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Abstract: Urban flooding is a major natural disaster that poses serious threat to the urban environment.1

It is highly demanded that the flood extent can be mapped in near real-time for disaster rescue2

and relief missions, reconstruction efforts, and financial loss evaluation. Many efforts have been3

taken to identify the flooding zones with remote sensing data and image processing techniques.4

However, urban flood mapping at high spatial resolution remains a major challenge due to three5

main reasons. (1) The very high resolution (VHR) optical remote sensing imagery over the urban area6

usually has heterogeneous background involving various ground objects (e.g., vehicles, buildings,7

roads, and trees). Therefore, traditional classification algorithms often fail to capture the underlying8

spatial correlation between neighboring pixels within the flood hazard area; (2) Traditional flood9

mapping methods with handcrafted features as input cannot fully leverage massive available data,10

which requires robust and scalable algorithms; and (3) Due to inconsistent weather conditions at11

different time of data acquisition, pixels of the same objects in VHR optical imagery could have12

very different pixel values, leading to the poor generalization capability of classical flood mapping13

methods. To address this challenge, this paper proposed a patch similarity convolutional neural14

network (PSNet) to map urban flood hazard zones using bi-temporal high resolution (3m) pre- and15

post-flooding multispectral surface reflectance satellite imagery. As spectral reflectance helps alleviate16

the impact of varying illuminations due to different data acquisition conditions, it further improves17

the generalization ability of PSNet. Experiments on the high resolution imagery before and after the18

urban flooding events (i.e., the 2017 Hurricane Harvey and the 2018 Hurricane Florence) showed that19

the developed PSNet can produce urban flood maps with consistently high precision, recall, F1 score20

and overall accuracy compared with baseline classification models including support vector machine,21

decision tree, random forest, and AdaBoost, which were often weak in either precision or recall. The22

research sheds light on bi-temporal image fusion for high precision image change detection, which in23

turn can be used for monitoring damages caused by other types of natural hazards (e.g., wildfires24

and earthquakes).25
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1. Introduction27

Natural hazard poses a major threat to people’s life and living environment, especially for areas28

with high population density (e.g., urban regions). Flooding events are one of the most frequent29

natural disasters that have direct damage over man-made ground infrastructures, including roads and30

buildings [1–3]. The estimated global financial losses, with projected socio-economic change alone,31
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will increase close to $52 billion by 2050 [4]. To improve the safety, resilience, and sustainability of the32

cities and human settlements, the United Nations (UN) has proposed Sustainable Development Goal33

11 (2015-2030), targeting at decreasing the number of impacted people and economic losses caused34

by water-related disasters [5]. Therefore, an urgent need remains to map flooded urban areas in near35

real-time for an improved disaster response service (e.g., rescue and relief missions) and reducing36

economic loss.37

Multisource remote sensing imagery has been widely used for flood mapping. In general, very38

high resolution (VHR) optical imagery could provide abundant color and texture information for39

better visual inspections [3,6–8]. Feng et al. [8] mapped flood inundation areas based on VHR40

aerial optical images acquired by a mini unmanned aerial vehicle (UAV) using a Random Forest (RF)41

classifier performed in the spectral-texture feature space. Xie et al. [7] considered digital elevation42

model (DEM) as the spatial dependency information when performing pixel-wise classification with43

hidden Markov tree (HMT) to identify unseen flood pixels such as pixels under trees. With a focus44

on flooded object detection, Doshi et al. [3] proposed a convolutional neural network (CNN) based45

object detection model to detect man made features (i.e., roads) in pre- and post-flooding VHR satellite46

imagery with Red (R), Green (G), and Blue (B) bands from DigitalGlobe, in which the flood mapping47

is actually flooded road detection. More recently, Gebrehiwot et al. [6] used image segmentation48

model, a fully convolutional network (FCN) [9], to classify each pixel into four classes including49

water, building, vegetation, and road. While the aforementioned studies could produce reasonable50

flood maps for urban areas, they required very accurate and time-consuming human annotation of51

training data for model training. Additionally, the VHR optical remote sensing imagery often has52

heterogeneous background involving various ground objects (e.g., vehicles, buildings, roads, and53

trees). Due to inconsistent illumination conditions at the time of VHR optical image acquisition, pixels54

of the same objects in VHR optical imagery could have very different pixel values, leading to the55

poor generalization capability of previous flood mapping models. For example, floodwaters in the56

same post-flooding image may have highly inconsistent pixel values as shown in Figure 1. Also such

Figure 1. Floodwaters with inconsistent pixel values on VHR optical imagery from NOAA: The pixels
in red circles are all flooded but show different colors

57

heterogeneous background prohibitively prevents pixel-based classifiers, such as RF, support vector58

machine (SVM), maximum likelihood (ML), and recent image segmentation models (e.g., FCN), from59

capturing the underlying spatial correlation between neighboring pixels within the flood hazard area,60

and therefore from performing well.61

Multispectral surface reflectance imagery often contains important spectral information for62

floodwater detection [1,10–13]. Li et al. [10] used remotely sensed multispectral data, Landsat63

Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+), to map inundation at a sub-pixel64

scale via discrete particle swarm optimization (DPSO). Malinowski et al. [12] used a decision tree (DT)65

algorithm with various combinations of input variables including spectral bands of the WorldView-266

image and spectral indices to analyze spatial patterns of localized flooding on a riverine floodplain.67

More recently, Wang et al. [13] added the spectral information, normalized difference water index68

(NDWI), into the traditional super-resolution flood inundation mapping (SRFIM) model to enhance69
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the model response to floodwaters. Most of the flood mapping studies based on multispectral surface70

reflectance imagery, however, explored homogeneous rural areas instead of heterogeneous urban areas,71

where a larger number of people would be in danger during flooding.72

By virtue of the radar’s active imaging property and its long-wavelength signal with penetration73

power, the space-borne synthetic aperture radar (SAR) is able to collect data over the flooded regions74

day and night regardless of weather conditions [1,2,14–16]. Giustarini et al. [15] introduced a Bayesian75

approach to generate probabilistic flood maps based on SAR data. Shen et al. [14] developed a76

near real time (NRT) system for flood mapping using SAR data, which involves classification based77

on statistics, morphological processing, multi-threshold-based compensation, and machine-learning78

correction. Li et al. [2] proposed an image patch classification model to map the flooded urban area79

with multi-temporal SAR imagery based on an active self-learning CNN framework, which addressed80

the issue of limited training data size. Although these studies based on SAR data made significant81

efforts to improve the accuracy of flood maps, the proposed models were usually complicated in terms82

of model architectures, and did not perform with very satisfying results in terms of overall accuracy,83

precision, recall, and F1 score. Moreover, for neural network based deep learning models, a large84

number of human annotated training samples were required.85

Leveraging the advantages of different types of data, Rudner [1] fused multisource satellite86

imagery, including VHR, multispectral, and radar imagery, in a CNN model to detect flooded buildings87

in urban areas. As such, the spatial, spectral, and temporal information was integrated to improve the88

segmentation of flooded ground objects. However, the models discussed above required data from89

multi-modal sensors, some of which might be missing during flooding events.90

With regard to the mapping methods, most of literature focused on pixel-based dense classification91

approaches such as artificial neural network (ANN) [17], SVM [16], DT [12], RF [8], HMT [7], particle92

swarm optimization (PSO) [10], and deep CNN such as FCNs [6], U-Net [18], and Deeplab [19]. While93

pixel based image segmentation approaches in the aforementioned studies could generate higher94

resolution flood maps, they depend on high resolution flooding masks for model training, which95

require intensive human annotation of training samples. The annotation process might be even more96

expensive for urban areas as they are more heterogeneous than rural areas. As such, these models97

might not be able to perform in near real time when flooding occurs in urban areas.98

Some of the studies also investigated patch-based classification methods for land cover mapping,99

which have the potential for urban flood mapping. Traditional machine learning approaches have100

been widely used for image scene classification. Gong et al. [20] compared SVM, DT, and RF for101

Landsat image scene classification and showed that SVM performed with the highest overall accuracy.102

Heydari et al. [21] also reported the superior classification performance of SVM on 26 testing blocks of103

Landsat imagery in comparison with ANN and the ensemble of DT. More recently, CNN based deep104

learning approaches have shown promising performance for image classification, such as AlexNet105

[22], VGGNet [23], GoogLeNet [24], and ResNet [25]. Most of these neural network models are very106

deep in terms of the number of layers, which are not necessary for classification of small patches107

as demonstrated in [26,27]. Sharma et al. [26] developed a patch-based CNN model tailored for108

medium resolution (pixel size = 30m) multispectral Landsat-8 imagery for land cover mapping, which109

outperformed pixel-based classifier in overall classification accuracy. Song et al. [27] designed a light110

CNN (LCNN) model to map the land cover also using Landsat-8 imagery and achieved better results111

than pixel-based classifiers particularly at heterogeneous pixels, which are very common in urban areas.112

Additionally, traditional machine learning approaches (e.g., SVM and RF) were also tested and showed113

competitive results for patch-based classification compared with LCNN. It was also demonstrated114

that the patch-based approach has an advantage in large scale mapping in terms of computation115

time. Most recently, with a focus on urban flood mapping, Li et al. [2] proposed a patch-based active116

self-learning CNN framework to map the flooding areas in urban Houston with multi-temporal SAR117

imagery. However, there still exist great potentials to simplify the model architecture and improve118

the F1 score and overall accuracy. Additionally, patch-based approaches to flood mapping especially119
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over urban areas are still not well investigated. Moreover, considering the advantage of multispectral120

surface reflectance data, the extensive and quantitative study of patch-based urban flood mapping with121

multi-temporal multispectral surface reflectance imagery is still lacking. Finally, with the advancement122

of data acquisition technologies, current remotely sensed data are often in a huge volume, such as123

satellite images from DigitalGlobe [28] and Planet Labs [29], and aerial imagery collected by National124

Oceanic and Atmospheric Administration (NOAA [30]). With an increasing data volume, how to fully125

leverage the big data and to develop more robust and scalable algorithms for flood extent mapping126

still remains to be addressed.127

Motivated by these key issues, this paper proposed a patch similarity convolutional neural128

network (PSNet) with two variants (i.e., PSNet-v1 and PSNet-v2) for precision urban flood mapping129

using bi-temporal (i.e., pre- and post-flooding) high resolution (i.e., 3m) multispectral satellite imagery.130

We used surface spectral reflectance imagery since spectral reflectance is more invariant with respect131

to data acquisition time and weather conditions. This means that corresponding ground objects from132

pre- and post-flooding imagery would have consistent spectral responses. As a result, the network133

would be more robust. Similar to the studies in [6–8,27], we conducted extensive experiments with134

PSNet and other baseline methods including SVM, DT, RF, and AdaBoost (ADB), using two datasets:135

1) the 2017 Hurricane Harvey flood in Houston, Texas, and 2) the 2018 Hurricane Florence flood in136

Lumberton, North Carolina. We used default parameters in scikit-learn [31] for experiments with137

baseline methods as in [7]. Experiment results showed that the PSNet with bi-temporal data achieved138

superior performance in F1 score and overall accuracy compared with baseline methods (i.e., SVM,139

DT, RF, and ADB) with either uni- or bi-temporal data.140

In summary, major contributions of this study include:141

• The PSNet was developed with a simplified two-branch CNN-based data fusion framework,142

which incorporates high resolution bi-temporal multispectral surface reflectance imagery for143

flood mapping over dense urban residential, commercial, and industrial areas. We transformed144

uni-temporal flood mapping with only post-flooding data into bi-temporal image patch similarity145

evaluation with both pre- and post-flooding data. Compared to uni- or bi-temporal SVM, DT, RF,146

and ADB, PSNet performed consistently stronger in F1 score and overall accuracy.147

• This study investigated the role of multispectral surface reflectance imagery in urban flood148

mapping. The use of spectral reflectance instead of raw pixel digital numbers plays an important149

role since spectral reflectance reduces the impact of irrelevant changes caused by data acquisition150

conditions (e.g., illumination).151

• The research sheds light on other bi-temporal change detection problems for natural hazard152

damage evaluation (e.g., earthquake and wildfire damage detection). The proposed models can153

be easily applied to other types of disaster events without damage-specific model design for154

feature extraction.155

2. Materials and Methods156

2.1. Preliminaries157

Flood extent mapping is a process to identify the land areas impacted by flooding. Various158

definitions of such flooding areas have been proposed [2,6–8]. For example, only land areas covered159

by visible floodwaters are considered as being flooded [6,8]. However, in some works, invisible160

flooding areas (e.g., hidden floodwaters under tree canopies) and small dry areas but surrounded161

by floodwaters as shown in Fig. 2 may also be considered as being flooded [7]. The latter definition162

corresponds to FEMA’s National Flood Mapping Products [32], which define flood hazard zones as163

land areas that are either covered or surrounded by floodwaters [2,7]. For urban flood mapping with164

high spatial resolution imagery, this paper uses FEMA’s definition of flood hazard zones as previous165

works [2,7] considering expensive pixel-wise flood labeling.166
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(a) Pre-flooding (b) Post-flooding
Figure 2. Flood hazard zones, roads and residential areas are flooded, (a) pre-flooding VHR optical
imagery from Texas Natural Resources Information Systems (TNRIS), (b) post-flooding VHR optical
imagery from NOAA

This study uses bi-temporal multispectral satellite imagery before and after flooding for urban167

flood mapping. Given a pair of co-registered pre- and post-flooding satellite imagery I1 and I2, the168

goal of this work is to develop a binary classification model F which takes (I1, I2) as input and returns169

a binary flood hazard map O as output, O = F (I1, I2), where each pixel in I2 is classified as 1 (flood,170

FL) or 0 (non-flood, NF).171

To incorporate bi-temporal imagery for flood mapping over heterogeneous urban areas, it is172

worth noting that I1 and I2 may not align well (i.e., corresponding pixels, I1(i, j) and I2(i, j), at the173

same geographical location, do not exactly refer to the same ground object even though I1 and I2 are174

co-registered). Major reasons include (1) trees grow differently in multi-temporal imagery acquired175

over different seasons, (2) moving objects (e.g., cars) are quite common over urban areas, and (3)176

ortho-rectification of I1 and I2 may not be perfect due to complex terrains and ground infrastructures177

(e.g., tall buildings). As a result, pixel-wise analysis of multi-temporal imagery may not perform well178

for urban flood mapping. Limited by strong heterogeneity over the urban area, this work conducted179

patch-wise flood mapping.180

2.2. Datasets181

We studied two flooding events caused by strong hurricanes over the urban areas. One is west182

Houston, Texas, which was flooded due to Hurricane Harvey in August 2017. The other is the city of183

Lumberton, North Carolina, which was flooded as a result of Hurricane Florence in September 2018.184

The data used in this work are satellite imagery from the Planet Lab [29] with spatial resolution of185

3 meters, and 4 spectral bands including blue (B), green (G), red (R), and near infrared (NIR) (see Table186

1). All imagery have been orthorectified and radiometrically calibrated into surface spectral reflectance187

such that the data are more invariant with respect to weather conditions. In addition, the bi-temporal188

pre- and post-flooding imagery were co-registered for similarity analysis.189

Event Scene & Date Band Height, Width (px) Spatial Resolution (m) Product

Harvey Pre, Jul. 31, 2017

B, G, R, NIR
(1848, 3066)

3 ReflectancePost, Aug. 31, 2017

Florence Pre, Aug. 30, 2018 (2240, 2940)Post, Sept. 18, 2018
Table 1. Flood imagery data characteristics

The Harvey pre- and post-flooding satellite images over west Houston, Texas, were collected190

on July 31, 2017 and August 31, 2017, respectively (Table 1). The bi-temporal images were split into191

non-overlapping patches of spatial size 14 × 14. As a result, each patch corresponds to the ground192

spatial area of 42m × 42m, where 42 = 14 × 3. We set the patch size approximately equal to the one193

in a most recent study on urban flood mapping [2], in which the patch size was 40m × 40m. As such,194

the patch-wise classification results for flood mapping over urban Houston area can be compared195
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qualitatively with the ones in [2]. To label the class of each pair of patches, we use VHR (pixel196

size=0.3m) aerial imagery acquired by NOAA on August 31, 2017 as reference. More specifically, the197

VHR image covers the same study area as the pre- and post-flooding multispectral images. Similarly,198

we cut the VHR image into small patches of size 140 × 140 such that each VHR patch covers the same199

spatial area (i.e., 140 × 0.3 = 42m) as the multispectral patch. Classes considered in this study are:200

flooded (FL) patches with floodwaters and non-flooded (NF) patches without floodwaters. It is worth201

noting that image patches without visible floodwaters were not annotated as FL [2]. Therefore, we202

obtained 28,908 annotated patches, of which 8,517 are in class FL and 20,391 are in class NF. The203

pre- and post-flooding images with the labeled ground truth over the whole study area are shown in204

Figure 3. For model training and evaluation, we randomly sampled 5,000 pairs of patches from the205

bi-temporal pre- and post-flooding dataset for training and validation, and the rest 23,908 for testing.

(a) Pre-flooding image (b) Post-flooding image (c) Ground truth of flood
Figure 3. Harvey: optical view of pre- and post-flooding multispectral images with ground truth of
flooded patches (FL) highlighted in yellow, and non-flooded patches (NF) in black.

206

(a) Pre-flooding image (b) Post-flooding image (c) Ground truth of flood
Figure 4. FLorence: optical view of pre- and post-flooding multispectral images with ground truth of
flooded patches (FL) highlighted in yellow, and non-flooded patches (NF) in black.

The Florence pre- and post-flooding satellite images with corresponding ground truth of flood207

map (Figure 4) over the Lumberton city were acquired on August 30, 2018 and September 18, 2018,208

respectively (Table 1). Similar to the data pre-processing for Hurricane Harvey, a total of 33,600209

annotated patches were obtained, in which 5,003 are in class FL and 28,597 are in class NF. We210

randomly sampled 5,000 samples for model training and validation, and keep the remaining 28,600 for211

testing.212

For both Harvey and Florence data with 5,000 samples for training and validation, 4,000 samples213

were used for training while the rest 1,000 samples were fixed for validation and model selection.214

2.3. Methods215

2.3.1. Patch Similarity Evaluation216

The bi-temporal satellite images, (I1, I2), were divided into non-overlapping image patches,217

P1(m, n) and P2(m, n), of the same size. Each pair of patches cover the same geographic area. Therefore,218

instead of classifying each pixel pair, I1(i, j) and I2(i, j), we predict the class of each patch pair, P1(m, n)219

and P2(m, n), to be either FL or NF. In this study, we evaluate the flooding probability of each patch220
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pair, P1(m, n) and P2(m, n), based on their similarity. Note that we assume that the major dissimilarity221

between P1(m, n) and P2(m, n) is resulted from flooding since the pre- and post-flooding images were222

collected recently before and shortly after the flooding event, respectively. Accordingly, the patch223

similarity is negatively correlated with the probability that the patch pair under test is flooded. The224

less similar of P1(m, n) and P2(m, n), the more likely of being flooded.225

This work proposed the PSNet to learn the nonlinear mapping from the pre- and post-flooding226

patch pairs, P1(m, n) and P2(m, n), to the output class, FL or NF. Two variants (PSNet-v1 and PSNet-v2)227

of the network architecture are shown in Figure 5a and 5b, respectively, in which the convolutional228

operation block (Conv block) is shown in Figure 6. The PSNet in this work basically consists of two229

modules, Encoding and Decision.230

(a) PSNet-v1 (b) PSNet-v2

Figure 5. The patch similarity convolutional neural network (PSNet)

Figure 6. Convolution operation block (Conv block).

The Encoding module learns the feature representations from the input pre- and post-flooding231

patches, respectively. More specifically, in PSNet-v1, the Encoding module has a Siamese sub-network232

architectures on the left and right paths for learning the feature representations from the pre- and233

post-flooding patches. To perform similarity analysis in the Decision module, the left and right234

sub-networks share the weights [33], which in turn alleviates the computing load. The sub-network in235

the Encoding module contains a stack of convolutional operation blocks which is shown in Figure 6.236
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Layer Parameters
Input patch C@14 × 14, C: n_channels

Conv block 1 A: 96, 3 × 3, stride=1, pad=1, LeakyReLU (0.1)
B: 96, 3 × 3, stride=1, pad=1, LeakyReLU (0.1)

Pooling Max Pooling (2 × 2)

Conv block 2 A: 192, 3 × 3, stride=1, pad=1, LeakyReLU (0.1)
B: 192, 3 × 3, stride=1, pad=1, LeakyReLU (0.1)

Pooling Max Pooling (2 × 2)

Conv block 3 A: 192, 3 × 3, stride=1, pad=0, LeakyReLU (0.1)
B: 192, 1 × 1, stride=1, pad=0, LeakyReLU (0.1)

Pooling Adaptive average pooling, (1 × 1)
Concatenation Feature vector concatenation, pre + post
Dense layer 1 Fully connect, 384 → 384, LeakyReLU (0.1)
Dense layer 2 Fully connect, 384 → 192, LeakyReLU (0.1)
Dense layer 3 Fully connect, 192 → 1, Sigmoid

Table 2. Hyperparameters of the PSNet

Feature representations of pre- and post-flooding patches from the left and right paths would then join237

on top of the Encoding module through concatenation along the channel dimension. Different from238

PSNet-v1, the other variant PSNet-v2 would first concatenate the pre- and post-flooding patches and239

then feed the patch stack into the Encoding module for joint feature learning.240

The Decision module evaluates the similarity between the feature representations learned from241

the pre- and post-flooding patches through the Encoding module. It performs binary classification (i.e.,242

FL or NF) by taking as input the joint feature representations, and following a set of dense layers.243

Detailed settings and hyperparameters of the PSNet are listed in Table 2.244

2.4. Evaluation Metrics245

For all experiments, we evaluated the overall accuracy (OA), precision, recall, and F1 score [34–36],
which are defined as Equation 1.

OA =
TP + TN

TP + FP + TN + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2 · Precision · Recall
Precision + Recall

(1)

where TP, FP, TN, FN denote the number of true positives, false positives, true negatives, and false246

negatives. For comparative analysis, we performed patch classification with baseline algorithms247

including: support vector machine (SVM), decision trees (DT), random forest (RF), and AdaBoost248

(AdB). We tested all baselines with uni-temporal data (i.e., post-flooding patches ) and bi-temporal249

data (i.e., pre- and post-flooding patches).250

2.5. Model Training and Testing251

For training supervised PSNet, we take as input the pre- and post-flooding patch pairs and as
target the corresponding true labels (FL or NF). The Adam optimizer [37] is applied with batched
patch pairs to minimize the weighted binary cross entropy loss, L(x, y), defined as Equation 2.

L(x, y) =
1
N

N

∑
i=1

li

li = −wi [yi log xi + (1 − yi) log (1 − xi)]

(2)
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where x is the output of the network (i.e., the probability of being flooded), y is the target label, N252

is the number of patch pairs in a batch, li is the weighted cross entropy loss for the ith patch pair253

with associated weight wi. We assigned different weights for the class FL and NF due to high class254

imbalance of the training data. The sample weight is defined as the complementary of its occurrence255

frequency in the training set. More specifically, with regard to the training set including p% FL and256

(1 − p)% NF samples, we set the weights of FL and NF samples as (1 − p)% and p%, respectively.257

All models were trained with batched samples for 200 epochs. We initialized the learning rate to258

be 1e−4 and divide it by 10 when observing no further decrease of validation loss. Weight decay of259

1e−5 and momentum parameters (β1, β2) = (0.9, 0.999) for the Adam optimizer were used during260

training.261

Considering limited size of the training data, data augmentation was used to enhance the262

model generalization capability, including random horizontal and vertical flip, rotation of degrees in263

[0◦, 90◦, 180◦, 270◦], and normalization of pixel reflectance into the range of [0, 1].264

Before the training process, good weight initialization is important for networks with multiple265

paths to avoid partial node activation [18]. In this study, the weights were initialized by random266

sampling from the Gaussian distribution, N ∼ (0, V/2), where V is the number of associated267

parameters for each node. More specifically, for a k × k convolutional kernel with C channels in268

the previous layer, V = k2C.269

To investigate how the training set size may influence the classification performance, we trained270

all models with different sizes of training set. To be more specific, we randomly sampled various271

numbers of training samples from the original training subset of size 4,000 and trained multiple272

PSNet models. Fixed validation and testing subsets were used for model selection and performance273

evaluation. In this work, we selected trained models with highest validation F1 scores for testing.274

All experiments of PSNet were conducted with Pytorch [38] on a Dell workstation with 16 GiB275

Intel(R) Xeon(R) W-2125 CPU @ 4.00GHz × 8, 8 GiB Quadro P4000 GPU, and 64-bit Ubuntu 18.04.2276

LTS.277

3. Results278

3.1. Hurricane Harvey Flood279

With bi-temporal pre- and post-flooding data, Figures 7a and 7b illustrate classification280

performance in terms of overall accuracy and F1 score with respect to varying training set sizes.281

It shows that the PSNet-v1 and PSNet-v2 performed comparatively and outperformed traditional282

SVM, decision tree, random forest, and AdaBoost with consistently higher overall accuracy and F1283

score. In addtion, as the size of training set increases, all models tend to generalize better on testing284

data as demonstrated by increasing overall accuracy and F1 score.285

With only uni-temporal post-flooding data, we also compared all models except for PSNet-v1286

since PSNet-v1 requires both pre- and post-flooding patches as input of the Siamese sub-networks287

in the Encoding module. Figures 7c and 7d show the learning curves of PSNet and other baseline288

algorithms, illustrating how overall accuracy and F1 score would change with different training data289

size. As demonstrated in Figures 7c and 7d, PSNet-v2 performed with significantly higher overall290

accuracy and F1 score than SVM, decision tree, random forest, and AdaBoost did.291

Take one training set of size 1,500 as an example, Table 3 summarized the detailed numerical292

classification performance with uni- and bi-temporal data in terms of all evaluation metrics with best293

result highlighted in bold. It is worth noting that the ensemble methods (e.g., random forest and294

AdaBoost) are likely to produce higher precision but lower recall, which resulted in poor F1 scores295

and overall accuracy. Unlike other models with good performance on only one metric (e.g., random296

forest, strong in precision but weak in recall), PSNet could produce consistently good results across all297

metrics.298
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(a) Overall accuracy (Bi-temporal) (b) F1 score (Bi-temporal)

(c) Overall accuracy (Uni-temporal) (d) F1 score (Uni-temporal)

Figure 7. Classification performance on Harvey testing data in terms of OA and F1.

We also observed that, due to limited size and high class imbalance of training data, it remains a299

challenge for the uni-temporal classifiers to learn the abstract feature representations of the input patch,300

as reflected by their poorer performance compared with the corresponding bi-temporal classifiers.301

However, leveraging the bi-temporal information, patch similarity is an important a priori for binary302

classification. Therefore, we do not need to learn the high level abstract features through very deep303

architectures, which usually require a large number of training data.304

For visual inspection, we showed the classification maps of the entire image scene produced by305

the model trained with 1,500 pairs of pre- and post-flooding patches for PSNet-v1 and PSNet-v2 in306

Figure 8. Patches in yellow represents the true positives of FL, indicating the correct predictions of307

flooded patches, and patches in red represent the false alarms of FL, which mean non-flooded patches308

were detected as being flooded. Patches in green show false negatives of FL, i.e., flooded patches were309

classified as being non-flooded. Qualitatively compared with ground truth shown in Figure 3c, the310

proposed PSNet proved to be effective with only 1,500 training samples, as demonstrated by very few311

false alarms (Red) and false negatives (Green).

(a) PSNet-v1 (b) PSNet-v2
Figure 8. Classification results of Harvey data by PSNet, with patches in yellow for true positives of
FL, red for false alarms of FL, and green for false negatives of FL.
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Models Temporal Precision Recall F1 OA

PSNet-v1 pre+post 0.8665 0.9152 0.8876 0.9341
post – – – –

PSNet-v2 pre+post 0.8809 0.9073 0.8914 0.9371
post 0.8272 0.8489 0.8338 0.9038

SVM pre+post 0.8628 0.8682 0.8655 0.9208
post 0.7429 0.8207 0.7798 0.8639

DT pre+post 0.7269 0.6912 0.7086 0.8331
post 0.6875 0.6811 0.6843 0.8155

RF pre+post 0.9000 0.7066 0.7916 0.8908
post 0.8328 0.6848 0.7516 0.8671

ADB pre+post 0.8909 0.7944 0.8399 0.9111
post 0.8103 0.7224 0.7638 0.8688

Table 3. Classification performance comparison with 1,500 uni- and bi-temporal Harvey training
samples.

3.2. Hurricane Florence Flood312

Figure 9 shows the change of overall accuracy and F1 score with respect to the training data313

size using uni- and bi-temporal data generated during the Hurricane Florence Flood. It is obvious

(a) Overall accuracy (Bi-temporal) (b) F1 score (Bi-temporal)

(c) Overall accuracy (Uni-temporal) (d) F1 score (Uni-temporal)

Figure 9. Classification performance on Florence testing data in terms of OA and F1.
314

that, with both uni- and bi-temporal data, PSNet performed consistently better than SVM, decision315

tree, random forest, and AdaBoost in terms of F1 score and overall accuracy. Table 4 summarizes the316

evaluation results by the model trained with 1,500 uni- and bi-temporal samples in terms of precision,317

recall, F1, and overall accuracy. PSNet-v1 with bi-temporal pre- and post-flooding data achieved very318

high performance with 0.9551 F1 score and 0.9876 overall accuracy.319
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Models Temporal Precision Recall F1 OA

PSNet-v1 pre+post 0.9476 0.9684 0.9551 0.9876
post – – – –

PSNet-v2 pre+post 0.9116 0.9792 0.9412 0.9829
post 0.8625 0.9808 0.9139 0.9746

SVM pre+post 0.7187 0.9686 0.8251 0.9388
post 0.7156 0.9791 0.8268 0.9388

DT pre+post 0.8637 0.8797 0.8716 0.9614
post 0.8428 0.8523 0.8475 0.9543

RF pre+post 0.9343 0.9107 0.9223 0.9771
post 0.9076 0.8725 0.8897 0.9677

ADB pre+post 0.9210 0.8964 0.9085 0.9731
post 0.8923 0.8570 0.8743 0.9633

Table 4. Classification performance comparison with 1,500 uni- and bi-temporal Florence training
samples.

Figure 10 displays classification maps of the entire image scene for visual interpretation. With320

only a few false positives (Red) and false negatives (Green), PSNet could produce highly accurate321

flood maps over the urban area.

(a) PSNet-v1 (b) PSNet-v2
Figure 10. Classification results of Florence data by PSNet, with patches in yellow for true positives of
FL, red for false alarms of FL, and green for false negatives of FL.

322

4. Discussions323

Unlike pixel based classification for flood mapping [6–8,10,39,40], this study investigated image324

patch based flood mapping similar to the study in [2]. Major motivations include: 1) reducing the325

impact of heterogeneous image background over urban area, which is challenging for pixel-wise326

classification; and 2) accelerating human annotation of training samples since pixel-wise labeling327

would be much more time-consuming and labor-intensive.328

Similar to the studies in [2,6–8,27] for comparative analysis, we performed patch-based329

classification with traditional machine learning models as baselines, including SVM, DT, RF, and330

ADB. The experiment results of the two urban flood events (i.e., the 2017 Hurricane Harvey flood331

and the 2018 Hurricane Florence flood) demonstrate the superior performance of the proposed PSNet332

over all baseline algorithms (Figure 7 and 9, Table 3 and 4). With regard to patch-based classification333

models, the PSNet developed in this study leveraged an efficient two-branch data fusion framework334

specifically for urban flood mapping. It is worth noting that the Encoding module can be developed335

with different variants of the patch-based CNN architecture used in this study. As a result, the336

specific architecture of the Encoding module along with its hyperparameters used in this study can337

be considered as a representative of patch-based CNN encoding for the input patches. This work338
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did not experiment with image segmentation models (e.g., FCNs, U-Net, and Deeplab) since image339

segmentation works for pixel-based, instead of patch-based, dense classification. In addition, we340

did not compare with deep image classification models, such as AlexNet, VGGNet, GoogLeNet, and341

ResNet, since classification of small patches does not require such deep architectures [26,27]. With342

regard to other CNN-based patch classification models discussed in [26,27], direct comparison is not343

valid due to different input dimensions and image resolutions which require major modification of the344

Encoding module architectures and tuning of hyperparameters.345

More specifically, with regard to patch-based urban flood mapping, this study followed the346

experiment settings of a recent research for urban flood mapping with SAR data [2], in which the347

study area (i.e., west Houston) is smaller than the one investigated in this study. For reference, we348

used patches of size 14 × 14 to cover the ground area of 42m × 42m, which is close to the area (i.e.,349

40m × 40m) covered by patches used in [2]. We did not experiment with the exact same size of patches350

due to the constraint of different spatial resolutions of images used in the two studies. It should be351

noted that we labeled all patches with floodwaters as being flooded, whereas, in [2], only patches352

that were severely flooded were labeled as being flooded. In other words, there are less patches in [2]353

labeled as being flooded than that of this study. For patches that were partially covered by floodwaters354

but not heavily flooded, the classification model would have very weak response. Therefore, the355

results in this study cannot be directly and quantitatively compared with those in [2]. For qualitative356

comparison regarding the Harvey flooding event, as reported in [2], the developed active self-learning357

CNN model detected flood patches with precision of 0.684, recall of 0.824, F1 score of 0.746, and overall358

accuracy of 0.928 when using model trained with 600 pre- and post-flooding SAR patches. However,359

this study achieved the performance with precision of 0.848, recall of 0.906, F1 score of 0.873, and360

overall accuracy of 0.925 with model (PSNet-v1) trained with 500 bi-temporal multispectral patches361

(Table 5). In addition, the PSNet was designed with simple architectures for easy implementation.362

More importantly, it shows that only a small number (e.g., 500) of training samples are needed for363

training a competitive model (PSNet) that generalizes well on the testing data, and thus contributes to364

quick mapping of the flooding area.

Models Temporal Precision Recall F1 OA

PSNet-v1 pre+post 0.848 0.906 0.873 0.925
PSNet-v2 pre+post 0.867 0.887 0.874 0.927

Table 5. Classification performance comparison with 500 bi-temporal Harvey training samples.

365

With experiments on both uni- and bi-temporal data, the results show that bi-temporal pre- and366

post-flooding data contribute significantly to boosting the performance of PSNet for patch similarity367

analysis and thus for flood patch identification. Patch similarity learning has proved to be effective in368

patch-based matching of stereo images [33,41–43]. Due to the heterogeneity of the satellite imagery369

background over urban area, patches of class FL usually have various patterns which are difficult370

to be learned by the classification algorithms with very limited number of training samples. As371

shown in Figure 7 and 9, patch similarity evaluation based PSNet with bi-temporal data consistently372

outperformed those floodwater pattern recognition based models with uni-temporal data. It is worth373

noting that, with only 500 training samples available, the proposed PSNet was able to perform with,374

approximately, F1 score of 0.87 and overall accuracy of 0.93 on Harvey testing data. Similar high375

performance can also be observed in the experiment for the Florence data.376

We investigated the important role of spectral reflectance in urban flood mapping. As spectral377

reflectance has been recognized as the signature of ground objects [44], it would be more invariant378

with respect to illumination conditions. Therefore, with only a small number of human annotated379

samples (e.g., 1,500), we could identify the flood image patches with around 0.8914 F1 score and 0.9371380

overall accuracy for Harvey testing data (Table 3) and 0.9551 F1 score and 0.9876 overall accuracy for381

Florence testing data (Table 4), which are consistently better than the results produced by the baseline382

algorithms. Compared with studies using SAR imagery [2] and optical imagery with raw pixel digital383
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numbers [8], spectral reflectance data in this study play an important role in helping PSNet achieve384

superior performance in urban flood mapping with merely a small number of training samples (e.g.,385

500) as demonstrated by the learning curves in Figures 7 and 9.386

It is worth noting that PSNet achieved higher F1 score and overall accuracy on the Florence data387

(Table 4) than that on the Harvey data (Table 3). It is mainly because the Harvey data covering the388

west Houston area are more heterogeneous than the Florence data covering the Lumberton city. More389

specifically, the west Houston area includes dense residential, industrial, and commercial regions,390

where various ground objects result in more heterogeneous image background. As a result, it would391

be relatively easier for the PSNet trained with the Florence training data to achieve better performance392

on the Florence testing data.393

With regard to the processing time on model training and testing for creating the flood maps, it394

took about 6 minutes to train the PSNet with 500 samples and 1 minute to create the flood map of the395

study area (e.g., west urban Houston) on the Dell workstation used in this work. The running time396

associated with traditional approaches (e.g., SVM, DT, RF, ADB) is even less than that corresponding397

to the PSNet. As such, the time consumption on PSNet training and testing can be ignored for near398

real-time urban flood mapping. It should be noted that the major time-consuming process is human399

annotation of training samples. As in this study, a total of 3 research assistants could label 500 training400

samples in less than 20 minutes, which can also be ignored for near real-time urban flood mapping.401

To sum up, the major strength of the proposed PSNet with bi-temporal data is to map the urban402

flood area with high overall accuracy and F1 score as demonstrated by the quantitative results in403

Figures 7 and 9. More detailed evaluation results over all metrics corresponding to 1,500 training404

samples can be found in Tables 3 and 4. One major limitation of this study in practice is that part of405

the satellite imagery covering the flood area may contain clouds, which are the major challenge for406

multispectral image analysis. In this case, further work could be dedicated to fusing both multispectral407

imagery and SAR imagery for joint urban flood mapping by virtue of the penetration power of the408

SAR signals [1].409

5. Conclusions410

This paper addressed the challenge of urban flood mapping via patch similarity learning411

instead of pixel-wise classification, since patch based analysis reduced the impact of heterogeneous412

image background over urban area and contributed to efficient annotation of training samples.413

We proposed the patch similarity network (PSNet) with two variants (PSNet-v1 and PSNet-v2) to414

evaluate the similarity between bi-temporal pre- and post-flooding patches cropped from the surface415

spectral reflectance imagery, and thus to determine whether the post-flooding patch under test is416

flooded. Results showed that both PSNet-v1 and PSNet-v2 developed in this study achieved superior417

performance with approximately 89% F1 score and 93% overall accuracy on the 2017 Hurricane418

Harvey flood testing data, and 95% F1 score and 98% overall accuracy on the 2018 Hurricane Florence419

flood testing data with only 1,500 training samples available. Extensive experiments with PSNet and420

other baseline algorithms demonstrated high performance of PSNet. Moreover, it is not required to421

design handcrafted floodwater related features for PSNet, which further improves the generalization422

capability of PSNet. While multispectral reflectance imagery used in this study maybe influenced by423

severe weather conditions (e.g., heavy clouds), they are effective and accurate in urban flood mapping.424

In the future, we would experiment with data for other types of disaster events (e.g., California425

wildfires in 2018) to test the model generalization ability. Moreover, as multispectral imagery might be426

cloudy for some flooding events, resulting in insufficient data. The fusion of SAR and multispectral427

imagery may help reduce the impact clouds, which contributes to near real-time urban flood mapping.428
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