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Abstract
In many machine learning applications, it is necessary to meaningfully aggregate,
through alignment, different but related datasets. Optimal transport (OT)-based
approaches pose alignment as a divergence minimization problem: the aim is to
transform a source dataset to match a target dataset using the Wasserstein distance
as a divergence measure under alignment constraints. We introduce a hierarchical
formulation of OT which leverages clustered structure in data to improve alignment
in noisy, ambiguous, or multimodal settings. To solve this numerically, we propose
a distributed ADMM algorithm that exploits the Sinkhorn distance, thus it has an
efficient computational complexity that scales quadratically with the size of the
largest cluster. When the transformation between two datasets is unitary, we provide
performance guarantees that describe when and how well cluster correspondences
can be recovered with our formulation, and then describe the worst-case dataset
geometry for such a strategy. We apply this method to synthetic datasets that
model data as mixtures of low-rank Gaussians and study the impact that different
geometric properties of the data have on alignment. Next, we applied our approach
to a neural decoding application where the goal is to predict movement directions
and instantaneous velocities from populations of neurons in the macaque primary
motor cortex. Our results demonstrate that when clustered structure exists in
datasets, and is consistent across trials or time points, a hierarchical alignment
strategy that leverages such structure can provide significant improvements in
cross-domain alignment.

1 Introduction
In many machine learning applications, it is necessary to meaningfully aggregate, through alignment,
different but related datasets (e.g., data across time points or under different conditions or contexts).
Alignment is an important problem at the heart of transfer learning [1, 2], point set registration [3, 4, 5],
and shape analysis [6, 7, 8], but is generally NP hard. In recent years, distribution alignment methods
that use optimal transport (OT) to quantify similarity between two distributions have increased in
popularity due to their attractive mathematical properties and impressive performance in a variety of
tasks [9, 10]. However, using OT to solve unsupervised distribution alignment problems that must
simultaneously match two datasets’ distributions (using OT) while also learning a transformation
between their latent spaces, is extremely challenging, especially when the data has complicated
multi-modal structure. Leveraging additional structure in the problem is thus necessary to regularize
OT and constrain the solution space.

Here, we leverage the fact that heterogeneous datasets often admit clustered or multi-subspace struc-
ture to improve OT-based distribution alignment. Our solution to this problem is to simultaneously
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estimate the cluster alignment across two datasets using their local geometry, while also solving a
global alignment problem to meld these local estimates. While it is advantageous to regularize the OT
problem with known cluster pairings [10, 11], we are instead concerned with the substantially harder
unsupervised setting where such information is missing. We introduce a hierarchical formulation of
OT for clustered and multi-subspace datasets called Hierarchical Wasserstein Alignment (HiWA)3.

We empirically show that when data are well approximated with Gaussian mixture models (GMMs)
or lie on a union of subspaces, we may leverage existing clustering pipelines (e.g., sparse subspace
clustering [12] [13]) to improve alignment. When the transformation between datasets is unitary,
we provide analyses that reveal key geometric and sampling insights, as well as perturbation and
failure mode analyses. To solve the problem numerically, we propose an efficient distributed ADMM
algorithm that also exploits the Sinkhorn distance, thus benefiting from efficient computational
complexity that scales quadratically with the size of the largest cluster.

To test and benchmark our approach, we applied it to synthetic data generated from mixtures of
low-rank Gaussians and studied the impact of different geometric properties of the data on alignment
to confirm the predictions of our theoretical analysis. Next, we applied our approach to a neural
decoding application where the goal is to predict movement directions from populations of neurons
in the macaque primary motor cortex. Our results demonstrate that when clustered structure exists
in neural datasets and is consistent across trials or time points, a hierarchical alignment strategy
that leverages such structure can provide significant improvements in unsupervised decoding from
ambiguous (symmetric) movement patterns. This suggests OT can be applied to a wider range of
neural datasets, and shows that a hierarchical strategy avoids local minima encountered by a global
alignment strategy that ignores clustered structure.

2 Background and related work
Transfer learning and distribution alignment. A fundamental goal in transfer learning is to
aggregate related datasets by learning a mapping between them. We wish to learn a transformation
T 2 T , where T refers to some class of transformations that aligns distributions under a notion of
probability divergence D(·|·) between a target distribution µ and a reference (source) distribution ⌫:

min

T2T

D(T (µ)|⌫). (1)

Various probability divergences have been proposed in the literature, such as Euclidean least-squares
(when data ordering is known) [14, 15, 16], Kullback-Leibler (KL) [17], maximum mean discrepancy
(MMD) [18, 19, 20, 21], and the Wasserstein distance [10], where trade-offs are often statistical
(e.g., consistency, sample complexity) versus computational. Alignment problems are ill-posed since
the space of T is large, so a priori structure is often necessary to constrain T based on geometric
assumptions. Compact manifolds like the Grassmann or Stiefel [22, 23] are primary choices when
little information is present, as they preserve isometry. Non-isometric transformations, though richer,
demand much more structure (e.g., manifold or graph structure) [24, 25, 26, 27, 10].

Low-rank and union of subspaces models. Principal components analysis (PCA), one of the most
popular methods in data science, assumes a low-rank model where the top-k principal components of
a dataset provide the optimal rank-k approximation under an Euclidean loss. This has been extended
to robust (sparse errors) settings [12], and multi- (union of) subspaces settings where data can be
partitioned into disjoint subsets where each subset of data is locally low-rank [28]. Transfer learning
methods based on subspace alignment [29, 30, 31] work well with zero-mean unimodal datasets, but
struggle on more complicated modalities (e.g., Gaussian mixtures or union of subspaces) due to a
mixing of covariances. Related to our work, [32] performs multi-subspace alignment by greedily
assigning correspondences between subspaces using chordal distances; this however discards valuable
information about a distribution’s shape.

Optimal transport. Optimal transport (OT) [33] is a natural type of divergence for registration
problems because it accounts for the underlying geometry of the space. In Euclidean settings, OT
gives rise to a metric known as the Wasserstein distanceW(µ, ⌫) which measures the minimum effort
required to “displace” points across measures µ and ⌫ (understood here as empirical point clouds).
Therefore, OT relieves the need for kernel estimation to create an overlapping support of the measures

3MATLAB code can be found at https://github.com/siplab-gt/hiwa-matlab. Neural datasets and Python code
are provided at http://nerdslab.github.io/neuralign
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µ, ⌫. Despite this attractive property, it has both a poor numerical complexity of O(n3

log n) (where
n is the sample size) and a dimension-dependent sample complexity of O(n�1/d

), where the data
dimension is d [34, 35]. Recently, an entropically regularized version of OT known as the Sinkhorn
distance [36] has emerged as a compelling divergence measure; it not only inherits OT’s geometric
properties but also has superior computational and sample complexities of O(n2

) and O(n�1/2

)

4,
respectively. It has also become a versatile building block in domain adaptation [10, 38]. Prior art
[10] has largely exploited the OT’s push-forward as the alignment map since this map minimizes
the OT cost between the source and target distributions while allowing a priori structure to be easily
incorporated (e.g., to preserve label/graphical integrity). Such an approach, however, is fundamentally
expensive when d ⌧ n since the primary optimization variable is a large transport coupling (i.e.,
Rn⇥n), while in reality the alignment mapping is merely Rd 7! Rd. Moreover, it assumes that the
source and target distributions are close in terms of their squared Euclidean distance (i.e., an identity
transformation), but this does not generally hold between arbitrary latent spaces.

Hierarchical OT and related work. The idea of learning an affine or unitary transformation to align
datasets with an OT-based divergence has previously been studied in [39, 40, 41], a problem known
as OT Procrustes. However, these methods don’t use problem-specific or clustered structure in data.
Hierarchical OT is a recent generalization of OT [42, 43, 44] that is an effective and efficient way of
injecting structure into OT but it has never been used to jointly solve alignment problems – our work
represents a first attempt at doing so. Thus, a key contribution of this paper is putting both of these
two ingredients together to develop a scalable strategy that leverages multimodal structure in data
solve the OT Procrustes problem.

3 Hierarchical Wasserstein alignment
Preliminaries and notation. Consider clustered datasets {X

i

2 RD⇥n

x,i}S
i=1

and {Y
j

2
RD⇥n

y,j}S
j=1

whose clusters are denoted with the indices i, j and whose columns are treated
as RD embedding coordinates. The number of samples in the i-th (j-th) cluster of dataset X
(dataset Y ) is given by n

x,i

(n
y,j

). We express the empirical measures of clusters X
i

and Y

j

as
µ
i

:=

1

n

x,i

P
n

x,i

k=1

�
X

i

(k)

and ⌫
j

:=

1

n

y,j

P
n

y,j

l=1

�
Y

j

(l)

, respectively, where �
x

refers to a point mass
located at coordinate x 2 RD. The squared 2-Wasserstein distance between µ

i

and ⌫
j

is defined as

W2

2

(µ
i

, ⌫
j

) := min

Q2U(n

x,i

,n

y,j

)

n

x,iX

k=1

n

y,jX

l=1

Q(k, l) kX
i

(k)� Y

j

(l)k2
2

where Q is a doubly stochastic matrix that encodes point-wise correspondences (i.e., the (k, l)-th
entry describes the flow of mass between �

X

i

(k)

and �
Y

j

(l)

), X
i

(k) is the k-th column of matrix
X

i

, and the constraint U(m,n) := {Q 2 Rm⇥n

+

: Q

n

=

m

/m,Q>

m

=

n

/n} refers to the
uniform transport polytope (with

m

a lengthm vector containing ones). We will use k·k to denote
the operator norm,X† to denote the pseudo-inverse ofX , and I

d

to denote the d⇥ d identity matrix.

Overview. Although unsupervised alignment is challenging due to the presence of local minima, the
imposition of additional structure will help to prune them away. Our key insight is that hierarchical
structure decomposes a complicated optimization surface into simpler ones that are less prone to
local minima. We formulate a hierarchical Wasserstein approach to align datasets with known (or
estimated) clusters {µ

i

}S
i=1

, {⌫
j

}S
j=1

but whose correspondences are unknown. The task therefore is
to jointly learn the alignment T and the cluster-correspondences:

min

P2B

S

,T2T

SX

i=1

SX

j=1

P
ij

W2

2

(T (µ
i

), ⌫
j

), (2)

where the matrix P encodes the strength of correspondences between clusters, with a large P
ij

value
indicating a correspondence between clusters i, j, and a small value indicating a lack thereof. We
note that B

S

:= U(S, S) is a special type of transport polytope known as the S-th Birkhoff polytope.
Interestingly, this becomes a nested (or block) OT formulation, where correspondences are resolved
at two levels: the outer level resolves cluster-correspondences (via P ) while the inner level resolves
point-wise correspondences between cluster points (via the Wasserstein distance).

Alignment over the Stiefel manifold. Assuming clusters lie on subspaces and principal angles
between subspaces are “well preserved” across X and Y (we make this precise in Theorem 4.2), an

4Dependent on a regularization parameter [37].
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isometric transformation suffices. Hence, we solve (2) with T  V
D,D

, the Stiefel manifold which
is defined as V

k,d

:= {R 2 Rk⇥d

: R

>

R = I

d

}. Explicitly, we can re-formulate equation (2) as:

min

P ,R,{Q

ij

}

X

i,j

P
ij

C
ij

(R,Q
ij

) s.t. P 2 B
S

, R 2 V
D,D

, Q

ij

2 U(n
x,i

, n
y,j

), (3)

where C
ij

(R,Q
ij

) :=

1

D

X

k,l

Q

ij

(k, l) kRX

i

(k)� Y

j

(l)k2
2

(4)

measures pairwise cluster divergences using the squared 2-Wasserstein distance under a Stiefel
transformationR acting on the ith cluster.

Finally, we include entropic regularization over transportation couplings P and allQ
ij

’s to modify
the Wasserstein distances to Sinkhorn distances, so as to take advantage of its superior computational
and sample complexities. Omitting constraints for brevity, our final problem is given as

min

P ,R,{Q

ij

}

X

i,j

⇣
P
ij

C
ij

(R,Q
ij

) +H
�2(Qij

)

⌘
+H

�1(P ), (5)

where �
1

, �
2

> 0 are the entropic regularization parameters and the negative entropy function is
defined as H

�

(P ) := �
P

i,j

P
ij

logP
ij

. Parameters �
1

, �
2

control the correspondence entropy,
therefore (5) approximates (3) when �

1

, �
2

> 0, but reverts to the original problem (3) as �
1

, �
2

! 0.

Distributed ADMM approach. Problem (5) is non-convex due to multilinearity in the objective
and its Stiefel manifold domain. Although alternating directions method of multipliers (ADMM) is a
convergent convex solver framework [45, 46], it is being applied in increasingly many non-convex
settings [47]. Since (5) readily admits a splitting structure that separates the individual C

ij

blocks,
we develop a distributed ADMM approach. We proceed to split (5) as follows:

min

P ,

e
R,{R

ij

,Q

ij

}

X

i,j

⇣
P
ij

C
ij

(R

ij

,Q
ij

) +H
�2(Qij

)

⌘
+H

�1(P ) s.t. R

ij

=

e
R, 8i, j,

noting that the set constraints are omitted for brevity. The augmented Lagrangian is given by

L
µ

=

X

i,j

⇣
P
ij

C
ij

(R

ij

,Q
ij

) + h µ
D
⇤

ij

,R
ij

�Ri+ µ

2D
kR

ij

� e
Rk2

F

+H
�2(Qij

)

⌘
+H

�1(P ),

where µ > 0 is the ADMM parameter and {⇤
ij

} are Lagrange multipliers. Full details of the
update steps are included in the Supplementary Material. The algorithm may be summarized in
two steps (Alg. 1): (i) a distributed step that asks all cluster pairs to individually find their optimal
transformations R

ij

in parallel, and (ii) a consensus step that aggregates all the locally estimated
transformations according to a weighting that is proportional to correspondence strengths P

ij

.

Parameters. Entropic parameters �
1

, �
2

relax the one-to-one cluster correspondence assumption,
balancing a trade off between alignment precision (small �) and sample complexity (large �).
Numerically, negative entropy adds strong convexity to the program, reducing sensitivity towards
perturbations at the cost of a slower convergence rate. The ADMM parameter µ controls the ‘strength’
of the consensus, or from an algorithmic viewpoint, the gradient step size.

Distributed consensus. Update steps forQ
ij

,R
ij

,L
ij

can be performed in parallel over all cluster
pairs (S2 in total), making it amenable for a distributed implementation. The runtime complexity of
this algorithm is presented in the supplementary Materials.

Robustness against initial conditions. We intentionally build robustness against initial conditions
by ordering updates for R

ij

and Q

ij

before P such that when µ is sufficiently small, the ADMM
sequence is influenced more by the data than by initial conditions.

4 Theoretical guarantees for cluster-based alignment
While the previous section explains how to align clustered datasets, in this section, we aim to answer
the question of when and how well they can be aligned. We provide necessary conditions for cluster-
based alignability as well as alignment perturbation bounds according to equation (3)’s formulation.
To simplify our analysis, we make the following assumptions: (i) each of the clusters contain the
same number of datapoints n, (ii) the ground truth cluster correspondences are P ?

= I

S

/S (i.e.,
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Algorithm 1 Hierarchical Wasserstein Alignment (HiWA) Algorithm
1: procedure HIERARCHICALWASSERSTEINALIGNMENT(�

1

, �
2

, µ, {X
i

}S
i=1

, {Y
j

}S
j=1

)
2: R  random V

D,D

, P  
S

>

S

/S2, ⇤
ij

 0, 8i, j . Initialization
3: while not converged do
4: for all i, j in parallel do
5: Q

ij

 
n

x,i

>

n

y,j

/n
x,i

n
y,j

6: while not converged do
7: R

ij

 STIEFELALIGNMENT(2P
ij

Y

j

Q

>

ij

X

>

i

+ µ(R�⇤
ij

))

8: Q

ij

 SINKHORN(�
2

/P
ij

,C(k, l)  1

D

kR
ij

X

i

(k)� Y

j

(l)k2
2

)

9: end while
10: end for
11: P  SINKHORN(�

1

,C(i, j)  C
ij

(R

ij

,Q
ij

))

12: R  STIEFELALIGNMENT(
P

i,j

R

ij

+⇤
ij

)

13: ⇤
ij

 ⇤
ij

+R

ij

�R, 8i, j
14: end while
15: end procedure

1: procedure SINKHORN(�,C 2 Rm⇥n)
2: K  exp(�C/�), v  n

n

3: while not converged do
4: u  m

m

↵Kv

5: v  n

n

↵K

>

u

6: end while
7: P  diag(u)K diag(v)

8: end procedure

1: procedure STIEFELALIGNMENT(A)
2: (U ,⌃,V )  SVD(A)

3: R  UV

>

4: end procedure

Notation:
↵: elementwise division
exp(·): elementwise exponential
diag(·): diagonal matrix of argument

diagonal containing 1/S). However, this analysis can be extended to the case where the number of
points is unequal without loss of generality. Detailed proofs are given in the Supp. Material.

The following result is a criterion that, if met, ensures the existence of a global minimizer of the
cluster-correspondenceP ?. This criterion requires that matched clusters must be closer in Wasserstein
distance than mismatched clusters, according to a threshold determined by Wasserstein’s sample
complexity (i.e., an asymptotic rate dependent on the clusters’ sample sizes and intrinsic dimensions).
Since these sample complexity results are based on the Wasserstein distance, we expect a less stringent
criterion when using the Sinkhorn distance in (5) (due to superior sample complexity [37]).
Theorem 4.1 (Correspondence disambiguity criterion). Let all clusters be strictly low-rank where the
dimension of the i-th cluster in the x-th dataset is d

x,i

. Let d
x,i

, d
y,j

> 4, 8i, j 2 JSK. Define bC?

ij

:=

min

R2V

D,D

,Q

ij

2B

n

C
ij

(R,Q
ij

). Problem (3) yields the solution P

?

= I

S

/S with probability at
least 1� � if, 8i, j : i 6= j, the following criterion is satisfied:

bC?

ij

+

bC?

ji

� bC?

ii

� bC?

jj

> B
x,i

(�) +B
y,i

(�) +B
x,j

(�) +B
y,j

(�)

where B
z,k

(�) := c
z,k

n
�

2
d

z,k

+

p
log(1/�)/2n, c

z,k

= 1458

⇣
2 +

1

3

d

z,k

/2�2 � 1

⌘
.

Proof sketch. The proof contains two parts. In the first part, we consider perturbation conditions of
the cost matrix C in a (non-variational) optimal transport program over the Birkhoff polytope. To
be unperturbed from P

?

= I

S

/S, we require that C
ij

+ C
ji

� C
ii

� C
jj

> 0, 8i, j : i 6= j. In the
second part, we extend this condition to the the finite-sample regime by utilizing recently developed
concentration bounds [35] for the p-Wasserstein distance, which essentially raises the disambiguity
lower bound due to finite-sample uncertainty. (Supp. Material, Section 2)

Now, even if we know the global correspondence P

?, we still do not have the full picture about
the alignment’s quality. For example, all matching clusters may have very similar covariances, but
principal angles between the clusters are “distorted” across the datasets. Our next theorem gives us
an upper bound on the alignment error (for unitary transformations), and makes precise the notion of
global structure distortion.
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Theorem 4.2 (Cluster-based alignment perturbation bounds). Consider data matrices {X
i

,Y
i

2
RD⇥n}c

i=1

with known point-wise correspondence matrices {Q
ii

2 B
n

}c
i=1

. Define matrices

X := [X

1

Q

11

,X
2

Q

22

, . . . ,X
c

Q

cc

], Y := [Y

1

,Y
2

, . . . ,Y
c

].

Set "2 :=

��
Y

>

Y �X

>

X

��
F

. If the criterion stated in theorem 4.1 is satisfied,X is full row rank,
and "kX†k  1

p

2

(kXk kX†k)�1/2, then

min

P2B

c

,R2V

D,D

X

i,j

P
ij

C
ij

(R)  (kXk kX†k+ 2)

2kX†k2"4 +D,

where D =

P
c

i=1

tr(X

i

(I/n�Q

ii

Q

>

ii

)X

>

i

+ (1/n� 1)Y

i

Y

>

i

) is a data-dependent constant.

Proof sketch. We utilize a recent perturbation result on the Procrustes problem (on a Frobenius
norm objective) by Arias-Castro et al. [48] and adapt it to our squared 2-Wasserstein objective.
(Supp. Material, Section 3)

Note that " plays a major role in the alignment error bound and quantifies the notion of global structure
distortion, which allows us to understand on how phenomena like covariate shift or misclustering
impacts alignment. To shed some light in this regard, we consider a simple analysis on a cluster-
pair’s error contribution to ", denoted as "

ij

. Consider the decomposition of the (i, j)-th block of
the Gramians related to clusters i and j, where their respective singular value decompositions are
X

i

Q

ii

= A

i

⌃
x,i

V

> and Y

j

= B

j

⌃
y,j

V

>. Defining the blockwise error between clusters i, j as

"
ij

:=

��
Y

>

i

Y

j

�Q

>

ij

X

>

i

X

j

Q

jj

��
F

=

��⌃
y,i

B

>

i

B

j

⌃
y,j

�⌃
x,i

A

>

i

A

j

⌃
x,j

��
F

,

two components stand out: (i) angular shift, which is characterized by differences in principal angles
betweenB>

i

B

j

and A

>

i

A

j

, and (ii) spectral shift, which is characterized by differences in spectra.

Finally, we show that the subspace configuration of a dataset’s clusters can also affect alignment.
Pretend for a moment that external alignment information were present to aid in the disambiguation
between two clusters. The following lemma tells us when such information is useless (Proof in
Supp. Material, Section 4).
Lemma 4.3 (Uninformative alignment). Consider clustersX

i

,Y
j

2 RD⇥n and known point-wise
correspondences Q

ij

2 U(n, n). Denote the left and right singular vectors of Y
j

Q

>

ij

X

>

i

associated
with the non-zero singular values as ˜

U , ˜V 2 RD⇥r with r  D. Define the set of orthogonal
transformations that are constrained to agree with known angular directions as

T (U

0,V 0

) := {R 2 RD⇥D

+

: R

>

R = I,RV

0

= U

0},

where U 0,V 0 2 V
D,r

with r  D. Given U 0,V 0 2 RD⇥r

0
with r0  D, we have

min

R2T (U

0
,V

0
)

C
ij

(R) � min

R2V

D,D

C
ij

(R), (6)

with equality holding when h ˜U ,U 0i = h ˜V ,V 0i.

Direct consequences of this lemma are the following: When a dataset has equally-spaced subspaces,
it has a maximally uninformative geometric configuration since angular information from other
clusters (i.e., U 0,V 0) can never increase the inter-cluster distance C

ij

(i.e., equality in (6) always
holds); it is hence a worst-case scenario for alignment. This also explains why alignment in very
high-dimensional space is harder: All subspaces may be orthogonal to each other, and hence offer no
“geometric” advantage.

5 Numerical experiments
5.1 Synthetic low-rank Gaussian mixture dataset
In this section, we validate our method as well as demonstrate its limiting characteristics under
symmetric-subspace and finite-sample regimes. To generate our synthetic data, we repeat the
following procedure for each of the S clusters. We first randomly generate Gaussian distribution
parameters µ

i

2 Rd,⌃
i

2 Rd

: ⌃

i

⌫ 0 (positive semi-definite), then randomly sample n data-points
from these parameters, and finally project them into a random subspace V

i

2 RD⇥d in a D > d
dimensional embedding. In these experiments, we assume that the clusters are known, but the
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Figure 1: Synthetic experiments. HiWA was tested in two subspace configurations (a,b): randomly-spaced
(average-case, solid) versus equally-spaced (worst-case, dashed) for S = 5, d = 2, D = 6, n = {25, 100},
where S is the number of clusters, d the dimension of each cluster, D is the embedding dimension, and n is the
sample size. As we expect, performance in terms of the (a) alignment and (b) correspondence error is better
in the average (vs. worst) case. In (c,d), we report (c) alignment and (d) correspondence errors as d and n
varies, and report the error’s 25th/50th/75th percentiles. In (e,f), we show ablation results (50 trials, no random
restarts permitted) for semi-supervised HiWA (known clusters), completely unsupervised HiWA-SSC (unknown
clusters), non-structured Wasserstein alignment (WA), subspace alignment methods (SA [29], CORAL [31]),
and iterative closest point (ICP) [49] for n = 50, d = 2, and (e) S = 5,D = 6, and (f) S = 2,D = 2.

cluster-correspondence across datasets is unknown. We measure performance with respect to two
metrics: (i) alignment error, defined as the relative difference between the recovered versus true
rotation acting on the data k b
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Xk2
F

, and (ii) correpondence error, defined as the
sum of absolute differences between the recovered and the true correspondences

P
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| bP � P
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To understand how global geometry impacts alignment, we applied HiWA in two different settings
(Figure 1a-b): (i) a worst-case setting where subspaces are equally spaced with a subspace similarity
of kV >

i

V

j

k = 1, 8i 6= j, and (ii) the random setting where subspaces are randomly selected from
the Grassmann manifold. We observe that equally-spaced subspaces have significantly inferior
performance when compared to randomly-spaced subspaces, providing some evidence that equally
spaced subspaces are indeed the worst-case scenario in alignment, as suggested by Lemma 4.3.

Next, we studied the effect of dimensions d and sample size n on the accuracy of alignment (Figure 1
(c-d)). We tested HiWA across various dataset conditions by varying parameters d = {2, 3, 4, 5} and
n = {12, 25, 50, 100, 200} while approximately maintaining the average subspace correlations (i.e.,
EkV >

i

V

j

k) by fixing the cluster size S = 5 and tuning D to control the subspace spacing. In both
cases, sample complexities are better than the theoretical rate of O(n�1/d

), which is likely due to the
Sinkhorn distance’s superior sample complexity. In Figure 1e-f, we conduct an ablation study and
evaluate our algorithm against benchmark methods in transfer learning and point set registration in
two settings: a simple one in low-d (e) and a harder one in higher-d (f). Specifically, we compare
HiWA when clusters are known (but pairwise correspondences are unknown), HiWA with clustering
via sparse subspace clustering [12] (HiWA-SSC) to represent completely unsupervised alignment,
a Wasserstein alignment variant with no cluster-structure (WA) which is akin to OT Procrustes
[50, 39, 40, 41], subspace alignment [29], correlation alignment [31], and iterative closest point (ICP)
[49]. HiWA exhibits strongest performance, with HiWA-SSC trailing closely behind (since clusters
are independently resolved), followed by WA, then other algorithms. Subspace alignment methods
have remarkably poor performance in higher dimensions due to their inability to resolve subspace
sign ambiguities, while ICP demonstrates its notorious dependence on good initial conditions. These
results indicates HiWA’s strong robustness against initial conditions and good scaling properties.

5.2 Neural population decoding example
Decoding intent (e.g., where you want to move your arm) or evoked responses (e.g., what you are
looking at or listening to) directly from neural activity is a widely studied problem in neuroscience,
and the first step in the design of a brain machine interface (BMI). A critical challenge with BMIs
is that neural decoders need to be recalibrated (or re-trained) due to drift in neural responses or
electrophysiology measurements/readouts [51]. A recent method for semi-supervised brain decoding
finds a transformation between projected neural responses and movements by solving a KL-divergence
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Figure 2: Results on neural decoding dataset: How distribution alignment is used to translate neural activity
into movement – low-dimensional embeddings of neural data are aligned with target movement patterns (a). In
(b), we compare the performance (cluster correspondence) of HiWA, WA, and DAD as the number of points in
the source dataset decreases. Next, we compared the performance of HiWA with known and estimated clusters
(via GMM). Movement patterns in which cluster separability is high and the geometry is preserved across
datasets, can be aligned in both cases (green stars). Patterns where separability is low but geometry is useful can
be aligned when the cluster arrangements are known are denoted with yellow stars.

minimization problem [52]. Using this approach, one could build robust decoders that work across
days and shifts in neural responses through alignment.

We test the utility of hierarchical alignment for neural decoding on datasets collected from the arm
region of primary motor cortex of a non-human primate (NHP) during a center out reaching task [52].
After spike sorting and binning the data, we applied factor analysis to reduce the data dimensionality
to 3D (source distribution) and applied HiWA to align the neural data to a 3D movement distribution
(target distribution) (Figure 2). We compared its performance to (procrustes) Wasserstein alignment
(WA) without hierarchical structure, and a baseline brute force search method called distribution
alignment decoding (DAD) [52]. We examined the prediction accuracy of the target reach direction
for the motor decoding task (i.e., the cluster classification accuracy).

Next, we examined the impact of the sampling density (Figure 2b) on alignment performance. Our
results demonstrate that HiWA continues to produce consistent cluster correspondences (> 70%
accuracy), even as the number of samples per cluster drops to 8. In comparison, DAD is competitive
at larger sample sizes but its performance rapidly drops off as sampling density decreases because it
requires estimating a distribution from samples. WA suffers from the presence of many local minima
and fails to find the correct cluster correspondences. Our results suggest that HiWA consistently
provides stable solutions, outperforming competitor methods for this application.

Finally, to study the impact of local and global geometry on whether an unlabeled source and target
can be aligned, we applied HiWA to permutations of eight subsets of reach directions (movement
patterns). When just two reach directions are considered (Figure 2c, Columns 1-4), global geometry
becomes useless in determining the correct rotation. In this case, we observe that HiWA is only
capable of consistent alignment when cluster asymmetries are sufficiently extreme in both the source
and target. When three reach directions are considered (Figure 2c, Columns 5-8), the global geometry
can be used, yet there still exist symmetrical cases where recovering the correct rotation is difficult
without adequate local asymmetries or some supervised (labeled) data to match clusters. These results
suggest that hierarchical structure can be critical in resolving ambiguities in alignment of globally
symmetric movement distributions.

6 Conclusion
This paper introduces a new method for hierarchical alignment with Wasserstein distances, provided
an efficient numerical solution with analytical guarantees. We tested our method and compared
its performance against other methods on a synthetic mixture model dataset and on a real neural
decoding dataset. Future directions include extensions to non-rigid transformations, and applications
to higher dimensional neural datasets that do not rely on external measured behavioral covariates.

8



Acknowledgments
JL was supported by DSO National Laboratories of Singapore, ED and MD were supported by
NSF grant IIS-1755871, and CR was supported by NSF grant CCF-1409422 and CAREER award
CCF-1350954.

References
[1] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge and

Data Engineering, 22(10):1345–1359, 2009.

[2] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of Big
data, 3(1):9, 2016.

[3] Haili Chui and Anand Rangarajan. A new point matching algorithm for non-rigid registration. Computer
Vision and Image Understanding, 89(2-3):114–141, 2003.

[4] Andriy Myronenko and Xubo Song. Point set registration: Coherent point drift. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(12):2262–2275, 2010.

[5] Gary KL Tam, Zhi-Quan Cheng, Yu-Kun Lai, Frank C Langbein, Yonghuai Liu, David Marshall, Ralph R
Martin, Xian-Fang Sun, and Paul L Rosin. Registration of 3d point clouds and meshes: a survey from rigid
to nonrigid. IEEE Transactions on Visualization and Computer Graphics, 19(7):1199–1217, 2013.

[6] Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel. Generalized multidimensional scaling:
a framework for isometry-invariant partial surface matching. Proceedings of the National Academy of
Sciences, 103(5):1168–1172, 2006.

[7] Alexander M Bronstein, Michael M Bronstein, Leonidas J Guibas, and Maks Ovsjanikov. Shape google:
Geometric words and expressions for invariant shape retrieval. ACM Transactions on Graphics (TOG),
30(1):1, 2011.

[8] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. Functional
maps: a flexible representation of maps between shapes. ACM Transactions on Graphics, 31(4):30, 2012.

[9] Gabriel Peyré and Marco Cuturi. Computational optimal transport. Foundations and Trends in Machine
Learning, 11(5-6):355–607, 2019.

[10] Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for domain
adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(9):1853–1865, 2017.

[11] Debasmit Das and CS George Lee. Unsupervised domain adaptation using regularized hyper-graph
matching. In 2018 25th IEEE International Conference on Image Processing (ICIP), pages 3758–3762.
IEEE, 2018.

[12] Ehsan Elhamifar and Rene Vidal. Sparse subspace clustering: Algorithm, theory, and applications. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(11):2765–2781, 2013.

[13] Eva L Dyer, Aswin C Sankaranarayanan, and Richard G Baraniuk. Greedy feature selection for subspace
clustering. The Journal of Machine Learning Research, 14(1):2487–2517, 2013.

[14] Xiaoxiao Shi, Qi Liu, Wei Fan, S Yu Philip, and Ruixin Zhu. Transfer learning on heterogenous feature
spaces via spectral transformation. In Data Mining (ICDM), 2010 IEEE 10th International Conference on,
pages 1049–1054. IEEE, 2010.

[15] Sumit Shekhar, Vishal M Patel, Hien V Nguyen, and Rama Chellappa. Generalized domain-adaptive
dictionaries. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
361–368, 2013.

[16] Yahong Han, Fei Wu, Dacheng Tao, Jian Shao, Yueting Zhuang, and Jianmin Jiang. Sparse unsupervised
dimensionality reduction for multiple view data. IEEE Transactions on Circuits and Systems for Video
Technology, 22(10):1485, 2012.

[17] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul V Buenau, and Motoaki Kawanabe. Direct
importance estimation with model selection and its application to covariate shift adaptation. In Advances
in Neural Information Processing Systems, pages 1433–1440, 2008.

[18] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation via transfer
component analysis. IEEE Transactions on Neural Networks, 22(2):199–210, 2011.

9



[19] Mahsa Baktashmotlagh, Mehrtash T Harandi, Brian C Lovell, and Mathieu Salzmann. Unsupervised
domain adaptation by domain invariant projection. In Proceedings of the IEEE International Conference
on Computer Vision, pages 769–776, 2013.

[20] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S Yu. Transfer joint matching
for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1410–1417, 2014.

[21] Mingming Gong, Kun Zhang, Tongliang Liu, Dacheng Tao, Clark Glymour, and Bernhard Schölkopf.
Domain adaptation with conditional transferable components. In Proceedings of the 33rd International
Conference on Machine Learning, pages 2839–2848, 2016.

[22] Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for object recognition: An
unsupervised approach. In IEEE International Conference on Computer Vision, pages 999–1006. IEEE,
2011.

[23] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised domain
adaptation. In IEEE Conference on Computer Vision and Pattern Recognition, pages 2066–2073. IEEE,
2012.

[24] Chang Wang and Sridhar Mahadevan. Manifold alignment using procrustes analysis. In Proceedings of
the 25th International Conference on Machine learning, pages 1120–1127. ACM, 2008.

[25] Chang Wang and Sridhar Mahadevan. A general framework for manifold alignment. In 2009 AAAI Fall
Symposium Series, 2009.

[26] Sira Ferradans, Nicolas Papadakis, Gabriel Peyré, and Jean-François Aujol. Regularized discrete optimal
transport. SIAM Journal on Imaging Sciences, 7(3):1853–1882, 2014.

[27] Zhen Cui, Hong Chang, Shiguang Shan, and Xilin Chen. Generalized unsupervised manifold alignment.
In Advances in Neural Information Processing Systems, pages 2429–2437, 2014.

[28] Yonina C Eldar and Moshe Mishali. Robust recovery of signals from a structured union of subspaces.
IEEE Transactions on Information Theory, 55(11):5302–5316, 2009.

[29] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Unsupervised visual domain
adaptation using subspace alignment. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2960–2967, 2013.

[30] Baochen Sun and Kate Saenko. Subspace distribution alignment for unsupervised domain adaptation. In
BMVC, volume 4, pages 24–1, 2015.

[31] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation. In Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

[32] Kowshik Thopalli, Rushil Anirudh, Jayaraman J Thiagarajan, and Pavan Turaga. Multiple subspace
alignment improves domain adaptation. arXiv preprint arXiv:1811.04491, 2018.

[33] Leonid Vitalevich Kantorovich. On a problem of monge. Journal of Mathematical Sciences, 133(4):1383–
1383, 2006.

[34] Richard M Dudley. The speed of mean glivenko-cantelli convergence. The Annals of Mathematical
Statistics, 40(1):40–50, 1969.

[35] Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence of empirical
measures in wasserstein distance. arXiv preprint arXiv:1707.00087, 2017.

[36] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural
Information Processing Systems, pages 2292–2300, 2013.

[37] Aude Genevay, Lénaic Chizat, Francis Bach, Marco Cuturi, and Gabriel Peyré. Sample complexity of
sinkhorn divergences. arXiv preprint arXiv:1810.02733, 2018.

[38] Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distribution optimal
transportation for domain adaptation. In Advances in Neural Information Processing Systems, pages
3730–3739, 2017.

[39] Meng Zhang, Yang Liu, Huanbo Luan, and Maosong Sun. Earth mover’s distance minimization for
unsupervised bilingual lexicon induction. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 1934–1945, 2017.

10



[40] David Alvarez-Melis, Stefanie Jegelka, and Tommi S Jaakkola. Towards optimal transport with global
invariances. arXiv preprint arXiv:1806.09277, 2018.

[41] Edouard Grave, Armand Joulin, and Quentin Berthet. Unsupervised alignment of embeddings with
wasserstein procrustes. arXiv preprint arXiv:1805.11222, 2018.

[42] Mikhail Yurochkin, Sebastian Claici, Edward Chien, Farzaneh Mirzazadeh, and Justin Solomon. Hierarchi-
cal optimal transport for document representation. arXiv preprint arXiv:1906.10827, 2019.

[43] Bernhard Schmitzer and Christoph Schnörr. A hierarchical approach to optimal transport. In International
Conference on Scale Space and Variational Methods in Computer Vision, pages 452–464. Springer, 2013.

[44] David Alvarez-Melis, Tommi S Jaakkola, and Stefanie Jegelka. Structured optimal transport. arXiv preprint
arXiv:1712.06199, 2017.

[45] Jonathan Eckstein and Dimitri P Bertsekas. On the douglas—rachford splitting method and the proximal
point algorithm for maximal monotone operators. Mathematical Programming, 55(1-3):293–318, 1992.

[46] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine
Learning, 3(1):1–122, 2011.

[47] Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of admm in nonconvex nonsmooth optimiza-
tion. Journal of Scientific Computing, 78(1):29–63, 2019.

[48] Ery Arias-Castro, Adel Javanmard, and Bruno Pelletier. Perturbation bounds for procrustes, classical
scaling, and trilateration, with applications to manifold learning. arXiv preprint arXiv:1810.09569, 2018.

[49] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor Fusion IV: Control
Paradigms and Data Structures, volume 1611, pages 586–607. International Society for Optics and
Photonics, 1992.

[50] Anand Rangarajan, Haili Chui, and Fred L Bookstein. The softassign procrustes matching algorithm. In
Biennial International Conference on Information Processing in Medical Imaging, pages 29–42. Springer,
1997.

[51] Chethan Pandarinath, K Cora Ames, Abigail A Russo, Ali Farshchian, Lee E Miller, Eva L Dyer, and
Jonathan C Kao. Latent factors and dynamics in motor cortex and their application to brain–machine
interfaces. Journal of Neuroscience, 38(44):9390–9401, 2018.

[52] Eva L Dyer, Mohammad Gheshlaghi Azar, Matthew G Perich, Hugo L Fernandes, Stephanie Naufel,
Lee E Miller, and Konrad P Körding. A cryptography-based approach for movement decoding. Nature
Biomedical Engineering, 1(12):967, 2017.

11


