleting a neighborhood type,
the fourth method is a OM variant focusing on the second-order prop-
erty of the neighborhood sequence. We demonstrate that the neigh-
borhood sequence typology is generally sensitive to the choice of OM
method and the operation costs, and the sensitivity demonstrates het-
erogeneity across MSAs. MSAs with higher average household income
in 1970 tend to be less sensitive to the choice of the SA methods. In
other words, when investigating neighborhood change in these MSAs,
different SA methods tend to produce a more converging neighborhood
sequence typology. Comparatively, for MSAs hosting neighborhoods
which have experienced frequent changes during the period
1970-2010, they are less likely to produce similar typologies with
different SA methods. In addition, there is a big difference in the

10
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neighborhood sequence typology between applying the classic OM
methods with varying costs and using the OM variant focusing on the
second-order sequence property. While the former reflects con-
temporaneous experiences with some extent of time warping if the cost
of insertion and deletion is not expensive, the latter emphasizes the
stability of the neighborhood sequence. In terms of selecting the cost of
substituting one neighborhood type with another, we recommend re-
searchers to utilize the valuable information provided by the con-
tinuous tract-level socioeconomic variables — more specifically, basing
the substitution costs on (at least partially) distances between neigh-
borhood segmentation (cluster) centers.

Our findings suggest a number of important challenges to the
practice of neighborhood change analysis. First, the growing number of
applications of sequence based methods in urban dynamics may appear
to offer a large body of results on typologies of neighborhood change at
first glance. However, the sensitivity of sequence identification to the
choice of operational parameters suggests that studies adopting alter-
native implementations are no longer directly comparable, and thus
pooling trajectories from different studies to develop a holistic under-
standing of urban dynamics would be misguided. Second, we suggest
urban researchers utilize the valuable information from geodemo-
graphic clustering to determine operation costs for the SA method. The
distance between neighborhood segmentations/clusters is readily
available, quite unique to the neighborhood research, and should be
used to guide the researchers to better quantify the similarity between
pairs of neighborhood types.

One limitation of the current research design pertains to the scope of
factors which could contribute to the final neighborhood sequence ty-
pology and thus the sensitivity of such typology to the choice of the SA
method. In addition to the choice of the SA method for measuring the
distance between neighborhood sequence, it should be noted that many
other parameters, particularly those related to the clustering algorithm
used extensively in this type of analysis, could make a difference to the
final sequence typology. For instance, the harmonization strategy used
for obtaining temporally consistent neighborhood boundaries, the
choice of the neighborhood socioeconomic variables, the normalization
strategy for these variables, the choice of the cluster algorithm for
neighborhood and sequence segmentations, as well as the number of
clusters adopted. While we recognize the potential impact from these
factors, we decided to isolate them so that we can specifically look at
the influence from the choice of the SA method. Future research should
be directed to extend the scope of the involved factors to better un-
derstand the underlying mechanism.

An interesting and valuable research direction would be to inter-
rogate the spatial nature of the unit of study for neighborhood change —
which is usually census tract, a spatial aggregate whose boundary is
administratively defined and prone to change over time.
Neighborhoods as spatial entities thus could be spatially autocorrelated,
meaning that neighborhoods could be more similar to those close by
than those farther away — as coined by “First Law of Geography”
(Tobler, 1970), invalidating the independence assumption underlying
classic statistics; each neighborhood could host households with het-
erogeneous characteristics; neighborhood analysis could suffer from
modifiable areal unit problem (MAUP) which is an issue common to
studies of spatial aggregates and the problem was stated by Openshaw
(1984) as “the areal units used in many geographical studies are arbi-
trary, modifiable, and subject to the whims and fancies of whoever is
doing, or did, the aggregating.” Thus, work that develops spatially ex-
plicit forms of sequence analysis would be an important contribution.
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Fig. Al. Heat map of median z-scores for eight neighborhood clusters.
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