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Neural datasets are increasing rapidly in both resolution and
volume. In neuroanatomy, this trend has been accelerated by
innovations in imaging technology. As full datasets are
impractical and unnecessary for many applications, it is
important to identify abstractions that distill useful features of
neural structure, organization, and anatomy. In this review
article, we discuss several such abstractions and highlight
recent algorithmic advances in working with these models.

In particular, we discuss the use of generative models in
neuroanatomy; such models may be considered ‘meta-
abstractions’ that capture distributions over other abstractions.
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Introduction

As the scale of neuroanatomy data has grown, algorithms
and abstractions have been developed to distill high-
dimensional data into usable forms. Such approaches
have allowed us to address questions such as: What is
the density of synapses in a specific region of the brain?
What is the connectivity between an area of interest and
the rest of the brain? What is the best way to divide a brain
area into subregions? As the number of data points grows
yet further, however, it is possible to ask a different kind
of question about variation across different samples or
different individuals. These questions can be thought of
as ‘how’ instead of ‘what’: How does neuroprotective
treatment alter the density of synapses? How does learn-
ing affect the sparseness of connections in a network?

Check for
updates

How does the modularity of brain networks vary across
subjects?

The goal of this article is to discuss how generative
approaches in machine learning can be used to address
such questions in large-scale neuroanatomy. A generative
model captures the variability between samples in a data-
set, or between entire datasets, by generating artificial
examples with similar statistics to the real data. For
example, a generative modeling approach can be used
to sketch artificial neurons that are structurally similar to
genuine ones, or to simulate a connectome for which
the network properties match those observed from
microscope data. Generally, the model itself incorporates
randomness in order to simulate the true probability
distribution over data. A perfect generative model
would parameterize the underlying data distribution
exactly, allowing the entire dataset to be recreated
algorithmically.

We start by describing three main classes of abstractions
widely used in neuroanatomy: counts or densities to model
the spatial distribution of discrete objects like cells or
synapses, connectomes to model the connectivity between
either cells or brain areas, and modular or hierarchical
models that describe how data are organized into groups.
We then describe generative models that are matched to
these various abstractions. For example, Poisson models
can generate count data of objects such as cells or
synapses [1], stochastic block models can be used to
build graphs [2°°], and hidden Markov models can be
used to generate the dendritic trees of neurons [3]. In
each case, we describe both the algorithmic approach
and the conclusions that can be drawn from these
abstractions.

After providing an overview of generative models that are
built on top of these popular abstractions, we outline
generative models that are not built upon any lower-level
abstraction. Instead, models such as generative adversar-
ial networks (GANSs) [4°°,5] and variational autoencoders
(VAEs) [[4°°,5]] can generate very high-dimensional data,
including entire images. Such models can be used to
analyze the sources of variability in observed images
[7], to augment observed data, or to interpolate between
different imaging modalities [8°].

Abstractions
In this section, we highlight key classes of abstractions
used in neuroanatomy and describe approaches to
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estimate these models from high-dimensional and com-
plex brain data (see Figure 1). Each of these abstractions
can be considered in terms of first, what data sources it is
commonly derived from, second, what questions it can be
used to answer, third, what information it retains and what
it discards from the full-dimensional data, and fourth,
algorithms used to derive the abstraction.

Counts and densities

In neuroanatomy, quantification of brain structure often
starts by counting cells, synapses, spines, or other objects
in the brain. Counts, or the number of discrete objects in a
interval/bin of fixed size, provide the data necessary to
compute density estimates from many samples. A large
body of work in neuroanatomy involves modeling

o Example data sources: Cellular densities can be resolved
in Nissl-stained or DAPI-stained brain images [12] and
retinal datasets (Figure 1a) [13], as well as X-ray
microCT [14]. Synapses can be resolved in electron
microscopy (EM) [15,16] and array tomography [17]
datasets. Individual mRNAs can now be resolved in
brain tissue with spatial transcriptomics (mFISH) [18],
multiplexed error-correcting FISH (merFISH) [19],
and expansion microscopy-based FISH [20].

o Type of conclusion drawn: The spatial distribution and
patterns of discrete objects like cells or synapses. Micro
and macroscale architecture can also be detected by
analyzing spatial patterns in the data. Counts can also
be used to track changes to the nervous system in
development [21], disease [22], or aging [23].
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Abstractions and generative models for neuroanatomy. (1) Counts & DisTriBUTIONS: From left to right, we show a (left) retinal dataset before and
after cell detection [9], (middle) a depiction of how count data can be represented as a density function, and (right) a Poisson model for generating
new count data. (2) ConnecTomes: From left to right, we show (left) an electron microscope image of a thin slice of cortical brain tissue before and
after dense segmentation to build a connectome, (middle) a depiction of a connectome as a graph, and (right) an example of the random
overlapping communities model for sparse graphs with three communities displayed as different colors [10]. (3) MobuLAR AND HIERARCHICAL
RePReseNTATIONS: From left to right, we show (left) a light microscope image with a biocytin filled neuron in two views before and after tracing (from
the Allen Institute for Brain Science’s Cell Types Atlas [11]), (middle) a hierarchical representation of a dendrite, and (right) example neuronal
morphologies generated after an iterative sampling procedure [3], where the iteration number is displayed over each generated morphology.
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not modeled. In some cases, each count can also be
associated with additional metadata or ‘marks’ like the
object’s size.

o Algorithms used to create abstraction: Segmentation and
density-based methods have been developed to quan-
tify the spatial organization and distributions of cells
[14,24] (Figure 1c), synapses [25-28], neuronal arbors
[29], organelles [30], and spines [31].

Connectomes

Graphs are some of the most widely used abstractions for
neuroanatomical data. They are typically used to convey
observed physical connectivity between individual
neurons or neuronal assemblages. Such graphs are com-
monly referred to as ‘structural’ connectomes (in contra-
distinction to ‘functional’ connectomes, which capture
correlations between observed activity of neurons). At
the micro-scale, cellular connectomes have nodes for
neurons and (weighted) edges for synapses. In meso-
scale or macro-scale connectomes, nodes represent local
or global brain areas, while edges represent projections
between the areas. Such graphs are also referred to as
‘projectomes’.

o FExample data sources: At the microscale, connectomes can
be extracted from EM [16] (Figure 1) and expansion
microscopy (ExM) [32] datasets. Projectome mapping
methods have made use of viral tracing methods and
whole-brain serial two-photon microscopy (STP) and
MOST [33,34°°,35,36] to reveal long-range connections.
Projectome data has also been obtained from humans
using magnetic resonance imaging (MRI) [37-40],
mainly through the use of diffusion tensor imaging,.

o Type of conclusion drawn: Connectomes and projectomes
can be used to understand learning and plasticity, as
well as constrain models of neural information
processing.

o [nformation included: 'The connectivity between neu-
rons or brain areas is included in these models. In some
cases, the strength of connections can also be estimated
and included to produce a weighted graph. The spatial
position of each node is often excluded in a graphical
representation of the data.

o Algorithms used to create abstraction: There has been exten-
sive recent work on automatic labeling of EM and ExM
images to segment neurons [41-44,45°46° 47-49] and
synapses [26,50]. On the computational side, Majka e a/.
[51] demonstrate tools for coregistering projectomes to
create a common map of primate (marmoset) cortex,
while other algorithms have been developed to infer
higher resolution completions of partial connectivity
data [52,53].

Modular and hierarchical models

Finally, we consider modular and hierarchical abstrac-
tions which divide data into groups based upon which
examples/segments have similar characteristics. One

example is representing a large brain volume as a collec-
tion of brain regions, modules, or spatially defined regions
of interest [54,55°°]. This principle can be iterated by
expressing data examples in terms of a hierarchical model,
where discrete groups are divided into subgroups at many
scales. For example, the morphology of a neuron can be
described with a hierarchical format, with a coarse divi-
sion into soma, axon, and dendrite which is further broken
down into individual branches.

o Kxample data sources: Serial two-photon and fMOS'T for
whole-brain imaging have been used to obtain parcel-
lations of the brain [34°°]. Morphological reconstruc-
tions for modeling the components of neurons can be
extracted from light microscopy datasets [56].

o Type of conclusion drawn: The high-level organization of
the data and which parts of the signal are similar and
thus belong to the same group. A hierarchical format for
data can be advantageous in representing similarities in
data across multiple spatial or evolutionary divisions/
scales.

o [nformation included: Modular representations group the
structure of many nearby segments of a neuron (parts)
or nearby parts of a brain region into one bulk class.
The membership of data to a class is preserved and
perhaps the average (centroid) of the class is also
maintained. Hierarchical models further provide infor-
mation about the distance between different groups as
relative to their multi-scale dependencies.

o Algorithms used to create abstraction: 'T'o obtain an infor-
mative parcellation and simplification of the data, clus-
tering algorithms [57°] such as #-means and spectral
clustering methods [58] can be used to group spatial
loci that have similar statistics in terms of their mea-
sured anatomical signal. Semi-automated approaches
have recently been shown to provide new insights into
structurally and functionally distinct areas in whole
human brains with multi-modal measurements [59°°].

Generative models for abstractions

In this section, we describe different generative models
that are built on top of the previously discussed abstrac-
tions. Each generative model represents a design choice
about what features of the true data are most important to
capture, based upon the questions under consideration.

Generative models for count-valued data

A generative model for count-valued data (i.e. how many
objects are in a region of interest) creates a synthetic
dataset where objects are placed across space according to
the underlying statistics of real data. Which statistics are
important represent a design choice. For example, a
model might be designed so that the density functions
of real and synthetic data match or so as to preserve
nearest-neighbor properties of the counts (e.g. the Ripley
k-function [60]).
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The simplest generative model used for count-valued
data is a Poisson process. Here, we assume that the
number of objects observed in a bin/interval is a Pois-
son-distributed random variable with mean given by an
intensity (density) function, and where the numbers of
objects in different bins are conditionally independent.
T'hus, given the potentially spatially varying intensity of
the process, samples can be generated to create a simu-
lated dataset. T'o extend the independence assumption of
Poisson models to ensure that objects are separated by a
minimum distance, random sequential adsorption (RSA)
processes have been used to model synapses throughout
all cortical layers [27]. Point process models can also be
constrained to generate counts along a graph structure, for
instance in the modeling of spines along a neurite [61].
See [1] for a review of spatial point process models and
their applications in neuroanatomy.

To model more complex spatial properties of the data, the
underlying intensity function can be approximated by a
sparse combination of simpler functions. LaGrow ez a/.
[62,9] show that by using a basis that can capture change
points in the density, this enables the efficient estimation
of mesoscopic properties of the density, like the layering
structure in the cortex.

Generative models for connectomes

To create a realistic generative model for graphs, we need
to first specify the property of the graph we wish to
capture. One such property is the average degree of all
nodes. Random graph theory provides a wealth of
resources for generating graphs that have certain edge
and high-level properties [63°]. A more complex genera-
tive model could ask that graph metrics like clustering
and modularity match between real and synthesized data.
Such generative models can be introduced by building on
random graph models like the widely used Erd8s-Renyi
random graph model [64], in which each pair of nodes is
assigned an edge with some fixed probability p. The
random overlapping communities (ROC) model is a good
example of a generative model that can generate over-
lapping communities as observed in neural circuits, and
has provable convergence in terms of its desired proper-
ties [10]. In this model, many subsets of the overall graph
are chosen at random, and dense Erdés-Renyi random
graphs are constructed on these (possibly overlapping)
subsets. Additionally, stochastic block models (SBMs) are
a class of generative models for synthesizing graphs [65],
which have been used to model hierarchical modules
within a connectome. In an SBM, the nodes of the graph
are divided into several blocks, and the probability of
connection between two nodes depends only on the
blocks in which they lie. Jonas and Kording [66°°] intro-
duce a variant of SBMs to model connectivity between
neurons, where the blocks of the model correspond to cell
types, and where distances also affect the probability of
connection. They use Markov Chain Monte Carlo

(MCMC) methods to fit the parameters of the model,
thereby automatically inferring cell types from connec-
tomics data.

Hidden Markov model (HMMs) have also been applied
successfully to the graph structures representing the
branching of individual neurons. HMMs model the
growth of a graph or other data structure over time using
a Markov chain that depends on /idden variables that can
be statistically inferred but are not observed directly. For
example, the kidden state of a neuron as it grows might
include biochemical factors that are not directly observ-
able, even though they lead to observable data such as the
morphology of the neuron. In Farhoodi ez a/. [67], the
branching patterns of different types of neurons are
learned and incorporated into a generative model by
analyzing single-neuron morphological data compiled
by neuromorpho.org [68°°]. The HMM inferred by Far-
hoodi ez al. suggests that the probability of branching
within a neuron depends on the distance to the soma,
whether the branching occurs in a main branch or a side
branch, and what the type of neuron is. The model thus
yields both insights into the underlying factors that may
be at play in neural branching and also a procedure for
generative artificial neuronal morphologies. See also Far-
hoodi and Kording [3] for a generative approach to neuron
morphologies based on Markov chain Monte Carlo
(MCMC) sampling.

Modular and hierarchical generative models
Generative models built on top of hierarchical abstrac-
tions, typically will generate a sequence of items wherein
the probabilistic model depends upon what was gener-
ated at previous generate samples. To ensure that our
generative model matches the distribution of data, the
sequence of steps must generate an output that matches
the same sequence generation of real data.

SBMs (defined in the preceding section) are well-suited
to dissecting graphical data into hierarchically organized
modules. Lyzinski ¢z /. [2°°] combine SBMs with clus-
tering algorithms to decompose a partial Drosophila con-
nectome into blocks, which are then clustered into similar
subnetworks (mofifs). The process is then repeated to
generate a hierarchy of motifs. Priebe e al. [69] apply
another generalization of SBMs to the Drosophila con-
nectome to explain variation in cells that is fit poorly by
simple clusters.

Generative models for image data

Whereas the generative models highlighted in the previ-
ous section require (often intensive) pre-processing steps
to first build an abstraction from image data, modern
machine learning methods make it possible to learn
a generative model from images directly. Learning
models from images directly could potentially allow
us to by-pass the initial steps of building an abstraction

www.sciencedirect.com
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(e.g. segmenting or finding objects in images). Rather
than specifying what to look for in an image, the genera-
tive model would be able to automatically pull out
features from the image data that are important for
building realistic representations of neural structure
and capturing variability across examples. In this section,
we highlight matrix factorization and deep learning
approaches for learning generative models from collec-
tions of images, and discuss their applications in
neuroanatomy.

Latent variable models

Learning to model the distribution of high-dimensional
image data is extremely challenging. A first step is often
to form a low-dimensional representation that is easier to
model. A simple and widely used linear approach for
learning latent factors from data is principal component
analysis (PCA); PCA fits a #-dimensional linear approxi-
mation to a dataset with many examples, such as a
collection of many brain images. Other dimensionality
reduction techniques such as non-negative matrix fac-
torization [70], probabilistic PCA [71], and sparse PCA
[72] can all be used to form a low-dimensional represen-
tation of collection of data (see [73] for a comprehensive
review of dimensionality reduction techniques and their
applications in analyzing measurements of neural
activity).

After distilling data into a low-dimensional space, image
data can be reconstructed by inverting the low-dimen-
sional model learned in the analysis step (Figure 2, left).
This synthesis operation is visualized in Figure 2 for a
linear system learned in PCA. In this case, a new image is
created by either: reconstructing an input (pass in a noisy
signal and the output is a clean version) or generating a
new sample in the low-dimensional space and then using
the decoder to synthesize a new image as output. This
interpretation of linear matrix factorization (PCA) as a

generative model provides a simple strategy for creating
high-dimensional images when the data lie near a linear
subspace.

Autoencoders

Generative models that rely on PCA and other matrix
factorization approaches use linear transformations of
data. It is also possible to find nonlinear low-dimensional
representations of data. Autoencoders are now routinely
used for this task [74]. Autoencoders can be constructed
through different neural network architectures, encom-
passing models such as stacked convolutional autoenco-
ders [75] and variational autoencoders [6]. Essentially, an
autoencoder functions by passing high-dimensional input
through a sequence of layers, including a low-dimensional
‘bottleneck’ layer, then reconstructing the full-dimen-
sional input again in the output layer (see Figure 3, left).
The bottleneck layer thus learns a low-dimensional latent
representation of the data. The first part (up to the
bottleneck) is the encoder and the remainder (reconstruct-
ing the input) is the decoder. Thus, the encoder com-
presses the data to the latent representation, and the
decoder is a generative model that recreates data from
this latent representation. Thus autoencoders provide an
analogous architecture for generative modeling for the
nonlinear case as that depicted for the linear case in
Figure 2.

Generative adversarial networks

Within deep learning, generative adversarial networks
(GANSs) have recently been developed to learn from an
unlabeled training dataset to generate artificial data
resembling examples from the dataset. Like autoenco-
ders, GANs learn a nonlinear generative process for data
via an artificial neural network. However, unlike auto-
encoders, which learn both an ‘encoding’ step and a
‘decoding’ (generative) step, GANs learn by pitting
two network algorithms against each other, with one
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Linear matrix factorization methods like PCA and their interpretation as a generative modeling procedure. From left to right, we show the
decomposition of a data matrix consisting of examples along its columns, into a low-dimensional format. In the middle, we depict the low-d
representation of the data in two dimensions. On the right, we show a reconstructed or synthesized data matrix that uses the inverse mapping to

expand the low-d data back into a high-dimensional space again.
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Generative models for synthesizing structural brain images. On the left, we depict an autoencoder consisting of an input layer, a low-dimensional
hidden layer (latent space), and output layer. In the training phase, a low-dimensional model for data is learned and in the synthesis phase, a
sample from this model is generated and used to generate a new image. This architecture is applied to auto-fluorescence images of 1,700
different brains (25 micron resolution) to synthesize new images: on the right, a synthetically generated image (top), example of a real image used
to train the network (bottom), and a denoised (reconstructed) version of the image displayed on the bottom.

(the generator) attempting to generate plausible examples
from a dataset, while the other (the discriminator) tries to
tell the difference between real and fake examples, thus
forcing the generator to improve. While extensive appli-
cations to neuroanatomy have yet to be developed, GANs
have already been used to simulate neuron morphologies
[76] and spike trains [77]. A similar approach (using deep
learning methods distinct from GAN’s) uses the output of
one imaging modality to simulate the result of another
imaging modality [78°°].

It is tempting to consider using the output of a GAN to
augment real data in fitting additional algorithms. How-
ever, there is so far no magical algorithm that replaces the
power of large real datasets. For example, while a GAN
might be used to learn from a thousand images and then
create a million more similar-seeming images, the artifi-
cial images would likely either fail in subtle ways to be
truly realistic or would fail to capture the full diversity of
real-world data. We therefore believe the function of
generative algorithms in neuroanatomy should be, for
the moment, more in modeling than in augmenting data
for training.

Conclusions

As neuroanatomy datasets become more numerous and
higher-dimensional, there is increasing need for genera-
tive models that capture variability across data samples
and subjects. Where traditional abstractions such as con-
nectomes compress data, generative ‘meta-abstractions’
compress distributions over data or over abstractions. We

believe that an understanding of the breadth of available
abstractions and concomitant generative models, each
suited to different questions and data modalities, is
essential to present-day neuroanatomy.

Many of the generative models we have described make
strong assumptions about the structure of the data — for
example, that it is well-approximated by a density func-
tion or succinctly described by a Markov chain. By
contrast, generative algorithms from deep learning typi-
cally have no such prior assumptions, and the models they
learn are often ‘black boxes’ that are hard to interpret.
Interpretation becomes increasingly difficult as we move
to full images and raw data because it is not always clear
what properties of the data are being modeled and how.
New approaches for ‘disentangling representations’ [79°]
aim to mitigate these issues and build architectures that
reveal more interpretable factors. An important line of
research is to build deep learning architectures that are
interpretable and can be used to draw inferences about
disease, inter-subject variability, and other changes to
neural structure.

Traditionally, neuroscience has provided views of the
structure of the nervous system that resolve or model
one aspect of the anatomy at a time. Neuroscience
methods are, however, increasingly moving towards
resolving multiple types of structures simultaneously to
provide multi-modal and multi-scale structural informa-
tion for large volumes, in some cases up to whole brains
[12,34°°]. With increasing access to multi-modal
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information, it is critical to develop abstractions and
generative models that distill the data into a usable
simplification that leverages the multi-modal data pro-
vided. Because traditional methods for modeling neuro-
anatomy have focused on modeling a single attribute of
the data (a graph, or a density), in some cases it is not clear
how best to integrate data formats and models across
different modalities of information. It is exceedingly
likely that different aspects of anatomy (change in density
of synapses or cells, or strengthening of connections in a
specific region of the brain) co-vary in complex and
nonlinear ways and multi-modal datasets will be neces-
sary to reveal these relationships.

Generative models are now being used to learn increas-
ingly complex attributes of a wide range of datasets.
We believe that they will be a useful tool moving forward
for modeling variability in large-scale neuroanatomy
datasets.
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