
Future Generation Computer Systems 110 (2020) 107–118

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

An edge-aware autonomic runtime for data streaming and in-transit
processing
Ali Reza Zamani ∗, Daniel Balouek-Thomert, J.J. Villalobos, Ivan Rodero, Manish Parashar
Rutgers Discovery Informatics Institute, Rutgers University, USA

a r t i c l e i n f o

Article history:
Received 16 March 2019
Received in revised form 1 March 2020
Accepted 14 March 2020
Available online 3 April 2020

Keywords:
Stream-oriented workflows
Edge processing
In-transit processing
Wide-area analytics

a b s t r a c t

One of the major endeavors of modern cyberinfrastructure (CI) is to carry content produced on remote
data sources, such as sensors and scientific instruments, and to deliver it to end users and workflow
applications. Maintaining data quality, data resolution, and on-time data delivery and considering the
increasing number of computing, storage, and network resources are challenging tasks that require a
receptive system able to adapt to ever-changing demands. In this paper, we propose a mathematical
model of such system by expressing the dynamic stages of different resources in the context of edge
and in-transit computing. By considering resource utilization, approximation techniques, and user
constraints, our proposed model generates mappings of different workflow stages on heterogeneous
geographically distributed resources. Specifically, we propose an autonomic runtime management layer
that adapts the data resolution being delivered to the users by implementing feedback loops over
the resources involved in the delivery and processing of data streams. The implementation of our
model is based on a subscription-based data streaming framework that enables the integration of large
facilities and advanced CI. Moreover, the idea of stream or request aggregation is incorporated into our
framework, which eliminates redundant data streams to save bandwidth. Experimental results show
that dynamically adapting data resolution and stream aggregation can overcome bandwidth limitations
in wide-area streaming analytics by leveraging the resources at the edge and in-transit.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Large-scale observatories, such as the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [1], Large Synoptic Survey
Telescope (LSST) [2], Large Hadron Collider (LHC) [3], Square
Kilometer Array (SKA) [4], NSF Ocean Observatories Initiative
(OOI) [5], and National Ecological Observatory Network
(NEON) [6], are designed to provide the scientific community
with open access to data and data products generated from ge-
ographically distributed instruments and sensors. As the number
of sensors and their accuracy (e.g., image resolution and sampling
rate) increases over time, the volume, variety, and velocity of gen-
erated data exponentially grow. In such ecosystems, processing
large volume of data requires a large amount of resources, which
are typically not co-located with the data sources [7].

Data processing is usually carried out in outsourced and re-
mote locations within well-provisioned data centers in public or
private clouds or academic institutions. Advanced cyberinfras-
tructure (ACI), such as XSEDE (e.g., Jetstream [8]) and commercial
cloud resources (e.g., Amazon Web Services and Google Cloud),

∗ Corresponding author.
E-mail address: alireza.zamani@rutgers.edu (A.R. Zamani).

play an important role in addressing access limitations to com-
pute and storage resources by providing elastically provisioned
on-demand resources to users. To use remote ACI, the data should
be outsourced to remote resources for further processing [9],
which is not trivial as data rates grow.

In this context, end users and applications require to re-
ceive processed or transformed data and data products meet-
ing specific constraints, such as deadline, budget, and quality.
We refer to these constraints as quality of service (QoS). How-
ever, guaranteeing on-time data delivery within specific con-
straints imposed by users in environments composed of hetero-
geneous resources, such as network links, virtual machines, and
bare-metal servers, requires sophisticated service/resource or-
chestration. Furthermore, the implementation of complex work-
flows based on streamed data and online data product genera-
tion while maintaining QoS requirements require comprehensive
monitoring.

Widely adopted technologies for data stream processing, such
as Apache Storm [10], are typically deployed within a cluster or
datacenter; however, as data processing is conducted closer to the
edge, centralized on-time stream processing is not possible due
to the size of the data and network bandwidth limitations [11].
Recent research efforts have addressed this issue by introducing
the concept of edge computing and filtering the data at the

https://doi.org/10.1016/j.future.2020.03.037
0167-739X/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2020.03.037
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2020.03.037&domain=pdf
mailto:alireza.zamani@rutgers.edu
https://doi.org/10.1016/j.future.2020.03.037

108 A.R. Zamani, D. Balouek-Thomert, J.J. Villalobos et al. / Future Generation Computer Systems 110 (2020) 107–118

edge of the network [11–14]. As opposed to existing works,
our proposed solution considers stream-oriented workflows on
edge and in-transit nodes and combines data streams to reduce
data movement based on resource location, resolution, and user
constraints.

In this paper, we propose a framework that integrates and
utilizes heterogeneous and distributed resources to process data
while they move toward the users and manages data resolution
to satisfy QoS requested by the users. We demonstrate that edge
and in-transit resources can be leveraged to process the data and
adjust the data quality or resolution while they move between
geo-distributed nodes. The framework considers user constraints
(deadline, budget, and data resolution) and status of the resources
in deploying workflows and coordinating data streams. A key fea-
ture of our approach is the ability to manage the data resolution
being delivered to users at runtime based on the comprehen-
sive monitoring of the streams. Our proposed framework targets
large-scale observatory applications, along with infrastructure
with similar characteristics, such as the Internet of Things (IoT)
applications and cyber–physical scientific experiments. The main
contributions of this study are summarized as follows:

• Proposes the deployment and scheduling of the workflow
stages over geo-distributed resources located between the
data source and its destination

• Leverages on-demand feedback loops to ensure end-to-end
QoS for the users and dynamically adjusts the quality of data
at runtime

• Provides a design and deployment of a subscription-based
data streaming framework, consisting of Apache Kafka clus-
ters [15], which incorporate edge and in-transit resources to
workflow deployments

• Formulates a model to deploy stream-oriented workflows
on heterogeneous resources

• Proposes a data stream aggregation or clustering mechanism
to reduce the network traffic and remove redundant data
transfer and processing

The remainder of this paper is organized as follows. Current
data delivery limitations in scientific observatories are discussed
in Section 2. The problem of allocating workload using a com-
prehensive mathematical model is formulated in Section 3. The
proposed framework and its implementation are explained in
Sections 4 and 5, respectively. Experimental results are presented
in Section 6, followed by related work in Section 7. Finally, the
conclusions and summary of the results are provided in Section 8.

2. Data delivery limitations in scientific observatories

Large-scale scientific facilities are an essential part of the
science and engineering enterprise. Generated data products from
sensors and instruments within these facilities are made to be
accessible for users around the world. For instance, the OOI cur-
rently serves data from 57 stable platforms and 31 mobile assets,
carrying 1,227 instruments and providing over 100,000 scientific
and engineering data products [16,17].

Every second, a massive amount of data are generated from
distributed devices that need to be processed in a timely manner.
As the size of the data grows, processing and storing these data
become challenging, costly, and time consuming. These chal-
lenges cause limitations that have negative impacts on scientific
discoveries. Although tremendous efforts have been made by the
community to use public or private cloud and ACI services [18–
20], a huge gap between ACI and scientific facilities still exists,
which makes users a part of the deployment and delivery cycles.

In such environments, more effective data delivery mech-
anisms that can better integrate large facilities with cyberin-
frastructure (CI) services, dynamically and automatically provide
execution environments, and leverage multiple resources from
different entities to provide QoS for the users are needed. Fur-
thermore, the quality of data flowing toward users needs to be
reduced or adjusted (if applicable) at runtime to satisfy more
requests from users and overcome network bandwidth limita-
tions [21,22].

As the resources near the sensors and devices are limited,
data are usually processed at centralized data centers. However,
with the current trend in big data applications and network
limitations, this model is no longer sustainable. Hence, a new
model that can integrate the edge resources (closer from the
data source) and in-transit nodes (between edge and core re-
sources) can increase the efficiency of workflow execution and
data processing by filtering unwanted data and reducing network
traffic. As such, edge and in-transit nodes have better network
connection compared with data centers located far away from
data sources.

Our proposed framework aims at executing stream-oriented
workflows considering user requirements and constraints using
geo-distributed resources. The framework makes decisions re-
lated to data movement between different components and the
quality of processed data being delivered to users. These decisions
are static (to map workflow stages to the resources) and dynamic
(based on the current state of the resources, timing, and data res-
olution). Current observatories and IoT applications require such
framework to effectively deliver and process data by considering
the heterogeneous nature and properties (computing power and
cost) of the resources and constraints expressed by users. Hence,
a system that monitors the progress of the workflow to meet
user demands is necessary. Finally, such framework can integrate
ACIs into the processing cycles and fill the gap between ACIs and
large-scale observatories.

3. Problem definition and model

In this section, a mathematical model that enables the map-
ping of the workflow stages to available heterogeneous geograph-
ically distributed resources considering deadline and budget con-
straints is proposed. The objective is to minimize the overall
wide area network (WAN) traffic caused by each stream. The
inputs of the model are the workflow description and constraints
(deadline and budget) that are imposed by users and status of
resources. The output is the mapping between workflow stages
and resources. Each stage, except the source and sink, acquires
data from the previous stage, performs several operations on the
data, and provides the data to the next stage.

Processing each consumer request is a computational job in
the system. Any given job J is represented by a sequence of
stages S : {S0, S1, . . . , SZ , SZ+1}, forming a workflow pipeline. The
data production stage is considered S0, and the data consumption
stage is considered SZ+1. Fig. 1 describes an overview of the
pipeline workflow model. The processed data need to be sent
to the consumer site for storage, visualization, and potentially
additional offline processing with historical data.

The constraints of a job J includes a deadline (Deadline(J))
by which results have to be placed at the destination, typi-
cally determined by users, and a budget (Budget(J)) describing
the maximum amount available to the users to spend on the
computing job J .

A set of q geographically distributed computing resources
(nodes) R : {r1, . . . , rq} are in charge of data processing and
applying part of the workflow. r0 and rq+1 represent the producer
and consumer hops, respectively. Consequently, the available set
of hops is defined as H : {r0, r1, . . . , rq, rq+1}. The following
variables are used to characterize the problem:

A.R. Zamani, D. Balouek-Thomert, J.J. Villalobos et al. / Future Generation Computer Systems 110 (2020) 107–118 109

Fig. 1. Workflow pipeline.

• Task_num(J, Si): The number of tasks that is associated with
stage Si. Note that each stage is composed of several tasks
that should be executed sequentially in order complete
stage Si.

• P(ri): The average number of tasks that resource ri executes
per unit of time.

• E(J, ri): The time job J spent computing at resource ri.
• ES(J, Si, rj): The time job J spent computing stage Si at re-

source rj.
• CompCost(ri): The cost per unit of time for using resource ri

for computation.
• T (J, ri, rk): The time spent transferring data between re-

sources ri and rk for job J .
• CostNet(ri, rk): The cost of using the network channel per

unit of data size, between resources ri and rk.
• Bandwidth(ri, rj): The available network bandwidth, between

resources ri and rj.
• Dist(ri, rj): The geographic distance between ri and rj.

Additional variables Li,j(J) are used to determine the mapping of
stage Si to node rj.

Li,j(J) :

{
1 → if stage Si is mapped to resource rj
0 → if stage Si is not mapped to resource rj

The production and consumption stages are mapped to the pro-
ducer and the consumer sites, respectively.

Each stage is mapped to exactly one hop. Eq. (1) shows that
stage i of the workflow should be executed on exactly one node
and the stages are not preemptive.
q+1∑
j=0

Li,j(J) = 1 (1)

As depicted in Fig. 1, the size of data generated at stage i is
assumed to be Di. Other than D0, which is the data generated
from devices, the data resolution affects the size of the data
generated in each stage. For the mapping function, we considered
the minimum acceptable resolution to determine the size of data
at each stage. The overall time needed to process a job J is defined
as:

CompTime(J) =

q+1∑
j=0

E(J, rj) + Transfer(J)

the Transfer(J) and E(J, rj) are measured as follows:

Transfer(J) =

z∑
i=0

T (J, Si)

E(J, rj) =

Z+1∑
i=0

ES(J, Si, rj) ∗ Li,j(J)

ES(J, Si, rj) = Task_num(J, Si)/P(rj)

Basically, the total transfer time of job J is equal to the sum
of the time spent transferring data for each stage (between the
current stage and next stage) excluding the consumption stage.
We consider that the time it takes for the producer to generate
raw data and for the consumer to consume the processed data
are negligible.

The data transfer time between stage i and stage i + 1 can be
measured as follows:

T (J, Si) =

q+1∑
j=0

q+1∑
k=0

Li,j ∗ Li+1,k ∗ Di/Bandwidth(rj, rk)

The cost of computing job J , Cost(J), is defined as:

Cost(J) = CostExec + CostNet

where the computational cost (CostExec) is defined as:

CostExec =

q+1∑
i=0

[CompCost(ri) ∗ E(J, ri)]

The cost of transferring data associated with a job (CostNet) is
defined as:

CostNet =

q+1∑
j=0

q+1∑
k>j

[Datasize(J, rj, rk) ∗ CostNet(rj, rk)]

Where the data size between two resources rj and rk is measured
as follows:

Datasize(J, rj, rk) =

z∑
i=0

Li,j ∗ Li+1,k ∗ Di (2)

Eq. (2) is derived by considering execution of stage Si on rj and
stage Si+1 on rk.

These general formulations are subject to ensuring the QoS
requirements of each processed job:

CompTime(J) ≤ Deadline(J) (3)

Cost(J) ≤ Budget(J) (4)

Aside from satisfying user constraints, as the network band-
width plays an important role in streaming engines, the objective
of this model is to minimize the overall WAN traffic between
different components for each stream. Aside from minimizing the
network bandwidth usage, the secondary effect of this objective
is to minimize the amount of energy that is being consumed
due to data transfer. The geographical distance between different
components and data size are considered for the data movement
minimization. Our overall objective is to minimize the function
below:
q+1∑
i=0

q+1∑
j=0

Datasize(J, ri, rj) ∗ Dist(ri, rj) (5)

Fig. 2 summarizes the inputs and outputs of our model. The
proposed model is solved using the linear programming opti-
mizer PuLP [23] to determine Li,j(J). [24] has mathematically
proven that the mapping of linear workflows on heterogeneous
resources is NP-complete and finding an optimal solution can
take a prohibitive time if the number of resources dramatically
increases. However, an approximate solution can be reached by
considering a subset of the nodes for the optimization process. Of
note, the model presented in this paper is designed to minimize
the amount of WAN traffic. Other strategies, such as randommap-
ping, minimization of cost, or execution time, can be considered
and deployed [25,26].

4. Stream-oriented data processing framework

In this section, a framework that targets the execution of
stream-oriented pipeline workflows or applications is proposed.
These applications are modeled and executed as sequential func-
tions and modules [24], which traditionally have been called
linear workflows. The proposed framework is built on top of

110 A.R. Zamani, D. Balouek-Thomert, J.J. Villalobos et al. / Future Generation Computer Systems 110 (2020) 107–118

Fig. 2. Overview of the inputs and outputs of our mathematical model.

Fig. 3. Services involved in data delivery and processing.

the geo-distributed ACIs and deploys the workflow stages on
available resources at different locations based on the origin and
destination of data. Moreover, it monitors the execution and
progress of the workflows at runtime.

4.1. Overall architecture

An overview of the architecture of the framework is illustrated
in Fig. 3.

Execution/delivery space consists of geo-distributed resources
and data sources, such as sensors and instruments that are part
of the observatories. Resources join the execution/delivery space by
executing lightweight agents in charge of giving resources access
to the federation layer, managing local resources, and sending
status reports. The main components of the execution/delivery
space are as follows:
CDN servers: CDN servers are responsible for forwarding data to-
ward the clients. The proposed streaming engine relies on Apache
Kafka, a distributed streaming platform that stores streams of
records in categories called topics [15].
Producer and consumer nodes: Producer nodes are responsi-
ble for acquiring data from large-scale observatories and storing
them in one of the available CDN servers. Consumer nodes are
end-user requested processed data with specific constraints.
Compute nodes: Compute nodes process data streams and apply
workflow stages or functions on data while they move toward a
destination.

The federation layer enables the coordination of resources and
allows them to join and leave the federation as needed. The broker
provides an interface for the programmers and end users to in-
teract within the framework. It translates high-level instructions
from users to low-level instructions used by the runtime layer.
Constraints, priorities, and workflow description are provided by
users through the broker. The focus of this study is on the runtime
layer, which provides the following capabilities:

1. Scheduling: This function maps the stages of the workflows
to the heterogeneous resources considering QoS, location,
and available bandwidths.

2. Deployment: After the scheduling stage, the deployment
layer installs the routes between the nodes and starts the
execution by setting the nodes ready for the requested
stream.

3. Monitoring: Our framework deploys control loops to mon-
itor the status and progress of the workflows or streams.
The monitoring service defines the execution plan and
rules for the nodes and requests them to notify the mon-
itoring service if the progress of the workflow does not
follow the execution plan.

4. Stream database: This module stores an up-to-date infor-
mation regarding the status of the streams currently being
delivered to users. The main benefit of this module is
to help schedulers in reducing the amount of streams or
data moving toward the users and clustering the requests,
which is further explained below.

4.2. Combining user requests

In scientific and IoT ecosystems, a significant amount of tem-
poral locality exists among the client requests [27]. Moreover, in
large-scale observatories, users or applications are interested in
particular data sources or request to apply the same workflow on
the same data [27,28]. For example, users may want to receive
the processed data if a specific event occurs in one of the data
sources or if applications running on distributed nodes request
information generated from the same data sources in (near) real
time. In [27], Shannigrahi et al. explored current request patterns
in large climate data distribution. They have shown that the
requests are indeed aggregatable and data aggregation can reduce
the load on the servers.

In this context, we propose to leverage shared resources wher-
ever and whenever possible to optimize resource usages and
process more requests by sharing resources across requests. If
the data source and workflow that are requested by users are
similar, then leveraging this approach causes multiple streams
to be clustered together, which reduces redundant executions
and data transfers. The main benefits of this approach are the
reduction of the bandwidth and computation of resource usage
per request by sharing resources for multiple requests. Combining
or clustering of the streams is performed based on the user
geographic location, requested data, and workflow, the current
stream being delivered, and user preferences.

5. Implementation

5.1. Subscription-based data movement

A publish/subscribe messaging system is the main technique
for data movement between components. When the manager
receives a request from a consumer, it maps the workflow stages
to the nodes and finds an appropriate path. Then, the deploy-
ment layer installs the necessary subscriptions on the nodes that
will be involved in each particular data stream. After the data
path is set, the stream of data moves toward its destination.
Fig. 4 shows how subscription-based data movement is per-
formed within the execution space. Specifically, the deployment
layer provides each node with topics and IP addresses for the
publish/subscribe method. By using this approach, data move
toward the clients without any requirement on handling the data
transfer procedure for every data chunk. If part of the execution
is assigned to any of the compute nodes, then it subscribes to the
associated data topic and CDN server, applies the function on the
stream, and publishes the partially or completely processed data
back to the CDN server (as depicted in Fig. 4).

A.R. Zamani, D. Balouek-Thomert, J.J. Villalobos et al. / Future Generation Computer Systems 110 (2020) 107–118 111

Fig. 4. Subscription-based data movement using distributed Apache Kafka
clusters.

Fig. 5. Comparing regular stream processing with combining requests approach.
Worker nodes have not shown here for simplicity.

5.2. Resource join procedure

Each component (CDN, producer, consumer, and compute) can
access the execution space by knowing the IP address of one of
the bootstrap nodes and sending join/leave requests to that IP.
Upon receiving a join request, the service coordinator provides
the IP address of CDN servers present in the system. Each compo-
nent runs iperf [29] to the provided IP addresses to measure the
available bandwidth between itself and remote IP addresses. This
bandwidth information is reported to the manager that stores
them in a database and virtually creates a network of nodes.
This information is periodically measured and reported to the
manager. Based on the network connectivities, the manager as-
signs a CDN server to providers, consumers, and compute nodes.
A production solution can be built on top of perfSONAR [30],
which is a multi-domain network monitoring and measurement
framework.

5.3. Monitoring and approximation

The monitoring is implemented through a series of rules/
thresholds, actions, and reactions, which are established by the
manager. Rules/thresholds, actions, and reactions create feedback

Table 1
Conditions and monitoring reactions.
Condition Timing (s) Monitoring reaction

Very early 2 < diff Increase resolution by 5%
Early 1 < diff ≤ 2 Increase resolution by 2%
On-time 0 ≤ diff ≤ 1 N/A
Late −1 ≤ diff < 0 Decrease resolution by 5%
Critically late diff < −1 Decrease resolution by 10%

Fig. 6. Sliding window and image pyramids.

Fig. 7. Infrastructure consisting of producer, edge, in-transit, and core resources.

loops between the resource and monitoring systems, which al-
lows the monitoring service to control infrastructure and work-
flow progress. Rules/thresholds are constraints that are installed
on the compute nodes. They are locally checked by each node
before and after the execution of each stage. Each of the rules/
thresholds is associated with an action that is also installed on
the compute nodes and indicates an action that each node should
take if one of the thresholds is met or rules are violated. For each
stream, a thread is created at each of the corresponding compute
nodes that is responsible to acquire or publish the data, provide
the data for compute process, and check the rules/thresholds and
take actions if needed.

We consider data approximation, i.e., adjusting the data reso-
lution, in two different ways. (i) In the scheduling procedure, the
minimum resolution that is needed for each request is considered
for scheduling. (ii) Approximation is tied to monitoring services,
such that the rules and threshold can identify monitoring ser-
vices if the resolution of data is sufficient. Then, based on this
information, at runtime, the framework can change the resolution
of the generated data at each node by increasing or decreasing
it if needed. The increase or decrease in the data resolution is
amended for the next data chunk by instructing previous nodes
to publish data with higher or lower resolution. The decrease in
resolution is also applied for the current data chunk by publishing
lower-resolution data to the next node.

Here, the action at each node is to inform monitoring service.
The reaction is the decision of the monitoring service, which is
data resolution adjustment for upstream nodes. Considering the
deadline and estimated data transfer and execution time, the
manager estimates the arrival time of data at each node. Based
on the difference between the actual arrival time and estimated
arrival time of data (called diff), five different categories are
considered in this study. The thresholds and reactions are listed
in Table 1.

The runtime strategy for the data resolution is to start the de-
livery of the streams with the minimum required resolution and
adjust the resolution at runtime. Of note, we used fixed timing
and conditions. However, strategies where timing and conditions
are different for various requests and changing at runtime can be
considered and deployed. In this study, the resolution reduction
rate is set higher than the induction rate (as mentioned in Table 1)
to ensure that data are delivered without delay.

112 A.R. Zamani, D. Balouek-Thomert, J.J. Villalobos et al. / Future Generation Computer Systems 110 (2020) 107–118

Fig. 8. Utilization and the number of streams without approximation, edge, and
in-transit resources.

5.4. Combining the requests at runtime

Once a request is submitted to the system by users or ap-
plications, such request is evaluated and the workflow on the
geo-distributed resources is scheduled. However, the scheduler
first contacts the stream database and inquires for any possi-
ble way that this request can be satisfied using the existing
data streams that are currently being served. If the requested
resolution, data source, and workflow can be satisfied by other
requests or streams, then these information will be sent to the
deployment module. Then, the deployment module adds more
steps that should be taken to combine these requests. Next, the
processed data will be delivered to the users or applications
and the request will be satisfied. If satisfying the new request
could not be accomplished by combining the requests, then the
scheduler would try to schedule the workflow from scratch using
the model explained in Section 3.

In addition, as our proposed framework is based on a pub-
lish/subscribe model, clustering the streams is fast and feasible
without the need to adjust existing streams. It is fast and feasible
because once the new request can be satisfied using existing data
streams, then we just need to add few additional subscriptions
between the new data path and previous existing path. For exam-
ple, in Fig. 5, after the clustering of new requests with an existing
one is determined by the runtime layer and manager, the client
or user program is instructed to subscribe to the corresponding
topic and data that are already existent in the CDN node to start
receiving processed data.

The main advantage of our proposed approach is shown in
Fig. 5. In regular streaming approaches, separate data streams
with the same content are sent to different users. However, in
this work, we send one stream for the same data source and
workflow to a specific geographic region and add subscriptions at
proper locations to save computing resources and, more impor-
tantly, network bandwidth resources. Clearly, when the request
clustering is available, redundant data transfers are eliminated.

6. Experimental evaluation

6.1. Workflow

In this work, our target is to use images captured by OOI’s [16]
high-quality underwater cameras as our image stream inputs.
These images are processed to identify the different types of fish
appearing in them. The image processing and object detection
workflow used in this study are derived from Dalal et al. [31]. This
method, which is traditionally called sliding window and image
pyramids, is mainly used for object detection algorithms in image
data sets. A stage of the workflow is shown in Fig. 6. Accordingly,
three consecutive sliding window stages are considered for this
study (three-stage workflow).

6.2. Experimental setup and scenario

The experimental setup is comprised of three types of re-
sources: Edge, in-transit, and core resources with 10, 20, and
60 compute nodes (each node has 1 CPU at 2.4 GHz and 1 GB
RAM), respectively. Edge resources are the closest resources to
the producer, and the producer-edge bandwidth is higher than
the producer-in-transit and producer-core bandwidths. Evalua-
tion is performed on CloudLab [32], a distributed testbed for the
computer science research community. It provides on-demand
servers and virtual machines over distributed sites in the United
States. Hierarchical token bucket (HTB) [33] has been used to de-
ploy links with different bandwidths. Fig. 7 presents a schematic
view of our infrastructure. Note that the experimental setup fol-
lows what has been described in Section 5. However, to simplify
the figure eliminated the details in Fig. 7.

The cameras generate 10 MB size images every 10 s. The
QoS constraints are the deadline, budget, and data resolution. If
the system can process and deliver data within the requested
constraints, then it accepts user requests and starts the delivery
of the processed images.

In total, 194 users have joined the system, with each user
requesting an independent image stream for a random period of
time between 50 and 400 s. Users joined the system following a
Poisson distribution with a mean of 15 min and variance of 7 min.
We considered a period of 30 min for each experiment. In all
of the scenarios, for each request, we used the model described
in Section 3 to map workflow stages to the available resources.
We also considered a deadline of 25 s and assigned $1 budget
for each image in the stream. The Amazon EC2 prices for the
bandwidth and the t2.micro template size for compute nodes [34]
are considered in this work. The main focus of this study is
the deadline and resolution constraints. If the system accepts to
deliver and satisfy the minimum QoS requested by the users, then
the minimum bandwidth that can satisfy such request will be
allocated for that user and other streams cannot use that amount
of bandwidth until the stream stops. This method is enforced
by controlling the amount of data that each node is allowed to
produce per second for a specific stream.

6.3. Results

In this section, several scenarios with various parameters for
deadline and resolution are considered to indicate the effec-
tiveness of our framework in various conditions by comparing
the number of streams being delivered, resource utilization, and
handling change in execution conditions. Our baseline is a current
state-of-the-art solution, which streams all data to one central
well-provisioned data center for processing. That is, all data go to
the core resources and the workflow stages implemented at the
central core data center using three workers for each stream. In
the baseline scenario, each stream of data will only be processed
using the 60 compute nodes at the core of the network. In other
word, data does not get prepossessed using resources close to
the data sources. Fig. 8 shows the utilization of the resources
and number of streams being delivered to the users at any given
time throughout the experiment for baseline scenario. Fig. 8
demonstrates that although free resources are available at the
core, they remain unused as the bandwidth resources are lim-
ited and used for previous requests. In other words, not enough
bandwidth is available for the new requests. The utilization of the
infrastructure at best is 55%, and only 11 concurrent streams are
guaranteed for the delivery with the requested QoS.

With the availability of edge and in-transit resources, the
number of streams delivered over time is measured using the
same setup. As shown in Fig. 9, if the data resolution requested

A.R. Zamani, D. Balouek-Thomert, J.J. Villalobos et al. / Future Generation Computer Systems 110 (2020) 107–118 113

Fig. 9. Number of streams delivered to users over time for different minimum
acceptable data resolutions.

Fig. 10. Comparing acceptance ratio in baseline and edge/in-transit enabled
scenarios for different qualities.

for the streams decreases, then the concurrent number of streams
that can be processed and delivered increases. This case shows
the effectiveness of our model in taking advantage of edge and
in-transit resources to reduce the data size going toward core and
end users.

To compare the baseline scenario with scenarios where edge,
in-transit, and approximation resources are available, we com-
pare the acceptance ratio of different scenarios. Acceptance ratio
is the percentage of the accepted requests to the total number of
requests. Fig. 10 proves that using heterogeneous resources near
data sources and using them to filter unwanted data increase the
number of accepted requests and potentially user satisfaction.

The resource utilization for the edge, in-transit, and core re-
sources for three different data resolutions is shown in Fig. 11.
With 80% data resolution, the utilization of core resource can
reach 48%, which is slightly less than our baseline due to edge
and in-transit participation. However, for 60% and 50% data res-
olutions, the maximum utilization of 63% and 71% have been
reached, respectively, which are higher than the baseline scenario
(55%). By comparing these figures, we conclude that by leverag-
ing edge and in-transit resources, data are filtered before they
reach bottleneck links and more data can be injected to the core
resource, which results in more utilization at the core.

Next, we show how the system dynamically adjusts the stream
resolution when the execution or delivery environment is changed
at runtime. We used 12 concurrent streams for three different
resolutions (100%, 80%, and 60%), with four streams each. We
use the same infrastructure depicted in Fig. 7. After 220 s, the
network bandwidth between in-transit and core nodes cuts down
to 200 Mbit/s. Fig. 12 shows the number of streams and the
average resolution of the streams delivered to the users for
various request types. For high-resolution requests (e.g., 100%),
the streams are stopped and nothing will be delivered to the
corresponding users as the 100% strict condition does not allow

the system to adjust the resolution and perform anything to
recover the delivery of the streams. Moreover, the number of
streams for 100% resolution decreases after the incident and
reaches zero (note: a zero resolution means no streams for such
resolution requirement are being delivered). For 80% minimum
resolution requirement, our system shows more resistance by
first reducing the resolution and then stopping the streams.
However, for 60% resolution, the system can continue flawlessly
by reducing the quality of the streams for a while. Of note, the
resolution of 60% requests increases once other streams (100%
and 80%) are dropped and more network bandwidths are avail-
able for the remaining streams (60%). The reason that the system
drops the high resolution requests is because it reduces the data
resolution until it reaches the minimum acceptable resolution
requested by the user. Once the system reaches the point where
it cannot satisfy the QoS by reducing the resolution, it drops such
requests. Hence, the system dynamically adjusts the resolution
at runtime and overcomes the changes in the execution space by
reducing the resolution of the streams if users are willing to sac-
rifice the resolution. After high-resolution streams are dropped,
more bandwidth resources become available for low-resolution
requests. Hence the actual delivery resolution for 60% streams
increases toward the end of the experiment.

Finally, we examined the effect of different deadlines on the
data resolution and number of accepted streams. We used a
similar setup as the previous experiment and considered the
80% minimum acceptable resolution. The deadlines are 20, 25,
and 30 s uniformly distributed across the requests. Clearly, the
requests with a longer deadline require less bandwidth as they
have more time available for data transfer. Hence, in general,
more streams with a higher deadline are accepted (as shown in
Fig. 13(a)) and data are delivered with a higher resolution for
longer deadline requests (as shown in Fig. 13(b)).

6.4. Request aggregation

In this section, we run another set of experiments in order to
show the effectiveness our proposed solution in request aggre-
gation/combination. In this section, data delivery and processing
without request aggregation is considered as our baseline sce-
nario. We consider two metrics: (i) acceptance ratio and (ii) the
number of requests being served throughout the experiment.
Then, we measure these two metrics for the baseline scenario
and request aggregation-enabled approach and demonstrate the
advantage of our approach. Note that the baseline scheduling
technique that has been considered in this experiment is similar
to the one used in previous experiments.

The experimental setup of this experiment is similar to that
of previous experiments shown in Fig. 7. The duration of the
experiment is 30 min, in which 194 users joined the system with
the Poisson distribution with a mean of 15 min and variance of
7 min. Users stayed for a random period of time and requested the
camera images to be processed using the sliding window image
pyramid (shown in Fig. 6) and delivered to them with 100% image
resolution. The deadline is set to be 25 s. The only different in this
experiment is the number of available data sources (cameras). We
increased the number of available data sources or cameras. We
also considered 10, 20, 30, 50, and 100 data sources for different
scenarios. Users randomly picked one of the data sources and
requested data to be processed and delivered to them. All of the
users were located in close proximity with one another. We also
assume that the users were located in one geographic region.

To prove the effectiveness of our request aggregation ap-
proach, we measured the acceptance ratio for the mentioned
scenarios. In general, when the number of available data sources
decreases, the possibility to choose a common data source for

114 A.R. Zamani, D. Balouek-Thomert, J.J. Villalobos et al. / Future Generation Computer Systems 110 (2020) 107–118

Fig. 11. Utilization of resources for different resolutions.

different users increases. Hence, our framework can cluster and
accept more requests if the number of data sources is bounded.
Increase in the available data sources also decreases the accep-
tance ratio as users can choose from a wide range of data sources
and less chance for request clustering or aggregation is available.
Fig. 14 shows that with 10 data sources, the framework can
accept 100% of the requests. However, this number has been
reduced to 64% with 20 data sources. The acceptance ratio for
100 data sources is 41%, which is slightly higher than the baseline
scenario of 35%.

Fig. 15 demonstrates the number of requests served through-
out the experiment. As depicted in Fig. 15, with a fewer number
of data sources, more requests can be satisfied with our request
clustering approach. As we combined the request, we reduced
the bandwidth and resource usage per stream. With the same

infrastructure, by sharing the resources across the requests, more
users can receive their processed data within the requested QoS.

7. Related work

To process the stream of data, traditional approaches, such
as stream processing engines [10,35] or workflow systems [36–
38], have been designed to process data streams using resources
within one cluster or data center. However, as the data sources
are located far from these resources and at multiple locations,
on-time stream processing is not possible due to the size of the
data and network bandwidth limitations [11]. Several types of
methods have been proposed to resolve this issue, for exam-
ple, by introducing the concept of edge computing and filtering
the data at the edge of the network, which has inspired us

A.R. Zamani, D. Balouek-Thomert, J.J. Villalobos et al. / Future Generation Computer Systems 110 (2020) 107–118 115

Fig. 12. Effect of sudden change in bandwidth on the number of streams and
average resolution of the streams.

Fig. 13. Number of users and average resolution at runtime for various deadlines
and resolution of 80%.

Fig. 14. Comparing acceptance ratio in baseline and data-merging availability
for various data products.

Fig. 15. Number of users served throughout the experiment.

in this work. For instance, Santos et al. [12] utilized edge re-
source to downsample data using edge resources. Deng et al. [39]
demonstrated the trade-off between power consumption and
delay in fog–cloud environment. Their solution divides the fog–
cloud workload deployment into three sub-problems (fog deploy-
ment, cloud deployment, and communication delay) and solves
them to achieve the best energy-delay trade-off for workload
deployment. The same aspect was examined by Kaur et al. [40],
who discussed the integration of IoT and edge computing and
proposed the task selection and scheduling at the edge of the
network using container as a service (CoaaS). Cheng et al. [41]
targeted cloud-edge-based on-demand stream processing system,
which automatically configures and manages stream processing
tasks. Their model, which is called GeeLytics, enables on-demand
edge analytics. However, our proposed solution takes another
step forward by taking advantage of the in-transit nodes [42],
mapping workflow stages on available resources based on loca-
tion and network conditions, and placing the workflow stages to
minimize network traffic. Other systems based on actor-oriented
design (e.g., Kepler [43]; Pegasus [37]) acquire the workflow
description from users and automatically deploy tasks on avail-
able resources using, for example, Condor-G [38]. These systems
do not consider edge/in-transit processing, approximation, and
flexible QoS to deploy the workflows. To the best of our knowl-
edge, workflow management systems are specialized to deploy
complex workflows on the distributed resources, whereas our
framework is a stream-oriented system that tries to provide
QoS using heterogeneous resources located between users and
data sources. Moreover, the focus of our proposed solution is on
stream-oriented workflows where data are continuously gener-
ated from the devices and need to be processed and delivered in
a timely manner.

Wide-area data analytics that leverages resource connected
using WAN links has been explored in the literature. Vulimiri
et al. [44] explained the concept of wide-area big data (WABD)
and highlighted the issues of substantial cross-data center net-
work costs. To alleviate the issue in WABD, a system called
WANalytics, which is a Hadoop-based system, has been pro-
posed. This system automatically replicates data and initiates
computation toward the edge. Pixida [45] is a wide-area data ana-
lytics scheduler that aims to minimize the inter-datacenter traffic.
When data processing request is submitted to this system, it gets
the task-level graph of the job from users and provides data parti-
tion from distributed storage systems. Geode [46] is an extension
of WANalytics, which targets the distributed databases across
data centers. Geode tries to address wide-area data analytics
of data structures as SQL analysis while minimizing the band-
width usage. Iridium [47] explores the minimization of latency in
wide-area data analytics. To achieve low-latency query response

116 A.R. Zamani, D. Balouek-Thomert, J.J. Villalobos et al. / Future Generation Computer Systems 110 (2020) 107–118

time, Iridium uses a greedy heuristic optimization technique to
find the best task and data placement on the geographically
distributed data centers. Iridium identifies the bottleneck link
between the sites and moves data on that link before it is needed.
Our proposed solution takes one step forward and targets stream-
oriented workflows and applies workflow stages on edge and
in-transit node to reduce WAN traffic and increase utilization of
the core resources.

Data processing and delivery with end-to-end QoS constraints
have been explored in different studies. Karim et al. [48] mapped
user QoS to the SaaS layer by developing a hierarchical QoS model
and assigning QoS weights. Rosenbert et al. [49] took another
approach to control the execution environment at runtime by
finding service composition that meets QoS and recomposing
the services at runtime if necessary. Bhat et al. [42] investigated
in-transit data manipulation and proposed reactive strategies to
achieve higher QoS even in the congested network conditions.
Processing the data within the deadline and budget constraints
have been investigated in [50] that targets cost-time optimization
techniques to schedule the workflows, which is complementary
to our work. Yu et al. [51] proposed a genetic algorithm to sched-
ule the workflows under deadline and budget constraints. On the
contrary, our proposed framework combines static and dynamic
approaches to provide end-to-end QoS. The static approaches
are the workflow stage mapping that finds the best resources
that meet the deadline and budget constraints and a dynamic
approach that uses feedback loops to examine the execution of
the streaming workflows at runtime. In another work, Heintz
et al. [52] considered the trade-off between the accuracy of the
results and the time it takes to process data, i.e., timeliness. Mas-
wood et al. [53] developed a mixed integer linear programming
method to allocate resources under QoS constraints and minimiz-
ing location-dependent costs. By using a numerical evaluation,
the authors showed that their approach reduces provisioning cost
and energy consumption. In our framework, we provide end-to-
end QoS by reducing the resolution of the data. However, the
decision about this trade-off is made using on-demand control
loops created after the execution of each stage on edge and
in-transit nodes.

Data aggregation aims to combine responses from multiple
sources into a single message. The idea of data aggregation has
been mostly explored in papers based on wireless sensor net-
work applications. As energy consumption plays a crucial role in
wireless sensor nodes, data aggregation can potentially reduce
the amount of energy consumption at the wireless node dras-
tically [54]. Authors in [55] adaptively adjusted the aggregation
period in different levels of their aggregation tree so that the
expected query accuracy is met and end-to-end query delay is
optimized. In [56], fuzzy logic in-network data aggregation was
considered to increase the energy efficiency of data transmission.
Aside from wireless sensor network applications, data aggrega-
tion is also used in wide-area data analytics. For instance, Heintz
et al. [57] proposed the idea of group aggregation to aggregate
the data at the edge nodes and reduce the amount of network
traffic. Rabkin et al. [58] proposed a system called Jetstream.
Their proposed system addresses a wide-area stream of queries
with latency-bound requirement. This system tries to overcome
the network bandwidth limitations in streaming engines. Query
aggregation, which combines multiple queries, and lossy adaptive
data degradation, which have been proposed by the authors, can
potentially reduce the data size based on available bandwidth
and latency. In this paper, we also explored the aggregation of
the requests at runtime to reduce the number of streams moving
between the nodes. However, our proposed solution considers
stream-oriented workflows and deploys the workflows on the
edge and in-transit nodes. It also combines the data streams to
reduce redundant data transfers between the node based on the
source and destination locations, resolution, and user constraints.

8. Conclusion

Large-scale observatories depend on the efficient processing
and delivery of data generated from geographically distributed
instruments and sensors. This paper introduces a subscription-
based data streaming framework of the leverage edge and in-
transit resources and the advanced CI to process data gener-
ated from large-scale observatories and deliver the processed
data to users at various geographic locations. In addition, a run-
time management system is added to propose a framework that
provides QoS for users and effectively utilizes heterogeneous
geo-distributed resources to maintain the application of QoS.

The proposed framework fills the gap between large-scale
observatories and ACIs by automatically executing user-defined
pipeline workflows on available geo-distributed resources. It also
adjusts the data quality by taking advantage of the resources
at the edge and in-transit resources and filters unwanted data
going through the core resources. The evaluation showed that
our system can increase main resource utilization by more than
10% using unwanted data filtering at edge or in-transit nodes for
low-resolution requests.

Furthermore, a request aggregation technique is added to the
proposed framework, which creates clusters of requests based
on the workflow and data content requested by the users. This
technique reduces the WAN traffic and eliminates redundant data
transfer and executions. With the amount of resources, more
requests have been satisfied and the number of accepted requests
have drastically increased.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

CRediT authorship contribution statement

Ali Reza Zamani: Conceptualization, Methodology, Software,
Validation, Writing - original draft, Investigation. Daniel Balouek-
Thomert: Writing - review & editing. J.J. Villalobos: Resources.
Ivan Rodero: Supervision, Writing - review & editing. Manish
Parashar: Supervision, Writing - review & editing.

Acknowledgments

This research is supported in part by National Science Founda-
tion (NSF), USA via grants numbers OAC 1339036, OAC 1441376,
OCE 1745246, OAC 1826997, OAC 1835692, and OAC 1640834,
and was conducted as part of the Rutgers Discovery Informatics
Institute (RDI2).

References

[1] Laser Interferometer Gravitational-wave Observatory (LIGO), (Last accessed
on 2019), https://www.ligo.caltech.edu.

[2] W. Gressler, D.J.E. Hileman, D.R. Neill, LSST Telescope and site status,
Ground-based and Airborne Telescopes V, 91451A, http://dx.doi.org/10.
1117/12.2056711.

[3] L. Evans, P. Bryant, LHC machine, J. Instrum. 3 (2008) http://dx.doi.org/10.
1088/1748-0221/3/08/S08001.

[4] B. Wang, X. Zhu, C. Gao, Y. Bai, et al., Square kilometre array telescope -
precision reference frequency synchronisation via 1f-2f dissemination, Sci.
Rep. 5 (2015) http://dx.doi.org/10.1038/srep13851.

[5] L.M. Smith, et al., The ocean observatories initiative, Oceanography 31 (1)
(2018) http://dx.doi.org/10.5670/oceanog.2018.105.

[6] The national ecological observatory network (NEON), 2019, http://www.
neonscience.org, (Last accessed on 2019).

[7] M. Parashar, et al., Report from the nsf large facilities cyberinfrastructure
workshop, 2017, http://dx.doi.org/10.7278/S5SN074P.

https://www.ligo.caltech.edu
http://dx.doi.org/10.1117/12.2056711
http://dx.doi.org/10.1117/12.2056711
http://dx.doi.org/10.1117/12.2056711
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://dx.doi.org/10.1038/srep13851
http://dx.doi.org/10.5670/oceanog.2018.105
http://www.neonscience.org
http://www.neonscience.org
http://www.neonscience.org
http://dx.doi.org/10.7278/S5SN074P

A.R. Zamani, D. Balouek-Thomert, J.J. Villalobos et al. / Future Generation Computer Systems 110 (2020) 107–118 117

[8] R. Tudoran, O. Nano, I. Santos, A. Costan, H. Soncu, L. Bougé, G. Antoniu,
Jetstream: Enabling high performance event streaming across cloud data-
centers, in :Proceedings of the 8th ACM International Conference on
Distributed Event-Based Systems, 2014, pp. 23–34.

[9] J.L. Schnase, T.J. Lee, C.A. Mattmann, C.S. Lynnes, et al., Big data challenges
in climate science: improving the next-generation cyberinfra-structure,
IEEE Geosci. Remote Sens. Mag. 4 (3) (2016) http://dx.doi.org/10.1109/
MGRS.2015.2514192.

[10] A. Toshniwal, et al., Storm@ twitter, in: Proc. of the 2014 ACM SIGMOD
Int. Conf. on Management of Data, ACM, 2014, pp. 147–156.

[11] A. Jonathan, et al., Nebula: Distributed edge cloud for data intensive
computing, IEEE Trans. Parallel Distrib. Syst. 28 (11) (2017) 3229–3242.

[12] I. Santos, M. Tilly, B. Chandramouli, J. Goldstein, Dial: distributed streaming
analytics anywhere, anytime, Proc. VLDB Endow. 6 (12) (2013) 1386–1389.

[13] A.M. Rahmani, et al., Exploiting smart e-health gateways at the edge of
healthcare internet-of-things: A fog computing approach, Future Gener.
Comput. Syst. 78 (2018) 641–658.

[14] M. Aazam, E.-N. Huh, Fog computing: The cloud-iot/ioe middleware
paradigm, IEEE Potentials 35 (3) (2016) 40–44.

[15] J. Kreps, et al., Kafka: A distributed messaging system for log processing,
in: Proc. of the NetDB, 2011, pp. 1–7.

[16] I. Rodero, M. Parashar, Data cyber-infrastructure for end-to-end science:
experiences from the nsf ocean observatories initiative, Comput. Sci. Eng.
(2019).

[17] I. Rodero, M. Parashar, Architecting the cyberinfrastructure for national sci-
ence foundation ocean observatories initiative (OOI), in: 7th International
Workshop on Marine Technology: MARTECH 2016, 2016, pp. 99–101.

[18] M. Parashar, M. AbdelBaky, I. Rodero, A. Devarakonda, Cloud paradigms
and practices for computational and data-enabled science and engineering,
Comput. Sci. Eng. 15 (4) (2013) 10–18.

[19] N. Chopra, S. Singh, Deadline and cost based workflow scheduling in
hybrid cloud, in: Int. Conf. Advances in Computing, Communications and
Informatics, IEEE, 2013, pp. 840–846..

[20] Y. Qin, et al., Towards a smart, internet-scale cache service for data
intensive scientific applications, in: Proceedings of the 10th Workshop
on Scientific Cloud Computing, ScienceCloud@HPDC 2019, Phoenix, AZ,
USA, June 25, 2019, 2019, pp. 11–18, http://dx.doi.org/10.1145/3322795.
3331464.

[21] A.R. Zamani, et al., Submarine: a subscription-based data streaming frame-
work for integrating large facilities and advanced cyberinfrastructure,
Concurr. Comput.: Pract. Exp. (2019).

[22] A.R. Zamani, et al., Supporting data-driven workflows enabled by large
scale observatories, in: 13th IEEE International Conference on E-Science,
E-Science 2017, Auckland, New Zealand, October 24–27, 2017, 2017, pp.
592–595, http://dx.doi.org/10.1109/eScience.2017.95.

[23] S. Mitchell, An introduction to pulp for python programmers, Python Pap.
Monogr. 1 (2009) 14.

[24] Q. Wu, Y. Gu, Performance analysis and optimization of linear workflows in
heterogeneous network environments, in: Grid Computing, Springer, 2011,
pp. 89–120..

[25] A.R. Zamani, et al., Deadline constrained video analysis via in-transit
computational environments, IEEE Trans. Serv. Comput. (2017).

[26] A.R. Zamani, et al., A computational model to support in-network data
analysis in federated ecosystems, Future Gener. Comput. Syst. 80 (2018)
342–354.

[27] S. Shannigrahi, C. Fan, C. Papadopoulos, Request aggregation, caching,
and forwarding strategies for improving large climate data distribution
with ndn: a case study, in: Proceedings of the 4th ACM Conference on
Information-Centric Networking, ACM, 2017, pp. 54–65.

[28] P. Costa, A. Donnelly, A. Rowstron, G. O’Shea, Camdoop: Exploiting in-
network aggregation for big data applications, in: Presented as Part
of the 9th {USENIX} Symposium on Networked Systems Design and
Implementation, {NSDI} 12, 2012, pp. 29–42.

[29] A. Tirumala, T. Dunigan, L. Cottrell, Measuring end-to-end bandwidth with
iperf using web100, in: Presented at, no. SLAC-PUB-9733, 2003.

[30] A. Hanemann, et al., Perfsonar: A service oriented architecture for multi-
domain network monitoring, in: Int. Conf. Service-Oriented Computing,
Springer, 2005, pp. 241–254.

[31] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection,
in: IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, 2005, pp.
886–893.

[32] Cloudlab, 2019, https://www.cloudlab.us, (Last access 2019).
[33] HTB, 2019, https://linux.die.net/man/8/tc-htb, (Last access 2019).
[34] Amazon EC2 prices, 2019, https://aws.amazoncom/ec2/pricing/, (Last

access 2019).
[35] M. Zaharia, et al., Apache spark: a unified engine for big data processing,

Commun. ACM 59 (11) (2016) 56–65.
[36] E. Deelman, et al., The future of scientific workflows, Int. J. High Perform.

Comput. Appl. (2017).
[37] E. Deelman, G. Singh, M.-H. Su, J. Blythe, et al., Pegasus: A framework

for mapping complex scientific workflows onto distributed systems, Sci.
Program. 13 (3) (2005) 219–237.

[38] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, Condor-g: A compu-
tation management agent for multi-institutional grids, Cluster Comput. 5
(3) (2002) 237–246.

[39] R. Deng, R. Lu, C. Lai, T.H. Luan, Towards power consumption-delay tradeoff
by workload allocation in cloud-fog computing, in: Communications (ICC),
2015 IEEE International Conference on, IEEE, 2015, pp. 3909–3914.

[40] K. Kaur, T. Dhand, N. Kumar, S. Zeadally, Container-as-a-service at the
edge: Trade-off between energy efficiency and service availability at fog
nano data centers, IEEE Wirel. Commun. 24 (3) (2017) 48–56.

[41] B. Cheng, A. Papageorgiou, M. Bauer, Geelytics: Enabling on-demand edge
analytics over scoped data sources, in: IEEE Int. Congress on Big Data,
BigData Congress, IEEE, 2016, pp. 101–108.

[42] V. Bhat, M. Parashar, S. Klasky, Experiments with in-transit processing for
data intensive grid workflows, in: Proc. of the 8th IEEE/ACM Int. Conf. on
Grid Computing, IEEE Computer Society, 2007, pp. 193–200.

[43] I. Altintas, et al., Kepler: an extensible system for design and execution
of scientific workflows, in: Proc. 16th Int. Conf. Scientific and Statistical
Database Management, IEEE, 2004, pp. 423–424.

[44] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, G. Varghese, Wanalytics:
analytics for a geo-distributed data-intensive world, in: CIDR, 2015.

[45] K. Kloudas, M. Mamede, N. Preguiça, R. Rodrigues, Pixida: optimizing data
parallel jobs in wide-area data analytics, Proc. VLDB Endow. 9 (2) (2015)
72–83.

[46] A. Vulimiri, C. Curino, P.B. Godfrey, T. Jungblut, J. Padhye, G. Varghese,
Global analytics in the face of bandwidth and regulatory constraints, in:
NSDI, 2015, pp. 323–336.

[47] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, I.
Stoica, Low latency geo-distributed data analytics, ACM SIGCOMM Comput.
Commun. Rev. 45 (4) (2015) 421–434.

[48] R. Karim, C. Ding, A. Miri, An end-to-end qos mapping approach for
cloud service selection, in: 2013 IEEE Ninth World Congress on Services,
SERVICES, IEEE, 2013, pp. 341–348.

[49] F. Rosenberg, et al., An end-to-end approach for qos-aware service com-
position, in: Enerprise Distributed Object Computing Conf. 2009. EDOC’09.
IEEE Int, IEEE, 2009, pp. 151–160.

[50] A. Verma, S. Kaushal, Deadline and budget distribution based cost-time
optimization workflow scheduling algorithm for cloud, in: IJCA Proc. on Int.
Conf. on Recent Advances and Future Trends in Information Technology,
iRAFIT 2012, vol. 4, iRAFIT (7), 2012, pp. 1–4.

[51] J. Yu, R. Buyya, Scheduling scientific workflow applications with deadline
and budget constraints using genetic algorithms, Sci. Program. 14 (3–4)
(2006) 217–230.

[52] B. Heintz, A. Chandra, R.K. Sitaraman, Trading timeliness and accuracy in
geo-distributed streaming analytics, in: SoCC, 2016, pp. 361–373..

[53] M.M.S. Maswood, R. Nasim, A.J. Kassler, D. Medhi, Cost-efficient re-
source scheduling under qos constraints for geo-distributed data centers,
in: NOMS 2018-2018 IEEE/IFIP Network Operations and Management
Symposium, IEEE, 2018, pp. 1–9.

[54] F. Hu, X. Cao, C. May, Optimized scheduling for data aggregation in wireless
sensor networks, in: International Conference on Information Technology:
Coding and Computing, ITCC’05-Volume II, vol. 2, IEEE, 2005, pp. 557–561.

[55] F. Hu, C. May, X. Cao, Data aggregation in distributed sensor networks:
towards an adaptive timing control, in: Third International Conference
on Information Technology: New Generations, ITNG’06, IEEE, 2006, pp.
256–261.

[56] J. Zhang, P. Hu, F. Xie, J. Long, A. He, An energy efficient and reli-
able in-network data aggregation scheme for wsn, IEEE Access 6 (2018)
71857–71870.

[57] B. Heintz, A. Chandra, R.K. Sitaraman, Optimizing grouped aggregation in
geo-distributed streaming analytics, in: Proc. of the 24th Int. Symposium
on High-Performance Parallel and Distributed Computing, ACM, 2015, pp.
133–144.

[58] A. Rabkin, M. Arye, S. Sen, V.S. Pai, M.J. Freedman, Aggregation and
degradation in jetstream: Streaming analytics in the wide area, in: NSDI,
vol. 14, 2014, pp. 275–288.

Ali Reza Zamani received his Ph.D. and M.Sc. de-
grees in Computer Science from Rutgers University. He
received his B.Sc. from Sharif University of Technol-
ogy, Iran. His research interests are in the areas of
Cloud Computing, Internet of Things (IoT) and Stream
Processing.

http://dx.doi.org/10.1109/MGRS.2015.2514192
http://dx.doi.org/10.1109/MGRS.2015.2514192
http://dx.doi.org/10.1109/MGRS.2015.2514192
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb10
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb10
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb10
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb11
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb11
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb11
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb12
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb12
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb12
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb13
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb13
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb13
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb13
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb13
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb14
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb14
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb14
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb16
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb16
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb16
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb16
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb16
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb18
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb18
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb18
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb18
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb18
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb19
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb19
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb19
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb19
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb19
http://dx.doi.org/10.1145/3322795.3331464
http://dx.doi.org/10.1145/3322795.3331464
http://dx.doi.org/10.1145/3322795.3331464
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb21
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb21
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb21
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb21
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb21
http://dx.doi.org/10.1109/eScience.2017.95
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb23
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb23
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb23
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb24
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb24
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb24
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb24
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb24
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb25
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb25
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb25
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb26
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb26
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb26
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb26
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb26
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb27
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb27
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb27
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb27
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb27
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb27
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb27
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb30
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb30
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb30
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb30
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb30
https://www.cloudlab.us
https://linux.die.net/man/8/tc-htb
https://aws.amazoncom/ec2/pricing/
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb35
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb35
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb35
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb36
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb36
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb36
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb37
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb37
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb37
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb37
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb37
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb38
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb38
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb38
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb38
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb38
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb39
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb39
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb39
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb39
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb39
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb40
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb40
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb40
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb40
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb40
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb41
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb41
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb41
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb41
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb41
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb42
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb42
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb42
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb42
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb42
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb43
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb43
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb43
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb43
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb43
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb44
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb44
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb44
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb45
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb45
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb45
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb45
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb45
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb46
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb46
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb46
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb46
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb46
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb47
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb47
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb47
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb47
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb47
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb48
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb48
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb48
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb48
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb48
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb49
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb49
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb49
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb49
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb49
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb51
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb51
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb51
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb51
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb51
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb52
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb52
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb52
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb53
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb53
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb53
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb53
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb53
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb53
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb53
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb54
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb54
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb54
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb54
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb54
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb55
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb55
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb55
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb55
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb55
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb55
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb55
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb56
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb56
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb56
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb56
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb56
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb57
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb57
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb57
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb57
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb57
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb57
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb57
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb58
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb58
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb58
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb58
http://refhub.elsevier.com/S0167-739X(19)30726-5/sb58

118 A.R. Zamani, D. Balouek-Thomert, J.J. Villalobos et al. / Future Generation Computer Systems 110 (2020) 107–118

Daniel Balouek-Thomert is a Postdoctoral Research
Associate at the Rutgers Discovery Informatics In-
stitute (RDI2). His research interests revolve around
distributed systems with a focus on resource manage-
ment and energy efficiency for cloud/edge computing
and IoT systems. He received his Ph.D. degree from
Ecole Normale Supérieure de Lyon (France).

J.J. Villalobos is part of the leadership team at the
Rutgers Discovery Informatics Institute, where he is
responsible for the security stability and operational
excellence of the research and production advanced cy-
berinfrastructure, which includes Caliburn, the Rutgers
supercomputer, one of the fastest academic supercom-
puters in the United States. J. J. Villalobos conducts
original research as PI for federally-funded projects,
and he is currently contributing as senior personnel in
several NSF-funded projects. He has published several
articles related to distributed systems, big data, large

facilities and cybersecurity, and regularly conducts peer reviews for international
conferences, journals and workshops. He is Senior Member of the Institute of
Electrical and Electronics Engineers (IEEE), and he has over fifteen years of
industry and research experience across several computer science and informa-
tion technology disciplines including, but not limited to, systems architecture,
high-performance computing, complex public-facing internet infrastructures and
high-traffic sites reliability operations.

Ivan Rodero is Associate Research Professor and As-
sociate Director at the Rutgers Discovery Informatics
Institute (RDI2). His research interests fall in the ar-
eas of parallel and distributed computing and include
high performance computing, energy efficiency, cloud
computing and big data systems. His current research
also addresses new cyberinfrastructure models aiming
at enabling the scalability and sustainability of next
generation cyberinfrastructure. He has received various
awards for his research and publications, including the
014 IEEE TCSC Young Achievers in Scalable Computing

Award. He received his MS and Ph.D. degrees from Technical University of
Catalonia Barcelona Tech. He is a senior member of IEEE, a senior member of
ACM and a member of the American Association for the Advancement of Science
(AAAS). Contact him at irodero@rutgers.edu.

Manish Parashar is Distinguished Professor of Com-
puter Science at Rutgers University. He is also the
founding Director of the Rutgers Discovery Informatics
Institute (RDI2). His research interests are in the broad
areas of Parallel and Distributed Computing and Com-
putational and Data-Enabled Science and Engineering.
Manish serves on the editorial boards and organizing
committees of a large number of journals and inter-
national conferences and workshops, and has deployed
several software systems that are widely used. He has
also received a number of awards and is Fellow of

AAAS, Fellow of IEEE/IEEE Computer Society and ACM Distinguished Scientist.

mailto:irodero@rutgers.edu

	An edge-aware autonomic runtime for data streaming and in-transit processing
	Introduction
	Data delivery limitations in scientific observatories
	Problem definition and model
	Stream-oriented data processing framework
	Overall architecture
	Combining user requests

	Implementation
	Subscription-based data movement
	Resource join procedure
	Monitoring and approximation
	Combining the requests at runtime

	Experimental evaluation
	Workflow
	Experimental setup and scenario
	Results
	Request aggregation

	Related work
	Conclusion
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	References

