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Abstract: Urban flooding is a major natural disaster that poses serious threat to the urban environment.
It is highly demanded that the flood extent can be mapped in near real-time for disaster rescue
and relief missions, reconstruction efforts, and financial loss evaluation. Many efforts have been
taken to identify the flooding zones with remote sensing data and image processing techniques.
However, urban flood mapping at high spatial resolution remains a major challenge due to three
main reasons. (1) The very high resolution (VHR) optical remote sensing imagery over the urban area
usually has heterogeneous background involving various ground objects (e.g., vehicles, buildings,
roads, and trees). Therefore, traditional classification algorithms often fail to capture the underlying
spatial correlation between neighboring pixels within the flood hazard area; (2) Traditional flood
mapping methods with handcrafted features as input cannot fully leverage massive available data,
which requires robust and scalable algorithms; and (3) Due to inconsistent weather conditions at
different time of data acquisition, pixels of the same objects in VHR optical imagery could have
very different pixel values, leading to the poor generalization capability of classical flood mapping
methods. To address this challenge, this paper proposed a patch similarity convolutional neural
network (PSNet) to map urban flood hazard zones using bi-temporal high resolution (3m) pre- and
post-flooding multispectral surface reflectance satellite imagery. As spectral reflectance helps alleviate
the impact of varying illuminations due to different data acquisition conditions, it further improves
the generalization ability of PSNet. Experiments on the high resolution imagery before and after the
urban flooding events (i.e., the 2017 Hurricane Harvey and the 2018 Hurricane Florence) showed that
the developed PSNet can produce urban flood maps with consistently high precision, recall, F1 score
and overall accuracy compared with baseline classification models including support vector machine,
decision tree, random forest, and AdaBoost, which were often weak in either precision or recall. The
research sheds light on bi-temporal image fusion for high precision image change detection, which in
turn can be used for monitoring damages caused by other types of natural hazards (e.g., wildfires
and earthquakes).

Keywords: Flood mapping; patch similarity; deep learning, flood extent estimation

1. Introduction

Natural hazard poses a major threat to people’s life and living environment, especially for areas
with high population density (e.g., urban regions). Flooding events are one of the most frequent
natural disasters that have direct damage over man-made ground infrastructures, including roads and
buildings [1-3]. The estimated global financial losses, with projected socio-economic change alone,
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will increase close to $52 billion by 2050 [4]. To improve the safety, resilience, and sustainability of the
cities and human settlements, the United Nations (UN) has proposed Sustainable Development Goal
11 (2015-2030), targeting at decreasing the number of impacted people and economic losses caused
by water-related disasters [5]. Therefore, an urgent need remains to map flooded urban areas in near
real-time for an improved disaster response service (e.g., rescue and relief missions) and reducing
economic loss.

Multisource remote sensing imagery has been widely used for flood mapping. In general, very
high resolution (VHR) optical imagery could provide abundant color and texture information for
better visual inspections [3,6-8]. Feng et al. [8] mapped flood inundation areas based on VHR
aerial optical images acquired by a mini unmanned aerial vehicle (UAV) using a Random Forest (RF)
classifier performed in the spectral-texture feature space. Xie et al. [7] considered digital elevation
model (DEM) as the spatial dependency information when performing pixel-wise classification with
hidden Markov tree (HMT) to identify unseen flood pixels such as pixels under trees. With a focus
on flooded object detection, Doshi et al. [3] proposed a convolutional neural network (CNN) based
object detection model to detect man made features (i.e., roads) in pre- and post-flooding VHR satellite
imagery with Red (R), Green (G), and Blue (B) bands from DigitalGlobe, in which the flood mapping
is actually flooded road detection. More recently, Gebrehiwot et al. [6] used image segmentation
model, a fully convolutional network (FCN) [9], to classify each pixel into four classes including
water, building, vegetation, and road. While the aforementioned studies could produce reasonable
flood maps for urban areas, they required very accurate and time-consuming human annotation of
training data for model training. Additionally, the VHR optical remote sensing imagery often has
heterogeneous background involving various ground objects (e.g., vehicles, buildings, roads, and
trees). Due to inconsistent illumination conditions at the time of VHR optical image acquisition, pixels
of the same objects in VHR optical imagery could have very different pixel values, leading to the
poor generalization capability of previous flood mapping models. For example, floodwaters in the
same post-flooding image may have highly inconsistent pixel values as shown in Figure 1. Also such

FO {58

Figure 1. Floodwaters with inconsistent pixel values on VHR optical imagery from NOAA: The pixels

in red circles are all flooded but show different colors

heterogeneous background prohibitively prevents pixel-based classifiers, such as RF, support vector
machine (SVM), maximum likelihood (ML), and recent image segmentation models (e.g., FCN), from
capturing the underlying spatial correlation between neighboring pixels within the flood hazard area,
and therefore from performing well.

Multispectral surface reflectance imagery often contains important spectral information for
floodwater detection [1,10-13]. Li et al. [10] used remotely sensed multispectral data, Landsat
Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+), to map inundation at a sub-pixel
scale via discrete particle swarm optimization (DPSO). Malinowski et al. [12] used a decision tree (DT)
algorithm with various combinations of input variables including spectral bands of the World View-2
image and spectral indices to analyze spatial patterns of localized flooding on a riverine floodplain.
More recently, Wang et al. [13] added the spectral information, normalized difference water index
(NDWI), into the traditional super-resolution flood inundation mapping (SRFIM) model to enhance
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the model response to floodwaters. Most of the flood mapping studies based on multispectral surface
reflectance imagery, however, explored homogeneous rural areas instead of heterogeneous urban areas,
where a larger number of people would be in danger during flooding.

By virtue of the radar’s active imaging property and its long-wavelength signal with penetration
power, the space-borne synthetic aperture radar (SAR) is able to collect data over the flooded regions
day and night regardless of weather conditions [1,2,14-16]. Giustarini et al. [15] introduced a Bayesian
approach to generate probabilistic flood maps based on SAR data. Shen et al. [14] developed a
near real time (NRT) system for flood mapping using SAR data, which involves classification based
on statistics, morphological processing, multi-threshold-based compensation, and machine-learning
correction. Li et al. [2] proposed an image patch classification model to map the flooded urban area
with multi-temporal SAR imagery based on an active self-learning CNN framework, which addressed
the issue of limited training data size. Although these studies based on SAR data made significant
efforts to improve the accuracy of flood maps, the proposed models were usually complicated in terms
of model architectures, and did not perform with very satisfying results in terms of overall accuracy,
precision, recall, and F1 score. Moreover, for neural network based deep learning models, a large
number of human annotated training samples were required.

Leveraging the advantages of different types of data, Rudner [1] fused multisource satellite
imagery, including VHR, multispectral, and radar imagery, in a CNN model to detect flooded buildings
in urban areas. As such, the spatial, spectral, and temporal information was integrated to improve the
segmentation of flooded ground objects. However, the models discussed above required data from
multi-modal sensors, some of which might be missing during flooding events.

With regard to the mapping methods, most of literature focused on pixel-based dense classification
approaches such as artificial neural network (ANN) [17], SVM [16], DT [12], RF [8], HMT [7], particle
swarm optimization (PSO) [10], and deep CNN such as FCNs [6], U-Net [18], and Deeplab [19]. While
pixel based image segmentation approaches in the aforementioned studies could generate higher
resolution flood maps, they depend on high resolution flooding masks for model training, which
require intensive human annotation of training samples. The annotation process might be even more
expensive for urban areas as they are more heterogeneous than rural areas. As such, these models
might not be able to perform in near real time when flooding occurs in urban areas.

Some of the studies also investigated patch-based classification methods for land cover mapping,
which have the potential for urban flood mapping. Traditional machine learning approaches have
been widely used for image scene classification. Gong et al. [20] compared SVM, DT, and RF for
Landsat image scene classification and showed that SVM performed with the highest overall accuracy.
Heydari et al. [21] also reported the superior classification performance of SVM on 26 testing blocks of
Landsat imagery in comparison with ANN and the ensemble of DT. More recently, CNN based deep
learning approaches have shown promising performance for image classification, such as AlexNet
[22], VGGNet [23], GoogLeNet [24], and ResNet [25]. Most of these neural network models are very
deep in terms of the number of layers, which are not necessary for classification of small patches
as demonstrated in [26,27]. Sharma et al. [26] developed a patch-based CNN model tailored for
medium resolution (pixel size = 30m) multispectral Landsat-8 imagery for land cover mapping, which
outperformed pixel-based classifier in overall classification accuracy. Song et al. [27] designed a light
CNN (LCNN) model to map the land cover also using Landsat-8 imagery and achieved better results
than pixel-based classifiers particularly at heterogeneous pixels, which are very common in urban areas.
Additionally, traditional machine learning approaches (e.g., SVM and RF) were also tested and showed
competitive results for patch-based classification compared with LCNN. It was also demonstrated
that the patch-based approach has an advantage in large scale mapping in terms of computation
time. Most recently, with a focus on urban flood mapping, Li et al. [2] proposed a patch-based active
self-learning CNN framework to map the flooding areas in urban Houston with multi-temporal SAR
imagery. However, there still exist great potentials to simplify the model architecture and improve
the F1 score and overall accuracy. Additionally, patch-based approaches to flood mapping especially
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over urban areas are still not well investigated. Moreover, considering the advantage of multispectral
surface reflectance data, the extensive and quantitative study of patch-based urban flood mapping with
multi-temporal multispectral surface reflectance imagery is still lacking. Finally, with the advancement
of data acquisition technologies, current remotely sensed data are often in a huge volume, such as
satellite images from DigitalGlobe [28] and Planet Labs [29], and aerial imagery collected by National
Oceanic and Atmospheric Administration (NOAA [30]). With an increasing data volume, how to fully
leverage the big data and to develop more robust and scalable algorithms for flood extent mapping
still remains to be addressed.

Motivated by these key issues, this paper proposed a patch similarity convolutional neural
network (PSNet) with two variants (i.e., PSNet-v1 and PSNet-v2) for precision urban flood mapping
using bi-temporal (i.e., pre- and post-flooding) high resolution (i.e., 3m) multispectral satellite imagery.
We used surface spectral reflectance imagery since spectral reflectance is more invariant with respect
to data acquisition time and weather conditions. This means that corresponding ground objects from
pre- and post-flooding imagery would have consistent spectral responses. As a result, the network
would be more robust. Similar to the studies in [6-8,27], we conducted extensive experiments with
PSNet and other baseline methods including SVM, DT, RE, and AdaBoost (ADB), using two datasets:
1) the 2017 Hurricane Harvey flood in Houston, Texas, and 2) the 2018 Hurricane Florence flood in
Lumberton, North Carolina. We used default parameters in scikit-learn [31] for experiments with
baseline methods as in [7]. Experiment results showed that the PSNet with bi-temporal data achieved
superior performance in F1 score and overall accuracy compared with baseline methods (i.e., SVM,
DT, RE, and ADB) with either uni- or bi-temporal data.

In summary, major contributions of this study include:

e The PSNet was developed with a simplified two-branch CNN-based data fusion framework,
which incorporates high resolution bi-temporal multispectral surface reflectance imagery for
flood mapping over dense urban residential, commercial, and industrial areas. We transformed
uni-temporal flood mapping with only post-flooding data into bi-temporal image patch similarity
evaluation with both pre- and post-flooding data. Compared to uni- or bi-temporal SVM, DT, RF,
and ADB, PSNet performed consistently stronger in F1 score and overall accuracy.

e This study investigated the role of multispectral surface reflectance imagery in urban flood
mapping. The use of spectral reflectance instead of raw pixel digital numbers plays an important
role since spectral reflectance reduces the impact of irrelevant changes caused by data acquisition
conditions (e.g., illumination).

e The research sheds light on other bi-temporal change detection problems for natural hazard
damage evaluation (e.g., earthquake and wildfire damage detection). The proposed models can
be easily applied to other types of disaster events without damage-specific model design for
feature extraction.

2. Materials and Methods

2.1. Preliminaries

Flood extent mapping is a process to identify the land areas impacted by flooding. Various
definitions of such flooding areas have been proposed [2,6-8]. For example, only land areas covered
by visible floodwaters are considered as being flooded [6,8]. However, in some works, invisible
flooding areas (e.g., hidden floodwaters under tree canopies) and small dry areas but surrounded
by floodwaters as shown in Fig. 2 may also be considered as being flooded [7]. The latter definition
corresponds to FEMA’s National Flood Mapping Products [32], which define flood hazard zones as
land areas that are either covered or surrounded by floodwaters [2,7]. For urban flood mapping with
high spatial resolution imagery, this paper uses FEMA'’s definition of flood hazard zones as previous
works [2,7] considering expensive pixel-wise flood labeling.
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(a) Pre-flooding (b) Post-flooding

Figure 2. Flood hazard zones, roads and residential areas are flooded, (a) pre-flooding VHR optical
imagery from Texas Natural Resources Information Systems (TNRIS), (b) post-flooding VHR optical
imagery from NOAA

This study uses bi-temporal multispectral satellite imagery before and after flooding for urban
flood mapping. Given a pair of co-registered pre- and post-flooding satellite imagery I; and I, the
goal of this work is to develop a binary classification model F which takes (I, I7) as input and returns
a binary flood hazard map O as output, O = F (I, I ), where each pixel in I, is classified as 1 (flood,
FL) or 0 (non-flood, NF).

To incorporate bi-temporal imagery for flood mapping over heterogeneous urban areas, it is
worth noting that I; and I, may not align well (i.e., corresponding pixels, I1(i,j) and I, (i, ), at the
same geographical location, do not exactly refer to the same ground object even though I; and I, are
co-registered). Major reasons include (1) trees grow differently in multi-temporal imagery acquired
over different seasons, (2) moving objects (e.g., cars) are quite common over urban areas, and (3)
ortho-rectification of I; and I, may not be perfect due to complex terrains and ground infrastructures
(e.g., tall buildings). As a result, pixel-wise analysis of multi-temporal imagery may not perform well
for urban flood mapping. Limited by strong heterogeneity over the urban area, this work conducted
patch-wise flood mapping.

2.2. Datasets

We studied two flooding events caused by strong hurricanes over the urban areas. One is west
Houston, Texas, which was flooded due to Hurricane Harvey in August 2017. The other is the city of
Lumberton, North Carolina, which was flooded as a result of Hurricane Florence in September 2018.

The data used in this work are satellite imagery from the Planet Lab [29] with spatial resolution of
3 meters, and 4 spectral bands including blue (B), green (G), red (R), and near infrared (NIR) (see Table
1). All imagery have been orthorectified and radiometrically calibrated into surface spectral reflectance
such that the data are more invariant with respect to weather conditions. In addition, the bi-temporal
pre- and post-flooding imagery were co-registered for similarity analysis.

Event Scene & Date Band Height, Width (px) | Spatial Resolution (m) | Product
Harvey |LreJul 31,2017 (1848, 3066)
Post, Aug. 31, 2017
Pre Aug. 30 2018 B, G, R, NIR 3 Reflectance
Florence s AAUS. U, (2240, 2940)

Post, Sept. 18, 2018

Table 1. Flood imagery data characteristics

The Harvey pre- and post-flooding satellite images over west Houston, Texas, were collected
on July 31, 2017 and August 31, 2017, respectively (Table 1). The bi-temporal images were split into
non-overlapping patches of spatial size 14 x 14. As a result, each patch corresponds to the ground
spatial area of 42m x 42m, where 42 = 14 x 3. We set the patch size approximately equal to the one
in a most recent study on urban flood mapping [2], in which the patch size was 40m x 40m. As such,
the patch-wise classification results for flood mapping over urban Houston area can be compared
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qualitatively with the ones in [2]. To label the class of each pair of patches, we use VHR (pixel
size=0.3m) aerial imagery acquired by NOAA on August 31, 2017 as reference. More specifically, the
VHR image covers the same study area as the pre- and post-flooding multispectral images. Similarly,
we cut the VHR image into small patches of size 140 x 140 such that each VHR patch covers the same

spatial area (i.e., 140 x 0.3 = 42m) as the multispectral patch. Classes considered in this study are:
flooded (FL) patches with floodwaters and non-flooded (NF) patches without floodwaters. It is worth
noting that image patches without visible floodwaters were not annotated as FL [2]. Therefore, we
obtained 28,908 annotated patches, of which 8,517 are in class FL and 20,391 are in class NF. The
pre- and post-flooding images with the labeled ground truth over the whole study area are shown in
Figure 3. For model training and evaluation, we randomly sampled 5,000 pairs of patches from the
bi-temporal pre- and post-flooding dataset for training and validation, and the rest 23,908 for testing.

(a) Pre-flooding image (b) Post-flooding image (c) Ground truth of flood
Figure 3. Harvey: optical view of pre- and post-flooding multispectral images with ground truth of
flooded patches (FL) highlighted in yellow, and non-flooded patches (NF) in black.

(a) Pre-flooding image (b) Post-flooding image (c) Ground truth of flood

Figure 4. FLorence: optical view of pre- and post-flooding multispectral images with ground truth of
flooded patches (FL) highlighted in yellow, and non-flooded patches (NF) in black.

The Florence pre- and post-flooding satellite images with corresponding ground truth of flood
map (Figure 4) over the Lumberton city were acquired on August 30, 2018 and September 18, 2018,
respectively (Table 1). Similar to the data pre-processing for Hurricane Harvey, a total of 33,600
annotated patches were obtained, in which 5,003 are in class FL and 28,597 are in class NF. We
randomly sampled 5,000 samples for model training and validation, and keep the remaining 28,600 for
testing.

For both Harvey and Florence data with 5,000 samples for training and validation, 4,000 samples
were used for training while the rest 1,000 samples were fixed for validation and model selection.

2.3. Methods

2.3.1. Patch Similarity Evaluation

The bi-temporal satellite images, (I, I;), were divided into non-overlapping image patches,
Py (m,n) and P,(m, n), of the same size. Each pair of patches cover the same geographic area. Therefore,
instead of classifying each pixel pair, I1 (i, j) and I (i, j), we predict the class of each patch pair, P; (m,n)
and P,(m, n), to be either FL or NF. In this study, we evaluate the flooding probability of each patch
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pair, Py (m,n) and P,(m, n), based on their similarity. Note that we assume that the major dissimilarity
between P; (m,n) and P;(m, n) is resulted from flooding since the pre- and post-flooding images were
collected recently before and shortly after the flooding event, respectively. Accordingly, the patch
similarity is negatively correlated with the probability that the patch pair under test is flooded. The
less similar of Py (m, n) and P,(m, n), the more likely of being flooded.

This work proposed the PSNet to learn the nonlinear mapping from the pre- and post-flooding
patch pairs, Pj(m,n) and P,(m, n), to the output class, FL or NE. Two variants (PSNet-v1 and PSNet-v2)
of the network architecture are shown in Figure 5a and 5b, respectively, in which the convolutional
operation block (Conv block) is shown in Figure 6. The PSNet in this work basically consists of two
modules, Encoding and Decision.

Decision Decision !
R R EE LR EEE LR LR LD ecision, Probability of being flooded

4 Dense layer 3
| Dense layer 3 |
Dense layer 2

| Dense layer 2 |

Dense layer 1

"""""""" o-eooooooe Encodingi ~ [Tt

| Concatenate: (pre, post) |

f

| Dense layer 1 |

Encoding

| Concatenate: (pre, post) |

= ol

Left: Patch pre Right: Patch post

Left: Patch pre Right: Patch post
(a) PSNet-v1 (b) PSNet-v2

Figure 5. The patch similarity convolutional neural network (PSNet)

X1

Leaky RelLU
Conv B
'y
Leaky RelU

Conv A

X,

Figure 6. Convolution operation block (Conv block).

The Encoding module learns the feature representations from the input pre- and post-flooding
patches, respectively. More specifically, in PSNet-v1, the Encoding module has a Siamese sub-network
architectures on the left and right paths for learning the feature representations from the pre- and
post-flooding patches. To perform similarity analysis in the Decision module, the left and right
sub-networks share the weights [33], which in turn alleviates the computing load. The sub-network in
the Encoding module contains a stack of convolutional operation blocks which is shown in Figure 6.
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Layer Parameters
Input patch C@14 x 14, C: n_channels

A: 96,3 x 3, stride=1, pad=1, LeakyReLU (0.1)
Convblock1 5 g3 3 stride=1, pad=1, LeakyReLU (0.1)
Pooling Max Pooling (2 x 2)

A:192, 3 x 3, stride=1, pad=1, LeakyReLU (0.1)
Convblock2 54953 % 3, stride=1, pad=1, LeakyReLU (0.1)
Pooling Max Pooling (2 x 2)

A:192, 3 x 3, stride=1, pad=0, LeakyReLU (0.1)
Convblock3 51951 x 1, stride=1, pad=0, LeakyReLU (0.1)
Pooling Adaptive average pooling, (1 x 1)
Concatenation  Feature vector concatenation, pre + post
Dense layer 1 ~ Fully connect, 384 — 384, LeakyReLU (0.1)
Dense layer 2 Fully connect, 384 — 192, LeakyReLU (0.1)
Dense layer 3 Fully connect, 192 — 1, Sigmoid

Table 2. Hyperparameters of the PSNet

Feature representations of pre- and post-flooding patches from the left and right paths would then join
on top of the Encoding module through concatenation along the channel dimension. Different from
PSNet-v1, the other variant PSNet-v2 would first concatenate the pre- and post-flooding patches and
then feed the patch stack into the Encoding module for joint feature learning.

The Decision module evaluates the similarity between the feature representations learned from
the pre- and post-flooding patches through the Encoding module. It performs binary classification (i.e.,
FL or NF) by taking as input the joint feature representations, and following a set of dense layers.

Detailed settings and hyperparameters of the PSNet are listed in Table 2.

2.4. Evaluation Metrics

For all experiments, we evaluated the overall accuracy (OA), precision, recall, and F1 score [34-36],
which are defined as Equation 1.

TP+ TN
OA = TP+ FP+ TN+ FN
Precision = L
CCSION = Tp T Fp
1)
Recall = L
~ TP+ FN
Fl—2 Precision - Recall

" Precision + Recall

where TP, FP, TN, FN denote the number of true positives, false positives, true negatives, and false
negatives. For comparative analysis, we performed patch classification with baseline algorithms
including: support vector machine (SVM), decision trees (DT), random forest (RF), and AdaBoost
(AdB). We tested all baselines with uni-temporal data (i.e., post-flooding patches ) and bi-temporal
data (i.e., pre- and post-flooding patches).

2.5. Model Training and Testing

For training supervised PSNet, we take as input the pre- and post-flooding patch pairs and as
target the corresponding true labels (FL or NF). The Adam optimizer [37] is applied with batched
patch pairs to minimize the weighted binary cross entropy loss, L(x, y), defined as Equation 2.

xy) 1Nl
L(x,y) = = ;
N =" 2)

li = —w; [y;log x; + (1 — y;) log (1 — x;)]
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where x is the output of the network (i.e., the probability of being flooded), y is the target label, N
is the number of patch pairs in a batch, [; is the weighted cross entropy loss for the i*" patch pair
with associated weight w;. We assigned different weights for the class FL and NF due to high class
imbalance of the training data. The sample weight is defined as the complementary of its occurrence
frequency in the training set. More specifically, with regard to the training set including p% FL and
(1 — p)% NF samples, we set the weights of FL and NF samples as (1 — p)% and p%, respectively.

All models were trained with batched samples for 200 epochs. We initialized the learning rate to
be 1e—4 and divide it by 10 when observing no further decrease of validation loss. Weight decay of
le—5 and momentum parameters (B1, B2) = (0.9,0.999) for the Adam optimizer were used during
training.

Considering limited size of the training data, data augmentation was used to enhance the
model generalization capability, including random horizontal and vertical flip, rotation of degrees in
[0°,90°,180°,270°], and normalization of pixel reflectance into the range of [0, 1].

Before the training process, good weight initialization is important for networks with multiple
paths to avoid partial node activation [18]. In this study, the weights were initialized by random
sampling from the Gaussian distribution, N' ~ (0,V/2), where V is the number of associated
parameters for each node. More specifically, for a k x k convolutional kernel with C channels in
the previous layer, V = k2C.

To investigate how the training set size may influence the classification performance, we trained
all models with different sizes of training set. To be more specific, we randomly sampled various
numbers of training samples from the original training subset of size 4,000 and trained multiple
PSNet models. Fixed validation and testing subsets were used for model selection and performance
evaluation. In this work, we selected trained models with highest validation F1 scores for testing.

All experiments of PSNet were conducted with Pytorch [38] on a Dell workstation with 16 GiB
Intel(R) Xeon(R) W-2125 CPU @ 4.00GHz x 8, 8 GiB Quadro P4000 GPU, and 64-bit Ubuntu 18.04.2
LTS.

3. Results

3.1. Hurricane Harvey Flood

With bi-temporal pre- and post-flooding data, Figures 7a and 7b illustrate classification
performance in terms of overall accuracy and F1 score with respect to varying training set sizes.
It shows that the PSNet-v1 and PSNet-v2 performed comparatively and outperformed traditional
SVM, decision tree, random forest, and AdaBoost with consistently higher overall accuracy and F1
score. In addtion, as the size of training set increases, all models tend to generalize better on testing
data as demonstrated by increasing overall accuracy and F1 score.

With only uni-temporal post-flooding data, we also compared all models except for PSNet-v1
since PSNet-v1 requires both pre- and post-flooding patches as input of the Siamese sub-networks
in the Encoding module. Figures 7c and 7d show the learning curves of PSNet and other baseline
algorithms, illustrating how overall accuracy and F1 score would change with different training data
size. As demonstrated in Figures 7c and 7d, PSNet-v2 performed with significantly higher overall
accuracy and F1 score than SVM, decision tree, random forest, and AdaBoost did.

Take one training set of size 1,500 as an example, Table 3 summarized the detailed numerical
classification performance with uni- and bi-temporal data in terms of all evaluation metrics with best
result highlighted in bold. It is worth noting that the ensemble methods (e.g., random forest and
AdaBoost) are likely to produce higher precision but lower recall, which resulted in poor F1 scores
and overall accuracy. Unlike other models with good performance on only one metric (e.g., random
forest, strong in precision but weak in recall), PSNet could produce consistently good results across all
metrics.
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Figure 7. Classification performance on Harvey testing data in terms of OA and F1.

We also observed that, due to limited size and high class imbalance of training data, it remains a
challenge for the uni-temporal classifiers to learn the abstract feature representations of the input patch,
as reflected by their poorer performance compared with the corresponding bi-temporal classifiers.
However, leveraging the bi-temporal information, patch similarity is an important a priori for binary
classification. Therefore, we do not need to learn the high level abstract features through very deep
architectures, which usually require a large number of training data.

For visual inspection, we showed the classification maps of the entire image scene produced by
the model trained with 1,500 pairs of pre- and post-flooding patches for PSNet-v1 and PSNet-v2 in
Figure 8. Patches in yellow represents the true positives of FL, indicating the correct predictions of
flooded patches, and patches in red represent the false alarms of FL, which mean non-flooded patches
were detected as being flooded. Patches in green show false negatives of FL, i.e., flooded patches were
classified as being non-flooded. Qualitatively compared with ground truth shown in Figure 3c, the
proposed PSNet proved to be effective with only 1,500 training samples, as demonstrated by very few
false alarms (Red) and false negatives (Green).

(a) PSNet-v1 (b) PSNet-v2
Figure 8. Classification results of Harvey data by PSNet, with patches in yellow for true positives of

FL, red for false alarms of FL, and green for false negatives of FL.
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Models  Temporal Precision Recall F1 OA

PSNet-v1 pre+post 0.8665 0.9152 0.8876  0.9341

post - - - -
) pre+post 0.8809 0.9073 0.8914 0.9371
PSNet-v2 —=20% 0.8272  0.8489 0.8338 0.9038
SVM pre+post 0.8628 0.8682 0.8655 0.9208
post 0.7429 0.8207 0.7798 0.8639
DT pre+post 0.7269 0.6912 0.7086 0.8331
post 0.6875 0.6811 0.6843 0.8155
RE pre+post 0.9000 0.7066  0.7916  0.8908
post 0.8328 0.6848 0.7516 0.8671
ADB pre+post 0.8909 0.7944 0.8399 0.9111
post 0.8103 0.7224 0.7638 0.8688

Table 3. Classification performance comparison with 1,500 uni- and bi-temporal Harvey training
samples.

3.2. Hurricane Florence Flood

Figure 9 shows the change of overall accuracy and F1 score with respect to the training data
size using uni- and bi-temporal data generated during the Hurricane Florence Flood. It is obvious
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Figure 9. Classification performance on Florence testing data in terms of OA and F1.

that, with both uni- and bi-temporal data, PSNet performed consistently better than SVM, decision
tree, random forest, and AdaBoost in terms of F1 score and overall accuracy. Table 4 summarizes the
evaluation results by the model trained with 1,500 uni- and bi-temporal samples in terms of precision,
recall, F1, and overall accuracy. PSNet-v1 with bi-temporal pre- and post-flooding data achieved very
high performance with 0.9551 F1 score and 0.9876 overall accuracy.
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Models Temporal Precision Recall F1 OA

PSNet-v1 pre+post 0.9476 0.9684 0.9551 0.9876

post - - - -
3 pre+post 0.9116 0.9792 09412 0.9829
PSNet-v2 —=_0% 08625  0.9808 09139 09746
SVM pre+post 0.7187 0.9686 0.8251  0.9388
post 0.7156 0.9791  0.8268 0.9388
DT pre+post 0.8637 0.8797 0.8716  0.9614
post 0.8428 0.8523  0.8475 0.9543
RE pre+post 0.9343 0.9107 09223 0.9771
post 0.9076 0.8725 0.8897  0.9677
ADB pre+post 0.9210 0.8964 0.9085 0.9731
post 0.8923 0.8570  0.8743  0.9633

12 0of 17

Table 4. Classification performance comparison with 1,500 uni- and bi-temporal Florence training

samples.

Figure 10 displays classification maps of the entire image scene for visual interpretation. With
only a few false positives (Red) and false negatives (Green), PSNet could produce highly accurate

flood maps over the urban area.

(a) PSNet-v1
Figure 10. Classification results of Florence data by PSNet, with patches in yellow for true positives of

FL, red for false alarms of FL, and green for false negatives of FL.

4. Discussions

(b) PSNet-v2

Unlike pixel based classification for flood mapping [6-8,10,39,40], this study investigated image
patch based flood mapping similar to the study in [2]. Major motivations include: 1) reducing the
impact of heterogeneous image background over urban area, which is challenging for pixel-wise
classification; and 2) accelerating human annotation of training samples since pixel-wise labeling

would be much more time-consuming and labor-intensive.
Similar to the studies in [2,6-8,27] for comparative analysis, we performed patch-based
classification with traditional machine learning models as baselines, including SVM, DT, RF, and

ADB. The experiment results of the two urban flood events (i.e., the 2017 Hurricane Harvey flood

and the 2018 Hurricane Florence flood) demonstrate the superior performance of the proposed PSNet
over all baseline algorithms (Figure 7 and 9, Table 3 and 4). With regard to patch-based classification
models, the PSNet developed in this study leveraged an efficient two-branch data fusion framework

specifically for urban flood mapping. It is worth noting that the Encoding module can be developed
with different variants of the patch-based CNN architecture used in this study. As a result, the
specific architecture of the Encoding module along with its hyperparameters used in this study can
be considered as a representative of patch-based CNN encoding for the input patches. This work
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did not experiment with image segmentation models (e.g., FCNs, U-Net, and Deeplab) since image
segmentation works for pixel-based, instead of patch-based, dense classification. In addition, we
did not compare with deep image classification models, such as AlexNet, VGGNet, GoogLeNet, and
ResNet, since classification of small patches does not require such deep architectures [26,27]. With
regard to other CNN-based patch classification models discussed in [26,27], direct comparison is not
valid due to different input dimensions and image resolutions which require major modification of the
Encoding module architectures and tuning of hyperparameters.

More specifically, with regard to patch-based urban flood mapping, this study followed the
experiment settings of a recent research for urban flood mapping with SAR data [2], in which the
study area (i.e., west Houston) is smaller than the one investigated in this study. For reference, we
used patches of size 14 x 14 to cover the ground area of 42m x 42m, which is close to the area (i.e.,
40m x 40m) covered by patches used in [2]. We did not experiment with the exact same size of patches
due to the constraint of different spatial resolutions of images used in the two studies. It should be
noted that we labeled all patches with floodwaters as being flooded, whereas, in [2], only patches
that were severely flooded were labeled as being flooded. In other words, there are less patches in [2]
labeled as being flooded than that of this study. For patches that were partially covered by floodwaters
but not heavily flooded, the classification model would have very weak response. Therefore, the
results in this study cannot be directly and quantitatively compared with those in [2]. For qualitative
comparison regarding the Harvey flooding event, as reported in [2], the developed active self-learning
CNN model detected flood patches with precision of 0.684, recall of 0.824, F1 score of 0.746, and overall
accuracy of 0.928 when using model trained with 600 pre- and post-flooding SAR patches. However,
this study achieved the performance with precision of 0.848, recall of 0.906, F1 score of 0.873, and
overall accuracy of 0.925 with model (PSNet-v1) trained with 500 bi-temporal multispectral patches
(Table 5). In addition, the PSNet was designed with simple architectures for easy implementation.
More importantly, it shows that only a small number (e.g., 500) of training samples are needed for
training a competitive model (PSNet) that generalizes well on the testing data, and thus contributes to
quick mapping of the flooding area.

Models  Temporal Precision Recall F1 OA
PSNet-vl  pre+post 0.848 0906 0.873 0.925
PSNet-v2  pre+post 0.867 0.887 0.874 0.927

Table 5. Classification performance comparison with 500 bi-temporal Harvey training samples.

With experiments on both uni- and bi-temporal data, the results show that bi-temporal pre- and
post-flooding data contribute significantly to boosting the performance of PSNet for patch similarity
analysis and thus for flood patch identification. Patch similarity learning has proved to be effective in
patch-based matching of stereo images [33,41—43]. Due to the heterogeneity of the satellite imagery
background over urban area, patches of class FL usually have various patterns which are difficult
to be learned by the classification algorithms with very limited number of training samples. As
shown in Figure 7 and 9, patch similarity evaluation based PSNet with bi-temporal data consistently
outperformed those floodwater pattern recognition based models with uni-temporal data. It is worth
noting that, with only 500 training samples available, the proposed PSNet was able to perform with,
approximately, F1 score of 0.87 and overall accuracy of 0.93 on Harvey testing data. Similar high
performance can also be observed in the experiment for the Florence data.

We investigated the important role of spectral reflectance in urban flood mapping. As spectral
reflectance has been recognized as the signature of ground objects [44], it would be more invariant
with respect to illumination conditions. Therefore, with only a small number of human annotated
samples (e.g., 1,500), we could identify the flood image patches with around 0.8914 F1 score and 0.9371
overall accuracy for Harvey testing data (Table 3) and 0.9551 F1 score and 0.9876 overall accuracy for
Florence testing data (Table 4), which are consistently better than the results produced by the baseline
algorithms. Compared with studies using SAR imagery [2] and optical imagery with raw pixel digital
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numbers [8], spectral reflectance data in this study play an important role in helping PSNet achieve
superior performance in urban flood mapping with merely a small number of training samples (e.g.,
500) as demonstrated by the learning curves in Figures 7 and 9.

It is worth noting that PSNet achieved higher F1 score and overall accuracy on the Florence data
(Table 4) than that on the Harvey data (Table 3). It is mainly because the Harvey data covering the
west Houston area are more heterogeneous than the Florence data covering the Lumberton city. More
specifically, the west Houston area includes dense residential, industrial, and commercial regions,
where various ground objects result in more heterogeneous image background. As a result, it would
be relatively easier for the PSNet trained with the Florence training data to achieve better performance
on the Florence testing data.

With regard to the processing time on model training and testing for creating the flood maps, it
took about 6 minutes to train the PSNet with 500 samples and 1 minute to create the flood map of the
study area (e.g., west urban Houston) on the Dell workstation used in this work. The running time
associated with traditional approaches (e.g., SVM, DT, RF, ADB) is even less than that corresponding
to the PSNet. As such, the time consumption on PSNet training and testing can be ignored for near
real-time urban flood mapping. It should be noted that the major time-consuming process is human
annotation of training samples. As in this study, a total of 3 research assistants could label 500 training
samples in less than 20 minutes, which can also be ignored for near real-time urban flood mapping.

To sum up, the major strength of the proposed PSNet with bi-temporal data is to map the urban
flood area with high overall accuracy and F1 score as demonstrated by the quantitative results in
Figures 7 and 9. More detailed evaluation results over all metrics corresponding to 1,500 training
samples can be found in Tables 3 and 4. One major limitation of this study in practice is that part of
the satellite imagery covering the flood area may contain clouds, which are the major challenge for
multispectral image analysis. In this case, further work could be dedicated to fusing both multispectral
imagery and SAR imagery for joint urban flood mapping by virtue of the penetration power of the
SAR signals [1].

5. Conclusions

This paper addressed the challenge of urban flood mapping via patch similarity learning
instead of pixel-wise classification, since patch based analysis reduced the impact of heterogeneous
image background over urban area and contributed to efficient annotation of training samples.
We proposed the patch similarity network (PSNet) with two variants (PSNet-v1 and PSNet-v2) to
evaluate the similarity between bi-temporal pre- and post-flooding patches cropped from the surface
spectral reflectance imagery, and thus to determine whether the post-flooding patch under test is
flooded. Results showed that both PSNet-v1 and PSNet-v2 developed in this study achieved superior
performance with approximately 89% F1 score and 93% overall accuracy on the 2017 Hurricane
Harvey flood testing data, and 95% F1 score and 98% overall accuracy on the 2018 Hurricane Florence
flood testing data with only 1,500 training samples available. Extensive experiments with PSNet and
other baseline algorithms demonstrated high performance of PSNet. Moreover, it is not required to
design handcrafted floodwater related features for PSNet, which further improves the generalization
capability of PSNet. While multispectral reflectance imagery used in this study maybe influenced by
severe weather conditions (e.g., heavy clouds), they are effective and accurate in urban flood mapping.

In the future, we would experiment with data for other types of disaster events (e.g., California
wildfires in 2018) to test the model generalization ability. Moreover, as multispectral imagery might be
cloudy for some flooding events, resulting in insufficient data. The fusion of SAR and multispectral
imagery may help reduce the impact clouds, which contributes to near real-time urban flood mapping.
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