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Abstract. Understanding how neural structure varies across individuals
is critical for characterizing the effects of disease, learning, and aging on
the brain. However, disentangling the different factors that give rise to
individual variability is still an outstanding challenge. In this paper, we
introduce a deep generative modeling approach to find different modes of
variation across many individuals. Our approach starts with training a
variational autoencoder on a collection of auto-fluorescence images from
a little over 1,700 mouse brains at 25 micron resolution. We then tap
into the learned factors and validate the model’s expressiveness, via a
novel bi-directional technique that makes structured perturbations to
both, the high-dimensional inputs of the network, as well as the low-
dimensional latent variables in its bottleneck. Our results demonstrate
that through coupling generative modeling frameworks with structured
perturbations, it is possible to probe the latent space of the generative
model to provide insights into the representations of brain structure
formed in deep networks.

Keywords: variational autoencoder - interpretable deep learning - brain
architecture and neuroanatomy.

1 Introduction

Understanding how disease, learning, or aging impact the structure of the brain
is made difficult by the fact that neural structure varies across individuals [15,6].
Thus, there is a need for better ways to model individual variability that provide
accurate detection of structural changes when they occur. Traditional approaches
for modeling variability [6,5] require extensive domain knowledge to produce
handcrafted features e.g., volumetric covariance descriptors over pre-specified
regions of interest (ROIs) [20,14]. However, in high-resolution datasets where
micron-scale anatomical features can be resolved, it is unclear i) which features
best describe changes of interest across many brains, and ii) how to extract
these features directly from images. Thus, unsupervised data-driven solutions for
discovering variability across many brains are critical moving forward.
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In this work, we introduce a deep learning model and strategy for interpreting
population-level variability in high-resolution neuroimaging data (Figure 1). Our
model is a regularized variant of the variational autoencoder (VAE) called the
B-VAE [8,3], and consists of an encoder and a decoder which work together to
first distill complex images into a low dimensional latent space and next, expand
this low-dimensional representation to generate high resolution images. Therefore,
to gain insight into what the complete model has learned from the data, we
take a bi-directional approach to characterizing how latent components are both,
impacted by perturbations to specific regions in the input, via the encoder, and
consequently impact specific regions of the generated output, via the decoder.
Our work provides new strategies for understanding how different brain regions
are mapped to latent variables within the network, an important step towards
building an interpretable deep learning model that gives insight into how changes
in different brain regions may contribute to population-level differences.

We applied this method to a collection of roughly 1,700 mouse brain images at
25 micron resolution from different individuals in the Allen Mouse Connectivity
Atlas. By tuning the regularization strength in the 5-VAE, we found that it is
possible to both generate plausible brain imagery, as well as denoise images in the
dataset that are corrupted by a number of artifacts. Our investigation into the
latent space of this model also revealed a number of interesting findings; First,
we found that information contained within the latent space is often asymmetric,
with artifacts and noise being stored in one direction and biologically meaningful
variance observed across many individuals in a separate direction within the same
latent factor. Second, we found that multiple latent factors appear to generate
outputs that vary within specific brain areas and thus have localized impact on
generated outputs. Our results demonstrate that the proposed approach can be
used to systematically find latent factors that are tuned to specific ROIs, and that
generative modeling approaches can be used to reveal informative components of
individual variability.

The contributions of this paper include: (i) the creation and specification
of a -VAE that can model high-resolution structural brain images, (ii) a bi-
directional approach for revealing relationships between brain regions and latent
factors in a deep generative network, and (iii) demonstration that structured
perturbations to both image inputs and the latent space can reveal biologically
meaningful variability.!

2 Methods

2.1 Model details

Low-dimensional models are used throughout machine learning to represent
complex data with only a small set of latent variables. In deep learning, a
bottleneck, i.e., layer with small width inside the neural network, often enforces a
low-dimensional modeling of data. The VAE couples an autoencoder architecture

! Code and visualization can be found at: https://nerdslab.github.io/brainsynth/
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Fig. 1: Visualization of our bi-directional approach for analyzing variational autoencoders
trained to generate brain imagery. On the left, we show a specific ROI being manipulated
in a collection of input images (A1) and how this perturbation might result in a distinct
shift in the latent representations (A2) formed from these inputs. On the right, we show
the reverse process, where we perturb the latent space (B1) and observe the generated
output images (B2).

[9,18] with a variational objective, thus providing a probabilistic view towards
the generation of new high-dimensional data samples [10,17]. Much like regular
autoencoders, VAEs embed information from the image space X into a latent
space Z with latent dimension L via an encoder, and transform elements from
the latent space into those in the image space via a decoder. The relationship
between the encoder, decoder, and latent space can be written as:

Encoder : ¢(z|x)p(x) — p(z), Decoder : ¢(x|z)p(z) — ¢(X), (1)

where p(x) denotes our dataset’s distribution over the high-dimensional image
space, q(z|x) and ¢(x|z) are, respectively, the distribution of the estimated encoder
and estimated decoder, and p(z) is the assumed prior on latent variables?.

To train a good encoder (0) and decoder (¢), the VAE aims to maximize the
following objective:

L(0, d;x,2) = Eq, (1) [l0g po (x|2)] — 8Dk 1(g0(2[x)[|p(2)). (2)

The first term measures the likelihood of the reconstructed samples and the second
term measures the KL-divergence between the estimated posterior distribution

2 For simplicity, the prior is typically assumed to be Gaussian, z ~ N (0, I).
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g4(z|x) and the assumed prior distribution. When § = 1, the model simplifies
to a vanilla-VAE, whereas when ( is a free parameter, the resulting model is
referred to as the 5-VAE [8]. Increasing the value of 5 encourages a certain degree
of clustering, whereas lowering it encourages dispersion of similar elements in
the latent space. Thus, by tuning 5 correctly, the model can learn to disentangle
latent factors [8,3].

In our experiments, we used a S-VAE with a deep convolutional structure
mimicking the DC-GAN architecture [16] (Figure 1). Our encoder had seven
convolutional layers followed by three fully connected layers and used the ReL.LU
activation function throughout. The same structure was mirrored for the decoder.
The learning rate and batch size were set to 2e-4 and 64 respectively, resulting in
a training time of roughly 4 hours on an Nvidia Titan RTX. After performing a
grid search (8 =1—20, L =4 — 20), we selected L = 8 and = 3 as our model
hyper-parameters since they exhibited performance that was relatively stable
(i.e., these parameters produced an inflection point in evaluation metrics). The
vanilla VAE’s performance also exhibits an inflection point at the same latent
dimension, which further confirmed that this choice holds for different amounts
of regularization. In contrast, PCA continues to decrease its approximation error
with higher dimensions; however, high-variance artifacts and other sources of
noise are very quickly incorporated into the model when the bottleneck size
increases beyond 30 dimensions.

2.2 Bi-directional latent space analysis

As images in our dataset are spatially aligned to an atlas, understanding how
different regions of the pixel space are mapped to latent variables within the
network can be a critical first step in building an interpretable model that
gives insight into how different brain regions may contribute to population-level
differences. To do this, we present a bi-directional approach to investigate the
interaction between the image space and the S-VAE’s latent space (see Figure
1). By understanding how the encoder and decoder work together to represent
spatial changes in the data, we can build a more informed look into how brain
structure can be modeled effectively within deep networks [11,21].

In one direction, we can map a latent variable’s receptive field (left, Figure 1),
i.e. which pixels in the input space impact each latent factor’s activations. If
changing the content of a region of the input image does not impact a specific
unit, then the manipulated region is not in the unit’s receptive field. To model
this perturbation, let X = xg + wpy denote the perturbed input image, where xq
is the original image, py is a region specific (spatially localized ROI) perturbation,
and w is the perturbation weight. By designing these perturbations to examine
the responses of the units to changes in specific brain regions of interest, we can
study the regional specificity of different units.

In the other direction, we can map a latent variable’s projective field (right,
Figure 1), or the parts of space that a latent variable affects when a new image
is generated. To make this precise, let vi be a canonical basis vector with a one
in the k' entry and zeros otherwise, ¢ denote the interpolation weight, and zg
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Fig. 2: Evaluation of image synthesis and denoising performance. (A) The left half of
the image shows the average brain template and on the the right, we display simplified
annotations for different regions of interest, including somatosensory cortex (SSp),
hippocampal formation (HPF), striatum (STR), and parts of the thalamus (TH). (B)
Examples of corrupted images with physical sectioning and grid-like artifacts along
the top row. Below, we display the reconstructions obtained using a S-VAE, VAE, and
PCA. The CW-SSIM and PCA-based FD scores for all three models are compared in
(C) and (D), respectively.

be the distribution mean. To generate an output image, we will first define the
latent representation as z = zg + cvg, and then pass this representation through
the decoder to generate an image. We can use this synthesis approach to estimate
the spatial extent of each factor’s projective field by producing outputs across a
range of different interpolation weights and then computing the variance of each
pixel in the generated images.

3 Results

3.1 Dataset and pre-processing

To build a generative model of brain structure, we utilized registered images from
1,723 individuals within the Allen Institute for Brain Science’s (AIBS) Mouse
Connectivity Atlas [13].5 The connectivity atlas consists of 3D image volumes
acquired using serial 2-photon tomography (STP) collected from whole mouse
brains (0.35 pm x 0.35 pm x 100 pm resolution, 1TB per experiment). Rather
than using the fluorescence signal obtained from the viral tracing experiments
(green channel), we obtained the auto-fluorescence signal acquired from each of

5 The MCA is accessible through the Allen Institute’s Python-based SDK [1] (http:

//connectivity.brain-map.org/)
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the injected brains (red channel), which captures brain structure and information
about overall cell density and axonal projection patterns. Our models were trained
on 2D coronal sections extracted from near the middle of the brain (slice 286 out
of 528) in each of the individuals in our dataset. This particular coronal slice was
selected because it reveals key brain areas, including the hippocampus (HPF),
regions of thalamus (TH), and parts of striatum (STR) (Figure 2A). The images
were then downsampled from 0.35 microns to 25 microns, and centre-cropped to
produce an image of size 320 x 448. In order to mitigate the effects of leakage of
fluoresence signal, we pre-processed the data by adjusting each image’s overall
brightness to the dataset’s average brightness and then set high intensity pixels
3.8 times over the average to this maximum value.

3.2 Evaluations and comparisons

To evaluate the image generation capability of our 8-VAE model, we compared
its performance with a vanilla-VAE and PCA. We first sought to examine each
model by seeing how it performed when supplied with images containing three
different types of artifacts: (i) corrupted bright areas due to leakage from the
fluorescence signal’s green channel, (ii) physical sectioning artifacts (missing
data), and (iii) grid artifacts from scanning (Figure 2B, Supp. Materials S1). In
these and other examples, we found that the 5-VAE did the best job of removing
artifacts from data while still preserving relevant biological variance. The ability
of the 8-VAE to reject artifacts is particularly pronounced in the case of classes
(i, ii), where both PCA and VAE fail to reject the signal leaking into the channel
of interest and cannot recover missing data. We observe that the 5-VAE tends
to learn a more accurate distribution over the dataset, while the vanilla-VAE
overfits to the noise, and PCA does not deviate much from the mean in terms of
its structural details.

To quantify the quality of images generated by the different models, we
computed two metrics used to evaluate generative model outputs viz. the complex
wavelet structural similarity (CW-SSIM) [19] (Supp. Material Sec. 1.1), and the
PCA-based Frechet distance (PCA-FD) [7,12] (Supp. Material Sec. 1.2). When
studying these metrics for different bottleneck sizes, we found that both for the
B-VAE and the vanilla-VAE, latent dimensions in the range L = 8 — 10 produced
stable performance (where scores plateau) before decreasing in accuracy. Analysis
of the CW-SSIM scores along with visual inspection of the generated images,
revealed that PCA is unable to capture high-dimensional textural details for low
dimensions and quickly begins to represents artifacts and noise when the size of
the latent space is increased. The PCA-FD scores, on the other hand, suggest
that both VAE models capture more variability across the data and better match
the overall global distribution of population-level variance. However, the S-VAE
appears to successfully capture variability without reconstructing artifacts due
to the explicit regularization that we utilized in training. These results provide
initial evidence that regularization, in this case with a S-VAE model, is helpful
for striking a balance between denoising, representing fine scale structures, and
capturing the data’s global distributional properties.
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3.3 Interpreting the latent factors

After confirming that our model can generate high quality images and denoise
data, we next explored its interpretability with the bi-directional analysis method
described in Section 2.2 (Figure 1). We first examined the projective field of
each latent factor. In this case, our goal was to produce three heatmaps to
reveal which parts of the image space are impacted by changing a specific latent
factor with either a (i) a small negative, (ii) small positive, or (iii) a large
interpolation weight. Sorting the interpolations in this way allows us to generate
three images that can be stacked into different channels of a color image to
visualize the impact of all three types of perturbations on the image domain
jointly (Figure 3A). Upon further inspection of the images that resulted from
this analysis (Supp. Material S4), we observed that localized noise artifacts (type
i) were synthesized at the extrema of the interpolation space. Interestingly, we
observed asymmetries in the representations: Type (i) artifacts, while not usually
recovered by the decoder, were more likely recapitulated when moving far into
the space of negative interpolation weights (Supp. Material S4). In contrast,
small interpolation weights appeared to highlight biologically meaningful variance
that aligns with key ROIs including the barrel fields of somatosensory cortex,
hippocampus, and retrosplenial areas in cortex. These results provide initial
evidence that VAE models can be used to decompose biological variability in
complex data, even in the presence of different types of noise and artifacts.

We next asked whether we could understand properties about each unit’s
receptive field. To do so, we selected a set of high-quality images without obvious
artifacts, applied masks to remove all content from different ROIs, and then
modulated their intensity with perturbation weights w. We fed these perturbed
images into the encoder (Supp. Material S2), computed the latent representations,
and fit a Gaussian to the resulting latent codes across all image examples (n = 832)
(Figure 3C, Supp. Materials S3). The results of this perturbation analysis revealed
multiple units that are strongly modulated by changes in some brain regions but
not others, and that exhibit localized receptive fields. We found that perturbations
to the hippocampus (HPF) impacted almost all of the latent variables, and
striatum also has wide reaching impacts. This seems to align with the fact that
variability in these areas is more complex and thus it is necessary to encode this
variance over multiple factors.

The impact of perturbing a specific ROI on a latent factor could be further
quantified by computing the KL-divergence between the activation distributions
for two extreme perturbations (strong negative or positive scaling of missing
data in ROI). We computed this impact score for all 6 brain ROIs and all 8
latent factors in the trained network (displayed as a 6x8 matrix in Figure 3B,
further visualized in Figure 3C). This matrix quantifies the impact that missing
information from a ROI has on activations in each latent variable in the model.
One interesting result from our analysis is that, in some cases, the receptive
field and projective field may not be spatially aligned (see Factor 8, HPF). Our
results reveal that receptive and projective fields can be asymmetric, and thus it
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Fig. 3: Model interpretation. (A) A visualization of how changing a latent factor impacts
the generated output images. Here, cyan and magenta represent the pixel level variance
in images generated from interpolation weights in the quartile above and below average,
respectively, and yellow represents pixels that vary with high interpolation weights.
For all factors, the interpolation weight is varied from [—7,7] with a step size of 0.005.
(B) For each ROI, we compute the KL-divergence between each factor’s response to
extreme ROI specific perturbations (blue is low impact, yellow is high impact). (C)
We show how perturbing the image brightness in HPF region impacts the activation
distribution for two factors (F1, F5). (D) The covariance of the impact matrix in (B)
measures the similarity between how different latent variables impact specific ROIs.
(E) The disentanglement score for PCA, the VAE, and 8-VAE provide a measure of
how uncorrelated factors are in terms of their impact on specific brain regions.

is critical to map input-output relationships from the image space to the latent
space and back again.

To quantify the separability or disentanglement of a model’s latent space
relative to known brain structures, we examined whether regional perturbations
impact different factors in unique ways. We thus computed the covariance between
each latent factor’s impact scores to reveal their similarity and defined the
disentanglement score s as a measure of how far this matrix is from diagonal,
where s = Tr(A)/(3_;; Aij —Tr(A)) and A denotes the covariance matrix of
interest. A comparison between the S-VAE, VAE, and PCA in terms of their
scores revealed that the S-VAE achieved the best disentanglement among three
models (Figure 3E). This provides evidence that the 5-VAE model can capture
variance across a few key brain areas while also providing good separation across
different latent factors. In contrast, the vanilla-VAE appears to have factors
with much lower disentanglement. PCA on the other hand, provides better
disentanglement due to its orthogonality constraints but still doesn’t separate
brain areas as well as the S-VAE model.
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4 Discussion

This work presents a novel data-driven approach for learning population-level
differences across high-resolution microscopy images collected from many individ-
uals. Our key contribution is a new method for interpreting factors that drive
variance in a deep generative model for brain image synthesis.

In our current study, we used a S-VAE model because of its simplicity and
flexibility; however, there are other interpretable VAE variants that have been
proposed to facilitate disentanglement [3,21,4] that we could apply our approach
to. As our interpretability approach is quite general, one could also potentially
use it to visualize and interpret latent representations and/or biomarkers found
in other instances of representation learning in neuroscience [2] and medical
imaging [15]. Moving forward, interpretability approaches that can probe and
model collective responses across many units will be important for revealing
complex interactions between features, as well as inspiring new approaches for
modeling variability in large high-dimensional datasets.
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