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a b s t r a c t

Introduction: By handling conflicting traffic movements and establishing dynamic coordination between
signalized intersections in real-time, Adaptive Signal Control Systems (ASCS) can potentially improve the
operation and safety at signalized intersections and corridors. Methods: This paper develops a series of
models accounting for model forms and possible predictors and implements these models in Empirical
Bayes (EB) and Fully Bayesian (FB) frameworks for ASCS safety evaluation studies. Different models are
validated in terms of the ability to reduce the potential bias and variance of prediction and improve
the safety effectiveness estimation accuracy using real-world crash data from non-ASCS sites. This paper
then develops the safety effectiveness of ASCS at six different corridors with a total of 65 signalized inter-
sections with the same type of ASCS, in South Carolina. Results: Validation results show that the FB model
that accounts for traffic volume, roadway geometric features, year factor, and spatial effects shows the
best performance among all models. The study findings reveal that ASCS reduces crash frequencies in
the total crash, fatal and injury crash, and angle crash for most of the intersections. The safety effective-
ness of ASCS varies across the intersections with different features (i.e., AADT at major streets, number of
legs at an intersection, the number of through lanes on major streets, the number of access points on
minor streets, and the speed limit at major streets). Conclusions: ASCS is associated with crash reductions,
and its safety effects vary with different intersection features. Practical Applications: The findings of this
research encourage more ASCS deployments and provide insights into selecting ASCS deployment sites
for reducing crashes considering the variation of the safety effectiveness of ASCS.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.
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1. Introduction

Safety improvements at intersections have become one of 22
key domains in the American Association of State Highway and
Transportation Officials Strategic Highway Safety Plan (Antonucci
et al., 2004). Through traffic control and operational improvement
strategies, the goal of this plan is to achieve a decrease in the fre-
quency and severity of crashes at signalized intersections. Trans-
portation agencies have been advancing new approaches and
technologies to improve safety at signalized intersections.

Adaptive Signal Control System (ASCS) is typically deployed at
intersections and corridors to improve operational performance,
such as travel time and traffic delay. The ASCS requires detectors
such as loop detectors and video detectors, and a communication
78

79

80
network that allows for communicating with the local traffic con-
trollers and/or the server. Compared to the conventional time of
day signal control systems (i.e., pre-timed signal control and actu-
ated signal control) with predefined signal plans (usually re-
adjusted every two years), ASCS can change the signal timings
(i.e., phase splits, phase sequence, offsets, and cycle length) in
real-time to accommodate fluctuating traffic demand at intersec-
tions. Also, ASCS can adjust offsets to coordinate several intersec-
tions along a corridor, thus lead to fewer traffic stops along a
corridor. Significant operational benefits of ASCS in both corridor
and intersection have been documented (Eghtedari, 2005; Elkins
et al., 2012; Fontaine et al., 2015; Kergaye et al., 2009; Khattak,
2016; Khattak et al., 2020; So et al., 2014). By handling conflicting
traffic movements and establishing dynamic coordination between
intersections in real-time, ASCS can potentially improve the oper-
ational traffic condition, which in turn will improve the safety of
signalized intersections and corridors.
y effec-

https://doi.org/10.1016/j.jsr.2020.11.003
mailto:weiminj@g.clemson.edu
mailto:pgerard@clemson.edu
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Past studies have implemented the Empirical Bayes (EB) frame-
work with the Poisson-Gamma model into ASCS safety evaluation
studies (Jesus & Benekohal, 2019; Khattak, 2016). However, previ-
ous studies have not applied the Fully Bayesian (FB) framework
with the Poisson-Lognormal model for any ASCS safety evaluation.
More specifically, spatial correlations could exist in neighboring
intersections along a corridor with ASCS. However, no studies have
implemented spatial models in the safety evaluation of ASCS.
Moreover, previous studies have not evaluated the performance
of different crash prediction models in quantifying the safety effec-
tiveness of ASCS.

To fill the above research gaps in ASCS safety evaluation, we: (a)
implement the Poisson-Lognormal model and the spatial model
into the ASCS safety evaluation; and (b) investigate how different
crash prediction models impact the estimator of the safety effec-
tiveness of ASCS in the EB and FB before-and-after studies. A series
of models, including the Poisson-Lognormal models, Poisson-
Gamma models, and spatial models, are compared and evaluated.
Traffic volume, roadway geometric features, year factor, and spatial
effect are used to produce different sets of models. The intersec-
tions and corridors in this study have the same ASCS type
deployed. The algorithm of the particular type of ASCS is the same
for each intersection and corridor in this study. ASCS optimizes the
cycle length, splits, and offsets in real-time based on current traffic
conditions to minimize overall traffic delays of the intersections,
while guaranteeing reasonable coordination between intersec-
tions. The study focuses on evaluating the safety effectiveness of
the particular ASCS system (which this paper refers to as ‘‘ASCS”)
without considering the variations between multiple ASCS types.
ASCS effect may vary across sites due to specific features of the
sites that are deployed with ASCS. To explore the variations in ASCS
effect across sites, the study evaluates the safety effectiveness of
ASCS for each corridor and each intersection.
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2. Literature review

The following subsections discuss the crash prediction model
and safety evaluation related studies of ASCS.

2.1. Crash prediction model

This subsection reviews the characteristics of the crash predic-
tion models. In the FB method, the Bayesian models used to esti-
mate the safety performance are similar to the concept of the
Safety Performance Function (SPF) used in the EB method. This
paper uses the same term ‘‘crash prediction model” for the conve-
nience of discussion, instead of the Bayesian models in the FB
methods and the SPF in the EB method.

2.1.1. Poisson-Gamma and Poisson-Lognormal Model
In general, there are two main types of models used in the esti-

mation of crash frequency: (a) Poisson-Gamma, and (b) Poisson-
Lognormal.

� Poisson-Gamma Model

When the Poisson mean is assumed to follow a gamma distribu-
tion, the Poisson-Gammamix distribution results in Negative Bino-
mial (NB) distribution (Carriquiry & Pawlovich, 2004; Khazraee
et al., 2018), with Maximum Likelihood Estimation (MLE) used
for parameter estimation. NB models have been widely used by
many researchers (Elvik et al., 2017; Hauer, 1997; Hauer et al.,
2002; Hovey & Chowdhury, 2005; Høye, 2015). In the EB frame-
work, the NB model is used to account for the over-dispersion
(i.e., the variance is much larger than the mean) of crash data.
2

� Poisson-Lognormal Model

When the Poisson mean is assumed to have a lognormal distri-
bution, the Poisson-Lognormal model results in an unclosed form
of the marginal distribution, which is difficult to handle using
the MLE method. The Poisson-Lognormal model is typically inte-
grated into the FB framework. The posterior distribution of the
parameters of the Poisson-Lognormal model can be obtained using
Markov Chain Monte Carlo (MCMC) simulation (Khazraee et al.,
2018).

2.1.2. Spatial models
Spatial effects can be introduced into a Poisson-Lognormal

model to consider the spatial correlation of adjacent road entities
(Cai et al., 2018). Although many studies (Barua et al., 2016;
Jonathan et al., 2016) have accounted for spatial effects in the
development of crash prediction models, few studies (Sacchi
et al., 2016) implement the spatial model in a before-and-after
safety study. Spatial models can be integrated into the FB method
but cannot be in current EB methods for safety evaluation (Gross
et al., 2010). The assumption of the non-spatial models (i.e.,
Poisson-Gamma model and Poisson-Lognormal model) is that
crashes are independent across sites. This assumption will be vio-
lated if the spatial correlation between sites within neighborhoods
exists.

On the other hand, neighboring sites may share similar traffic
and road conditions, similar driver behavior, and weather condi-
tion. As a result, it may result in similar safety levels for neighbor-
ing sites. Spatial effects usually exist, for example, among the
adjacent intersections (which is the case of this study), adjacent
corridors (Li & Wang, 2017), and the adjacent zone sharing the
same border (Cai et al., 2018).

2.2. Safety evaluation of Adaptive Signal Control Systems

Safety benefits of ASCS have been demonstrated in recent stud-
ies. Fontaine et al. (2015) have evaluated the safety effects of
InSync, an ASCS, for different corridors in Virginia using an EB
before-and-after study. Based on the analysis, the authors have
found that crashes are reduced by 17% due to ASCS. Dutta et al.
(2010) have studied crash data for one type of ASCS (i.e., SCATS)
and fixed-time signal control systems for two corridors in Michi-
gan. The authors (Dutta et al., 2010) have evaluated the change
in the crash rate before and after the ASCS deployment. The
authors have found that the total crash rate is reduced by 6% after
installing ASCS. The incapacitating injury and permanent injury
crashes are reduced by 22% after ASCS deployment. The most sig-
nificant improvement is found for non-incapacitating injury or
temporary injury crashes, which is reduced by 35%. Fink et al.
(2016) have studied the safety impacts of SCATS for 498 signalized
intersections in Oakland County. The authors have performed a
cross-sectional study and found a reduction of 19.3% in angle
crashes associated with SCATS. This study found that SCATS does
not reduce incapacitating injuries or fatality statistically signifi-
cantly (Fink et al., 2016). Khattak (2016) evaluated 41 intersections
in Pennsylvania where SURTRAC and InSync are installed. The
author has implemented an EB before-and-after safety study and
computed Crash Modification Factors (CMF) for total crashes, and
fatal and injury crashes. The author found reductions of 34% and
45% in total crashes and fatal and injury crashes, respectively,
due to ASCS. Khattak et al. (2019) have examined the impact of
ASCS on injury severity outcomes. The authors have found that
one type of ASCS (the name of the ASCS type is not mentioned in
the paper) decreases the probability of minor injury and severe
plus moderate crashes by 10.36% and 11.70%, respectively, while
another type of ASCS (the name of the ASCS type is not mentioned
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in the paper) decreases the probability of minor injury and severe
plus moderate crashes by 6.92% and 4.39%, respectively.

ASCS is not always found to reduce crashes statistically signifi-
cantly. Jesus and Benekohal (2019) have implemented the EB
method to determine the safety effectiveness of the ASCS. The
authors (Jesus & Benekohal, 2019) have found that the CMF of ASCS
for fatal and injury crashes is 0.67, which is not statistically signif-
icant at a 0.05 significance level. CMFs of property damage only
and total crashes are close to one, which indicates no crash reduc-
tion due to ASCS. The CMF for fatal, incapacitating injury, and non-
incapacitating injury combined is 0.68, which is not significant at a
0.05 significance level. The angle, rear-end, incapacitating injury,
and reported/not evident injury (this includes momentary uncon-
sciousness, claims of no evident injuries, limping, complaints of
pain, nausea, hysteria.) crashes show insignificant reductions.

3. Method

This section first discusses model forms in the development of
crash prediction models in the EB and FB before-and-after study
procedures. Then, this section provides a validation procedure that
uses two criteria to validate possible models: (a) the potential bias
and variance of prediction, and (b) the estimation accuracy of
safety effectiveness.

3.1. Model development and evaluation procedure

This subsection introduces the models that would be incorpo-
rated into the EB and FB before-and-after study procedures. Traffic
volume, roadway geometric features (e.g., the number of access
points at an intersection, and the number of exclusive left-turn
lanes, right-turn lanes, and through lanes on major or minor
streets), year factor, and spatial effect are used to produce different
sets of the models. For each model, four crash types of interest are
accounted for: total crash, fatal and injury (F + I), rear-end crash,
and angle crash. Two primary forms of models, Poisson-Gamma
and Poisson-Lognormal, are introduced. A spatial model is also
used with a Poisson-Lognormal model in this study to account
for the spatial effect existing in the investigated sites. Model 1,
Model 2, and Model 3 are implemented within the EB framework.
Model 4A, Model 4B, Model 5A, Model 5B, Model 6A, and Model 6B
are implemented within the FB framework.

3.1.1. EB Models
3.1.1.1. EB Model development. A general Poisson-Gamma model
with two tiers is expressed as the following:

ym;itP~oissonðkm;itÞ ð1Þ

km;itG~ammaða;/Þ ð2Þ
where, ym;it is the observed crash frequency at an intersection i
(i ¼ 1;2; :::;65) on the corridor m(m ¼ 1;2; :::;6) in a given year t
(t ¼ 2011;2012; :::;2018); km;it is the Poisson mean. The expectation
of km;it , Eðkm;itÞ is the expected yearly number of crashes at an inter-
section i on the corridormin the year t for a specified crash type (i.e.,
total crash, F + I, rear-end, or angle crash). a is the shape parameter
of Gamma distribution, and / is the inverse scale parameter (i.e.,
rate parameter) of the Gamma distribution.

Three crash prediction models (called SPFs in the EB frame-
work) are specified in terms of different explanatory variables.
Model 1 and Model 2 account for the year factor by introducing
annual multipliers. The year factor is often introduced into the
crash prediction model to account for temporal variation of crash
expectation, which accounts for possible unobserved factors such
as weather conditions, road conditions, and vehicle technology
3

improvements (Persaud et al., 2010). Model 3 accounts for the year
factor by introducing the year variable as one of the explanatory
variables in the model. Model 1 includes an annual multiplier,
and Annual Average Daily Traffic (AADT) without considering the
difference in roadway geometric features. Model 2 includes an
annual multiplier, AADT, and roadway geometric features. Model
3 includes AADT, roadway geometric features, and the year factor.

Model 1 (AADT + Annual multipliers):

Eðkm;itÞ ¼ am;texpðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þ bm;min�aadtlogðminorAADTm;itÞÞ ð3Þ

Model 2 (AADT + Roadway factor + Annual multipliers):

Eðkm;itÞ ¼ am;texpðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þbm;min�aadtlogðminorAADTm;itÞ

þ PQ
n¼1;j¼1

bm;jXmn;itÞ
ð4Þ

Model 3 (AADT + Roadway factor + Year):

Eðkm;itÞ ¼ expðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þbmin�aadtlogðminorAADTm;itÞ

þ PQ
n¼1;j¼1

bm;jXmn;it þ bm;TTm;itÞ
ð5Þ

where,majorAADTm;it is AADT of major roads at the intersection i on
the corridor m in a given year t; minorAADTm;it is AADT of minor
streets at the intersection i on the corridor m in a given year t;
Xmn;it is the nth explanatory variable of roadway geometric features
(e.g., the number of exclusive left-turn, right-turn lane(s) and
through lane(s) on major or minor streets and the number of access
point(s) at an intersection) for the intersection i in a given year t; Q
is the total number of explanatory variables of roadway geometric
features; Tm;it is the year factor which is numeric, for example, 0 if
year is 2011, 1 if year is 2012, and so on; bm;T is the coefficient for
the year factor of Model 3; bm;maj�aadtis the coefficient for AADT of
major roads; bm;min�aadtis the coefficient for AADT of minor streets;

bm;0is the intercept and bm;jis thej
th coefficient for roadway geomet-

ric features in the model; am;tis the annual multiplier which is
obtained by dividing the sum of predicted number of crashes in a
given year t by the sum of observed crashes in a given year t after
the EB models are fitted.

3.1.1.2. EB Model estimation and evaluation. EB model estimation is
performed in the R environment by calling the R package ‘‘MASS.”
Concerns about multicollinearity (MC) occurs if an explanatory
variable is a function of other explanatory variables. Potential MC
issues are checked by evaluating the Variance Inflation Factor
(VIF) statistic. VIF values greater than 10 are used to check whether
MC is of concern (O’Brien 2007). Using this criterion, the authors
find that no MC issues exist among the explanatory variables used
in this study. Akaike’s Information Criterion (AIC) is used to select
the set of variables used in the regression models (Bumham &
Anderson, 2002). The best-fitted model is found with the lowest
AIC. For example, roadway geometric features have some variables,
including the number of exclusive left-turn lanes, right-turn lanes,
and through lanes on major or minor streets and the number of the
access points at an intersection. After model selection based on
AIC, only a few roadway geometric variables will be kept.

3.1.1.3. EB before-and-after evaluation procedure. The expected
number of crashes in the before period Eb, the long-term expected
number of crashes for a site, is obtained by combining two differ-
ent information sources: (1) the observed crash data for a site,Ob,
and (2) the sum of the predicted number of crashes during the
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before period, Pb, estimated by the crash prediction models (i.e.,
Model 1, Model 2, and Model 3) for the individual site. Eb is
obtained by using the following equation (Hauer, 1997; Persaud
& Lyon, 2007),

Eb ¼ wPb þ 1�wð ÞOb ð6Þ
The weight factor is estimated from and w, which are estimated

from the SPF development,

w ¼ 1
1þ Pb=w

ð7Þ

where wis the value of the dispersion parameter obtained by the NB
regression-based SPF.

A correction factor that accounts for the length of the after per-
iod, changes in traffic volumes, and changes in roadway geometric
characteristics is multiplied with Eb to obtain the Ea. This factor is
the ratio of the sum of the after-period SPF predictions, Pa and the
sum of the before-period SPF predictions, Pb. Thus, Ea can be
obtained below,

Ea ¼ Eb
Pa

Pb
ð8Þ

The observed number of crashes at a site with treatment during
the after period (Oa) is then compared to the expected number of
crashes on the same site (Ea), which is the expected number of
crashes that would have occurred if the treatment had not been
implemented. An estimate of the index of safety effectiveness of
treatment, h, is:

h ¼
P

all Oa=
P

all Ea

1þ Var
P

all Ea
� �

=
P

all Ea
� �2 ð9Þ

Var
X
all

Ea

 !
¼
X
all

Pa=Pbð Þ2Ebð1�wÞ
h i

ð10Þ

where,
P

all Oa is the summation of Oa for all studied sites;
P

all Ea is
the summation of Ea for all studied sites.

The estimated percentage of reduction in crashes is 100ð1� hÞ.
For example, a value of h ¼ 0:45 indicates a 55% decrease in crashes
with treatment. The uncertainty of the index of effectiveness (i.e.,
standard deviation) is calculated by taking the square root of the
variance of h. The variance of h is (Hauer, 1997; Persaud & Lyon,
2007):

Var hð Þ ¼
h2

Var
P

all
Oað ÞP

all
Oað Þ2 þ Var

P
all

Eað ÞP
all

Eað Þ2
� �

1þ Var
P

all
Eað ÞP

all
Eað Þ2

� �2 ð11Þ

In the Eq. (10), the assumption is that the ratio Pa to Pb is a con-
stant variable, not a random variable, which would affect the Eq.
(9) and Eq. (11) containing the term Var

P
all Ea

� �
.

3.1.2. FB models
3.1.2.1. FB model development. A general Poisson-Lognormal model
is introduced with multiple hierarchical levels in the following:

ym;itP~oissonðkm;itÞ ð12Þ

logðkm;itÞ ¼
Xp
j¼0

bmj;BBmj;it þ em;it ð13Þ

em;it
~Normalð0;r2

e Þ ð14Þ

bmj;B
~Normalð0;r2

b;jÞ ð15Þ

439

4

where, ym;it is the observed crash frequency at the intersection i on
the corridorm in a given year t; km;it is the Poisson mean. Bmj;it is the

explanatory variable in the model. bmj;B is the jth coefficient for the
explanatory variable in the model. P is the total number of explana-
tory variables. The distribution of parameters such as km;it , bmj;B, and
em;it in the model is evaluated based on the estimation of the poste-
rior distribution of these parameters using the FB approach. In the
FB models, km;it is the site-specific expected crash frequency, and
each km;it represents a model parameter. em;it is introduced to
account for the variation across intersections and years. r2

e is
assumed to follow a prior Inv-Gamma (0.001, 0.001) distribution
for all models based on previous studies (Cai et al., 2018;
Carriquiry & Pawlovich, 2004; Sacchi & Sayed, 2014). r2

b;j is set to
1000 for all the prior distributions of bmj;B for all models resulting
in a non-informative prior distribution for bmj;B (Persaud et al.,
2010). Consequently, estimation of the posterior distribution of
bmj;B largely depends on observed data.

Three FB non-spatial models are defined in terms of different
explanatory variables. Model 4A and Model 5A introduce a random
effect to account for variation caused by the various intersections
and years, while Model 6A directly treats the year factor as a
covariate in the model. Based on the inclusion of the spatial effect
into the models, three different FB spatial models-Model 4B, Model
5B, and Model 6B are developed. A corridor-specific ASCS indicator
variable Im;it that labels the after period during which ASCS is
installed on the corridor m is included as shown below (1 is the
after period; 0 otherwise). bm;I is the coefficient of the ASCS pres-
ence indicator variable of the following models. The authors ini-
tially have included the interaction variables into the model to
account for the possible interaction between ASCS and AADT and
the interaction between ASCS and roadway geometric features in
the model. But the interaction variables are not significant. Thus,
the interaction variables are not used for the following models.

Model 4A (AADT):

Eðkm;itÞ ¼ expðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þ bm;min�aadtlogðminorAADTm;itÞ þ bm;I Im;it þ em;itÞ ð16Þ

Model 4B (AADT + Spatial effect):

Eðkm;itÞ ¼ expðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þ bm;min�aadtlogðminorAADTm;itÞ þ bm;I Im;it þ em;it

þ sm;iÞ ð17Þ
Model 5A (AADT + Roadway factor):

Eðkm;itÞ ¼ expðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þbm;min�aadtlogðminorAADTm;itÞ þ bm;IIm;it

þ PQ
n¼1;j¼1

bm;jXmn;it þ em;itÞ
ð18Þ

Model 5B (AADT + Roadway factor + Spatial effect):

Eðkm;itÞ ¼ expðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þbm;min�aadtlogðminorAADTm;itÞ þ bm;IIm;it

þ PQ
n¼1;j¼1

bm;jXmn;it þ em;it þ sm;iÞ
ð19Þ

Model 6A (AADT + Roadway factor + Year):

Eðkm;itÞ ¼ expðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þbm;min�aadtlogðminorAADTm;itÞ þ bm;IIm;it

þ PQ
n¼1;j¼1

bm;jXmn;it þ bm;TTm;it þ em;itÞ
ð20Þ

Model 6B (AADT + Roadway factor + Year + Spatial effect):
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Eðkm;itÞ ¼ expðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þbm;min�aadtlogðminorAADTm;itÞ þ bm;I Im;it

þ PQ
n¼1;j¼1

bm;jXmn;it þ bm;TTm;it þ em;it þ sm;iÞ
ð21Þ

where, sm;i could be considered as a latent variable that captures the
effect of unknown or unmeasured covariates that are assumed spa-
tially structured. The intrinsic Conditional Autoregressive (CAR)
model (Besag et al., 1991) is used for estimating sm;i, which is given
by:

sm;ijsm;j
~Normal

P
j2@iwijsm;jP

j2@iwij
;

1
ss
P

j2@iwij

 !
; j–i ð22Þ

where @i is the set of intersections adjacent to i;wij is a spatial prox-
imity weight; ssis the precision parameter which is the inverse of
the variance. ss is assumed to follow a prior Gamma (0.001,
0.001) (Cai et al., 2018). wijis equal to 1 for i 2 @i; otherwise, wijis
equal to 0.

3.1.2.2. FB model estimation and evaluation. ‘‘OpenBUGS” is open-
source software that performs Bayesian inference using the Gibbs
sampling algorithm. Bayesian model estimation and MCMC simu-
lation are performed in the R environment by calling the R package
‘‘R2OpenBUGS.” For each FB model, two Markov chains are used in
MCMC simulations. Each chain has 200,000 iterations and a total of
20,000 iterations are discarded during the burn-in (i.e., warm-up)
period. Bayesian estimation provides posterior probability distri-
butions and Bayesian Credible Intervals (BCI) for statistical infer-
ence. Before implementing the estimation of the posterior
distribution of parameters of interest, convergence must be
checked in the MCMC simulation. As a rule of thumb, Rhat statis-
tics (i.e., scale reduction factor) less than 1.2 (Brooks et al., 1998)
is used to identify convergence. Also, viewing graphical summaries
and the number of effective samplings (i.e., the number of inde-
pendent samples drawn from the posterior distribution in the
MCMC simulation) for the parameters of interest could help to
check the convergence. Deviance Information Criterion (DIC) can
be used to determine the best set of predictors for each FB model
(Spiegelhalter et al., 2002). In general, differences of more than
10 (DIC value) may suggest that the FB model with lower DIC is
preferred (Spiegelhalter et al., 2002). Also, the significance of the
spatial effect is evaluated to determine if the spatial effect exits
in the crash data.

3.1.2.3. FB before-and-after evaluation procedure. In the FB before-
and-after study procedure, Crash Reduction Rate (CRR) is calcu-
lated (Lan et al., 2009; Persaud et al., 2010; Yanmaz-Tuzel &
Ozbay, 2010), as

CRR ¼ 1�
P

all OaP
all la

ð23Þ
P

all
OaP

all
la

is similar to the index of the safety effectiveness used in

the EB method.
The observed number of crashes at a site with treatment during

the after period (Oa) is compared with the expected number of
crashes on the same site (la), which is the number of crashes that
would have occurred if the treatment had not been implemented.
la can be obtained through developing crash prediction models
(i.e., Model 4A, Model 4B, Model 5A, Model 5B, Model 6A, and
Model 6B) in the FB procedure.

P
all la is the summation of la

for all studied intersections on a corridor across studied years for
corridor-specific safety effectiveness calculation or the summation
of for a specific intersection across studied years for intersection-
specific safety effectiveness calculation.
5

CRR is obtained directly by MCMC simulation. The uncertainty
of CRR can be evaluated with a 95% BCI by MCMC simulation.
The significance of CRR can be determined if the 95% BCI does
not contain zero.

3.2. Validation of the before-and-after evaluation methods

This section provides a validation procedure that uses two cri-
teria to validate EB and FB models: (a) the potential bias and vari-
ance of prediction, and (b) the estimation accuracy of safety
effectiveness. In this way, EB and FB models are compared using
the same criteria adopted in this study.

3.2.1. Evaluation of potential bias and variance of prediction
Root Mean Square Error (RMSE) is used to compare the poten-

tial bias and variance of prediction among different models. RMSE
is also used to measure the quality of an estimator and represent
the model prediction error and the model goodness of fit. A lower
value of RMSE indicates a smaller difference between the esti-
mated value and the actual observed crash frequency for non-
ASCS intersections. The equation is shown below:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2N

P
t2T

Eit � Oitð Þ2

NT

vuut
ð24Þ

where, Eit is the expected number of the crashes of non-ASCS inter-
sections in an intersection i in the year t; Oit is the observed crashes
of non-ASCS intersections in an intersectioni in the year t; Nis the
total number of non-ASCS intersections used for validation; T is
the total number of years.

In the EB procedure, the expected number of crashes in the sub-
sequent years for a specific intersection can be estimated by mul-
tiplying a correction factor due to the difference between the
subsequent years and the predecessor year by the expected num-
ber of crashes in the predecessor years. For example, the estimated
crash in 2012 for an intersection can be obtained by multiplying
the correction factor due to the difference between 2011 and
2012 by the expected number of crashes in 2011. Likewise, the
estimated crash frequency in 2013, 2014, 2015, 2016, and 2017
can be predicted in this way. In the FB procedure, the expected
number of crashes for a specific intersection in a given year can
be estimated directly by the MCMC simulation.

3.2.2. Estimation of safety effectiveness of non-ASCS intersections
To evaluate the performance of the candidate models in esti-

mating the safety effectiveness of ASCS, the authors compute and
compare the safety effectiveness of ASCS for non-ASCS intersec-
tions among different models since no ASCS effect exists for the
non-ASCS intersections. So crash reduction percentage for the
non-ASCS intersections (i.e., zero) can be deemed as the ground
truth. In the EB procedure, the null hypothesis is that the crash
reduction percentage is equal to zero, and the alternative hypoth-
esis is that the crash reduction percentage is not equal to zero. In
the FB procedure, the significance of the crash reduction percent-
age is determined if the 95% BCI does not contain zero. To calculate
the crash reduction percentage for the non-ASCS intersections, the
authors assume that 2011–2014 is the ‘‘before period;” 2015–2017
is the ‘‘after period” just for creating a case of evaluating the safety
effects for the non-ASCS intersections for both EB and FB
procedure.

3.3. Investigation of variation of ASCS safety effects

ASCS safety effects could vary across different intersections
with different features. The evaluation results of the safety effec-
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tiveness of ASCS are analyzed based on different AADT groups, geo-
metric features, and speed limits of intersections. The evaluation
results are aggregated by three groups of AADT at major roads:
AADT <= 20,000 vehicles/day, 20,000 vehicles/day < AADT <=
50,000 vehicles/day, and AADT > 50,000 vehicles/day. This group-
ing of AADT is in line with a previous study (Khattak et al.,
2019). The evaluation results are aggregated by two groups based
on the number of legs at an intersection (i.e., three-legged and
four-legged intersections). The evaluation results are aggregated
by six groups based on different speed limits at major roads – 30
mph (13.41 m/s), 35 mph (15.65 m/s), 40 mph (17.88 m/s), 45
mph (20.12 m/s), 50 mph (22.35 m/s), and 55 mph (24.59 m/s). A
linear regression model is developed to explore the linear relation-
ship between the ASCS safety effects and each variable (i.e., AADT
at major or minor roads, speed limits at major or minor roads, the
number of legs at an intersection, the number of exclusive left-turn
lanes/right-turn lanes/through lanes on major or minor roads, or
the number of access points at an intersection) considered in this
study.
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4. Data description

As shown in Table 1, reference crash data (i.e., no ASCS is
installed) are obtained from similar signalized intersections and
corridors (e.g., similar roadway geometrics, the location of proxim-
ity, and same functional class of corridors) without ASCS at differ-
ent locations in South Carolina. Crash data from non-ASCS
corridors including US 78 in Berkeley, the segment of US 17A with-
out ASCS in Berkeley, US 1 in Lexington, SC 6 in Lexington, the seg-
ment of US 29 without ASCS in Greenville, S-311 in Greenville, SC
146 in Greenville, US 17 in Charleston, SC 171 in Charleston, SC 61
in Charleston, and US 17 in Horry are utilized for the reference
crash data. Crash data during before period of ASCS corridors are
also utilized for the reference crash data to increase the sample
size. The sample size of reference crash data is 680 across different
years and different signalized intersections. In the EB procedure,
the reference crash data are used for developing the EB models
first, and then EB models are combined with the crash data from
ASCS corridors to predict EB estimates during after period. Differ-
ent from the utilization of the crash data in the EB procedure, in
the FB procedure, the reference crash data and crash data of ASCS
corridors are used directly in the FB models since the FBmodel pre-
diction and safety effect estimation procedure are conducted in a
single step. The South Carolina Department of Transportation
(SCDOT) has provided the authors with crash data from 2011 to
2018. The crash data include attributes including the crash type
and AADT at intersections (major and minor streets). The following
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Table 1
Crash Data Usage and Resource.

Crash Data Type Crash Data Resource

Reference Crash Data Similar signalized corridors without ASCS (US
78 in Berkeley, the segment of US 17A without
ASCS in Berkeley, US 1 in Lexington, SC 6 in
Lexington, another segment of US 29 without
ASCS in Greenville, S-311 in Greenville, SC 146
in Greenville, US 17 in Charleston, SC 171 in
Charleston, SC 61 in Charleston, and US 17 in
Horry), and ASCS corridors (before period
crash data of SC 642, US 52, US 17, Roper Mt
Rd/Garlington Rd, N Lake Drive, and US 17A)

Crash Data for Validation of
EB and FB Models

Non-ASCS corridor (US 29) with 24
intersections

Crash Data for Safety
Evaluation for ASCS
Corridors

Six ASCS corridors with 65 intersections
(crash data of SC 642, US 52, US 17, Roper Mt
Rd/Garlington Rd, N Lake Drive, and US 17A)

6

roadway geometric features are also collected from Google Earth:
(a) the number of exclusive left-turn lanes, right-turn lanes and
through lanes on major or minor streets, and (b) the number of
access points within the influence area of an intersection. In terms
of crash type, crash data are aggregated in four categories: total
crashes, F + I crashes, rear-end crashes, and angle crashes. In this
paper, intersection crashes are investigated for evaluating the ASCS
safety effect. According to SCDOT’s strategy, intersection crashes
are those that happened within 0.05 miles (80.47 m) of the center
of the intersection.

ASCS has not been installed in the 24 signalized intersections on
US 29 corridor in Greenville, and the corridor could be deemed as a
non-ASCS corridor. The crash data of US 29 corridor from 2011 to
2017 during which ASCS is not implemented are used for validat-
ing EB and FB models.

Initially, the authors got 13 corridors that have installed ASCS.
Original crash data have before period and after period data. The
authors only include corridors that have at least two-year after
period crash data for this study. ASCS safety effects of six ASCS cor-
ridors with a total of 65 signals in South Carolina are evaluated.
Only one type of ASCS is investigated in this study. For this specific
type of ASCS, there are three main components, including the man-
agement system (server), local traffic controller(s), and vehicle
detection. The server is responsible for processing data and calcu-
lating updated timing plans. The local traffic controller is responsi-
ble for gathering detection data, as well as executing the
commands received from the server. The interaction between the
server and the local traffic controller is performed every few sec-
onds to ensure signal timings are always up-to-date. The primary
objective of the algorithm of this type of ASCS is to minimize over-
all traffic delays of the network while guaranteeing reasonable
coordination between intersections. It optimizes the cycle length,
splits, and offsets in real-time based on traffic conditions while it
does not optimize the phase sequence. By handling conflicting traf-
fic movements and establishing dynamic coordination between
intersections in real-time, the ASCS can potentially improve the
safety of signalized intersections and corridors while improving
the operation of corridors.

US 17A in Summerville includes 12 signalized intersections,
which have been installed with ASCS since 2015. SC 642 in Charles-
ton consists of 18 signalized intersections, which have been
installed with ASCS since 2015. US 52 in Charleston consists of
17 signalized intersections equipped with ASCS since 2016. US
17 in Pawleys Island consists of six signalized intersections
equipped with ASCS since 2016. Roper Mt Rd/Garlington Rd in
Greenville includes five signalized intersections with ASCS since
2016. N. Lake Drive in Lexington has been implemented with ASCS
at seven signalized intersections since 2015. The study crash data
pool for safety evaluation excludes crashes that occurred during
the ASCS installation year to minimize evaluation bias caused by
construction before activating ASCS and driver’s adaption to the
new driving environment with ASCS.

In order to properly analyze the crash dataset, the authors col-
lected information from SCDOT regarding whether any other possi-
ble safety improvements, in addition to the ASCS, have been made
at intersections. Flashing Yellow Arrow (FYA) was installed at some
signalized intersections before or after the ASCS was installed. The
authors consider FYA as one of the explanatory variables of the
model. A categorical variable is considered to distinguish the
effects of different numbers of FYA at the intersections on the crash
frequency outcomes. Offset improvements for left-turn lanes,
which have the potential to reduce crashes and crash severity at
signalized intersections, were made on one intersection after the
ASCS was installed. To exclude the effect of such safety improve-
ments, crashes that occurred during the period after offset
improvements were made are not included in the analysis. An
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additional signal phase was added to one signal after the ASCS was
installed, so the crashes that occurred during the period after such
changes were made are not included in the analysis as well.

Table 2 shows a summary of descriptive statistics of the geo-
metric features of intersections and speed limits data. The differ-
ence in the geometric features of intersections and speed limits
between before period and after period is very small.

Table 3 shows descriptive statistics of the intersection crash fre-
quency (i.e., number of crashes per year) for the before and after
period for the ASCS corridors with the maximum number of
crashes and minimum number of crashes, respectively. The crash
frequency statistics show that crashes are over-dispersed (i.e., vari-
ance greater than mean) in the total crash, F + I, rear-end and angle
crash for the ASCS corridors.

5. Validation results of candidate models

This section provides comparison results of the FB and EB mod-
els in terms of: (a) the potential bias and variance of prediction and
(b) the estimation accuracy of safety effectiveness. Based on the
comparison results, this section could guide to select the best
model for evaluating the safety effectiveness of ASCS.

5.1. Comparison of potential bias and variance of prediction

As shown in Table 4, the FB models have lower RMSE values
than that of EB models in all scenarios involving different crash
types and predictors. Lower RMSE values indicate lower potential
bias and variance of prediction.

5.2. Safety effect estimation comparison

As shown in Fig. 1, Model 6A (AADT + Roadway factor + Year)
and Model 6B (AADT + Roadway factor + Year + Spatial effect) have
the best estimation because the mean of the crash reduction per-
centage is quite close to zero (in the ‘‘rectangle” box in Fig. 1). This
finding indicates that adding the year factor as a covariate into the
FB non-spatial model and FB spatial model could improve the accu-
racy of estimation of the safety effectiveness of ASCS. So safety
researchers and practitioners are encouraged to include the year
factor in before-and-after evaluation studies.

The difference in the mean of the crash reduction percentage
between FB non-spatial models and FB spatial models is small.
However, based on the FB spatial model estimation, the spatial
effect is statistically significant, which indicates that the spatial
effects exist. In addition, DIC is compared between FB non-spatial
models and FB spatial models. The difference between the DIC of
spatial and non-spatial models is more than 10 in all types of mod-
els, which indicates that FB spatial models are preferred over the
Table 2
Descriptive Statistics of Intersection Geometric Features and Speed Limits Data.

Variables

Number of legs at intersections
Number of through lanes on major streets
Number of the exclusive right-turn lanes on major streets
Number of the exclusive left-turn lanes on major streets
Number of through lanes on minor streets
Number of the exclusive right-turn lanes on minor streets
Number of the exclusive left-turn lanes on minor streets
Number of access points within the influence area of intersection on major streets
Number of access points within the influence area of intersection on minor streets
Speed limit on major streets (mph)
Speed limit on minor streets (mph)

*S.D.-Standard deviation.

7

FB non-spatial models. So safety researchers and practitioners are
encouraged to include the spatial effects in FB before-and-after
evaluation studies.
6. Safety evaluation results

6.1. Corridor-specific evaluation results

Based on the validation results discussed in Section 5, Model 6B
that includes AADT, roadway, year factor, and spatial effect, per-
forms best among all models. Six ASCS corridors at different loca-
tions in South Carolina are evaluated using Model 6B. Model
parameters are not presented in the paper since model parameters
for each corridor vary, and presenting model variables will be cum-
bersome for the paper. Only significant variables of Model 6B for
the total crash for SC 642 are shown in Table 5. All variables pre-
sented in this table are statistically significant because 95% BCIs
do not include zero. A positive sign of an estimate in Table 5 indi-
cates an increase in the number of crashes, while a negative sign of
an estimate indicates a reduction in the number of crashes. As pre-
sented in Table 5, the variable, the presence of ASCS, is associated
with reductions in the number of crashes at intersections. Other
variables, year factor, the number of exclusive left-turn lanes on
major streets, the number of through lanes/exclusive right-turn
lanes/exclusive left-turn lanes on minor streets, the number of
access points on major roads, and AADT of major roads and minor
roads, are associated with increases in the number of crashes at
intersections. The ‘‘sigma.spatial effect” variable is statistically sig-
nificant, indicating that the spatial effects exist on SC 642 and
could be captured by a spatial model. The ‘‘sigma.random effect”
variable is statistically significant, suggesting that the random
effect could capture the variations in the crash frequency across
intersections and years.

A parameter (the inverse of the square root of the precision
parameter indicated in Eq. (22)) of spatial effect estimation is pre-
sented in Table 6. The spatial effects are statistically significant for
all corridors and crash types since 95% BCIs do not include zero,
which indicates that the spatial effects exist on all corridors and
could be captured by the spatial model.

Positive signs of values in Table 7 indicate crash increases, while
negative signs of values indicate crash reductions. The 95% BCI of
each model is shown in the parentheses in Table 7. The ASCS shows
crash reductions for the majority of corridors for different crash
types.

As shown in Table 7, the highest safety benefits are noted for
angle crash for all corridors except US 17A, possibly because the
primary objective of the algorithm of this type of ASCS is to mini-
mize total traffic delays of the intersection, which considers the
Before Period After Period

Mean S.D.* Min Max Mean S.D.* Min Max

3.82 0.38 3 4 3.8 0.4 3 4
5.37 1.44 2 8 5.29 1.28 2 8
1.2 0.8 0 2 1.16 0.84 0 2
2.28 0.91 0 4 2.22 0.89 0 4
2.16 1.21 0 5 2.14 1.19 0 5
1.02 0.7 0 2 0.87 0.75 0 2
1.81 0.89 0 4 1.89 0.89 0 4
3.03 1.75 0 7 3.27 1.8 0 7
2.38 1.92 0 7 2.39 1.88 0 7

42.64 5 25 55 41.47 5.53 25 55
32.15 4.89 25 50 31.78 4.71 25 50



Table 3
Crash Frequency (Number of Crashes per Year) Statistics for ASCS Corridors.

Crash Types Before period After period

Min Mean Max S.D.* Min Mean Max S.D.*

US 17A 2011–2014 2016–2018
Total Crash 5 19.40 52 12.04 7 29.5 86 17.65
F + I 0 4.67 15 3.33 0 5.97 22 4.58
Rear-end 1 9.96 35 8.13 1 14.06 50 10.50
Angle 0 5.88 18 3.76 2 8.06 20 4.16

Roper Mt Rd/Garlington Rd 2011–2015 2017–2018
Total Crash 0 4.96 23 6.61 0 7.40 28 10.20
F + I 0 0.68 4 1.22 0 0.90 3 1.20
Rear-end 0 3.60 18 4.47 0 5.40 23 7.95
Angle 0 1 8 1.96 0 1.40 7 2.37

*S.D.-Standard deviation.

Table 4
RMSE for EB and FB models.

Model RMSE

Total Crash F + I Rear-end Angle

EB Models Model 1 (AADT + Annual SPF multipliers) 9.91 5.59 7.07 4.49
Model 2 (AADT + Road + Annual SPF multipliers) 9.83 5.59 6.92 4.44
Model 3 (AADT + Road + Year) 9.75 5.54 6.67 4.43

FB Non-spatial Models Model 4A (AADT) 1.23 1.04 1.31 1.09
Model 5A (AADT + Road) 1.26 1.01 1.34 1.09
Model 6A (AADT + Road + Year) 1.15 0.97 1.23 1.01

FB Spatial Models Model 4B (AADT + Spatial effect) 1.24 0.97 1.30 1.03
Model 5B (AADT + Road + Spatial effect) 1.31 0.98 1.34 1.05
Model 6B (AADT + Road + Year + Spatial effect) 1.22 0.91 1.24 0.95

Fig. 1. Crash Change Percentage with 95% CI among EB Models and with 95% BCI among FB Models.
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Table 5
Model estimates for the total crash evaluation for SC 642.

Variable Estimate 95% BCI

The presence of ASCS �0.40 (�0.61,
�0.18)

Year factor 0.12 (0.10, 0.15)
The number of exclusive left-turn lanes on major

streets
0.07 (0.001, 0.13)

The number of through lanes on minor streets 0.08 (0.03, 0.12)
The number of exclusive right-turn lanes on minor

streets
0.22 (0.14, 0.30)

The number of exclusive left-turn lanes on minor
streets

0.28 (0.21, 0.35)

The number of access points on major roads 0.06 (0.04, 0.09)
Log (AADT of major roads) 0.75 (0.63, 0.87)
Log (AADT of minor roads) 0.22 (0.18, 0.26)
Intercept �8.34 (-9.61,

�7.08)
sigma.spatial effecta 0.65 (0.35, 1.06)
sigma.random effectb 0.60 (0.56, 0.64)

a: the inverse of the square root of the precision parameter indicated in Eq. (22).
b: the square root of the variance in Eq. (14).
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traffic demand from side streets. The algorithm of the ASCS poten-
tially decreases the number of angle conflicts.

For rear-end crashes, three corridors (i.e., US 52, N. Lake Drive,
and US 17A) shows ASCS increases in rear-end crashes, possibly
because ASCS deployed on these corridors tends to achieve bal-
anced service for all vehicle movements, thus minimizing number
of stops along corridors (fewer stops may lead to fewer rear-end
crashes) tends to be of lower priority than minimizing delay. In
addition, the side traffic demand is relatively high among these
corridors; thus it may interrupt the major traffic flow.
Table 6
Spatial Effect Estimation for Each Corridor.

Corridor-specific Model Spatial Effect Estimation (95% BCI)

Total Crash F +

SC 642 0.65
(0.35�1.06)

0.3
(0.0

Roper Mt Rd 1.24
(0.15�3.3)

0.6
(0.0

US 17 Pawleys Island 0.28
(0.03�0.92)

0.1
(0.0

US 52 0.31
(0.06�0.71)

0.1
(0.0

N. Lake Drive 0.56
(0.14�1.25)

0.9
(0.1

US 17A 0.33
(0.03�0.84)

0.2
(0.0

Table 7
Corridor-specific Safety Effect Estimation.

Location Crash Change Percentage (95% BCI)

Total Crash F + I

SC 642 �32.2%*
(�45.0%��17.4%)

�16.3%
(�36.7%�

Roper Mt Rd �41.1%*
(�64.9%��8.1%)

�73.7%*
(�88.7%�

US 17 Pawleys Island �49.8%*
(�66.8%��27.2%)

�46.7%*
(�68.2%�

US 52 �4.6%
(�25.7%�20.8%)

+16.2%
(�15.7%�

N. Lake Drive �6.5%
(�31.2%�24.4%)

�26.8%
(�52.1%�

US 17A +19.7%
(�5.7%�19.8%)

�31.8%*
(�49.8%�

*: statistically significant in terms of 95% BCI (FB).
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For US 52, ASCS shows a crash increase in F + I, possibly because
the speed limit difference between major streets and minor streets
at intersections is relatively high (over 14 mph), which leads to
higher crash severity levels.
6.2. Intersection-specific evaluation results

The safety effectiveness of ASCS is also evaluated for each inter-
section. As shown in Fig. 2, a negative value means that ASCS
reduces crashes. The figure shows that most of the intersections
with ASCS show crash reductions for all crash types except the
rear-end crash. The ASCS increases in rear-end crashes, possibly
because ASCS deployed on these intersections tends to achieve bal-
anced service for all vehicle movements, and minimizing the num-
ber of stops at intersections (fewer stops may lead to fewer rear-
end crashes) tends to be of lower priority than minimizing delay.

The evaluation results are aggregated by three groups of AADT
at major roads: AADT less than or equal to 20,000 vehicles/day
(sample size = 14), AADT between 20,000 vehicles/day and
50,000 vehicles/day (sample size = 48), and AADT greater than
50,000 vehicles/day (sample size = 3). This grouping of AADT is in
line with a previous study (Khattak et al., 2019). As shown in
Fig. 3 (b), for F + I cashes, there is a linear relationship between
the crash change due to the ASCS and different AADT groups based
on the regression analysis. Higher AADT decreases ASCS safety
benefits in reducing the F + I crashes. The possible reason could
be that higher traffic volume may be associated with more severe
crashes. As shown in Fig. 3 (a), (c), and (d), for the total crash, rear-
end crash, and angle crash, crash changes due to the ASCS are not
statistically different between different AADT groups based on the
regression analysis.
I Rear-end Angle

0
3�0.89)

0.49
(0.22�0.87)

0.39
(0.09�0.85)

7
3�2.81)

0.59
(0.03�2.21)

4.75
(1.15�15.11)

8
3�0.68)

0.45
(0.05�1.24)

0.18
(0.03�0.67)

2
3�0.36)

0.36
(0.06�0.84)

0.48
(0.13�0.96)

2
9�2.10)

0.27
(0.03�0.81)

0.87
(0.32�1.89)

1
3�0.63)

0.29
(0.03�0.79)

0.45
(0.05�1.01)

Rear-end Angle

8.5%)
�16.7%
(�34.3%�5.1%)

�41.7%*
(�55.8%��24.8%)

�52.6%)
�3.4%
(�45.5%�54.3%)

�92.0%*
(�99.4%��75.3%)

�16.3%)
�39.4%*
(�61.1%��9.8%)

�57.4%*
(�73.3%��35.2%)

55.9%)
+0.4%
(�24.4%�30.5%)

�15.6%
(�37.8%�11.8%)

6.4%)
+3.2%
(�25.8%�39.5%)

�28.0%
(�51.0%�1.8%)

�10.0%)
+17.1%
(�9.7%�49.4%)

+10.8%
(�15.4%�42.8%)



Fig. 2. Percent Change of Crashes due to ASCS at Each Intersection for Different Crash Types.

Fig. 3. Evaluation results aggregated by AADT of major roads *: Group 1 (sample size = 14): AADT <= 20,000 vehicles/day; Group 2 (sample size = 48): 20,000
vehicles/day < AADT <= 50,000 vehicles/day; Group 3 (sample size = 3): AADT > 50,000 vehicles/day.

W. Jin, M. Chowdhury, S. Mahmud Khan et al. Journal of Safety Research xxx (xxxx) xxx

10

JSR 1773 No. of Pages 13, Model 5G

14 December 2020



796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

W. Jin, M. Chowdhury, S. Mahmud Khan et al. Journal of Safety Research xxx (xxxx) xxx

JSR 1773 No. of Pages 13, Model 5G

14 December 2020
The evaluation results are aggregated by two groups based on
the number of legs at an intersection, that is, three-legged (sample
size = 16) and four-legged intersections (sample size = 49). As
shown in Fig. 4 (b), for F + I crashes, the crash reduction due to
the ASCS is more considerable in the four-legged intersection com-
pared to the three-legged intersection and the crash reduction due
to the ASCS is statistically different between the four-legged inter-
section and three-legged intersection based on the regression anal-
ysis. As shown in Fig. 4 (a), (c), and (d), for the total crash, rear-end
crash, and angle crash, crash changes due to the ASCS are not sta-
tistically different between four-legged intersections and three-
legged intersections based on the regression analysis.

Additionally, the evaluation results are aggregated by six groups
based on different speed limits at major roads – 30 mph (13.41 m/
s), 35 mph (15.65 m/s), 40 mph (17.88 m/s), 45 mph (20.12 m/s),
50 mph (22.35 m/s), and 55 mph (24.59 m/s). As shown in Fig. 5
(a) and (c), for the total crash and rear-end crash, there is a linear
relationship between the ASCS safety benefits and different speed
limits based on the regression analysis. The ASCS safety benefit
in reducing the total crash and rear-end crash increases as the
speed limit increases. As shown in Fig. 5 (b), the ASCS safety benefit
in lowering F + I crashes decreases as the speed limit increases
based on the regression analysis. It is expected that the higher
average speed may be associated with higher severe crashes. As
shown in Fig. 5 (d), for the angle crash, it is found that there is
no linear relationship between the crash change due to the ASCS
and different speed limits based on the regression analysis.

A linear regression model is developed to explore the linear
relationship between the ASCS safety effects and each continuous
variable (i.e., the number of exclusive left-turn lanes/right-turn
lanes/through lanes on major or minor streets, or the number of
access points at an intersection) considered in this study. Based
on our analysis, for F + I crashes, as the number of through lanes
on major streets increases, the ASCS safety benefit decreases. More
number of through lanes on major streets are associated with
Fig. 4. Evaluation results aggregated by

11
higher traffic volume, so the ASCS safety benefit decreases with
the increasing traffic volume. For the total crash, rear-end crash,
and the angle crash, there is no linear relationship between the
safety effectiveness of the ASCS and the number of through lanes
on major streets. For the F + I crashes, as the number of access
points on minor streets increases, the ASCS safety benefit
increases. The possible reason could be that the average speed of
the traffic is lower due to the interruption of traffic from/to the
access points, so the severe crashes are reduced. For the total crash,
rear-end crash, and the angle crash, there is no linear relationship
between the safety effectiveness of the ASCS and the number of
access points on minor streets.

For all crash types (i.e., total crash, F + I, rear-end crash, and
angle crash) considered in this paper, based on the regression anal-
ysis, there is no linear relationship between the safety effective-
ness of ASCS and AADT of minor roads, the number of the
exclusive right-turn lanes on major streets, the number of the
exclusive left-turn lanes on major streets, the number of through
lanes at minor streets, the number of the exclusive right-turn lanes
on minor streets, the number of the exclusive left-turn lanes on
minor streets, the number of access points on major streets, and
the speed limit at minor streets.
7. Conclusions

This paper develops a series of models, including the Poisson-
Lognormal models, Poisson-Gamma models, and spatial models
that are implemented in the EB and FB before-and-after studies.
Different EB and FB models are validated using real-world non-
ASCS intersections. The uniqueness of this paper is that it investi-
gates how model variations would affect: (a) potential bias (e.g.,
bias due to regression-to-the-mean, traffic volume changes, and
roadway geometric feature changes) and variance of prediction
and (b) estimation accuracy of safety effectiveness. The findings
would provide useful guidance for determining appropriate mod-
number of legs at an intersection.
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els for before-and-after safety studies. The FB model that accounts
for traffic volume, roadway geometric features, year factor, and
spatial effects shows the best performance in reducing potential
bias and variance of prediction and improving the accuracy of
safety effect estimation.

This paper then applies the best FB model to the safety evalua-
tion of ASCS and evaluates the safety effectiveness of ASCS at six
corridors with a total of 65 signalized intersections. ASCS shows
crash reductions for most of corridors and intersections. It is also
found that the safety effectiveness of ASCS varies across the inter-
sections with different features (i.e., AADT at major streets, number
of legs at an intersection, the number of through lanes on major
streets, the number of access points on minor streets, and the
speed limit at major streets).

Although this paper discusses different explanatory variables
such as AADT, roadway geometric features, and year factor, other
possible explanatory variables such as weather conditions, socio-
economic factors may be accounted for in developing the crash
prediction model. Gaussian CAR distribution is used in the spatial
model. However, other distributions of spatial models, such as
double exponential distribution and multivariable Gaussian distri-
bution, could be implemented in the spatial model. The effect of
neighboring weight matrix structures, such as distance-based
weights and exponential decay-based weights on spatial models,
may be evaluated in future work.
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8. Practical applications

The association between ASCS and crash reductions encourages
more ASCS deployments. The variation of the safety effectiveness
of ASCS with different intersection features provides insights into
selecting ASCS deployment sites for reducing crashes.
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