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Intersystem crossing in tunneling regime:
T1 - S0 relaxation in thiophosgene†

Aleksandr O. Lykhin ‡ and Sergey A. Varganov *

The T1 excited state relaxation in thiophosgene has attracted much attention as a relatively simple

model for the intersystem crossing (ISC) transitions in polyatomic molecules. The very short (20–40 ps)

T1 lifetime predicted in several theoretical studies strongly disagrees with the experimental values

(B20 ns) indicating that the kinetics of T1 - S0 ISC is not well understood. We use the nonadiabatic

transition state theory (NA-TST) with the Zhu–Nakamura transition probability and the multireference

perturbation theory (CASPT2) to show that the T1 - S0 ISC occurs in the quantum tunneling regime.

We also introduce a new zero-point vibrational energy correction scheme that improves the accuracy of

the predicted ISC rate constants at low internal energies. The predicted lifetimes of the T1 vibrational

states are between one and two orders of magnitude larger than the experimental values. This over-

estimation is attributed to the multidimensional nature of quantum tunneling that facilitates ISC transi-

tions along the non-minimum energy path and is not accounted for in the one-dimensional NA-TST.

1. Introduction
Despite the spin-forbidden nature of intersystem crossings
(ISCs), these transitions between electronic states of different
spin multiplicities are some of the most ubiquitous and impor-
tant events in reaction dynamics.1 Their ubiquity is due to the
coupling between electron spin and other types of angular
momentum, with the main contribution often arising from
the spin–orbit coupling (SOC) that determines the extent to
which ‘‘spin-forbidden’’ transitions are actually allowed.2,3

Weak SOC, typically observed in molecules with light atoms,
results in low probabilities of transition between spin-diabatic
states and inefficient ISCs.4 If a slow ISC is the dominant exited
state relaxation mechanism, the molecule can be trapped in an
excited state for a long time, which is used to form the long-
lived reactive intermediates prone to the intermolecular energy
transfer or the spontaneous photon emission.4 In contrast,
strong SOC5 can lead to the ultrafast ISCs,6 which can compete
with spin-allowed internal conversions giving rise to complex
excited state relaxation dynamics.7–9 Therefore, investigations
of ISC kinetics in different regimes are important for under-
standing the wide range of chemical and physical phenomena,

including combustion of organic compounds,10,11 light-
harvesting in photovoltaics,12–14 sensitizing in photodynamic
therapy,15–17 depletion of excited states in photoprotection,18,19

and binding of small molecules in enzymes.20,21

The accurate prediction of ISC rates is one of the biggest
challenges in computational chemistry, which is often addressed
with ab initio molecular dynamics (NA-AIMD).22 In direct
NA-AIMD, semiclassical trajectories or nuclear wave packets
are propagated in time, while electronic energy, energy gradients,
and interstate couplings are obtained at each time step by solving
the electronic Schrödinger equation. The requirement for the time
step to be smaller than the characteristic time of the fastest
molecular vibration makes it challenging to apply NA-AIMD to
the slow ISCs happening on a time scale longer than a few ps. In
such cases, an alternative approach is to use one of the time-
independent statistical theories, such as the microcanonical non-
adiabatic transition state theory (NA-TST).23–27 The keystone of
NA-TST is the ergodicity assumption and the statistical treatment
of the internal energy distribution among vibrational modes at the
critical points on the coupled potential energy surfaces (PESs).
A small number of critical points drastically reduces the number
of required electronic structure calculations and allows the use of
high-level electronic structure methods. In addition, the statistical
ISC rates can be corrected for the zero-point energy (ZPE), which is
often neglected in NA-AIMD simulations. In NA-TST, the ISC rate
constant is proportional to the flux through the minimum energy
crossing point (MECP) on the intersection seam between two spin-
diabatic PESs of different multiplicities (Fig. 1).

The ISC rate constant depends on the molecular properties
at MECP and the transition probability between the spin states.
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The MECP can be located using the gradient-based algorithms,28–30

one of which has been recently extended to large complex systems,
such as solvated proteins.31 Evaluation of transition probability, on
the other hand, can be challenging as the available analytical
formulas are limited to the ISC regimes with either weak SOC or
high internal energy in the reaction coordinate at the crossing
seam.32–34 Recently, there has been growing interest in the Zhu–
Nakamura transition probability formulas, which can cover all
possible ISC regimes with no energy or coupling strength
limitations.35–40 In this work, we combine the NA-TST and the
Zhu–Nakamura transition probability to gain insight into the
mechanism of the T1 - S0 ISC in thiophosgene (Cl2CS).

Spectroscopic properties of thiophosgene make this mole-
cule an excellent model to study the T1 - S0 ISC kinetics from
both theoretical41 and experimental42–45 perspectives. Despite
the formally spin-forbidden nature of T1 ’ S0 excitation, the

‘‘dark’’ T1 state can be populated directly using high-intensity
laser pulses. Once T1 state is populated, it decays primarily
through the T1 - S0 ISC with a minor contribution from very
weak phosphorescence.46 The time-evolution of T1 state can be
probed by time-delayed laser pulses, which transfer population
from T1 to the ‘‘bright’’ state S2. Because of the vibrational
deficiency, S2 decays exclusively via S2 - S0 fluorescence,47

with the intensity proportional to the T1 population. The
scheme of the described S2(00) ’ T1(n) ’ S0(00) optical–optical
double resonance (OODR) experiment48–54 is shown in Fig. 2a.
Due to the lack of a2 vibrational modes (Fig. 2b), the excited
state S2 is symmetry-isolated from S2(1A1) - S1(1A2) spin-
allowed nonradiative relaxation path. The alternative spin-
forbidden paths, S2(1A1) - T2(3A1) and S2(1A1) - T1(3A2), are
also inefficient because S2 state is well-separated from the T1

and T2 states. The S2/T1 and S2/T2 crossing points have rela-
tively high energies approaching the C–S dissociation limit and
are not accessible at the ground vibrational level of S2.41

In addition, S2(1A1) - T1(3A2) path is also hindered by weak
SOC between 1A1(pp*) and 3A1(pp*) states, as expected from the
El-Sayed rule.55

The OODR technique was used by Fujiwara et al. to measure
the T1 lifetime in jet-cooled Cl2CS at the rotational temperature
of 1.5 K.50 Using the nanosecond laser pulses, it was shown that
the decay of T1 state is biexponential with the short-lived
component of B20 ns attributed to the T1 - S0 ISC and the
long-lived component of B4 ms caused by the weak T1

phosphorescence.50 Later, the six lowest T1 vibrational states
(00, 31, 42, 21, 32, and 44) lying within 600 cm!1 of the T1 ZPE
level were prepared using short picosecond pulses, and the
individual short-lived components of these states were
measured.47 Surprisingly, the T1 lifetime of B20 ns disagrees with
the previous theoretical estimates of 0.02 ns56 and 0.04 ns57

predicted by the simple Fermi’s golden rule. In this paper, we
use our recent implementation of NA-TST combined with the
Zhu–Nakamura transition probability to calculate the T1 - S0

rate constants for the lowest T1 vibrational states and provide
insight into the nature of this ISC in thiophosgene.

Fig. 1 Sketch of the intersecting two-dimensional high- and low-spin
PESs. Minimum energy crossing point (MECP) and transition state crossing
point (TSCP) correspond to the minimum and maximum (saddle point, if
the PES dimensionality 42) on the crossing seam, respectively. Black dots
show the turning points along the ISC minimum energy path.

Fig. 2 (a) Scheme of the OODR S2(00) ’ T1(n) ’ S0(00) experiment used to determine the T1(n) lifetime. The straight black arrows show absorption and
emission, the yellow arrows show inefficient transitions from S2 state, and the wavy black arrow indicates the T1 - S0 ISC. (b) Normal vibrational modes of
Cl2CS. The numbers in parenthesis are the labels of vibrational modes.
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2. Computational methods
The equilibrium geometries of the S0 and T1 states were found
using the state-specific complete active space second-order pertur-
bation theory (CASPT2)58 and the coupled-cluster method with
single, double, and perturbative triple excitations (CCSD(T))59 as
implemented in the Molpro60 suite of programs. The stationary
points on the T1/S0 crossing seam were located using an external
script61 modified to take advantage of the CCSD(T) numerical and
CASPT2 analytical62 gradients. The rate constants were calculated at
the CASPT2/def2-TZVP63 level of theory with (10,9) and (24,16) active
spaces. The reduced mass, vibrational frequencies and moments
of inertia for the minimum and turning point of the ground
vibrational state were obtained with (10,9) active space. In addition
to the MECP, we found a transition state crossing point (TSCP),
which is a stationary point on the T1/S0 crossing seam surface
characterized by a single imaginary frequency in the effective
Hessian. The located S0 and T1 minima were proven to have no
imaginary frequencies using the conventional vibrational analysis
of the state-specific Hessian. In the cases of MECP and TSCP, the
effective Hessian for the sloped intersection27 was calculated as

Heff ¼
G1j jH2 ! G2j jH1

G1 !G2j j
; (1)

where G1, G2 and H1, H2 are the gradients and the Hessian
matrices of the S0 and T1 states, respectively. To obtain vibrational
frequencies at the MECP (TSCP), one vibrational (aligned with the
reaction coordinate), three translational, and three rotational
degrees of freedom were projected out from the mass-weighted
effective Hessian, Hmw

eff as follows

Hproj = (I ! P)Hmw
eff (I ! P), (2)

P = PRC + PTr + PRot, (3)

where I is the identity matrix and P is the projection matrix
written as the sum of reaction coordinate, translational, and
rotational projectors. The elements of the projection matrix64

were found as

p3i!3þg;3i0!3þg0 ¼ g3i!3þgg3i0!3þg0 þ
ffiffiffiffiffiffiffiffiffiffiffi
mimi0
p

M
dg;g0

þ
X

a;b

X

a0;b0
eabgaibYa;a0ai0b0ea0b0g0 :

(4)

Here i is the atomic index, indices a, b, g referring to the x, y, z
coordinates take values 1, 2 and 3, and gk are the elements of
the normalized difference gradient. This gradient is orthogonal
to the crossing seam and defined as the difference between the
S0 and T1 gradients at the MECP (TSCP). The other terms in
eqn (4) include the atomic masses mi, total mass of the
molecule M, Kronecker delta function dg,g0, mass-weighted
coordinates defined with respect to the center of mass aib,
elements of the inverse moment of inertia tensor Ya,a0, and Levi-
Civita symbol eabg. A similar projection technique was used to
obtain vibrational frequencies at the turning points along the
T1 - S0 ISC path, with the difference gradient replaced by the
gradient of the T1 state. The density of vibrational states was

calculated from the harmonic frequencies using a direct
counting algorithm with the bin size of 1 cm!1.65 In the case
of T1 minimum, harmonic vibrational levels of the 4th out-of-
plane vibrational mode were replaced with those obtained by
Fujiwara et al. from the solution of the symmetric double-well
potential, described by the Gaussian-shape barrier augmented
with quadratic, quartic, and hexic terms.50 The moments of
inertia were used to calculate the rotational densities of states
for the asymmetric top model

r rot Erotð Þ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffi
2Erot
p

!h3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IAIBIC

p
; (5)

where Erot is the rotational energy and IA r IB r IC are
the principal moments of inertia. The rovibrational density
of states was obtained via convolution of rotational and vibra-
tional densities

r ðEÞ ¼
ðE

0
r rotðE ! eÞr vibðeÞde: (6)

To determine the reduced mass for the motion along the
reaction coordinate, the mass-weighted Hessian was projected
on the matrix PRC whose elements are given by the first term
in eqn (4)

Hproj
0 = PRCHmw

eff PRC. (7)

The Hproj
0 eigenvector k> associated with a single non-zero

eigenvalue was transformed from the mass-weighted to Cartesian
coordinates, and the reduced mass was calculated as

m? ¼
1

kT?k?
: (8)

The ISC minimum energy path was found following the
quadratic steepest decent66 from the MECP to the T1 and S0

minima. The geometries corresponding to the turning points
were reoriented with respect to the T1 minimum to eliminate
the translational and rotational contributions to the reaction
coordinate. Specifically, the difference between the geometries
at the turning points and T1 minimum was minimized using
the Nelder–Mead simplex algorithm with six variables, namely
three translational shifts and three orthogonal rotations.67 The
one-dimensional reaction coordinate r was calculated as the arc
length along the reaction path

dr ¼
X3N

i¼1
dxið Þ2

 !1=2
; (9)

where dx is the difference between the Cartesian coordinates of
the neighboring turning points. Once r was calculated, the
triplet and singlet branches of the ISC path at the energies
higher than the T1 minimum were fit to quartic polynomials
(see ESI†). Finally, the turning points along the reaction path
were calculated with the energy step of 1 cm!1.

The transition probability between T1 and S0 states, was
found using the weak coupling (WC)68 and Zhu–Nakamura
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(ZN)69–73 formulas. The WC formula in terms of spin-diabatic
parameters reads as

PWCtrans e?ð Þ ¼ 4p
2HSOC

2 2m?
!h2 !GjDGj

# $2=3

&Ai2 ! e? ! EMECPð Þ 2m?jDGj
2

!h2 !G4

# $1=3 !

:

(10)

Here h! is the reduced Planck’s constant, Ai(x) is the Airy
function, e> is the internal energy accumulated in the reaction
coordinate, EMECP is the barrier height given by the relative
energy of the MECP, HSOC is the spin–orbit coupling constant
(SOC), m> is the reduced mass of the mode orthogonal to
the crossing seam. The gradients of two PESs at the MECP
(G1 and G2) appear in eqn (10) in terms of %G = (|G1G2|)1/2 and
DG = G1! G2. In contrast to the WC formula, the ZN probability
is defined using spin-adiabatic parameters obtained after
diagonalizing the spin-diabatic Hamiltonian along the ISC
reaction coordinate

H ¼
ES HSOC

HSOC ET

 !

; (11)

where diagonal elements are the energies of S0 and T1 states
(Fig. 3), and the off-diagonal term is the SOC constant calcu-
lated as a root mean square of the spin–orbit coupling matrix
elements between all MS components of the two electronic
states.27 These matrix elements were evaluated using the com-
plete active space configuration interaction (CASCI) method74

with the full-valence active space and the two-electron Breit–
Pauli spin–orbit Hamiltonian.2

Diagonalization of the spin-diabatic Hamiltonian (11)
yields the spin-adiabatic states E1 and E2. The spin-adiabatic
parameters for the sloped intersection a and b(e>) were
calculated as

a¼ d2 ! 1
% &1=2 !h2

m t02 ! t01
% &2

E2 r0ð Þ ! E1 r0ð Þð Þ

" #1=2
; (12)

b e?ð Þ ¼ d2 ! 1
% &1=2 e? ! E2 r0ð Þ þ E1 r0ð Þð Þ=2

E2 r0ð Þ ! E1 r0ð Þð Þ=2

' (1=2
; (13)

d2 ¼
E2 t01
% &
! E1 t01

% &% &
E2 t02
% &
! E1 t02

% &% &

E2 r0ð Þ ! E1 r0ð Þð Þ2
; (14)

where t01 and t02 are the turning points at the EMECP, as
schematically shown in Fig. 3; and r0 is the point on the
reaction path characterized by the smallest energy gap between
the two spin-adiabatic potentials E1 and E2:

EMECP ¼ EX ¼ E1 t01
% &
¼ E2 t02

% &
¼ E1 r0ð Þ þ E2 r0ð Þ

2
: (15)

The double passage ZN transition probability was calculated as

PZN
trans(e>) = 4pZN(1 ! pZN)sin2(c), (16)

where pZN is the single passage transition probability, and c is
the total phase describing the interference between the first

and the second passages. Both pZN and c are piecewise defined
with respect to EX (b = 0),

pZN ¼
exp ! p

4a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

b2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ 0:4a2 þ 0:7
p

r' (
; b e?ð Þ ' 0

1þ B s
p

) *
expð2dÞ ! g2 sin2ðsÞ

h i!1
; b e?ð Þo 0

8
>>><

>>>:

(17)

c ¼
s þ fS; b e?ð Þ ' 0

arg U1ð Þ; b e?ð Þo 0

(

: (18)

The function B(x), parameter g2, Stokes constant U1, and phases
s , d, and fS are given in the ESI.†

3. Results and discussion
According to the ergodicity assumption, the NA-TST rate
constant is independent of time. As a result, the ISC rate obeys
the first-order kinetic equation that is manifested in the
exponential rate profile. The lifetime of the excited state is
estimated as the inverse of the rate constant. The NA-TST can
readily be applied to study kinetics of the T1 - S0 ISC because
of two reasons. First, the lifetime of T1 excited state in Cl2CS
(20 ns) is long enough to expect the fast intramolecular vibrational
energy redistribution. Second, there is an ISC barrier that has to be
overcome to populate the ground S0 state. Here, we consider only

Fig. 3 Intersection of S0 and T1 states along the reaction path r in the
spin-diabatic (a) and spin-adiabatic (b) representations. The vertical axis
coincides with the MECP geometry at r0 = 0. The energy values defined by
the black circles are used to calculate the parameters a and b.
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the nonradiative decay of T1 neglecting phosphorescence because
it is two orders of magnitude slower than the T1 - S0 ISC.

The selected properties of Cl2CS are summarized in Table 1,
and the structural parameters are shown in Fig. 4. The 0–0 gap
between S0 and T1 states of 207.2 kJ mol!1 predicted at the
CCSD(T)/def2-TZVP level of theory matches well the experimental
value50 of 209.3 kJ mol!1. The gap increases by only 1.2 kJ mol!1, if
the larger def2-QZVP basis set is used. The calculated angles and
bond lengths are in good agreement with those obtained from the
microwave75 and electron diffraction76 experiments. However, the
accuracy of the T1 - S0 MECP barrier predicted by CCSD(T) is
questionable as the T1 and D1 diagnostics indicate a significant
multiconfigurational character of the S0 state at the MECP
(see ESI†). A more accurate ISC barrier can be expected from the
CASPT2 calculations as they better account for the multiconfigura-
tional character of MECP. The CASPT2(24,16) equilibrium geo-
metries and vibrational frequencies are in good agreement with
the experimental values (see ESI†). Therefore, for predicting the
ISC rate constants, we mostly rely on the predictions made with
multireference CASPT2(24,16) method.

While the ground state of Cl2CS is planar (C2v symmetry), the
T1 excited state has a pyramidal (Cs symmetry) configuration as
illustrated in Fig. 4. The MECP geometry was also expected to
have Cs symmetry, however we could not locate such a structure
using the linear interpolation between the T1 and S0 minima as
the initial guess. Instead, we searched for the MECP distorting
the T1 geometry along the normal vibrational modes. This
search produced two stationary points on the T1/S0 crossing
seam: one is the true MECP and another one is the transition
state crossing point (TSCP). The latter is a saddle point on the
crossing seam characterized by a single imaginary frequency in
the effective Hessian. This frequency corresponds to the vibra-
tional motion that connects two equivalent MECPs being
the mirror images of each other. The MECP barrier found
with CASPT2(24,16) is only 35.0 kJ mol!1 with respect to the
T1 minimum, while the TSCP barrier is 63.8 kJ mol!1.

The T1 - MECP path is not aligned with any of the
vibrational modes but rather appears as a linear combination
of several vibrations with a significant contribution from the
out-of-plane distortion, Cl–C–S bending, and C–S stretching.
The T1 pyramidal configuration undergoes the out-of-plane
angle expansion from 21.51 to 42.01 at the MECP, which is
followed by the angle contraction until the planar geometry of
the S0 state is reached. On the other hand, either one of the two
Cl–C–S angles decreases from 117.51 to 90.91 and then expands
from 90.91 to 124.61 along the T1 - MECP - S0 path. Thus,
two chiral MECP structures can be attained depending on
which of the two Cl–C–S angles is changing along the reaction
coordinates. Since the symmetry numbers of the MECP (C1) and
T1 minimum (Cs) are both equal to one, and there are two
equivalent MECPs, the overall T1 - S0 ISC path is doubly
degenerate. In the case of the backward S0 - T1 ISC,
the degeneracy of the path increases to four because of the
symmetry number of S0 minimum (C2v) is equal to two. How-
ever, the effect of backward S0 - T1 ISC on the T1 decay is
expected to be negligible because of the large energy gap
between the S0 minimum and MECP. The C–S bond is
elongated both in the T1 minimum (1.724 Å) and the MECP
(1.760 Å), compared with the S1 minimum (1.607 Å). This
elongation is caused by population of the p*(C–S) orbital that
reduces the C–S bond order. The occupation numbers of the
selected natural orbitals at the critical points on the singlet and
triplet PESs are shown in Fig. 5. While the occupation numbers
of the S0 state p(C–S) and p*(C–S) orbitals are close to 2 and 0 at
the S0 minimum, they become equal to 1.749 and 0.263 at
MECP. These occupation numbers together with the coupled-
cluster diagnostics (T1 = 0.039 and D1 = 0.181) indicate a
multiconfigurational character of the S0 state at the MECP. In
contrast, the T1 state has no significant multiconfigurational
character at the three critical points (T1 minimum, TSCP and
MECP) relevant to the ISC rate calculations.

Overall, the T1 - S0 ISC path is reminiscent to the breathing
motion, which suggests a sloped PES intersection at the MECP
(Fig. 6, upper panel). Indeed, the collinear S0 and T1 energy
gradients point to the same direction at the MECP. The SOC
between the T1 and S0 states at the MECP is relatively weak and

Table 1 Vertical, adiabatic and 0–0 excitation energies (kJ mol!1)
between S0 and T1 states. The energy barriers EMECP and ETSCP are reported
with respect to the T1 minimum. SOC values (cm!1) are calculated with
CASPT2(24,16) and corresponding basis set

CCSD(T)/
def2-TZVP

CCSD(T)/
def2-QZVP

CASPT2(10,9)/
def2-TZVP

CASPT2(24,16)/
def2-TZVP

DEvert 241.7 242.0 223.0 226.4
DEadiab 209.2 210.3 191.6 194.5
DE0–0

a 206.0 207.2 188.7 191.5a

EMECP 46.1 46.7 38.1 35.0
ETSCP 74.0 75.8 66.9 63.8

SOC at MECP 141 134 155 157
SOC at TSCP 186 181 187 187

a Estimated from the T1 and S0 ZPEs obtained with CASPT2(10,9)/
def2-TZVP.

Fig. 4 Minima and crossing points (MECP and TSCP) on the T1 and S0

PESs. Bond lengths (black, Å) and angles (blue, degrees) are calculated at
the CASPT2(24,16)/def2-TZVP level of theory.
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equals to 157 cm!1. However, the SOC at the turning points
along the reaction path is 189 cm!1 and does not change
significantly in the energy range of interest limited by
600 cm!1 above the T1 ZPE level (Fig. 6, lower panel).

The vibrational levels of the T1 state populated in the OODR
experiment lie well below the MECP and, therefore, the T1 - S0

ISC takes place in the quantum tunneling regime. To calculate

the ISC rate constants for different T1 vibrational states, the
density of rovibrational states at the turning points along the
reaction path have to be determined.26 In microcanonical
transition state theory, these densities are usually replaced
with the density calculated at the transition state.77,78 In the
NA-TST, it is also tempting to rely on the rovibrational density
of states at the MECP. However, this approximation is expected
to be poor in the case of Cl2CS because the turning points of
interest are far away from the MECP. Instead, we obtain the
rovibrational density of states from the lowest turning point
accessible by the molecules with vibrational energy equal to
ZPE. This turning point of the ground vibrational state can be
found iteratively, solving the following equation for r

e?ðrÞ ¼
1

2

X3N!6

i¼1
!hoi !

1

2

X3N!7

i¼1
!hoi

0ðrÞ; (19)

where r is the arc length along the reaction coordinate (r = 0 at
the T1 minimum), e>(r) is the relative energy of the turning
point with respect to the T1 minimum,oi andoi0 are the harmonic
vibrational frequencies at the T1 minimum and turning point,
respectively. The first sum in eqn (19) is the T1 ZPE and the second
sum, which excludes reaction coordinate, is the ZPE at the turning
point for a given r. Using CASPT2(10.9)/def2-TZVP and setting the
energy threshold to 5 cm!1, we found that the turning point of the
ground vibrational state lies 124 cm!1 above the T1 minimum.
This value is much smaller than the ZPE difference between the T1

minimum and MECP that is equal to 283 cm!1. Taking DZPE as
the difference between the ZPEs of T1 minimum and the turning
point, the microcanonical rate constant for the tunneling regime
can be written as

kðEÞ ¼ 1

hr R

ðEþDZPE

DZPE
r 0TP E þ DZPE! e?ð ÞPtrans e?ð Þde?; (20)

where E is the total internal energy, h is the Planck constant, rR is
the reactant density of rovibrational states, r 0

TP is the density of
rovibrational states at the turning point corresponding to the
ground vibrational state, e> is the energy accumulated in
the reaction coordinate, and E–e> is the energy partitioned into

Fig. 5 Selected CASSCF natural orbitals and their occupation numbers for the T1 minimum, MECP, TSCP, and S0 minimum. The calculations performed
at the CASPT2(24,16)/def2-TZVP level of theory.

Fig. 6 Upper panel: The T1 - S0 ISC path through the MECP. Solid blue
and red curves are the quartic polynomials fitted to the turning points on
the calculated steepest descent paths starting at the MECP. The black
dashed lines are simple linear potentials with the slopes defined by the
energy gradients at the MECP. The shaded area shows the barrier widths in
the region of interest (600 cm!1 above the T1 ZPE) for the models with
quartic potential (ZN transition probability) and linear potential (WC transi-
tion probability). Lower panel: The spin–orbit coupling variation along the
reaction coordinate.
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spectator degrees of freedom. The ZPE correction scheme (ZPE1)
defined by eqn (20) is equivalent to lowering the MECP barrier by
DZPE. The T1 - S0 ISC rate constants calculated using eqn (20)
combined with eqn (10) and (16) are reported in Fig. 7 and Table 2.

Let us first discuss the CASPT2(10,9) rate constants for all
vibrational states except T1(00). The ZPE1/WC rate constants are
almost an order of magnitude greater than the experimental
values, while the ZPE1/ZN rate constants are about two orders
of magnitude smaller. These results can be rationalized by
looking at the width of the MECP barrier. The WC formula
does not account for the curvature of the crossing PESs,
assuming that they cross linearly with the slopes given by the
energy gradients at the MECP. As shown in Fig. 6, the barrier
width used to calculate the WC transitions probability (high-
lighted) is only about 0.15 Bohr, while the actual width of the

MECP barrier varies from 0.5 to 0.2 Bohr in the region
of interest. In contrast to the WC transition probability
expression, the ZN formula accounts for the curvature of cross-
ing PESs through the imaginary action integrals and provides a
correct treatment of the barrier width. Thus, a good agreement
between the ZPE1/WC rate constants and the experimental
measurements is entirely accidental and can be attributed to
the drastically underestimated barrier width. It is interesting to
note that the ZPE1/ZN rate constants approach experimental
rates at the high energies; the calculated rate constant for the
T1(44) state is k = 2.9 & 106 s!1 (t = 345 ns), while the
experimental value is k = 4.4 & 107 s!1 (t = 23 ns). However,
there is a very large deviation at the energies below 100 cm!1.
The OODR experiment shows that T1(00) decays as fast as
the other vibrational states, while the ZPE1/ZN predicts the
dramatic reduction of the ISC rate by six orders of magnitude.
We believe that this discrepancy arises from neglecting the
tunneling contribution from the reaction path segment located
below the ZPE1 turning point, where the decrease of potential
energy is compensated by the increase in kinetic energy. To
account for this segment of the reaction path, the lower
integration limit in eqn (20) must be set to zero,

kðEÞ ¼ 1

hr R

ðEþDZPE

0
r 0TP E þ DZPE! e?ð ÞPtrans e?ð Þde?: (21)

The resulting ZPE2 correction scheme greatly improves the
rate constants below 100 cm!1, while predicting the values
similar to the ZPE1 scheme at higher energy. The expansion of
the active space from (10,9) to (24,16) results in lowering the
MECP barrier and producing the rate constants that are closer
to the experimental values. At the CASPT2(24,16)/def2-TZVP
level of theory, the predicted and experimental lifetimes for
T1(44) are 123 and 23 ns, respectively. We believe that the
overestimated lifetime can be explained by the tunneling
taking place away from the minimum energy reaction path
going through MECP, where the barrier is narrower and the
tunneling is more efficient. To account for the effect of multi-
dimensional tunneling a further development of NA-TST is
required. One of the promising directions would be to sample
multiple ISC reaction paths crossing the seam surface between
MECPs and TSCPs.

Fig. 7 Upper panel: The T1 - S0 ISC rate constant calculated using the
WC (dashed) and ZN (solid) transition probabilities at the CASPT2/def2-
TZVP level of theory. Red and blue curves indicate the ZPE1 and ZPE2
correction schemes, respectively. Lower panel: The turning points con-
tributing to the rate constant in the ZPE1 and ZPE2 schemes.

Table 2 The T1 - S0 ISC rate constants (s!1) calculated at the CASPT2/def2-TZVP level of theory. The experimental rate constants are obtained as the
inverse of the reported T1 lifetimes

Energy level, cm!1

Active space (10,9) Active space (24,16)

Exptl.47

ZPE1 ZPE2 ZPE2

WC ZN WC ZN WC ZN

T1(00) 0 1.1 & 106 2.7 & 101 7.7 & 108 1.6 & 105 2.3 & 109 3.1 & 105 4.4 & 107

T1(31) 246 2.1 & 108 3.2 & 105 3.5 & 108 3.5 & 105 1.0 & 109 8.5 & 105 5.9 & 107

T1(42) 298 2.4 & 108 4.8 & 105 3.8 & 108 5.1 & 105 1.1 & 109 1.3 & 106 4.6 & 107

T1(21) 471 3.9 & 108 1.6 & 106 5.1 & 108 1.7 & 106 1.5 & 109 4.4 & 106 5.4 & 107

T1(32) 495 4.1 & 108 1.9 & 106 5.4 & 108 1.9 & 106 1.6 & 109 5.2 & 106 8.0 & 107

T1(44) 563 4.8 & 108 2.9 & 106 6.0 & 108 3.0 & 106 1.7 & 109 8.1 & 106 4.4 & 107
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4. Conclusions
We demonstrated that the T1 - S0 ISC in thiophosgene is
driven by quantum tunneling through the barrier formed by the
crossing T1 and S0 electronic states. The minimum energy
crossing point between these two states was located with the
single-reference CCSD(T) and multireference CASPT2 electronic
structure methods. Using the nonadiabatic transition state
theory with the weak coupling and Zhu–Nakamura transition
probabilities, we calculated the T1 - S0 rate constants and
estimated the lifetimes of the lowest T1 vibrational states.

A good agreement between the experimental rate constants
and those predicted by NA-TST with the WC probability
of transition formula appears to be accidental and can be
explained by the heavily underestimated width of the ISC
barrier. Therefore, at the crossing regions where two potentials
deviate significantly from the linear model, the traditional WC
probability formula must be used with caution. In such cases,
one can resort to either the improved form of the WC formula
that has recently been suggested,34 or to the Zhu–Nakamura
transition probability expressions. The latter not only accounts
for the curvature of the crossing potentials but also expands the
NA-TST applications to the situations with relatively strong
spin–orbit coupling.

The T1 - S0 ISC rate constants obtained with the NA-TST/ZN
and CASPT2(24,16)/def-TZVP level of theory are from one to two
orders of magnitude smaller than the rates obtained from the
experimental T1 lifetimes. Although the errors in the barrier and
ZPEs predicted by CASPT2 should not be dismissed, we believe
that the main deviation is due to the multidimensional tunneling
that is not accounted for in the simple one-dimensional statistical
theories such as NA-TST. One way to improve these results is to
search for the alternative ISC tunneling paths with the narrower
barriers, similar to the approaches developed for the conventional
single-state transition state theory.79 We also proposed a new ZPE
correction scheme that account for the tunneling at low potential
energies and significantly improves the prediction for microcano-
nical rate constants at low internal energies. This new ZPE scheme
explains why the T1(00) state of thiophosgene decays at the rate
comparable to the other vibrational states.
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