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Abstract
Connected vehicle (CV) application developers need a development platform to build, test, and debug real-world CV applica-
tions, such as safety, mobility, and environmental applications, in edge-centric cyber-physical system (CPS). The objective of
this paper is to develop and evaluate a scalable and secure CV application development platform (CVDeP) that enables appli-
cation developers to build, test, and debug CV applications in real-time while meeting the functional requirements of any CV
applications. The efficacy of the CVDeP was evaluated using two types of CV applications (one safety and one mobility appli-
cation) and they were validated through field experiments at the South Carolina Connected Vehicle Testbed (SC-CVT). The
analyses show that the CVDeP satisfies the functional requirements in relation to latency and throughput of the selected CV
applications while maintaining the scalability and security of the platform and applications.

The emerging connected vehicle (CV) environment con-
sists of different components, such as vehicle onboard
units (OBUs) and roadside units (RSUs), which are
capable of exchanging data with each other as well as
communicating with personal devices (e.g., cell phones),
sensors (e.g., camera sensors), and traffic management
centers (TMCs) (1). With integrated computing and con-
trol capabilities, these connected physical components
communicate with each other to form a cyber-physical
system (CPS). The architecture reference for cooperative
and intelligent transportation (ARC-IT), which has been
developed with the sponsorship of the US Department
of Transportation (USDOT), has listed the functional
requirements and provided the implementation guide-
lines of over a hundred CV applications for safety, mobi-
lity, and environmental benefits (2). For example,
Vehicle Data for Traffic Operations is a CV application,
which uses CV data obtained from vehicle OBUs to sup-
port roadway traffic operations (2). To develop such CV
applications for an edge-centric CPS, developers need a
dedicated platform where they can build, test, and debug
CV applications. The operational data environment
(ODE) system, which is being developed by Intelligent
Transportation Systems Joint Program Office, is a real-
time data collection and distribution software system
that collects, processes, and distributes data to different
components of the CV environment, such as CVs

themselves, personal mobile devices, infrastructure com-
ponents (e.g., traffic signal), and sensors (e.g., camera
and environmental sensor) (3). Although a user can
stream CV data through the ODE platform in real-time
for developing a CV application, it does not provide a
platform to the application developers to build, test, and
debug CV applications. Thus, it is critical to develop an
application development platform and evaluate the plat-
form in relation to latency and throughput to satisfy the
temporal and spatial requirements of CV applications
(4).

Considering a large-scale deployment of CV CPS, the
concept of edge computing is introduced as the underly-
ing computing approach (5). Edge computing has the
potential benefits of enabling reduced communication
latency and increased scalability. Such benefits are a
result of bringing resources, such as storage, and compu-
tational resources, closer to the edge (6, 7). In an edge-
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centric CPS, the resources for communication, computa-
tion, control, and storage are placed at different edge
layers (e.g., a mobile edge as a vehicle, a fixed edge as a
roadside infrastructure, and a system edge as a backend
server or TMC) in a CV environment (5). Therefore, a
CV application can be divided into sub-applications
where sub-applications run in different edge layers
depending on the requirements of the application.

Major challenges for developing a CV application
development platform for an edge-centric CPS are to: (a)
collect, process, and distribute data while running multi-
ple CV applications concurrently in real-time in different
edge layers; and (b) provide the scalability and security of
the platform and applications. The objective of this study
is to develop and evaluate a scalable and secure CV appli-
cation development platform that handles real-time data
from CVs in an edge-centric CPS and can satisfy the
requirements imposed by CV applications. This platform,
which the authors call Connected Vehicle Application
Development Platform (CVDeP), has been designed to
hide the underlying low-level software, hardware, and
associated details. An application development graphical
user interface provides the application developers an easy
and secure access to the edge devices. The access control
and credential management module in the application
development platform prevents unwanted access to the
edge devices and provides platform security. In addition,
the application security module prevents malicious oper-
ations or activities propagated through an application in
an edge-centric CPS. In this study, a policy-based secu-
rity system is utilized to provide application security
against cyberattacks. However, developing methods for
detecting different types of cyberattacks and identifying
related countermeasures are not the focus of this study.

Experiments were conducted to evaluate the efficacy of
the CVDeP using a safety application (i.e., forward colli-
sion warning [FCW]) and a mobility application (i.e., vehi-
cle data for traffic operations) (2). These applications were
developed and evaluated in an emulated environment and
later validated in a real-world edge-centric South Carolina
Connected Vehicle Testbed (SC-CVT), which is located at
Clemson, South Carolina. The FCW application was
selected for the experiment, as it is a fundamental applica-
tion for vehicle-to-vehicle (V2V) safety (8). Similarly, the
vehicle data for traffic operations application was selected,
because this application supports many other vehicle-to-
infrastructure (V2I) safety and mobility applications, such
as cooperative adaptive cruise control, incident detection,
and implementation of localized roadway traffic opera-
tional strategies (e.g., altering signal timing based on traffic
flows, freeway speed harmonization, and optimization of
ramp metering rates) (2). The efficacy of the CVDeP was
presented using two communication-related measures of
effectiveness, which are latency and throughput.

Contribution of the Study

The primary contribution of this study is the develop-
ment of an architecture for an edge-centric CVDeP. This
study systemically developed the architecture of the
CVDeP, and evaluated and validated the CVDeP
through experiments. In the Conceptual Development
and Implementation of CVDeP subsection of the
Connected Vehicle Application Development Platform
(CVDeP) section of this paper, the architecture of the
application development platform is presented, and each
module of this architecture is defined. The architecture
of the CVDeP supports modular development so that
any user can easily include additional modules (e.g., add-
ing an energy optimization module at a mobile and fixed
edge levels for an eco-driving application) into the devel-
opment platform if and when needed. Furthermore, the
authors published the source code of the CVDeP in the
GitHub, an open-source code management platform, so
that any external users can use it and contribute to
expanding the utility of CVDeP by adding more modules
(8). The CVDeP open-source software will be maintained
through a git version-control system.

Related Work

To develop the CVDeP that uses real-time CV data, the
authors reviewed existing work related to the CV appli-
cation development requirements, and developer access
control and application security.

CV Application Development Requirements

CV applications are bounded by temporal and spatial
requirements for providing the desired services (9). If CV
data are not received within the temporal and spatial
threshold as required by a CV application, CV data will
not have any efficacy for real-time applications. The
Michigan Connected Vehicle Testbed’s Proof of Concept
Testing report categorized CV data by time and spatial
contexts, meaning that timestamp information and loca-
tion information should be included in the CV data (10).

Application developers may require two kinds of data
depending on the type of CV application, namely real-
time disaggregated data and aggregated data. For exam-
ple, a CV application, such as FCW, requires real-time
disaggregated data for running and testing of the corre-
sponding application, thus making it necessary for an
application development platform to provide such data
(4). On the other hand, a CV application like queue
warning, which provides queue alerts every 5 minutes,
may not require the disaggregated data, only aggregated
data is sufficient (11). A CV environment will be one of
the largest distributed networks in the future (12). As the
size of the network grows (e.g., number of vehicles,
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sensors, and roadside infrastructures), the demand for
data will also increase (13). Thus, a platform for the CV
application developers needs to be designed in such a
way so that it can handle a high demand of data without
compromising the quality of service (in relation to tem-
poral and spatial requirements). Thus, in providing the
data to the users, the CVDeP needs to meet the applica-
tion requirements in relation to latency and throughput,
and must be capable of handling the scalability issue
related to the increasing number of CVs, in-vehicle sen-
sors, and roadside infrastructures.

Access Control and Application Security

Security is one of the major concerns in deploying CV
applications because of the safety-critical aspect of con-
nected transportation systems (14, 15). The U.S. DOT
partnered with the automotive industry and industry secu-
rity experts to design and develop a state-of-the-art secu-
rity framework, and presented a security concept called
Security Credential Management System (SCMS) to pro-
vide privacy and integrity to a CV system, as well as pro-
vide CV application security. The data shared between
applications and edge devices need to be secured and it is
necessary to maintain data confidentiality, integrity, and
availability (2). One way to protect the data from
unwanted user access is to authenticate user information
before sharing and streaming data. In SCMS, fixed edges
(e.g., a communication device, such as an RSU) along
with a computing device (e.g., a general-purpose proces-
sor) will provide a certificate to a CV application, which
can be used by the application for exchanging messages
(16, 17). A registration authority (RA) and a certificate
authority (CA) were considered for providing the certifi-
cates. While an RA verifies the user request and checks
the digital signature, a CA issues a new digital certificate
or renews a certificate. This study adopted a security mod-
ule for access control and credential management follow-
ing the SCMS. The application security management is
adopted based on security policies developed by Islam
et al. (18). Although this study considered the access con-
trol and credential management, and application security,
the network security is not a focus of this study.

Connected Vehicle Application
Development Platform (CVDeP)

Figure 1 presents the conceptual development and imple-
mentation, and the evaluation and validation of the
CVDeP. In an edge-centric CPS, the CVDeP architecture
is developed including an application management plat-
form and an application development graphical user
interface for CV application development. The applica-
tion management platform contains three modules: (i)
control platform module; (ii) communication module;

and (iii) data warehouse module. The application devel-
opment graphical interface contains a graphical user
interface through which an application developer can
develop and deploy any CV application in the edge
devices. The control platform module includes four sub-
modules in total: (i) access control and credential man-
agement; (ii) application security management; (iii) data
collection and distribution; and (iv) data broadcasting
and receiving. The CVDeP was evaluated and validated
using selected safety and mobility applications in two
stages: (i) evaluation in an emulated environment; and
(ii) field validation in a real-world edge-centric SC-CVT.
The safety application is evaluated using communication
and computational latency metrics. The mobility applica-
tion is evaluated using communication and computa-
tional latency along with data transmission throughput
(to test the scalability of the platform). Later, the experi-
mental setup in the emulated and real-world environment
and CV applications for the evaluation of the CVDeP
are explained. In the following sub-sections, the study
approach for developing and evaluating the CVDeP is
presented in detail.

Conceptual Development and Implementation of
CVDeP

In an edge-centric CPS, the physical proximity of devices
to the data source reduces the wireless communication
latency, and a layered architecture increases the scalabil-
ity (19). The edge-centric CPS, as shown in Figure 2 for a
CV system, consists of three edge layers: (i) mobile edge
(e.g., on-board sensors and computing device inside a
vehicle); (ii) fixed edge (e.g., roadside transportation data
infrastructure); and (iii) system edge (e.g., backend server
at TMC) (5). This hierarchical cyber-physical system
architecture can address complexity and scale issues of
CV systems. Participating CVs in the system will act as
mobile edges and are equipped with a low-latency com-
munication device. Although DSRC was considered in
this study, any low-latency communication technology,
such as 5G and long-term evolution (LTE) for Vehicles
(LTE-V) can be incorporated in the development plat-
form. A fixed edge includes a general-purpose processor
(i.e., application development device) and a dedicated
short-range communication (DSRC)-based RSU. A
fixed edge can communicate with mobile edges using
DSRC, and communicate with the system edge using
optical fiber or Wi-Fi. A fixed edge can be extended to
support a video camera and other sensing devices, such
as weather sensors and GPS. A system edge can be a sin-
gle endpoint in a cloud server. Fixed edges are connected
to a system edge through a long-range communication
option, such as optical fiber or LTE/Wi-Fi. Mobile edges
(edge layer 1) can exchange data with fixed edges (edge
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layer 2) and system edges (edge layer 3) using DSRC and
LTE/Wi-Fi communication, respectively.

In an edge-centric CPS for CVs, each component gen-
erates different types of data. For example, an OBU
installed in a vehicle (i.e., mobile edge) broadcasts basic
safety messages (BSMs), which contain a vehicle’s infor-
mation, such as location, speed, direction, acceleration,
and braking status (20). A fixed edge collects data from
the OBUs within its communication range, and acts as a
primary gateway to transfer data from CVs to the trans-
portation infrastructures (e.g., system edge, which could
represent a TMC). For developing a CV application,
developers need to interact with all of the edge layers.
Edge layers can be accessed through an application
development graphical user interface, which provides a
way for a CV application developer to interact with the
different edges. Figure 2 illustrates the architecture of the
CVDeP for an edge-centric CPS, which comprises of

application management platform and application devel-
opment graphical user interface.

Application Management Platform

The application management platform is responsible for
the selection of an appropriate communication medium
for an application, and data collection, storage, broad-
casting, and distribution, while providing the security of
the platform by enabling secured access to the edge layers
and security of the CV applications. As presented in
Figure 2, application developers interact with the appli-
cation management platform through an application
development graphical user interface. The application
management platform is a part of each edge layer of the
edge-centric CPS. The application management platform
is made up of the following modules: (i) control platform
module; (ii) data warehouse module; and (iii)

Figure 1. Approach for the Connected Vehicle Application Development Platform (CVDeP) development, evaluation, and validation.
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communication module. The following subsections
describe the conceptual development and implementa-
tion of each of the modules in detail.

Conceptual Development of Control Platform Module. The con-
trol platform module of the system edge (edge layer 3)
supports three types of sub-modules: (i) access control
and credential management; (ii) application security
management; and (iii) data collection and distribution.
On the other hand, the control platform module of the
fixed edge (edge layer 2) supports four types of sub-mod-
ules: (i) access control and credential management; (ii)
application security management; (iii) data collection
and distribution; and (iv) data broadcasting and receiv-
ing. However, the control platform module of mobile
edge (edge layer 1) includes: (i) access control and cre-
dential management; (ii) application security manage-
ment; and (iii) data broadcasting and receiving.

In an edge-centric CPS, edge devices continuously
exchange data between different edges. The data broad-
casting and receiving module in the mobile edges and
fixed edges handles the continuous data exchange
between other mobile edges and fixed edges. This module
continuously broadcasts and receives messages that can
be used to develop CV applications through application
development graphical user interface. On the other hand,

the data collection and distribution module in fixed
edges and system edges are responsible for gathering and
distributing data to and from mobile edges, fixed edges,
and system edges in real-time. After the access control
and credential management modules are activated, an
authenticated application developer can access, gather,
and visualize real-time streaming data generated from
different edges of an edge-centric CPS. In addition, the
application security management module is responsible
for monitoring the data flow and securing the applica-
tion using security policies.

Implementation of Control Platform Module. The control plat-
form module contains the following sub-modules, and
what sub-modules are included in each layer varies by
whether the edge device is a mobile, fixed or system edge.
Implementation overviews of these sub-modules are as
follows:

� Access control and credential management. The
access control and credential management sub-
module ensures that only authorized users have
access to CVDeP services. A CV application
developer is authenticated via a login interface
before giving access to the edge-centric CPS
testbed components. Permission-based access

Figure 2. The Connected Vehicle Application Development Platform (CVDeP) architecture for an edge-centric cyber-physical system
(CPS).
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control is implemented by providing access rights
to application-specific data and services (e.g.,
access to the BSMs, access to sensors data, access
to the data warehouse) like an android application
system where permissions are written in a manifest
file prior to developers developing an Android
application (21). On the other hand, the credential
management system (CMS) is implemented based
on the public key infrastructure (PKI), which
takes care of public key exchange that is needed
for encrypting and authenticating data using a
digital signature. A digital signature is used to ver-
ify the authenticity of a message. The CMS is built
in such a way that the functionalities of SCMS
presented by the US DOT are replicated (16, 22).
The assumptions of the National Highway Traffic
Safety Administration (NHTSA)-supported CV
pilot program were followed, where V2V messages
are digitally signed with a digital signature, but
not encrypted, and V2I messages are both signed
and encrypted (23).

� Application security management. To provide the
security for any applications, a data consumer
and a data producer must be authenticated and
completed certificate exchange (data flow1
[DF1])-and (data flow 2 [DF2]) to send any
producer-generated data and receive any verified
producer-generated data, respectively (as shown
in Figure 3). The access control and credential
management module is used to authenticate and
exchange certificates to secure the access (as
described before in the Access Control and
Credential Management Module description) to

any edge devices. As presented by Fernandez
et al., a flow policy-based application security has
been implemented in the application security man-
agement module, which contains trusted API and
quarantine submodules (24). The current study
has implemented the flow policies using ‘‘\source,
sink.’’ tracking in which source is the producer of
the data and sink is the intended consumer of that
data (24). The trusted API submodule removes
any sensitive information (e.g., driver’s identify
and vehicle ID of a mobile edge) from the
producer-generated data (data flow 3 [DF3]). The
quarantine submodule will remove any unex-
pected or malicious data flows between a producer
and a consumer that is not listed in the flow poli-
cies. Flow policies can be pre-defined or can be
changed by an administrator (e.g., a certificate
authority) dynamically. Finally, verified data from
a producer is passed to its intended consumer
(data flow 4 [DF4]).

� Data collection and distribution. The data collec-
tion and distribution sub-module is the core part
of the fixed and system edges of the CVDeP.
Kafka (25) was selected as a broker-based data
collection and distribution system because of the
following efficacies: (i) high throughput; (ii) low-
latency; (iii) reliability of data delivery; and (iv)
scalability. In a publish-subscribe-based broker
system, such as Kafka, Message Queuing
Telemetry Transport (MQTT), or WebSphere,
data producers (e.g., mobile edges, fixed edges,
CV applications) produce and publish data to the
broker, whereas the data consumers (e.g., fixed
edge, CV applications) subscribe and consume the
data available at the broker. By tagging individual
data elements with a label based on a topic, pro-
ducers (e.g., a CV) can produce data on a particu-
lar topic, and consumers (e.g., a CV application)
can subscribe and consume the data of that topic.
The broker receives data from producers and
immediately makes the data available for consu-
mers to consume. As a result, producers and con-
sumers can generate and consume data,
respectively, in an asynchronous and independent
manner reducing the latency and improving
reliability.

� Data broadcasting and receiving. The data broad-
casting and receiving sub-module is developed for
mobile edges and fixed edges, where it is responsi-
ble for broadcasting BSMs and receiving BSMs
from other mobile edges and fixed edges. In this
implementation, each mobile edge broadcasts
BSMs at a default rate of 10Hz and each BSM
contains necessary attributes for safety

Figure 3. Implementation of application security management
module, and access control and credential management module.
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applications (e.g., position, speed, and direction)
(20, 26). Additionally, each fixed edge broadcasts
safety warnings (e.g., intersection safety warning)
at a rate of 10Hz, which are generated for V2I
applications. In addition, each mobile edge and
each fixed edge receives BSMs from all other
mobile edges and fixed edges within their corre-
sponding communication range.

Conceptual Development of Data Warehouse Module. The
data warehouse module stores the data generated from
different edge devices, roadside sensors, and applications
deployed in the fixed and system edge layers. It is a dis-
tributed storage system that resides in fixed edges and
system edges. The purpose of the data warehouse module
is to store and provide necessary historical data that is
needed by the CV applications. As a mobile edge is lim-
ited by computation power and storage size, a data ware-
house module was not included in mobile edges. In fixed
and system edges, the structure of the data warehouse
module is such that it can support and store both struc-
tured (e.g., GPS data) and unstructured data (e.g., text
and images). A structured data has a strict tabular for-
mat whose column size and attributes of each entity are
defined. Examples of structured data include any data
that can be stored in delimited formats, spreadsheets, or
SQL tables, whose columns are defined. A semi-
structured data includes data whose fields are defined
but organized in a hierarchical manner. Examples
include data stored in extensible markup language
(XML) or JavaScript object notation (JSON) formats.
Unstructured data, such as pictures, videos, and textual
data, do not have any structural organization associated
with the data itself.

Implementation of Data Warehouse Module. In this imple-
mentation, to support structured, semi-structured, as
well as unstructured data, MySQL was used for struc-
tured data in a tabular format, and MongoDB was used
for semi-structured and unstructured data in JSON for-
mat. The structured, semi-structured, and unstructured
data together produce a huge amount of data in relation
to volume. Realistically, CV applications do not need to
access the raw data in their original format. Thus, a big
data engineering infrastructure can be employed to
reduce and compress raw data for further direct access
by the CV applications. In this case, Clemson
University’s Cypress cluster was used for this purpose.
Cypress is a Hadoop-based big data cluster and has both
Hadoop Distributed File System for large-scale data
storage and Apache Spark for big data processing (27,
28).

Conceptual Development of Communication Module. The com-
munication module decides the best available communica-
tion medium based on the communication latency
requirement of an application. Developers will provide the
requirements of an application to the communication
module through the application development graphical
user interface, and then the communication module cre-
ates an abstraction layer to characterize communication
network attributes of the available communication net-
works. For example, the communication module could
select DSRC, 5G, or LTE-V, or any low-latency commu-
nication medium, from the available communication med-
iums to satisfy the requirement of safety applications.
While the application is running in an edge device, the
CVDeP will provide communication metadata (e.g., avail-
able communication mediums, such as DSRC, 5G, LTE,
LTE-V, and Wi-Fi, and their average, maximum, and
minimum transmission latency and throughput) for evalu-
ating the performance of the application. The decision for
selecting a wireless communication medium, by the com-
munication module, will be completed based on the char-
acteristics of available communication mediums and the
application requirements set by the application developers.

Implementation of Communication Module. The communica-
tion module manages the underlying communication net-
work connectivity in an edge-centric CPS. The
communication network services are implemented in the
network layer of each edge device to manage the connec-
tivity using the available communication mediums to con-
nect with other edge devices. In the communication
module implementation, the discovery or searching of
communication mediums and their network characteris-
tics are measured asynchronously. The communication
module selects a medium to use for transmitting and
receiving data based on the application requirements. A
metadata support layer was added in the communication
module to provide metadata to the application developers
that can support them to develop their applications.
Through this metadata layer, developers will be able to
observe the communication attributes, such as signal
strength, bandwidth utilization, and data loss. A script
running in the CVDeP provides communication attributes
to the developers through the application development
graphical user interface, and developers can evaluate the
performance of an application through these communica-
tion attributes.

Application Development Graphical User Interface

Application developers can access the underlying edge
devices of the edge-centric CPS using a graphical user
interface, and can develop and deploy any CV applica-
tion directly on the edge-centric CPS. Based on access
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control rights to the available services (e.g., communica-
tion services and data storage service) of the platform
and the requirements of a CV application, an application
developer can access different types of data (e.g., real-
time and historical data) from each layer through an
application development graphical user interface. Using
this application development graphical user interface,
application developers can also request any specific data
for a specific application purpose. For example, develo-
pers can request historical data from the data warehouse
module to predict future roadway traffic conditions.
Application development graphical user interface will
provide an interactive platform to the developers to build
their own applications and test these applications by
requesting real-time data from both mobile and fixed
edges, and historical data from the data warehouse mod-
ule from both fixed and system edges.

As shown in Figure 4, the application development
graphical user interface is divided into four blocks: (i)
applications development services block [using this block
a developer can connect to the edge devices through an
authentication procedure using the accessibility details,
such as username and password. After the authentication
procedure, developers will be provided with a list of
available edge devices (e.g., location, number, and type
of edge devices), services (e.g., available communication
mediums and their characteristics), and sensors (e.g.,
GPS, camera) of each edge device]; (ii) applications
development block (inside this block, an application
developer can implement an application in an edge device
using Python or C++); (iii) applications development

tools (using this block, an application developer can
develop, deploy, test, and debug an application in edge
devices); and (iv) applications output and performance
measurement block (after deploying an application,
developers can visualize, and save the output and perfor-
mance data of an application through this block). The
application development graphical user interface is devel-
oped as a desktop application in C# (C sharp) as illu-
strated in Figure 4. Currently, the software has been
developed for the Windows operating systems as a proof-
of-concept.

Experimental Setup

This section provides a description of the experimental
setup in an emulated environment as well as a real-world
environment to evaluate the efficacy of the CVDeP.

Experimental Setup in Emulated Environment

A developer can develop and evaluate the performance
of the developed CV applications in the emulated envi-
ronment. In this environment, the developer will have
dedicated hardware to emulate the real-world edge-cen-
tric CPS. As shown in Figure 5, a developer can emulate
mobile edges using hardware setups #1 and #2 and fixed
edges using hardware setup #3, where system edges are
set up in a dedicated server at Clemson University. Each
hardware setup (#1, #2, and #3) consists of one DSRC
unit to send and receive the DSRC messages, and a com-
puting device for computation. Hardware setup #1 is

Figure 4. Implementation of application development graphical user interface.
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used for developing the safety application, whereas hard-
ware setup #2 is used for emulating other mobile edges
for the safety application. For mobility and environmen-
tal applications, only hardware setup #2 can be used for
emulating mobile edges. Hardware setup #3 is used for
creating any number of fixed edges where the location of
fixed edges is defined by a developer through the applica-
tion development graphical user interface. A dedicated
server located in Clemson University is used for creating
system edge instances. In this emulated edge-centric CPS,
mobile edges and fixed edges communicate with each
other using DSRC, and fixed edges and system edges
communicate using the Clemson University communica-
tion network, which includes an optical fiber and Wi-Fi
connections. In addition, developers can configure the
number of edges in each layer as required by an applica-
tion. To generate the movement data of mobile edges,
the movement of the mobile edges is exported from the
Simulation of Urban Mobility (SUMO), which is a
microscopic traffic simulator software, as a SUMO trace
file (29). Using this SUMO trace file, developers can cre-
ate any roadway environment, and generate any number
of emulated vehicles and their corresponding BSMs. A
program running in mobile edges reads that trace file
and generates BSMs for each vehicle. Then, these BSMs
are broadcast using DSRC to each vehicle. Fixed edges
will receive BSMs from mobile edges within their corre-
sponding communication ranges. Developers can access
the edges through the CVDeP application development
graphical user interface to develop and evaluate the per-
formance of the developed CV application.

All the modules of the CVDeP were implemented in
each layer, as shown in Figure 6. Hardware setups #1

and #2 represent the edge layer 1, Hardware setup #3
represents the edge layer 2, and the Server setup repre-
sents the edge layer 3 of an edge-centric CPS. The imple-
mented modules of the CVDeP are: (i) control platform
module, which consists of access control and credential
management, application security management, data col-
lection and distribution, and data broadcasting and
receiving; (ii) communication module; and (iii) data
warehouse module. The control platform module resides
in a computing device and is implemented in each hard-
ware setup. However, the data broadcasting and receiv-
ing sub-module of the control platform module resides in
a computing device, which is a part of each mobile and
fixed edges. For the data warehouse module, an external
hard disk drive was used for storing data in the fixed
edges, and cloud storage was used for storing data in the
system edge. In this case, an application developer inter-
acts with each hardware though the Clemson University
communication network to develop, debug, and test a
CV application.

Experimental Setup in SC-CVT

The SC-CVT has three fixed edges, which are deployed
along the Perimeter Road in Clemson, South Carolina,
and one system edge is deployed as the backend server
(19). The backend server is located at Clemson
University and connected to the Clemson University
communication network. Two of the fixed edges are con-
nected to the Clemson University network with an opti-
cal fiber link and one fixed edge is connected to the
Clemson University network with a Wi-Fi link. Each
fixed edge has its own DSRC radio to communicate with

Figure 5. Connected Vehicle Application Development Platform (CVDeP) setup in an emulated edge-centric cyber-physical system
(CPS).
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mobile edges. Each mobile edge (primarily OBUs on
vehicles) is equipped with wireless communication
devices. In this case, DSRC-enabled OBUs were used,
although any low-latency communication mediums, such
as 5G or LTE-V, can be used. As per the definition of a
mobile edge, a CV will act as a mobile edge and a vehicle
owner will own a commercially available low-latency
communication device (e.g., DSRC, 5G, or LTE-V
enabled communication device) along with a computing
device for running an application at the vehicle level.
Also, a vehicle owner can install these communication
and computing devices to create a mobile edge.

Evaluation and Validation of CVDeP

For the experiments, an FCW was developed as a safety
application and vehicle data for traffic operations as a
mobility application using the CVDeP (2). Then, to prove
the efficacy of the CVDeP, the FCW and vehicle data for
traffic operations applications are evaluated in an emu-
lated environment and the real-world SC-CVT (19).

Safety Application

For the experiment related to safety application, FCW
was selected that considers two vehicles moving in the
same direction on the same lane in an uncongested urban
traffic condition. The FCW application is based on the
study by Xiang et al., where the FCW application uses a
vehicle kinematics (VK) model for generating collision
warnings using DSRC communication (30). Based on
the VK model, the FCW application generates rear-end
collision warnings when two vehicles are closer than a
defined safe distance. In this study, Equation 1 is used
for implementing an FCW application as suggested by
Xiang et al. (30).

Dw =
Vo � Vtð Þ2

2 � a + d ð1Þ

where, Dw is the distance threshold for collision warning;
Vo is the preceding vehicle’s speed; and Vt is the fol-
lower vehicle’s speed. The follower vehicle is the vehicle
where the FCW application is intended to run; d is

Figure 6. Implementation of Connected Vehicle Application Development Platform (CVDeP) modules in an emulated edge-centric
cyber-physical system (CPS).
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calculated by adding the half of the length of the preced-
ing vehicle with half of the length of the following vehi-
cle, and a is set to 11.2 ft/s2 (31). Given the emulated
environment within the CVDeP platform, as shown in
Figure 5, it is possible to generate complex urban scenar-
ios, and develop and evaluate appropriate FCW applica-
tion corresponding to such scenarios. Using a complex
urban scenario, an application developer can develop an
FCW application considering different safety constraints
within that environment.

Evaluation Scenarios. Two evaluation scenarios were cre-
ated for evaluating the CVDeP as a safety application
development platform.

� Scenario 1: The preceding vehicle (hardware setup
#2 in Figure 5), and follower vehicle (hardware
setup #1 in Figure 5) are moving in the same
direction on the same lane at 20mph and 30mph,
respectively.

� Scenario 2: The preceding vehicle and follower vehi-
cle both are moving on the same lane at 30mph,
and then the preceding vehicle stops suddenly.

In both scenarios, the FCW application is deployed in
the follower vehicle, and FCWs are generated based on
the comparison between calculated safety distance (using
Equation 1) and the distance between two vehicles using
real-time GPS data. To evaluate the performance of the
application, data delivery latency was considered as a
measure of effectiveness. In this context, latency is the
duration between the time when a BSM is generated by a
mobile edge and the time when the application produces
an FCW message in the follower vehicle. Here, latency
includes network latency, computational latency, and
communication medium selection latency.

Evaluation in Emulated Environment. The FCW application
was evaluated using the experimental setup as described
in the previous section. The application is developed
using the CVDeP, and then the application is tested
using two evaluation scenarios. Table 1 provides a sum-
mary of latency recorded from both evaluation scenar-
ios. For the evaluation of the FCW application in the
emulated environment, the BSMs of 200 s observation
period containing 4000BSMs were analyzed from two
mobile edges to calculate the maximum, minimum, and
average latency. A CV broadcasts BSMs and receives
BSMs from other CVs within its communication range.
A CV safety application’s critical latency requirement
represents the maximum acceptable time from generating
BSMs by a preceding vehicle to generating an FCW mes-
sage by a follower vehicle within the preceding vehicle’s
communication range. If an FCW message is received by
the driver of the follower vehicle within this safety-
critical latency requirement, the driver can take action to
avoid a collision after receiving an FCW (32). In this
case, 200ms was selected as a maximum safety-critical
latency requirement in which a driver is able to decele-
rate at a deceleration rate of 11.2 ft/s2, and avoid the for-
ward collision if the warning message was delivered
within 200ms (19, 31). Therefore, the maximum end-to-
end latency requirement is considered as 200ms, which
will ensure the driver is able to stop the vehicle in case of
a forward collision scenario. In the emulated experimen-
tal environment, it was found that the average latency is
18ms for both evaluation scenario 1 and scenario 2.
However, the recorded maximum latencies were 97ms
and 79ms, for scenarios 1 and 2, respectively, which are
below the safety-critical latency requirement for CVs
(i.e., 200ms) (33). In Table 1, the end-to-end latency is
presented, which includes communication network
latency, computational latency, and communication
medium selection latency. The computational latency for
running the application is 1.5ms, which is the same for

Table 1. Summary of Latency for Forward Collision Warning (FCW) Application Evaluation

Experimental
setup

Evaluation
latency

parameter

End-to-end
latency in

scenario #1a

End-to-end
latency in

scenario #2b

Latency requirements
for safety application

(17, 33, 34)

Emulated
environment

Maximum 97ms 79ms
Average 18ms 18ms
Minimum 4ms 4ms <200ms

SC-CVT Maximum 115ms 107ms
Average 65ms 51ms
Minimum 4ms 5ms

Note: SC-CVT = South Carolina connected vehicle testbed.
aScenario #1: The preceding vehicle and follower vehicle are moving in the same direction on the same lane at 20mph and 30mph, respectively.
bScenario #2: The preceding vehicle and follower vehicle both are moving on the same lane at 30mph, and then the preceding vehicle stops suddenly.
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both evaluation scenarios. In addition, these FCW mes-
sages are sent to the mobile edge using the best available
communication medium as decided by the communica-
tion module, which takes about 0.5ms on average to
make such a determination. During this communication
medium selection process, all communication mediums
(LTE, Wi-Fi, and DSRC) were running simultaneously,
and the communication module was monitoring these
mediums asynchronously and selected the best communi-
cation medium for a CV application following the het-
erogeneous wireless networking concept for CVs (33).

Field Validation in SC-CVT. For the field evaluation of FCW
application in the SC-CVT, a similar speed for the corre-
sponding vehicles was followed for both evaluation sce-
narios. The end-to-end latency for the FCW application
was measured in the field for both evaluation scenarios.
Table 1 provides a summary of end-to-end latency
recorded for both evaluation scenarios in the field experi-
ments and in an emulated environment. Similar to the
evaluation in an emulated environment, the data sample
of 200 s containing 4000BSMs from two mobile edges
was analyzed to calculate the maximum, minimum, and
average latency. The average end-to-end latency mea-
sured is 65ms and 51ms for scenarios 1 and 2, respec-
tively. The maximum end-to-end latency recorded for
the test is 115ms and 107ms for scenarios 1 and 2,
respectively, which is below the safety-critical latency
requirement (i.e., 200ms) (33). In the field experiment, a
higher latency than the latency measured in the emulated
experimental setup was observed, because of the sur-
rounding environmental effect or wireless communica-
tion propagation loss. Table 1 presents the end-to-end
latency which includes the network latency, computa-
tional latency, and communication medium selection
latency. In both cases (scenarios 1 and 2), it can be vali-
dated that the application developed using the CVDeP
was able to satisfy the application’s safety-critical latency
requirement ( ł 200ms) in the field experiments.

Mobility Application

The CVDeP was evaluated using the vehicle data for
traffic operations application. This application collects
CVs’ data (e.g., BSMs) to support traffic operations,
such as incident detection and localized traffic opera-
tional strategies (2). This application is divided into two
sub-applications: (i) sub-application 1: collect real-time
traffic data from mobile edges; and (ii) sub-application
2: collect real-time traffic data from fixed edges. The
sub-application 1 runs in each fixed edge and the sub-
application 2 runs in the system edge.

The scalability of the CVDeP was evaluated to ensure
the CV application requirements are met in relation to

latency and throughput. Here, the latency is the time dif-
ference between the time of data generation at the edge-
centric SC-CVT and the time when the data is received
by the users (e.g., CV applications). Data delivery latency
requirements for any mobility and environmental appli-
cations must be satisfied to provide mobility and environ-
mental services. As the CVDeP aims to support different
mobility and environmental applications, 1000ms was
considered as the maximum latency threshold to deliver
the data from edge devices to the data consumers (e.g.,
CV applications) following the recommendations from
Ahmed-Zaid et al. (17). This 1000ms will enable the near
real-time operation of mobility applications, such as
queue warning and traffic rerouting applications.
However, if the latency recommendations change in the
future for any CV applications, the CVDeP can still be
utilized by selecting appropriate underlying technologies
for different communication and computing devices to
meet any new requirements. The CVDeP provides a gen-
eral architecture, which is independent of specific tech-
nologies. The experiments demonstrate the efficacies of
the CVDeP as an application development platform
using selected communication and computing technolo-
gies. Also, it is necessary to ensure a high throughput
(i.e., the data transfer rate), which means the high use of
the allocated bandwidth. This platform already satisfied
the spatial requirement of the application, as mobile
edges will be within the communication range of fixed
edges.

Evaluation Scenarios. Two different scenarios were created
for evaluating the application development platform by
varying the number of fixed edges and the number of
mobile edges.

� Scenario 1: One system edge and one fixed edge
with varying numbers of mobile edges (i.e., 5, 10,
20, 30, 50, 100, 150, and 200).

� Scenario 2: One system edge with varying numbers
of fixed edges (i.e., 1, 2, and 3) and 200 mobile
edges for each fixed edge.

For evaluation scenario 2, based on a fixed edge’s com-
munication range, the maximum number of CVs on
Perimeter Road approaching the intersection is 200 vehi-
cles per hour per lane (vphpl) during a congested traffic
condition. For the evaluation in the emulated environ-
ment, SUMO was used to generate the movement data
of mobile edges, and the traffic network was calibrated
so that traffic volume data from SUMO simulation
matches, within a tolerance level of 5%, with the field-
collected data. For both scenarios, the scalability of the
application development platform was evaluated in rela-
tion to data delivery latency and throughput.
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Evaluation in Emulated Environment. A data collection and
distribution system (a broker-based system) that is
required for the real-time application development plat-
form was implemented. The scalability of the CVDeP
was evaluated considering a data collection and distribu-
tion system, which is a broker-based system. In addition,
the recorded end-to-end latency was compared with the
latency requirement for the selected CV mobility applica-
tion. As shown in Figure 7, a and b, with the increasing
number of mobile edges and fixed edges, the throughput
of the broker-based system is linearly increasing and
reaches a maximum at 5.2Mbits/s and 8.4Mbits/s,
respectively. Higher throughput ensures reliable and scal-
able services. The broker-based system (e.g., Kafka for
this experiment) uses an asynchronous mode that can
collect and distribute data in memory and send them in
batches in a single shot (25, 34). Because of this asyn-
chronous mode and sending data in batches, the broker-

based system can provide the required throughput. The
broker-based system can adapt the throughput require-
ment by the application as the number of mobile edges
and fixed edge increases, and thus can handle more data
as needed (4).

It was observed that the CVDeP data collection and
distribution system can maintain a lower latency with
the increasing number of mobile edges (Figure 7c) and
fixed edges (Figure 7d). The increment of latency with
the broker-based method is negligible for both scenarios
(scenarios 1 and 2). The reason is that the broker-based
system uses an intelligent ‘‘sendfile’’ method with zero-
copy optimization (i.e., sending the data directly to the
consumer without any buffering or copying into mem-
ory) (34). Thus, the broker-based system can maintain a
lower message delivery latency irrespective of the number
of producers and consumers thus ensuring scalability. In
this experiment, the default configuration of a Kafka

Figure 7. Evaluation of Connected Vehicle Application Development Platform (CVDeP) for mobility application using application
throughput and latency.
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broker-based system was used (25). However, the config-
uration (e.g., topic partitions, replication number, and
number of brokers) of a Kafka broker-based system can
be configured easily to reduce the latency if the latency is
higher than the CV application threshold. In addition,
by adding additional data management brokers, as pre-
sented by Du et al., the CVDeP can be scaled up to
receive data from and share data with additional con-
nected data sources (e.g., personal handheld devices,
news media and weather stations) (4).

Field Validation in SC-CVT. The CVDeP was evaluated in
SC-CVT using five mobile edges (e.g., CVs) in the field
experiment. Table 2 shows the summary of end-to-end
latency when the application in the CVDeP emulated
environment and SC-CVT was developed. Higher latency
(maximum, average, and minimum) was observed in the
field than in the emulated environment. In the field
experiment, the data exchange using DSRC technology
between the mobile edges and fixed edges was affected by
the environmental interferences, such as trees, roadway
slope, and curvature. This causes a higher variation in
latency in the field than in the emulated environment.
However, the latency observed in the field was still far
below the application latency requirement (ł 1000ms)
for the selected mobility application.

Conclusions and Future Work

CV technology holds the promise of improving the traf-
fic safety and efficiency of roadway traffic operations.
To materialize CV benefits, the active participation of
CV researchers and developers is necessary. This can be
hindered because of the lack of real-world application
development platforms that use real-world and real-time
data to support the CV application development process
including testing and debugging. Using the CVDeP, the
CV application developers can interact with real-world
edge devices, and develop, test, and debug CV safety and
mobility applications. From these experiments, it was
revealed that the applications developed using the
CVDeP were able to satisfy the CV safety and mobility
application latency requirements and maintain the

required throughput both for an increasing number of
mobile edges and fixed edges. It was shown that the
FCW application (a safety application) developed using
the CVDeP can satisfy the safety-critical latency require-
ment (under 200ms for an FCW application). Also, the
vehicle data for traffic operations application (a mobility
application) developed using the CVDeP with a broker-
based system shows about 400ms of latency with three
fixed edges and 600 mobile edges, which is much lower
than the latency requirement (under 1,000ms) of mobi-
lity applications. This proves the scalability of the
CVDeP while satisfying the latency requirement of CV
applications for an edge-centric CPS. The authors pub-
lished the source code of the CVDeP in the Github
platform.
As the CVDeP is being refined further, the authors’
follow-up studies of CVDeP include: (i) evaluation of the
fault tolerance and resiliency of the platform; (ii) evalua-
tion of multiple applications running simultaneously in
multiple system edges, and merging information from
diverse data sources of a large roadway network (i.e.,
data residing at local or city/county level, regional or
state level, and national level); (iii) incorporation of data
from other traditional data sources (e.g., traffic signals,
video detectors, or loop detectors) and non-traditional
data sources (e.g., news media, weather sensors, social
networking sites); and (iv) strategy identification to make
the system more secure by incorporating different secu-
rity threat detection and protection mechanisms against
different malicious activities including cyber-attacks.
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