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Abstract—The neighborhood effects literature represents a wide span of the

social sciences broadly concerned with the influence of spatial context on social

processes. From the study of segregation dynamics, the relationships between

the built environment and health outcomes, to the impact of concentrated

poverty on social efficacy, neighborhoods are a central construct in empirical

work. From a dynamic lens, neighborhoods experience changes not only in their

socioeconomic composition, but also in spatial extent; however, the literature has

ignored the latter source of change. In this paper, we discuss the development

of a novel, spatially explicit tool: the Open Source Longitudinal Neighborhood

Analysis Package (OSLNAP) using the scientific Python ecosystem.

Index Terms—neighborhoods, GIS, clustering, dynamics

Introduction

For social scientists in a wide variety of disciplines, neighborhoods

are central thematic topics, focal units of analysis, and first-

class objects of inquiry. Despite their centrality in public health,

sociology, geography, political science, economics, psychology,

and urban planning, however, neighborhoods remain understudied.

One of the reasons for that is because researchers lack appropriate

analytical tools for understanding neighborhood evolution through

time and space. Towards this goal we are developing the open

source longitudinal neighborhood analysis program (OSLNAP).

We envisage OSLNAP as a toolkit for better, more open and repro-

ducible science focused on neighborhoods and their sociospatial

ecology. In this paper we first provide an overview of the main

components of OSLNAP. Next, we present an illustration of

selected OSLNAP functionality. We conclude the paper with a

road map for future developments.

OSLNAP

Neighborhood analysis involves a multitude of analytic tasks, and

different types of inquiry lead to different analytical pipelines

in which distinct tasks are combined in sequence. OSLNAP is

designed in a modular fashion to facilitate the composition of
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different pipelines for neighborhood analysis. Its functionality is

available through several interfaces that include a web-based front

end as well as a library for scripting in Jupyter notebooks or at

the shell. As such, OSLNAP is intended to support different types

of researchers and questions. For example, a sociologist interested

in comparative segregation dynamics can use OSLNAP to derive

time-consistent boundaries for a collection of US metropolitan ar-

eas from 1980-2010. Alternatively, public health epidemiologists

can use the same boundaries to study the impact of neighborhood

context on childhood obesity trends. Both of these types of studies

might be characterized as "neighborhood effects" studies as neigh-

borhood units serve as containers to study different socioeconomic

processes.

An alternative group of studies falls under the "neighborhood

dynamics" label. Here the interest is in the neighborhood units

themselves and how their boundaries and internal socioeconomic

composition evolve over time. Processes such as gentrification

and the so called great inversion [Ehr12] where wealthy, higher

educated, white populations are relocating into the center cities

while growing numbers of minorities move to the suburbs both

fundamentally restructure urban and suburban neighborhoods.

OSLNAP is designed to support both neighborhood effects and

neighborhood dynamics modes of inquiry.

Here we provide an overview of each of the main analytical

components of OSLNAP before moving on to an illustration of

how selections of the analytical functionality can be combined for

particular use cases. OSLNAP’s analytical components are orga-

nized into three core modules: [a] data layer; [b] neighborhood

definition layer; [c] longitudinal analysis layer.

Data Layer

Like many quantitative analyses, one of the most important and

challenging aspects of longitudinal neighborhood analysis is the

development of a tidy and accurate dataset. When studying the

socioeconomic makeup of neighborhoods over time, this challenge

is compounded by the fact that the spatial units whose composition

is under study often change size, shape, and configuration over

time. The harmonize module provides social scientists with

a set of simple and consistent tools for building transparent

and reproducible spatiotemporal datasets. Further, the tools in

harmonize allow researchers to investigate the implications of
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Fig. 1: Enumeration Unit Changes [U.S10].

alternative decisions in the data processing pipeline and how those

decisions affect the results of their research.

Neighborhood demographic and socioeconomic data relevant

to social scientists are typically collected via a household census

or survey and aggregated to a geographic reporting unit such as

a state, county or zip code which may be relatively stable. The

boundaries of smaller geographies like census tracts, however,

often are designed to encapsulate roughly the same number of

people for the sake of comparability, which means that they are

necessarily redrawn with each data release as population grows

and fluctuates. Figure 1 illustrates the issues involved. Here two

census tracts from 2000 have been merged to form a new tract in

2010. However, while one of the original tracts is completely con-

tained in the new tracts, the second original tract is only partially

contained in the new tract. In other words, since same physical

location may fall within the boundary of different reporting units

at different points in time, it is impossible to compare directly a

single neighborhood with itself over time.

To facilitate temporal comparisons, research to date has pro-

ceeded by designating a “target” geographic unit or zone that is

held constant over time, and allocating data from other zones using

areal interpolation and other estimation techniques. This process is

sometimes known as “boundary harmonization” [LSX16]. While

“harmonized” data is used widely in neighborhood research, the

harmonization process also has known shortcomings, since the

areal interpolation of aggregate data is subject to the ecological

fallacy–the geographic manifestation of which is known as the

“Modifiable Areal Unit Problem” (MAUP) [Ope84]. Simply put,

MAUP holds that areal interpolation introduces bias since the

spatial distribution of variables in each of the overlapping zones

is unknown. A number of alternative approaches have been sug-

gested to reduce the amount of error by incorporating auxiliary

data such as road networks, which help to uncover the “true”

spatial distribution of underlying variables, but this remains an

active area of research [Sch17], [SQ13], [Tap10], [Xie95].

In practice, these challenges mean that exceedingly few neigh-

borhood researchers undertake harmonization routines in their

own research, and those performing temporal analyses typically

use exogenous, pre-harmonized boundaries from a commercial

source such as the Neighborhood Change Database (NCDB)

[Tat], or the freely available Longitudinal Tract Database (LTDB)

[LXS14]. The developers of these products have published studies

verifying the accuracy of their respective data, but those claims

have gone untested because external researchers are unable to fully

replicate the underlying methodology.

To overcome the issues outlined above, OSLNAP provides a

suite of methods for conducting areal interpolation and bound-

ary harmonization in the harmonize module. It leverages

geopandas and PySAL for managing data and performing

geospatial operations, and the PyData stack for attribute calcu-

lations [RA10]. The harmonize module allows a researcher to

specify a set of input data (drawn from the space-time database

described in the prior section), a set of target geographic units

to remain constant over time, and an interpolation function that

may be applied to each variable in the dataset independently. For

instance, a researcher may decide to use different interpolation

methods for housing prices than for the share of unemployed

residents, than for total population; not only because the researcher

may wish to treat rates and counts separately, but also because

different auxiliary information might be applicable for different

types of variables.

In a prototypical workflow, harmonize permits the end-user

to carry out a number of tasks: [a] compile and query a spatiotem-

poral database using either local data or connections to public data

services; [b] define the relevant variables to be harmonized and

optionally apply a different (spatial and/or temporal) interpolation

function to each; [c] harmonize temporal data to consistent spatial

units by either selecting an existing native unit (e.g. zip codes in

2016), inputting a user-defined unit (e.g. a theoretical or newly

proposed boundary), or developing new primitive units (e.g. the

intersection of all polygons).

Neighborhood Identification

Neighborhoods are complex social and spatial environments with

multiple interacting individuals, markets, and processes. Despite

decades of research it remains difficult to quantify neighborhood

context, and certainly no single variable is capable of capturing

the entirety of a neighborhood’s essential essence. For this reason,

several traditions of urban research focus on the application

of multivariate clustering algorithms to develop neighborhood

typologies. Such typologies are sometimes viewed as more holistic

descriptions of neighborhoods because they account for multiple

characteristics simultaneously [Gal01].

One notable tradition from this perspective called “geodemo-

graphics”, is used to derive prototypical neighborhoods whose

residents are similar along a variety of socioeconomic and demo-

graphic attributes [FG89], [SS14]. Geodemographics have been

applied widely in marketing [FE05], education [SL09], and health

research [PGL+11] among a wide variety of additional fields. The

geodemographic approach has also been criticized, however, for

failing to model geographic space formally. In other words, the

geodemographic approach ignores spatial autocorrelation, or the

“first law of geography”–that the attributes of neighboring zones

are likely to be similar.

Another tradition in urban research, known as “regionaliza-

tion” has thus been focused on the development of multivariate

clustering algorithms that account for spatial dependence explic-

itly. To date, however, these traditions have rarely crossed in the

literature, limiting the utility each approach might have toward

applications in new fields. In the clustermodule, we implement

both clustering approaches to (a) foster greater collaboration

among weakly connected components in the field of geographic

information science, and (b) to allow neighborhood researchers

to investigate the performance of multiple different clustering
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solutions in their work and evaluate the implications of including

space as a formal component in their clustering models.

In OSLNAP, the cluster module leverages the scientific

python ecosystem, building from scikit-learn [PVG+11], geopan-

das [Geo18], and PySAL [Rey15]. Using input from the Data

Layer, the cluster module allows researchers to develop neigh-

borhood typologies based on either attribute similarity (the geode-

mographic approach) or attribute similarity with incorporated spa-

tial dependence (the regionalization approach). Given a space-time

data set, the cluster module permits three different treatments

of time when defining neighborhoods. The first focuses on the case

where only a single cross-section is available, and the clustering is

carried out to define neighborhoods for that one point in time.

In the second case, multiple waves or periods of observations

are available and the clustering is repeated for each time slice

of observations. This can be a useful approach if researchers

are interested in the durability and permanence of certain kinds

of neighborhoods. If similar types reappear in multiple cross

sections (e.g. if the k-means algorithm places the k-centers in

approximately similar locations each time period), then it may

be inferred that the metropolitan dynamics are somewhat stable,

at least at the macro level, since new kinds of neighborhoods do

not appear to be evolving and old, established neighborhood types

remain prominent. The drawback of this approach is the type of

a single neighborhood cannot be compared between two different

time periods because the types are independent in each period.

In the third approach, clusters are defined from all observations

in all time periods. The universe of potential neighborhood types

is held constant over time, the neighborhood types are consistent

across time periods, and researchers can examine how particular

neighborhoods get classified into different neighborhood types as

their composition transitions through different time periods. While

comparatively rare in the research, this latter approach allows a

richer examination of socio-spatial dynamics. By providing tools

to drastically simplify the data manipulation and analysis pipeline,

we aim to facilitate greater exploration of urban dynamics that will

help catalyze more of this research.

To facilitate this work, the cluster module provides

wrappers for several common clustering algorithms from

scikit-learn that can be applied . Beyond these, however,

it also provides wrappers for several spatial clustering algorithms

from PySAL, in addition to a number of state-of-the art algorithms

that have recently been developed [Wol18].

In a prototypical workflow, cluster permits the end-

user to: [a] query the (tidy) space-time dataset created via the

harmonize module; [b] define the neighborhood attributes and

time periods and on which to develop a typology; [c] run one or

more clustering algorithms on the space-time dataset to derive

neighborhood cluster membership. Clustering may be applied

cross-sectionally or on the pooled time-series, and clustering

may incorporate spatial dependence, in which case cluster

provides options for users to parameterize a spatial contiguity

matrix. Clustering results may be reviewed quickly via the built-

in plot() method, or interactively by leveraging the planned

geovisualization module.

Longitudinal Analysis

Having identified the neighborhood types for all units of analysis

over the whole time span, researchers might be interested in how

they evolve over time. The third core module of OSLNAP’s ana-

lytical components, change, provides a suite of functionality to-

wards this end. Traditional longitudinal analysis in neighborhood

contexts focuses solely on changes in residential socioeconomic

composition, while we and others have argued that changes in

geographic footprints are also substantively interesting [RAF+11].

Therefore, this component draws upon recent methodological

developments from spatial inequality dynamics and implements

two broad sets of spatially explicit analytics to provide deeper

insights into the evolution of socioeconomic processes and the

interaction between these processes and geographic structure.

Both sets of analytics operate on time series of neighborhood

types; they each take as input a set of spatial units of analysis

(e.g. census tracts) that have been assigned a categorical variable

for each point in time (e.g. the output of the cluster module).

They differ, however, in how the time series are modeled and

analyzed. The first set centers on transition analysis, which treats

each time series as stochastically generated from time point to

time point. It is in the same spirit of the first-order Markov Chain

analysis where a (k,k) transition matrix is formed by counting

transitions across all the k neighborhood types between any two

consecutive time points for all spatial units. One drawback of this

approach is that it treats all the time series as being independent of

one another and following an identical transition mechanism. The

spatial Markov approach was proposed by [Rey01] to interrogate

potential spatial interactions by conditioning transition matrices

on neighboring context while the spatial regime Markov approach

allows several transition matrices to be formed for different spatial

regimes which are constituted by contiguous spatial units. Both

approaches together with inferences have been implemented in

Python Spatial Analysis Library (PySAL) [Rey15] and Geospatial

Distribution Dynamics (giddy) package [gid18]. The change

module considers these packages as dependencies and wraps rel-

evant classes and functions to make them consistent and efficient

for longitudinal neighborhood analysis.

The other set of spatially explicit approach to neighborhood

dynamics is concerned with sequence analysis which treats each

time series of neighborhood types as a whole, in contrast to

transition analysis. The core of sequence analysis is the similarity

measure between a pair of sequences. Various aspects of a neigh-

borhood sequence such as the order in which successive neighbor-

hood types appears, the year(s) in which a specific neighborhood

type appears, and the duration of a neighborhood type could be

the focus of the similarity measure. Choosing which aspect or

aspects to focus on should be driven by the research question at

hand and the interpretation should proceed with caution [SR16].

A major approach of sequence analysis, the optimal matching

(OM) algorithm, which was originally used for matching protein

and DNA sequences [AT00], has been adopted to measure the

similarity between neighborhood sequences in metropolitan areas

such as Los Angeles and Chicago [Del16], [Del17]. It generally

works by finding the minimum cost for transforming one sequence

to another using a combination of operations including substitu-

tion, insertion, deletion and transposition. The similarity matrix is

then used as the input for another round of clustering to derive a

typology of neighborhood trajectory to produce several sequences

of neighborhood types typically happening in a particular order

[Del16].

In a prototypical workflow, the change module permits the

end user to explore the nature of neighborhood change from a

dynamic, holistic or combined holistic & dynamic perspective.

From a dynamic perspective, transition analysis can be used to

apply a first-order Markov chain model to look at probabilities
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of transitioning between neighborhood types over time. It also

supports the use of a spatial Markov chains model to interrogate

the role of spatial interactions in shaping neighborhood dynamics

or the application of a spatial regime Markov chains model to

explore spatially heterogeneous neighborhood dynamics. From a

holistic perspective, sequence analysis involves the application of

the OM algorithm with classic cost functions for substitution,

insertion, deletion and transposition, or those explicitly taking

account of potential spatial dependence and spatial heterogeneity.

Finally, a combined holistic & dynamic perspective is gained by

feeding the output from transiton analysis, which is the empical

transition probability matrix, or spatially dependent transition

probability matrices into sequence analysis to help set operation

costs.

Empirical Illustration

In the following sections we demonstrate the utility of OSLNAP by

presenting the results of several initial analyses conducted with the

package. We begin with a series of cluster analyses, which are then

used to analyze neighborhood dynamics. Typically, workflows of

this variety would require extensive data collection, munging and

recombination; with OSLNAP, however, we accomplish the same

in just a few lines of code. Using the Los Angeles metropolitan

area as our example, we present three neighborhood typologies,

each of which leverages the same set of demographic and socioe-

conomic variables, albeit with different clustering algorithms. The

results show similarities across the three methods but also several

marked differences. This diversity of results can be viewed as

either nuisance or flexibility, depending on the research question

at hand, and highlights the need for research tools that facilitate

rapid creation and exploration of different neighborhood clustering

solutions. For each example, we prepare a cluster analysis for the

Los Angeles metropolitan region using data at the census tract

level. We visualize each clustering solution on a map, describe the

resulting neighborhood types, and examine the changing spatial

structure over time. For each of the examples, we cluster on the

following variables: race categories (percent white, percent black,

percent Asian, percent Hispanic), educational attainment (share

of residents with a college degree or greater) and socioeconomic

status (median income, median home value, percent of residents

in poverty).

Agglomerative Ward

We begin with a simple example identifying six clusters via

the agglomerative Ward method. Following the geodemographic

approach, we aim to find groups of neighborhoods that are similar

in terms of their residential composition, regardless of whether

those neighborhoods are physically proximate. Initialized with the

demographic and socioeconomic variables listed earlier, the Ward

method identifies three clusters that are predominantly white on

average but which differ with respect to socioeconomic status. The

other three clusters, meanwhile, tend to be predominantly minority

neighborhoods but are differentiated mainly by the dominant racial

group (black versus Hispanic/Latino) rather than by class. The

results, while unsurprising to most urban scholars, highlight the

continued segregation by race and class that characterize American

cities. For purposes of illustration, we give each neighborhood

type a stylized moniker that attempts to summarize succinctly its

composition (again, a common practice in the geodemographic

literature). To be clear, these labels are oversimplifications of the

socioeconomic context within each type, but they help facilitate

rapid consumption of the information nonetheless. The resulting

clusters are presented in Figure 2.

• Type 0. racially concentrated (black and Hispanic) poverty

• Type 1. minority working class

• Type 2. integrated middle class

• Type 3. white upper class

• Type 4. racially concentrated (Hispanic) poverty

• Type 5. white working class

When the neighborhood types are mapped, geographic patterns

are immediately apparent, despite the fact that space is not consid-

ered formally during the clustering process. These visualizations

reveal what is known as “the first law of geography”–that near

things tend to be more similar than distant things (stated otherwise,

that geographic data tend to be spatially autocorrelated) [Tob70].

Even though we do not include the spatial configuration as part

of the modeling process, the results show obvious patterns, where

neighborhood types tend to cluster together in euclidian space. The

clusters for neighborhoods type zero and four are particularly com-

pact and persistent over time (both types characterized by racially

concentrated poverty), helping to shed light on the persistence of

racial and spatial inequality. With these types of visualizations in

hand, researchers are equipped not only with analytical tools to

understand how neighborhood composition can affect the lives of

its residents (a research tradition known as neighborhood effects),

but also how neighborhood identities can transform (or remain

stagnant) over time and space. Beyond the simple diagnostics

plots presented above, OSLNAP also includes an interactive vi-

sualization interface that allows users to interrogate the results

of their analyses in a dynamic web-based environment where

interactive charts and maps automatically readjust according to

user selections.

Affinity Propagation

Affinity propagation is a newer clustering algorithm with imple-

mentations in scikit-learn that is capable of determining the num-

ber of clusters endogenously (subject to a few tuning parameters).

Initialized with the default settings, OSLNAP discovers 14 neigh-

borhood types in the Los Angeles region; in a way, this increases

the resolution of the analysis beyond the Ward example, since

increasing the number of clusters means neighborhoods are more

tightly defined with lower variance in their constituent variables.

On the other hand, increasing the number of neighborhood types

also increase the difficulty of interpretation since the each type

will be, by definition, less differentiable from the others. In the

proceeding section, we discuss how researchers can exploit this

variability in neighborhood identification to yield different types

of dynamic analyses. Again, we find it useful to present stylized

labels to describe each neighborhood type:

• Type 0. white working class

• Type 1. white extreme wealth

• Type 2. black working class

• Type 3. Hispanic poverty

• Type 4. integrated poverty

• Type 5. Asian middle class

• Type 6. white upper-middle class

• Type 7. integrated Hispanic middle class

• Type 8. extreme racially concentrated poverty

• Type 9. integrated extreme poverty
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Conclusion

In this paper we have presented the motivation for, initial design,

and implementation of OSLNAP. We feel that, even at this early

stage in the project, OSLNAP has benefitted from the scope and

deep nature of the PyData stack as we have been able to move from

conceptualization to prototyping in fairly short order. At the same

time, we see OSLNAP playing an important role in widening the

use of Python in urban and spatial data science. We are looking

forward to the future development of OSLNAP and interaction

with both the PyDATA community and the broader community of

computational social sciences.
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