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ABSTRACT

Urban flood mapping is essential for disaster rescue and relief mis-
sions, reconstruction efforts, and financial loss evaluation. Much
progress has been made to map the extent of flooding with multi-
source remote sensing imagery and pattern recognition algorithms.
However, urban flood mapping at high spatial resolution remains a
major challenge due to three main reasons: (1) the very high resolu-
tion (VHR) optical remote sensing imagery often has heterogeneous
background involving various ground objects (e.g., vehicles, build-
ings, roads, and trees), making traditional classification algorithms
fail to capture the underlying spatial correlation between neigh-
boring pixels within the flood hazard area; (2) traditional flood
mapping methods with handcrafted features as input cannot fully
leverage massive available data, which requires robust and scal-
able algorithms; and (3) due to inconsistent weather conditions
at different time of data acquisition, pixels of the same objects in
VHR optical imagery could have very different pixel values, leading
to the poor generalization capability of classical flood mapping
methods. To address this challenge, this paper proposed a residual
patch similarity convolutional neural network (ResPSNet) to map
urban flood hazard zones using bi-temporal high resolution (3m)
pre- and post-flooding multispectral surface reflectance satellite
imagery. Besides, remote sensing specific data augmentation was
also developed to remove the impact of varying illuminations due
to different data acquisition conditions, which in turn further im-
proves the performance of the proposed model. Experiments using
the high resolution imagery before and after the 2017 Hurricane
Harvey flood in Houston, Texas, showed that the developed Re-
sPSNet model, along with associated remote sensing specific data
augmentation method, can robustly produce flood maps over urban
areas with high precision (0.9002), recall (0.9302), F1 score (0.9128),
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and overall accuracy (0.9497). The research sheds light on multi-
temporal image fusion for high precision image change detection,
which in turn can be used for monitoring natural hazards.
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1 INTRODUCTION

Natural disasters pose a great threat to people’s life and living en-
vironment, especially for areas with high population density (e.g.,
urban regions). Flooding events are one of the most frequent natural
disasters that have direct damage over man-made ground infras-
tructures, including roads and buildings [3, 14, 22]. The estimated
global financial losses, with projected socio-economic change alone,
will increase close to $52 billion by 2050 [9]. To improve the safety,
resilience, and sustainability of the cities and human settlements,
the United Nations (UN) has proposed Sustainable Development
Goal 11 (2015-2030), targeting at decreasing the number of impacted
people and economic losses caused by water-related disasters [24].
Therefore, an urgent call exists to map flood areas in near real-
time for aiding in disaster response service (e.g., rescue and relief
missions) and reducing economic loss.

Multisource remote sensing imagery has been widely used for
flood mapping. In general, very high resolution (VHR) optical im-
agery could provide abundant color and texture information for
better visual inspection [3, 5, 7, 26]. Multispectral surface reflectance
imagery often contains important spectral information for flood-
water detection [1, 13, 16, 22, 25]. By virtue of the radar’s active
imaging property and its long-wavelength signal with penetration
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power, the space-borne synthetic aperture radar (SAR) is able to
collect data over the flooded regions day and night regardless of
weather conditions [8, 14, 22, 23]. Based on different types of data,
various frameworks have been developed for mapping the flood
extent. Feng [5] mapped flood inundation areas based on VHR
aerial optical images acquired by a mini unmanned aerial vehicle
(UAV) using a Random Forest classifier performed in the spectral-
texture feature space. Li [13] used remotely sensed multispectral
data, Landsat Thematic Mapper/Enhanced Thematic Mapper Plus
(TM/ETM-+), to map inundation at a sub-pixel scale via discrete
particle swarm optimization (DPSO). Giustarini [8] introduced a
statistical model to estimate the uncertainty in flood mapping de-
lineation on satellite SAR images. Rudner [22] fused multisource
satellite imagery, including VHR, multispectral, and radar data, in
a convolutional neural network to detect flooded buildings.

However, both disaster relief management organizations (e.g.,
Federal Emergency Management Agency (FEMA)) and private sec-
tors (e.g., insurance companies), have posed further demands on
urban flood mapping with high resolution at the scale of street
block level. In fact, this still remains a major challenge due to three
constraints: (1) First, the VHR optical remote sensing imagery often
has heterogeneous background involving various ground objects
(e.g., vehicles, buildings, roads, and trees) [26]. Such heterogeneous
background prohibitively prevents conventional pixel-based classi-
fiers, such as random forest (RF), support vector machine (SVM),
and maximum likelihood (ML), from capturing the underlying spa-
tial correlation between neighboring pixels within the flood hazard
area, and therefore from performing well. For example, a floodwater
pixel can hardly be identified without considering its neighboring
pixels; (2) Second, with the advancement of data acquisition tech-
nologies, current remotely sensed data are often in a huge volume,
such as satellite images from DigitalGlobe [2] and Planet Labs [20],
and aerial imagery collected by National Oceanic and Atmospheric
Administration (NOAA [18]). With an increasing data volume, how
to fully leverage the big data and to develop more robust and scal-
able algorithms for flood extent mapping are still not well addressed;
and (3) Finally, due to inconsistent illumination conditions at the
time of data acquisition, pixels of the same objects in VHR im-
agery could have very different pixel values, leading to the poor
generalization capability of previous flood mapping models. For
example, floodwaters in the same post-flooding image may have
highly inconsistent pixel values as shown in Figure 1.

Motivated by these key issues, this paper proposed a residual
patch similarity convolutional neural network (ResPSNet) for pre-
cision urban flood mapping using bi-temporal (i.e., pre- and post-
flooding) high resolution (i.e., 3m) multispectral satellite imagery.
We used surface spectral reflectance imagery since spectral re-
flectance is more invariant with respect to data acquisition time
and weather conditions. This means that corresponding ground
objects from pre- and post-flooding imagery would have consistent
spectral responses. As a result, the network would be more robust.
Besides, remote sensing specific data augmentation was also devel-
oped to remove the impact of varying illuminations due to different
data acquisition conditions, which in turn further improves the
performance of the proposed ResPSNet model. Experiments com-
paring with the uni-temporal (i.e., with only post-flooding data)
convolutional neural network (CNN) and support vector machine
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Figure 1: Floodwaters with inconsistent pixel values on VHR
optical imagery from NOAA: The pixels in red circles are all
flooded but show different colors

(SVM), using the flooding event caused by the 2017 Hurricane Har-
vey in Houston, Texas, as a case study, showed that the developed
ResPSNet model with associated data augmentation method in this
study can robustly produce flood maps over urban areas with high
precision, recall, F1 score, and overall accuracy.

In summary, major contributions of this study include:

o The ResPSNet was developed that incorporates high resolu-
tion bi-temporal multispectral surface reflectance imagery
for flood mapping over dense urban residential, commercial,
and industrial areas. We transformed uni-temporal flood
mapping with only post-flooding data into bi-temporal im-
age patch similarity evaluation with both pre- and post-
flooding data. Compared to uni-temporal CNN and SVM,
the proposed model achieved superior performance in all
evaluation metrics.

o This study investigated the role of multispectral surface re-
flectance imagery in urban flood mapping. The use of spec-
tral reflectance instead of raw pixel digital numbers plays an
important role since spectral reflectance and the appended
water related spectral index NDWI reduced the impact of ir-
relevant changes caused by data acquisition conditions (e.g.,
illumination).

e Remote sensing specific data augmentation was developed,
which further improves the performance of ResPSNet by
enhancing the sensitivity of the network to floodwaters in
the post-flooding imagery.

e The research sheds light on other bi-temporal change de-
tection problems for natural hazard damage evaluation (e.g.,
earthquake and wildfire damage detection). The proposed
models can be easily applied to other types of disaster events
without damage-specific model design for feature extraction.

2 METHODOLOGY

2.1 Preliminaries

Flood mapping is a task to extract the flooding zones (i.e.,land areas
submerged in floodwaters), which may have different definitions
in the literature [5, 7, 14, 26]. For example, FEMA’s National Flood
Mapping Products [4], define flood hazard zones as land areas
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that are either covered or surrounded by floodwaters. In some
works, invisible flooding areas (e.g., hidden floodwaters under tree
canopies) and small dry areas but surrounded by floodwaters as
shown in Fig. 2 may also be considered as being flooded [26] . Since

(b) Post-flooding

Figure 2: Flood hazard zones, roads and residential areas are
flooded, (a) pre-flooding VHR optical imagery from Texas
Natural Resources Information Systems (TNRIS), (b) post-
flooding VHR optical imagery from NOAA

we cannot label and validate these invisible flooding areas, this
paper uses FEMA’s definition of floodwaters as previous work [14].

This study uses bi-temporal multispectral satellite imagery be-
fore and after flooding for urban flood mapping. Given a pair of
co-registered pre- and post-flooding satellite imagery I; and I, as
input of a mapping model M, the goal of the work is to develop a
classification model that can output a binary flood hazard map O,
O = M (I, I2). Each pixel in the output O was assigned with either
1 (flood, FL) or 0 (non-flood, NF).

To develop the classification model M for incorporating bi-temporal

data for flood mapping, there are three major issues: (1) First, al-
though pre- and post-flooding imagery are co-registered, corre-
sponding pixels, I1(i, ) and I»(i, j), at the same geographical lo-
cation, may not exactly point to the same ground object. This is
inevitable especially for time-series imagery collected at different
seasons when trees grow differently, and over urban areas where
moving objects are common; (2) Second, satellite imagery may not
be perfectly orthorectified due to various terrains and inaccurate
geometric corrections; and (3) Third, pixel-wise dense classification,
also known as semantic segmentation, requires high-resolution
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Figure 3: The Siamese residual patch similarity convolu-
tional neural network (ResPSNet).

flooding masks corresponding to the study area for model train-
ing, resulting in expensive human annotation. As such, we did
not apply time-series pixel-wise dense classification or semantic
segmentation to urban flood mapping.

2.2 Model development

Instead of using pixel-wise classification, this study splits the raw
bi-temporal imagery I; and Iz, into non-overlapping patches of the
same size [14]. It is worth noting that we changed pixel classification
into patch classification, resulting in a lower resolution flooding
map. Nevertheless, this is a more efficient approach to creating flood
maps over heterogeneous urban area as discussed in [14], which
are also in consistent with flood maps from FEMA. Leveraging
the spatial context within the patches, we proposed the Siamese
ResPSNet to learn the nonlinear mapping from the pre- and post-
flooding patches to one of the two predefined classes (i.e., either FL
or NF). The corresponding pair of patches (Pilj, Plzj) from the pre-
and post-flooding imagery (I, Iz) were the inputs of the Siamese
network.

The architecture of the ResPSNet is shown in Figure 3. It consists
of two major modules. First, Encoding on the left and right paths
extracts features from pre- and post-flooding image patches using
a residual CNN. The residual block used in this study is shown in
Figure 4b. Note that the rectified linear unit (ReLU) activation is not
used after adding the identity mapping information [15]. Inspired
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Figure 4: Different residual convolution blocks (a) with
ReLU activation [11], and (b) without ReLU activation [15]
(used in this study), after addition on top.

by the same hidden nodes in recurrent neural networks (RNN) for
time series data processing, the left and right sub-networks shared
the same set of weights, and joined at the top via feature vector
concatenation as designed in [27].

Second, Decision consists of three dense layers taking the con-
catenated feature vectors as the input. The probability of being
flooded was then computed via fully connection operations. Since
the pre- and post-flooding images were collected recently before
and shortly after the flooding event, respectively, the major changes
between the pair of patches were resulted from flooding. The flood-
ing probability can be interpreted as the inverse of the similarity
score of the two input patches. This means that the higher proba-
bility of being flooded, the less similar of the two patches.

It is worth noting that the similarity of the two patches was
mainly determined by the change of spectral reflectance instead
of spatial structures of the ground objects. To keep the spectral
contrasts between floodwaters in the post-flooding patch and the
ground objects (e.g., roads and grass) in the pre-flooding patch, we
did not use batch normalization throughout the entire network.

All hyperparameters of the ResPSNet after tuning are listed in
Table 1.

In addition to the ResPSNet, we also developed a non-residual
version of Siamese patch similarity convolutional neural network
(PSNet) for urban flood mapping. The left and right sub-networks
contain a set of convolution operations without residual connection.
The network architecture was designed similar to ResPSNet as
shown in Figure 5, where the Conv block is designed as Figure 6.
Hyperparameters were set based on the CNN architecture used in
[14], as summarized in Table 2.

2.3 Remote sensing specific data augmentation

For remote sensing imagery with surface spectral reflectance infor-
mation, as demonstrated in [17], normalized class-specific radio-
metric indices obtained from spectral reflectance are invariant with
respect to the illumination at different data acquisition conditions.
Such invariance enables the neural network to generalize well on
testing data which are not seen during the training process.
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Parameters

C@14 X 14, C: n_channels

64, 3 X 3, stride=1, pad=1, ReLU

Conv A - 64, 3 x 3, stride=1, pad=1, ReLU
Conv B - 64, 3 X 3, stride=1, pad=1

Conv A - 128, 3 X 3, stride=2, pad=1, ReLU
Conv B - 128, 3 x 3, stride=1, pad=1

Conv A - 256, 3 X 3, stride=2, pad=1, ReLU

Layers
Input patch
Initial conv

Residual block 1

Residual block 2

Residual block 3 .

esiduat bloc Conv B - 256, 3 X 3, stride=1, pad=1
Pooling Adaptive average pooling, (1 X 1)
Concatenation Feature vector concatenation, pre + post

Dense layer 1 Fully connection, 512 — 512, ReLU
Dense layer 2 Fully connection, 512 — 256, ReLU
Dense layer 3 Fully connection, 256 — 1, Sigmoid

Table 1: Hyperparameters of the ResPSNet
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Figure 5: The non-residual version of Siamese patch similar-
ity convolutional neural network (PSNet).

Therefore, to train a model with the capability of being sensitive
to floodwaters, we augment the input patches by concatenating
another feature map, the normalized difference water index (NDWTI)
[6], defined as
g NIR (1)

+ NIR
where G and NIR represent the spectral reflectance bands of green
and near infrared in the input patches respectively. The resulting
NDWI value is within the range of (—1, 1). For consistent inputs of

NDWI =
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Figure 6: The convolution block used in PSNet

Layer Parameters

Input patch C@14 X 14, C: n_channels

A: 96, 3 X 3, stride=1, pad=1, LeakyReLU (0.1)

Conv block 1 B: 96, 3 X 3, stride=1, pad=1, LeakyReLU (0.1)

Pooling Max Pooling (2 X 2)

A: 192, 3 X 3, stride=1, pad=1, LeakyReLU (0.1)
Conv block 2 B: 192, 3 X 3, stride=1, pad=1, LeakyReLU (0.1)
Pooling Max Pooling (2 X 2)

A: 192, 3 X 3, stride=1, pad=0, LeakyReLU (0.1)
Conv block 3 B: 192, 1 X 1, stride=1, pad=0, LeakyReLU (0.1)
Pooling Adaptive average pooling, (1 X 1)

Concatenation Feature vector concatenation, pre + post

Dense layer 1 Fully connect, 384 — 384, LeakyReLU (0.1)
Dense layer 2 Fully connect, 384 — 192, LeakyReLU (0.1)
Dense layer 3 Fully connect, 192 — 1, Sigmoid

Table 2: Hyperparameters of the PSNet

the network, we rescaled the NDWI value into (0, 1), the same as
the range of spectral reflectance (0, 1).

2.4 Model training

During the training process, we randomly selected corresponding
pre- and post-flooding patches (Pl.lj, Plzj) along with the label (FL or
NF) as the input of the network. Adam optimizer [12] with batch
size of 16 was used for training. The loss function used in this
study is the weighted binary cross entropy loss, which is defined
in Equation 2.

L _ ! Nl<
(ny)—N;l (2)

li = —wi[yilogx; + (1 - yi)log (1 - x;)]
where N is the total number of samples in a batch, w; denotes the
loss weight associated with the ith sample,andx = (x1,...,XN),y =
(y1,...,yN) represent the output of the network and the corre-
sponding true labels (i.e., 1 for FL and 0 for NF), respectively. Con-
sidering the high class imbalance of our training data, the loss
weight w; for the two classes were set as the complementary of the
occurrence frequency r. of class ¢, where ¢ = FL or NF. More specif-
ically, as rpp and rp are equal to 0.2978 and 0.7022 in our training
set, class FL and NF were assigned with weights 1 — rgp, = 0.7022

GeoAl'19, November 5, 2019, Chicago, IL, USA

and 1 - rNp = 0.2978 respectively. We used a weight decay of 1e—5
and momentum parameters (f1, f2) = (0.9,0.999). The training
process started with the learning rate of 1e—4 and then divided by
10 after the validation loss plateaued, and the model was trained
for up to 300 epochs.

Further data augmentation was used to reduce the model gen-
eralization error on validation and testing data. Each pair of input
patches were augmented with probability of 0.5, including hori-
zontal and vertical flipping and rotation of [0, 90, 180, 270] degrees.
Then, before fed into the network, the reflectance of each pixel in
the input pre- and post-flooding patches was normalized to [0, 1].

Neural networks with multiple paths and layers usually require
appropriate initialization of the model weights before training,
since it helps avoid partial node activation [21]. For our network,
we sampled the initial model weights from Gaussian distribution
with zero mean and standard deviation of \/V_/Z, where V is the
number of parameters in each operation [10]. For example, in a
k X k convolution with C incoming channels, V = K%C.

3 EXPERIMENTS AND RESULTS
3.1 Datasets

We tested our model on datasets collected over Houston, Texas,
where dense residential, commercial, and industrial areas were
severely flooded in August 2017 due to the Hurricane Harvey. The
datasets contain two orthorectified multispectral (i.e., blue (B), green
(G), red (R), and near infrared (NIR)) surface reflectance satellite
imagery provided by Planet Lab [20]: 1) pre-flooding image on
July 31, 2017, and 2) post-flooding image on August 31, 2017. Data
specifications are summarized in Table 3.

Scene Bands Size (h, w)  Pixel size Product
Pre B,G,R,NIR (1848, 3066) 3m Reflectance
Post B, G,R,NIR (1848, 3066) 3m Reflectance

Table 3: Planet Lab data characteristics

Both pre- and post-flooding images were co-registered and split
into non-overlapping patches of the same size 14 X 14. As a result,
each patch corresponds to the ground spatial area of 42m X 42m,
where 42 = 14 X 3. We set the patch size approximately equal
to the one in [14], in which the patch size was 40m X 40m. As
such, the patch-wise classification results for flood mapping over
urban Houston area can be compared with the ones in [14]. To
label the class of each pair of patches, we use VHR (pixel size=0.3m)
aerial imagery acquired by NOAA on August 31, 2017 as reference.
More specifically, the VHR image covers the same study area as
the pre- and post-flooding multispectral images. Similarly, we cut
the VHR image into small patches of size 140 X 140 such that each
VHR patch covers the same spatial area (i.e., 140 X 0.3 = 42m)
as the multispectral patch. Classes considered in this study are:
flooded (FL) patches with floodwaters and non-flooded (NF) patches
without floodwaters. Three research assistants participated in the
annotation of the dataset individually. The class of the post-flooding
multispectral patch (14 X 14) was determined by visual inspection
of the corresponding VHR patch (140 X 140). With regard to patches
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annotated differently, the corresponding labels were finally assigned
with agreement among all annotators.

As discussed in [14], patches with invisible floodwaters under
trees were not considered as being flooded. In summary, we have
a total of 28,908 labeled patches with 8,517 in class FL and 20,391
in class NF. As a result, the numbers of patches in different classes
are highly imbalanced. The pre- and post-flooding images with the
labeled ground truth over the whole study area are shown in Figure
7.

For model training and evaluation, we randomly sampled train-
ing, validation, and testing subsets of patch pairs without replace-
ment with ratios of 40%, 10%, and 50%. Therefore, there are 11,563
patch pairs for training, 2,891 for validation, and 14,454 for testing.

3.2 Results and discussion

During the training, we evaluated the overall accuracy (OA), preci-
sion, recall, and F1 score as in [14, 26], and selected trained models
with highest validation F1 scores for testing. For comparative anal-
ysis, we also trained a uni-temporal CNN model and SVM for post-
flooding patch classification. To be more specific, the uni-temporal
CNN used the same encoding architecture as one branch of the
PSNet with hyperparameters in Table 2. Regarding the implemen-
tation of SVM, we used default settings in the scikit-learn package
[19], in which the radial basis kernel was used and the class weight
was set to be balanced considering the class imbalance. It should
be noted that the baseline models (i.e., CNN and SVM) used only
post-flooding data for training and testing. Therefore, we could
evaluate whether bi-temporal data based models (i.e., ResPSNet
and PSNet) would outperform uni-temporal ones (i.e., CNN and
SVM). Additionally, since the CNN has the same architecture and
hyperparameters as one branch of the PSNet, we could compare the
classification performance between traditional machine learning
algorithm (i.e., SVM) and the popular deep learning model (i.e.,
CNN).

Table 4 lists the binary classification results of the testing data.
It shows that the ResPSNet and PSNet consistently outperformed
the uni-temporal CNN and SVM across all evaluation metrics. Due
to limited size and high class imbalance of training data, it remains
a challenge for the uni-temporal model (i.e., CNN and SVM) to
learn the flood relevant feature representations of the input patch.
However, leveraging the bi-temporal information from pre- and
post-flooding data, patch similarity is an important a priori for
binary classification. In this study, we do not need to learn very
deep architectures, which usually require a large number of training
data. As a result, ResPSNet and PSNet can generalize well on testing
data.

Moreover, ResPSNet performed slightly better than PSNet as
demonstrated in Table 4 with best results in bold. With respect
to ResPSNet, as we augmented the input by appending another
feature map NDWI to the original input feature maps, the precision
and overall accuracy were further improved. Similar improvements
were also observed for PSNet with augmented NDWI, where the
precision, F1 score, and overall accuracy were all improved slightly
as a result of additional NDWI, which is sensitive to floodwaters.
However, as improvements associated with NDWI were not very
significant, it remains to be addressed if NDWI really helps boost

Peng, et al.

(c) Ground truth of flooded patches (FL) highlighted in yellow, and
non-flooded patches (NF) in black

Figure 7: Optical view of pre- and post-flooding multispec-
tral images with ground truth of flooded patches.

the performance of the proposed model by reducing the impact of
varying illumination.

For visual inspection, the classification maps of the entire image
scene over the study area are shown in Figure 8 for ResPSNet, and
Figure 9 for PSNet. Patches in yellow represents the true positives
of FL, indicating the correct predictions of flooded patches. Patches
in red represent the false alarms of FL, which means non-flooded
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Models NDWI Precision Recall F1 OA
Yes 0.9002 09302 09128 0.9497
ResPSNet 2 0.8902 09413 0.9131 0.9489
Yes 0.8984 09222 09079  0.9468
PSNet
No 0.8753  0.9445 09064 0.9443
NN Yes 0.8802  0.8789 08766 0.929%
No 0.9044  0.8646 08812 09338
SUM Yes 07573 0.8609 0.8058  0.8786
No 07898  0.8606 0.8237  0.8923

Table 4: Classification results of testing data.

patches were detected as being flooded. Patches in green show
false negatives of FL, i.e., flooded patches were classified as being
non-flooded.

Compared with ground truth shown in Figure 7c¢ qualitatively,
the proposed ResPSNet and PSNet could produce reasonable classi-
fication maps. Only a very small number of false alarms and false
negatives were reported by ResPSNet and PSNet as demonstrated
in Figure 8 and Figure 9 with very few patches in red and green.

(b) ResPSNet without NDWI

Figure 8: Classification results by ResPSNet over the study
area, with patches in yellow for true positives of FL, red for
false alarms of FL, and green for false negatives of FL.
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(b) PSNet without NDWI

Figure 9: Classification results by PSNet over the study area,
with patches in yellow for true positives of FL, red for false
alarms of FL, and green for false negatives of FL.

4 CONCLUSION AND FUTURE WORKS

This paper addressed the challenge of urban flood mapping via
patch similarity learning. We proposed the Siamese patch similarity
convolutional neural network (ResPSNet) and its non-residual vari-
ant (PSNet) to evaluate the similarity between bi-temporal pre- and
post-flooding patches cropped from the surface spectral reflectance
imagery, and thus to determine whether the post-flooding patch un-
der test is flooded or not. To further enhance the network’s response
to floodwaters, we applied remote sensing specific data augmen-
tation by appending another feature map (i.e., NDWI layer) to the
original input patches. Results showed that both ResPSNet and
PSNet models developed in this study achieved high performance
with approximately 90% accuracy on testing data in all evaluation
metrics including overall accuracy, precision, recall, and F1 score.

In the future, we would experiment with data for other flooding
events (e.g., the 2018 Hurricane Florence flood over the city of
Lumberton, North Carolina) to further test the model generalization
ability.
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