
  

  

Abstract— This paper presents an experimental study to 
investigate how humans interact with a robotic arm simulating 
primarily unstable, damping-defined, mechanical environments, 
and to quantify lower bounds of robotic damping that humans 
can stably interact with. Human subjects performed posture 
maintenance tasks while a robotic arm simulated a range of 
negative damping-defined environments and transiently 
perturbed the human arm to challenge postural stability. 
Analysis of 2-dimensional kinematic responses in both the time 
domain and phase space allowed us to evaluate stability of the 
coupled human-robot system in both anterior-posterior (AP) 
and medial-lateral (ML) directions, and to determine the lower 
bounds of robotic damping for stable physical human-robot 
interaction (pHRI). All subjects demonstrated higher capacity to 
stabilize their arm against negative damping-defined 
environments in the AP direction than the ML direction, 
evidenced by all 3 stability measures used in this study. Further, 
the lower bound of robotic damping for stable pHRI was more 
than 3.5 times lower in the AP direction than the ML direction: 
-30.0 Ns/m and -8.2 Ns/m in the AP and ML directions, 
respectively. Sensitivity analysis confirmed that the results in 
this study were relatively insensitive to varying experimental 
conditions. Outcomes of this study would allow us to design a less 
conservative robotic impedance controller that utilizes a wide 
range of robotic damping, including negative damping, and 
achieves more transparent and agile operations without 
compromising coupled stability and safety of the human-robot 
system, and thus improves the overall performance of pHRI. 
 

I. INTRODUCTION 

Robotic arms or manipulators that physically interact with 
humans have gained high popularity in recent years and have 
been widely utilized in medical and industrial settings [1, 2]. 
When controlling physically interactive robots, including 
robotic arms, it is critical to create a control system that 
guarantees stable and safe physical human-robot interaction 
(pHRI) without neglecting or sacrificing performance. Many 
controllers have been introduced to address stability and safety 
[3-5], and one of the most efficient and robust ways is to 
regulate dynamic behavior at the point of interaction, i.e., 
mechanical impedance [6, 7], which describes energy 
exchanges between the human and the robot. 
While it is quite common to heuristically select and tune 

parameters of a robotic impedance (or admittance) controller, 
such as Cartesian impedance at the end-effector (i.e., endpoint 
impedance), there also have been some efforts to estimate or 
quantify impedance of the human arm and integrate this 
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knowledge into robotic impedance controllers [8, 9]. Indeed, 
there have been many studies on how human arm impedance 
is modulated and controlled during static posture and dynamic 
movement tasks [10-12]. Most studies have focused on the 
estimation of endpoint arm stiffness, the static component of 
arm impedance, and have demonstrated that the human central 
nervous system is capable of controlling endpoint stiffness in 
both predictive and reactive manners depending on the type of 
motor tasks and environmental conditions [13-16].  
Compared to arm stiffness, arm viscosity or damping, 

another important component of the arm impedance, has been 
relatively understudied. This is due in part to technical 
challenges in estimating the intrinsic damping of the human 
arm[10]. The limited knowledge on how human arm damping 
is modulated and controlled during physical interaction limits 
its application to robotic impedance controllers. Thus, robotic 
damping of an impedance controller is primarily determined 
such that it exhibits highly dissipative behaviors to the human 
user. While this approach guarantees coupled stability and 
safety of the human-robot system, it is often excessively 
conservative, resulting in reduced transparency, agility, and 
decreased overall performance. 
If human arm damping can be quantified, or if the lower 

bounds of robotic damping that humans can stably interact 
with are known, the impedance controller could utilize a wide 
range of robotic damping and achieve more transparent and 
agile operations without compromising coupled stability and 
safety of the human-robot system. For example, if human arm 
damping is known to be dissipative (i.e., positive damping), 
the robotic impedance controller could impose active damping 
(i.e., negative damping) over the period where robotic 
assistance is beneficial to the human user. As long as the 
magnitude of negative damping of the impedance controller is 
lower than that of human arm damping, this less conservative 
controller could preserve the coupled stability while 
improving overall performance, in particular, the transparency 
and agility, of pHRI. 
With this goal in mind, this paper presents our recent 

efforts to investigate how stably humans can interact with a 
robotic arm simulating primarily unstable, damping-defined, 
mechanical environments, and to quantify lower bounds of 
robotic damping for stable pHRI. Rather than indirectly 
estimating the lower bounds based on system identification of 
human arm damping, we determined them directly by 
analyzing the kinematic responses of the arm during 
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interaction with a robotic arm that simulated damping-defined 
environments with different levels of stability. 
We hypothesized that humans could stably interact with a 

robotic arm simulating negative damping to a certain lower 
limit. In addition, previous findings showing higher arm 
impedance in the anterior-posterior (AP) direction compared 
to the medial-lateral (ML) direction [11, 17] led us to  
hypothesize that the humans are more capable of stabilizing 
their arm in the AP direction than the ML direction. Thus, the 
lower bound of robotic damping for stable pHRI is lower in 
the AP direction than the ML direction. These hypotheses were 
tested through a set of human experiments. Subjects performed 
posture maintenance tasks while the robotic arm simulated a 
range of damping-defined mechanical environments each with 
different levels of stability. The robotic arm also transiently 
perturbed the human arm to challenge postural stability. 
Analysis of 2-dimensional (2D) kinematic responses allowed 
us to evaluate stability of the coupled human-robot system in 
both AP and ML directions, and to determine the lower bounds 
of robotic damping that humans can stably interact with.  
 

II. METHODS 

A. Experimental Setup 
A 7 degrees-of-freedom (DOF) robotic arm (LBR iiwa 

R820, KUKA, Germany) with a 6-axis load cell (Delta IP60, 
ATI Industrial Automation, NC) was used to evaluate 2D arm 
stability, i.e., AP and ML stability, during interaction with 
damping-defined mechanical environments with different 
levels of stability. Both kinematic and force data were 
recorded at 1 kHz. 
Subjects were seated with their trunk securely strapped to 

a rigid chair, facing a feedback visual display at a distance of 
~1 m (Fig. 1A). The feedback display, showing neutral and 
current hand positions, was provided to help subjects 
successfully complete visually-guided posture maintenance 
tasks (Fig. 1B). Subjects held the handle, which was connected 
to the robotic end-effector, with the shoulder in ~70° of 
abduction, ~45° of horizontal flexion, and the elbow in ~90° 
of flexion. This starting posture was considered the “neutral 
position” for all trials. 
The robot was capable of simulating a range of mechanical 

environments as well as providing rapid position perturbations 
in both AP and ML directions. Two distinct controllers were 
implemented for this purpose. A position controller provided 
ramp position perturbations to disturb the arm posture either in 
the AP or ML direction. An admittance controller simulated a 
range of mechanical impedances (stiffness, damping and 
inertia) at the robotic end-effector [7]. Zero stiffness and 
constant mass were simulated in the horizontal plane, and only 
damping was varied to manipulate the level of damping-
defined environmental stability. High stiffness of 10!  N/m 
was simulated in the vertical plane to constrain vertical 
movement and maintain the subject’s focus on 2D planar tasks. 
During trials in the AP direction, variable damping values 

were simulated only in the AP direction, while damping in the 
ML direction was held constant at 30 Ns/m. The bounds of the 
variable damping changed between trials randomly and were 

selected in the range of [-50, 0] Ns/m with intervals of 10 
Ns/m, except the last interval which was 20 Ns/m. Similarly, 
during trials in the ML direction, variable damping values 
were simulated only in the ML direction, while damping in the 
AP direction was held constant at 30 Ns/m. Again, the variable 
damping bounds changed randomly between trials, and were 
selected in the range of [-25, 0] Ns/m with intervals of 5 Ns/m, 
except the last interval which was 10 Ns/m. The range of 
simulated damping was determined based on preliminary 
experiments confirming that healthy subjects were unable to 
stabilize their arm in mechanical environment with damping 
less than -80 Ns/m and -40 Ns/m in the AP and ML directions, 
respectively.  
As a safety feature, a virtual wall of 26 x 26 cm2 was 

implemented around the neutral position (Fig. 1B). When 
displacements reached the virtual wall, the simulated 
damping switched to 30 Ns/m to stabilize the arm and 
prevent any potential injuries.  
For each trial, the robot alternated between the admittance 

controller and the position controller. The transition between 
controllers was completed in one sample time (1 ms). This 
small delay provided an almost instantaneous switch between 
controllers, allowing for transient perturbation of the arm 
while subjects interacted with the simulated mechanical 
environment. 

B. Experimental Protocol 
Fifteen young, healthy subjects (age: 19-27, height: 162-

190 cm, weight: 47-90 kg, 11 males and 4 females) 
participated in this study, which was approved by the 
Institutional Review Board of Arizona State University 
(STUDY 00010123). Subjects provided informed, written 
consent prior to participation. All experimental procedures 
were performed in accordance with the relevant guidelines 
and regulations. No subject was informed regarding the 
hypotheses.  

 
Fig. 1. Experimental setup. A: Side view of the robot coupled to a human 
subject. B: Visual feedback display. Black hollow and red solid circles 
were the neutral (±5 mm) and the current hand positions, respectively. 
Small gray circles were at ±5 cm from the neutral position and appeared at 
the beginning of each trial to help subjects explore the simulated 
mechanical environment. Dotted lines denote the boundaries of the virtual 
walls. (Top): Visual feedback for the AP direction trials. (Bottom): Visual 
feedback for the ML direction trials. 



  

Two sets of experiments were performed on two separate 
days. All 15 subjects participated in the first experiment, 
where we determined lower bounds of robotic damping that 
humans can stably interact with. Twelve subjects, a subset of 
those in the first experiment, also participated in the second 
experiment, where we performed a sensitivity analysis to 
evaluate any confounding effects of the inertia simulated by 
the admittance controller and the perturbation profiles of the 
position controller on the lower bounds of robotic damping 
that were identified in the first experiment. 
In the first experiment, subjects were instructed first to 

explore a randomly selected mechanical environment by 
reaching the small gray circles on the visual feedback display 
(Fig. 1B) that were 5 cm apart from the neutral position, and 
then to return to the neutral position (±5 mm). After the neutral 
position was maintained for a randomized time interval of 0.5-
1.5 s, the position perturbation displaced the arm to challenge 
arm stability. Subjects were asked to move their arm back to 
the neutral position as efficiently as possible following the 
perturbation. There was a 3 s stabilizing period right after the 
perturbation, where subjects interacted with the original 
mechanical environment prior to the perturbation.  
Zero stiffness and 10 kg mass were simulated in the 

horizontal plane for all experiments, and only damping was 
varied to manipulate the level of environmental stability. The 
position perturbation had an amplitude of 5 cm with an average 
speed and ending speed of 20 cm/s. 
A total of 20 experimental conditions (5 damping × 4 

perturbation) were tested. For trials in the AP direction (or 
ML direction), subjects were exposed to 5 distinct, damping-
defined environments in the range of [-50, 0] Ns/m (or [-25, 
0] Ns/m) and AP (or ML) position perturbations. Each 
experimental condition was repeated 12 times, resulting in a 
total of 240 trials. In order to avoid fatigue, the experiment 
was split into 12 blocks with at least a minute of rest between 
blocks. Two additional training blocks were included before 
the main experiment, which allowed subjects to familiarize 
themselves with the experimental setup and protocol, and to 
practice reaching the target under different mechanical 
environments. The entire experiment including these two 
training blocks took under 1 hour. 
In the second experiment, 12 subjects were split into two 

groups to investigate if there exist any significant effects of 
simulated inertia (Group 1) and perturbation profile (Group 
2) on the results of the first experiment. Six subjects in Group 
1 performed the same posture maintenance tasks as in the first 
experiment, but under varying inertia conditions. Four 
different inertias (8, 10, 12, and 14 kg) of the admittance 
controller were tested for each of 5 different damping 
conditions. The same perturbation profile as in the first 
experiment was used.  
The other six subjects in Group 2 performed the same 

stabilization task, but under different perturbation profile 
conditions. Four different ending perturbation velocities (10, 
15, 20, and 25 cm/s) were tested for each of 5 different 
damping conditions. The simulated inertia was fixed to 10 kg. 
For each group, each experimental condition was repeated 

10 times in each of AP and ML directions, resulting in a total 
of 400 trials. 

C. Data Analysis 
Stability of the endpoint, i.e., stability at the contact point 

between the human arm and the robot, was quantified in both 
the time domain and phase space. In the time domain, the 
success rate of achieving stability and the time to regain 
stability were calculated for each experimental condition 
[18]. In the phase space, the rate of reducing the kinematic 
error after perturbation was calculated using the phase-space 
contraction method [19, 20]. 
If subjects had failed to stabilize the arm prior to the 

perturbation, meaning the hand position (endpoint) passed 
the boundaries of the virtual wall (±13 cm from the neutral 
position) during exploration of the simulated environment, 
the trial was considered a failed trial.  
For successful trials in the exploration phase, the time to 

regain stability was calculated from the first moment that 
subjects maintained the hand position around the neutral 
position (±5 mm) for 500 ms continuously after the 
perturbation. If subjects had failed to meet this criterion 
within 3 s after the perturbation or if the hand position had 
passed the boundaries of the virtual walls, the trial was 
considered a failed trial and 3 s was assigned to the time to 
regain stability for further data analysis.  
At the completion of the experiment, the rate of 

successful trials was calculated for each experimental 
condition. Further, the lowest bound of robotic damping in 
which the subjects could maintain stability (i.e., 100% 
success rate) was calculated for each perturbation direction. 
For the phase-space contraction analysis, a 2D state 

vector �⃗� = [𝑥 �̇�]  was defined where 𝑥  and �̇�  were 
position and velocity, respectively. Two state arrays, �⃗�(𝑡) 
and �⃗�(𝑡 + 1), were then defined as follows: 

�⃗�(𝑡) = /

𝑥(𝑡")
𝑥(𝑡#)

�̇�(𝑡")
�̇�(𝑡#)

⋮
𝑥(𝑡$%")

⋮
�̇�(𝑡$%")

1 , �⃗�(𝑡 + 1) = /

𝑥(𝑡#)
𝑥(𝑡&)

�̇�(𝑡#)
�̇�(𝑡&)

⋮
𝑥(𝑡$)

⋮
�̇�(𝑡$)

1

 (1) 

where 𝑡"  was the moment when the perturbation was 
completed, and 𝑡$  was the first moment that subjects 
maintained the hand position around the neutral position (±5 
mm) for 500 ms continuously after the perturbation, or 3 s if 
the trial had failed to achieve stability. In order to lessen the 
computational burden without losing details of the state 
trajectory in the phase plane, raw data of position and 
velocity (recorded at 1 kHz) were down sampled by 
averaging consecutive data points within a 50 ms window. 
Two state arrays with down-sampled data were denoted as 
�⃗�(𝑘)  and �⃗�(𝑘 + 1) , and their causal relationship can be 
described by a function 𝑓: 

�⃗�(𝑘 + 1) = 𝑓(�⃗�(𝑘)) (2) 

Then, this potentially nonlinear relationship was linearized 
with respect to the origin (i.e., neutral position) and 
represented by a 2×2 Jacobian matrix 𝐽': 



  

�⃗�(𝑘 + 1) = 𝐽'�⃗�(𝑘) (3) 

The maximum eigenvalue of 𝐽' was calculated to quantify 
the rate of contraction of the state trajectory in the phase 
space. The lower the maximum eigenvalue, the more stable 
the kinematic response.  
The group results were averaged after evaluating the 3 

stability measures (i.e., the success rate, time to regain 
stability, and maximum eigenvalue from the phase-space 
contraction analysis) for each individual subject. Statistical 
analyses were performed in order to test how these group 
results changed with the level of environmental stability. A 
one-way repeated measures ANOVA was performed 
separately for each of the 3 stability measures (dependent 
variables) followed by pairwise comparisons with 
Bonferroni correction. The level of environmental stability 
(or robotic damping value) was used as the within-subject 
factor. Separate analyses were performed for AP and ML 
directions.  
Movement direction was used as the within-subject 

factor for the one-way repeated measures ANOVA analysis 
of the lower bound of robotic damping for stable interaction. 
All statistical tests were made using the SPSS statistical 
package.  
For the sensitivity analysis, 3 stability measures were 

quantified in both varying inertia conditions (8, 10, 12, and 
14 kg) and varying perturbation conditions (ending velocity 
of 10, 15, 20, and 25 cm/s). Specifically, the percentage 
difference between each condition and the average of 4 
conditions was calculated: 

%𝐷𝑖𝑓𝑓! =
|#$%&'('$%!)(∑ #$%&'('$%!)/."

!#$ |
(∑ #$%&'('$%!)/."

!#$
× 100   (4) 

 

III. RESULTS 

All subjects in this study stably interacted with a robotic 
arm simulating negative damping to a certain degree of 
stability, but they used more time and effort to stabilize their 
arm as the level of environmental stability decreased (Fig. 
2). 
In both directions of movement, the success rate of 

achieving stability significantly decreased alongside the 
decrease of environmental stability (p << 0.001) (Fig. 3). 
When averaged across subjects, the success rate of 
achieving stability in the AP direction was higher than 96% 
in the robotic damping range of [-30 0] Ns/m. Pairwise 
comparison showed that results in -20 and -30 Ns/m were 
not statistically different (p = 0.18). At -50 Ns/m the success 
rate significantly decreased reaching 64%. Results in -40 
Ns/m and  -50 Ns/m were significantly different from those 
in any other four damping conditions (p << 0.001).  
The success rate in the ML direction showed a similar 

trend. It was higher than 94% in the robotic damping range 
of [-10 0] Ns/m, but significantly decreased with the 
decrease of environmental stability. The success rates were 
75% and 62% in -20 and -25 Ns/m, respectively. These 
values were significantly different from results in any other 
four damping conditions (p << 0.001).  
While the time to regain stability significantly increased 

with the decrease of environmental stability in both 
movement directions (p << 0.001), it required substantially 
more time to stabilize the arm in the ML direction than the 
AP direction. At a damping value of -20 Ns/m, the times to 
regain stability were 1.10 s and 1.94 s for the AP and ML 
directions, respectively.  

 
Fig. 3. Group results of the success rate and time to regain stability. 
(Left): AP direction, (Right): ML direction. A: Average success rate of 
achieving stability across all subjects. B: Average time to regain 
stability in AP (left column) and ML (right column) for 5 different 
robotic damping values in [-50, 0] Ns/m and [-25, 0] Ns/m for the AP 
and ML directions, respectively. Bars and error bars denote the mean 
and 95% confidence interval. 

 

 

 
Fig. 2. Kinematic responses of the endpoint of a representative subject. 
Endpoint positions on the time interval of [-1, 3] s, where 0 s is the onset 
of the perturbation. A: anterior, B: posterior, C: medial, and D: lateral 
direction. (Left): robotic damping for the neutral environment is 0 Ns/m. 
(Right): robotic damping for the unstable environment is -50 and -25 
Ns/m for the AP and ML directions, respectively. Gray traces represent 
individual trials, and bold trace is the average of all individual trials. 

 
 



  

According to the phase-space contraction analysis, 
subjects had more difficulty in reducing the kinematic error 
induced by the position perturbation during interaction with 
a more unstable environment. Sample results of a 
representative subject showed higher overshoots, 
oscillations, and slower convergence to the neutral point 
with the decrease of environmental stability (Fig. 4). The 
maximum eigenvalue of the Jacobian matrix (𝐽' ) clearly 
reflected this trend (Fig. 5); the maximum eigenvalue 
significantly increased with the decrease of environmental 
stability (p << 0.001). In addition, consistent with other 
stability measures in the time domain, the rate of reducing 
the kinematic error was faster (lower maximum eigenvalue) 
in the AP direction than the ML direction. Further, in the AP 
direction, there were clear changes in the maximum 
eigenvalue in the robotic damping range of [-30 0] Ns/m, but 
the rate of change was low in the range of [-50 -30] Ns/m. 
In the ML direction, while there was a clear change in the 
range of [-10 0] Ns/m, the rate of change was low in the 
range of [-25 -10] Ns/m.  
There was a significant difference in the lower bound of 

robotic damping for stable pHRI between the AP and ML 
directions. While there was no statistical difference between 

anterior and posterior perturbation conditions or medial and 
lateral conditions, the lower bound of damping was 
significantly lower in the AP direction than the ML direction 
(p << 0.001) (Table I). On average, subjects could interact 
stably with unstable environments simulating robotic 
damping of -30.0 Ns/m and -8.2 Ns/m in the AP and ML 
directions, respectively.  

 
Fig. 4. Representative results of state trajectories (endpoint velocity vs. 
position) in the phase plane. A: AP direction, B: ML direction. (Left): 
robotic damping for the neutral environment is 0 Ns/m. (Right): robotic 
damping for the unstable environment is -50 Ns/m and -25 Ns/m for the 
AP and ML directions, respectively. Red traces represent raw data 
sampled at 1 kHz, and blue dot points represent down-sampled data 
points. The corresponding maximum eigenvalue was included in each 
plot. 

 TABLE I.  LOWER BOUND OF THE ROBOTIC DAMPING THAT 
HUMANS CAN ALWAYS STABLY INTERACT WITH 

Movement 
direction 

Perturbation 
direction 

Lower bound of robotic damping 
for stable pHRI (Ns/m) 

AP 
Anterior −31.33 ± 9.15 
Posterior −28.67 ± 12.46 

ML 
Medial −7.67 ± 7.99 
Lateral −8.67 ± 6.94 

 

TABLE II. SENSITIVITY ANALYSIS FOR VARYING INERTIA CONDITIONS 

Success Rate 
 8 kg 10 kg 12 kg 14 kg 
AP 3.4 (4.8) 1.0 (0.9) 1.8 (2.5) 3.8 (5.1) 

ML 2.5 (2.3) 0.9 (0.5) 1.2 (1.0) 2.0 (1.6) 

Time to Regain Stability 

 8 kg 10 kg 12 kg 14 kg 
AP 6.3 (5.7) 1.4 (0.9) 3.9 (2.9) 6.1 (5.6) 
ML 6.3 (3.1) 2.2 (1.3) 1.5 (0.8) 7.3 (3.9) 

Maximum Eigenvalue 

 8 kg 10 kg 12 kg 14 kg 
AP 1.7 (1.1) 0.7 (0.4) 0.8 (0.4) 1.6 (1.1) 
ML 1.1 (0.5) 0.4 (0.4) 0.4 (0.4) 1.0 (0.4) 

The mean and standard deviation (in parentheses) of all 5 damping 
conditions are reported.  

TABLE III. SENSITIVITY ANALYSIS FOR VARYING PERTURBATION 
CONDITIONS  

Success Rate 
 10 cm/s 15 cm/s 20 cm/s 25 cm/s 
AP 1.7 (2.5) 1.0 (1.5) 0.8 (1.0) 1.8 (3.1) 

ML 1.0 (1.0) 0.9 (1.1) 1.2 (1.8) 2.4 (4.1) 

Time to Regain Stability 

 10 cm/s 15 cm/s 20 cm/s 25 cm/s 
AP 5.1 (3.6) 3.7 (1.8) 3.6 (1.5) 6.7 (3.5) 

ML 3.2 (2.0) 5.8 (3.3) 2.5 (2.3) 5.4 (3.1) 

Maximum Eigenvalue 

 10 cm/s 15 cm/s 20 cm/s 25 cm/s 
AP 0.7 (0.3) 0.5 (0.3) 0.3 (0.3) 0.4 (0.4) 
ML 0.3 (0.2) 0.6 (0.4) 0.4 (0.3) 0.4 (0.3) 

 

 
Fig. 5. Group results of the maximum eigenvalue from the phase-space 
contraction analysis. (Left): AP direction, (Right): ML direction. Bars 
and error bars denote the mean and 95% confidence interval. The red 
lines show the trend of changes across different robotic damping values. 

 



  

The sensitivity analysis showed a small influence of 
simulated inertia on the stability measures (Table II). When 
averaged across all 5 damping conditions, the %𝐷𝑖𝑓𝑓% (Eq. 
4) for the success rate was less than 3.8% and 2.5% for AP 
and ML directions, respectively. The differences in time to 
regain stability were 6.3% (AP) and 7.3% (ML). Further, the 
difference for the maximum eigenvalue from the phase-
space contraction analysis was less than 1.7% in any 
directions.  
The effect of perturbation profile, specifically ending 

perturbation velocity, on the stability measures was also 
small (Table III). The %𝐷𝑖𝑓𝑓% for the success rate was less 
than 1.8% and 2.4% for AP and ML directions, respectively. 
The difference for the time to regain stability measure was 
6.7% (AP) and 5.4% (ML). The difference for the maximum 
eigenvalue from the phase-space contraction analysis was 
less than 0.7% in any directions.  
  

IV. DISCUSSION 

Compared to well-studied human arm stiffness, human 
arm damping, another important component of the human 
arm impedance, has been relatively understudied. This lack 
of knowledge limits the performance of robotic impedance 
controllers in pHRI, sometimes making them excessively 
conservative and in turn compromises transparency, agility, 
and the overall performance of the human-robot system.  
Characterization and better understanding of human arm 

damping would allow us to identify the lower bounds of 
robotic damping that humans can stably interact with, and 
thus extend the utilization of robotic damping even to 
negative damping values. Robotic impedance controllers 
incorporating this new data would overcome the limitations 
of conservative (highly dissipative) impedance controllers 
[21]. 
Two primary goals of this study were 1) to investigate 

how humans interact with a robotic arm simulating primarily 
unstable, damping-defined, mechanical environments in a 
2D space (i.e., AP and ML directions), and 2) to quantify 
lower bounds of robotic damping that humans can stably 
interact with. Rather than quantifying human arm damping, 
which has been known to be challenging, and indirectly 
estimating the lower bounds of robotic damping for stable 
pHRI, we determined these bounds directly by analyzing 
kinematic stability of the human arm during interaction with 
a robotic arm that simulated damping-defined environments 
with different levels of stability. We also ran a sensitivity 
analysis to evaluate any confounding effects of experimental 
conditions on the lower bounds of robotic damping for 
stable pHRI.   
As hypothesized, experimental results demonstrated that 

subjects could stably interact with a robotic arm simulating 
negative damping to a certain degree of stability. In addition, 
all subjects have higher capacity to stabilize their arm 
against negative damping-defined environments in the AP 
direction than in the ML direction. This was evidenced by 

all stability measures used in this study. First, the success 
rate of achieving stability in the AP direction was higher 
than 96% when interacting with the robotic damping of -30 
Ns/m, while the rate in the ML direction was lower than 63% 
during interaction with the robotic damping of -25 Ns/m. 
Second, for the same level of environmental stability (-20 
Ns/m), the time to regain stability was about 2 times shorter 
in the AP direction than the ML direction. Third, consistent 
with results in the time domain, the rate of reducing the 
kinematic error, quantified by the maximum eigenvalue 
from the phase-space contraction analysis, was significantly 
faster (lower eigenvalue) in the AP direction than the ML 
direction. An additional paired t-test showed that the 
eigenvalue for the robotic damping of -50 Ns/m in the AP 
direction was even significantly lower than that for the 
robotic damping of -10 Ns/m in the ML direction (p = 
0.013). Finally, the lower bound of robotic damping for 
stable pHRI was more than 3.5 times lower in the AP 
direction than the ML direction. 
It is worth noting that higher capacity of arm 

stabilization in the AP direction than the ML direction is 
consistent with previous findings of significantly higher arm 
stiffness in the AP direction than the ML direction [11, 17]. 
Although not directly quantified in this study, previous 
studies demonstrating a strong correlation between joint 
stiffness and damping would suggest that arm damping was 
also significantly higher in the AP direction during the arm 
stabilization motor tasks [22, 23].  
The sensitivity analysis with varying simulated inertias 

and perturbation profiles demonstrated that the results in this 
study were relatively insensitive to varying experimental 
conditions. It is also important to note that the experimental 
paradigm utilizing rapid position perturbations while 
subjects interacting with unstable mechanical environments 
is a very challenging situation for arm posture maintenance 
[15, 24]. Thus, one of the main conclusions in this study, in 
particular, the lower bound of robotic damping for stable 
pHRI was -30.0 Ns/m and -8.2 Ns/m in the AP and ML 
directions, would be used as conservative references in 
determining the lower bound of variable robotic impedance 
controllers. 
Outcomes of this study, i.e., lower bounds of robotic 

damping that humans can stably interact in both the AP and 
ML directions, may be utilized to design a variable robotic 
impedance controller aimed at addressing the trade-off 
between agility/performance and stability in pHRI. In fact, 
our recent study to design a variable impedance controller 
for the human arm as well as for the human ankle have 
demonstrated that utilizing a wide range of robotic damping 
from negative to positive values could benefit both 
agility/performance and stability of the human-robot system 
[25, 26]. By further integrating the outcomes in this study, 
we can utilize a wider range of negative robotic damping in 
the AP direction than the ML direction to maximize the 
overall performance of the human-robot system without 
compromising its coupled stability.  



  

Future research will include the quantification of the 
lower bounds of robotic damping for pHRI at various arm 
postures in a 3D space beyond the horizontal plane 
integration of this information into the design of variable 
robotic impedance controllers for robots interacting with the 
human arm in various applications, and evaluation of the 
effectiveness of the variable impedance controller in 
comparison with state-of-the-art passive/dissipative robotic 
controllers. 
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