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ScienceDirect
Neural datasets are increasing rapidly in both resolution and

volume. In neuroanatomy, this trend has been accelerated by

innovations in imaging technology. As full datasets are

impractical and unnecessary for many applications, it is

important to identify abstractions that distill useful features of

neural structure, organization, and anatomy. In this review

article, we discuss several such abstractions and highlight

recent algorithmic advances in working with these models.

In particular, we discuss the use of generative models in

neuroanatomy; such models may be considered ‘meta-

abstractions’ that capture distributions over other abstractions.
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Introduction
As the scale of neuroanatomy data has grown, algorithms

and abstractions have been developed to distill high-

dimensional data into usable forms. Such approaches

have allowed us to address questions such as: What is

the density of synapses in a specific region of the brain?

What is the connectivity between an area of interest and

the rest of the brain? What is the best way to divide a brain

area into subregions? As the number of data points grows

yet further, however, it is possible to ask a different kind

of question about variation across different samples or

different individuals. These questions can be thought of

as ‘how’ instead of ‘what’: How does neuroprotective

treatment alter the density of synapses? How does learn-

ing affect the sparseness of connections in a network?
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How does the modularity of brain networks vary across

subjects?

The goal of this article is to discuss how generative

approaches in machine learning can be used to address

such questions in large-scale neuroanatomy. A generative
model captures the variability between samples in a data-

set, or between entire datasets, by generating artificial

examples with similar statistics to the real data. For

example, a generative modeling approach can be used

to sketch artificial neurons that are structurally similar to

genuine ones, or to simulate a connectome for which

the network properties match those observed from

microscope data. Generally, the model itself incorporates

randomness in order to simulate the true probability

distribution over data. A perfect generative model

would parameterize the underlying data distribution

exactly, allowing the entire dataset to be recreated

algorithmically.

We start by describing three main classes of abstractions

widely used in neuroanatomy: counts or densities to model

the spatial distribution of discrete objects like cells or

synapses, connectomes to model the connectivity between

either cells or brain areas, and modular or hierarchical
models that describe how data are organized into groups.

We then describe generative models that are matched to

these various abstractions. For example, Poisson models

can generate count data of objects such as cells or

synapses [1], stochastic block models can be used to

build graphs [2��], and hidden Markov models can be

used to generate the dendritic trees of neurons [3]. In

each case, we describe both the algorithmic approach

and the conclusions that can be drawn from these

abstractions.

After providing an overview of generative models that are

built on top of these popular abstractions, we outline

generative models that are not built upon any lower-level

abstraction. Instead, models such as generative adversar-

ial networks (GANs) [4��,5] and variational autoencoders

(VAEs) [[4��,5]] can generate very high-dimensional data,

including entire images. Such models can be used to

analyze the sources of variability in observed images

[7], to augment observed data, or to interpolate between

different imaging modalities [8�].

Abstractions
In this section, we highlight key classes of abstractions

used in neuroanatomy and describe approaches to
www.sciencedirect.com
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estimate these models from high-dimensional and com-

plex brain data (see Figure 1). Each of these abstractions

can be considered in terms of first, what data sources it is

commonly derived from, second, what questions it can be

used to answer, third, what information it retains and what

it discards from the full-dimensional data, and fourth,

algorithms used to derive the abstraction.

Counts and densities

In neuroanatomy, quantification of brain structure often

starts by counting cells, synapses, spines, or other objects

in the brain. Counts, or the number of discrete objects in a

interval/bin of fixed size, provide the data necessary to

compute density estimates from many samples. A large

body of work in neuroanatomy involves modeling

changes in densities across multiple samples or

conditions.
Figure 1

Abstractions and generative models for neuroanatomy. (1) COUNTS & DISTRIBU

after cell detection [9], (middle) a depiction of how count data can be repre

new count data. (2) CONNECTOMES: From left to right, we show (left) an electro

after dense segmentation to build a connectome, (middle) a depiction of a c

overlapping communities model for sparse graphs with three communities d

REPRESENTATIONS: From left to right, we show (left) a light microscope image w

the Allen Institute for Brain Science’s Cell Types Atlas [11]), (middle) a hiera

morphologies generated after an iterative sampling procedure [3], where the
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� Example data sources: Cellular densities can be resolved

in Nissl-stained or DAPI-stained brain images [12] and

retinal datasets (Figure 1a) [13], as well as X-ray

microCT [14]. Synapses can be resolved in electron

microscopy (EM) [15,16] and array tomography [17]

datasets. Individual mRNAs can now be resolved in

brain tissue with spatial transcriptomics (mFISH) [18],

multiplexed error-correcting FISH (merFISH) [19],

and expansion microscopy-based FISH [20].

� Type of conclusion drawn: The spatial distribution and

patterns of discrete objects like cells or synapses. Micro

and macroscale architecture can also be detected by

analyzing spatial patterns in the data. Counts can also

be used to track changes to the nervous system in

development [21], disease [22], or aging [23].

� Information included: The spatial position of objects is

included but the connectivity between these objects is
TIONS: From left to right, we show a (left) retinal dataset before and

sented as a density function, and (right) a Poisson model for generating

n microscope image of a thin slice of cortical brain tissue before and

onnectome as a graph, and (right) an example of the random

isplayed as different colors [10]. (3) MODULAR AND HIERARCHICAL

ith a biocytin filled neuron in two views before and after tracing (from

rchical representation of a dendrite, and (right) example neuronal

 iteration number is displayed over each generated morphology.
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not modeled. In some cases, each count can also be

associated with additional metadata or ‘marks’ like the

object’s size.

� Algorithms used to create abstraction: Segmentation and

density-based methods have been developed to quan-

tify the spatial organization and distributions of cells

[14,24] (Figure 1c), synapses [25–28], neuronal arbors

[29], organelles [30], and spines [31].

Connectomes

Graphs are some of the most widely used abstractions for

neuroanatomical data. They are typically used to convey

observed physical connectivity between individual

neurons or neuronal assemblages. Such graphs are com-

monly referred to as ‘structural’ connectomes (in contra-

distinction to ‘functional’ connectomes, which capture

correlations between observed activity of neurons). At

the micro-scale, cellular connectomes have nodes for

neurons and (weighted) edges for synapses. In meso-

scale or macro-scale connectomes, nodes represent local

or global brain areas, while edges represent projections

between the areas. Such graphs are also referred to as

‘projectomes’.

� Example data sources: At the microscale, connectomes can

be extracted from EM [16] (Figure 1) and expansion

microscopy (ExM) [32] datasets. Projectome mapping

methods have made use of viral tracing methods and

whole-brain serial two-photon microscopy (STP) and

MOST [33,34��,35,36] to reveal long-range connections.

Projectome data has also been obtained from humans

using magnetic resonance imaging (MRI) [37–40],

mainly through the use of diffusion tensor imaging.

� Type of conclusion drawn: Connectomes and projectomes

can be used to understand learning and plasticity, as

well as constrain models of neural information

processing.

� Information included: The connectivity between neu-

rons or brain areas is included in these models. In some

cases, the strength of connections can also be estimated

and included to produce a weighted graph. The spatial

position of each node is often excluded in a graphical

representation of the data.

� Algorithms used to create abstraction: There has been exten-

sive recent work on automatic labeling of EM and ExM

images to segment neurons [41–44,45�,46�,47–49] and

synapses [26,50]. On the computational side, Majka et al.
[51] demonstrate tools for coregistering projectomes to

create a common map of primate (marmoset) cortex,

while other algorithms have been developed to infer

higher resolution completions of partial connectivity

data [52,53].

Modular and hierarchical models

Finally, we consider modular and hierarchical abstrac-

tions which divide data into groups based upon which

examples/segments have similar characteristics. One
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example is representing a large brain volume as a collec-

tion of brain regions, modules, or spatially defined regions

of interest [54,55��]. This principle can be iterated by

expressing data examples in terms of a hierarchical model,

where discrete groups are divided into subgroups at many

scales. For example, the morphology of a neuron can be

described with a hierarchical format, with a coarse divi-

sion into soma, axon, and dendrite which is further broken

down into individual branches.

� Example data sources: Serial two-photon and fMOST for

whole-brain imaging have been used to obtain parcel-

lations of the brain [34��]. Morphological reconstruc-

tions for modeling the components of neurons can be

extracted from light microscopy datasets [56].

� Type of conclusion drawn: The high-level organization of

the data and which parts of the signal are similar and

thus belong to the same group. A hierarchical format for

data can be advantageous in representing similarities in

data across multiple spatial or evolutionary divisions/

scales.

� Information included: Modular representations group the

structure of many nearby segments of a neuron (parts)

or nearby parts of a brain region into one bulk class.

The membership of data to a class is preserved and

perhaps the average (centroid) of the class is also

maintained. Hierarchical models further provide infor-

mation about the distance between different groups as

relative to their multi-scale dependencies.

� Algorithms used to create abstraction: To obtain an infor-

mative parcellation and simplification of the data, clus-

tering algorithms [57�] such as k-means and spectral

clustering methods [58] can be used to group spatial

loci that have similar statistics in terms of their mea-

sured anatomical signal. Semi-automated approaches

have recently been shown to provide new insights into

structurally and functionally distinct areas in whole

human brains with multi-modal measurements [59��].

Generative models for abstractions
In this section, we describe different generative models

that are built on top of the previously discussed abstrac-

tions. Each generative model represents a design choice

about what features of the true data are most important to

capture, based upon the questions under consideration.

Generative models for count-valued data

A generative model for count-valued data (i.e. how many

objects are in a region of interest) creates a synthetic

dataset where objects are placed across space according to

the underlying statistics of real data. Which statistics are

important represent a design choice. For example, a

model might be designed so that the density functions

of real and synthetic data match or so as to preserve

nearest-neighbor properties of the counts (e.g. the Ripley

k-function [60]).
www.sciencedirect.com
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The simplest generative model used for count-valued

data is a Poisson process. Here, we assume that the

number of objects observed in a bin/interval is a Pois-

son-distributed random variable with mean given by an

intensity (density) function, and where the numbers of

objects in different bins are conditionally independent.

Thus, given the potentially spatially varying intensity of

the process, samples can be generated to create a simu-

lated dataset. To extend the independence assumption of

Poisson models to ensure that objects are separated by a

minimum distance, random sequential adsorption (RSA)

processes have been used to model synapses throughout

all cortical layers [27]. Point process models can also be

constrained to generate counts along a graph structure, for

instance in the modeling of spines along a neurite [61].

See [1] for a review of spatial point process models and

their applications in neuroanatomy.

To model more complex spatial properties of the data, the

underlying intensity function can be approximated by a

sparse combination of simpler functions. LaGrow et al.
[62,9] show that by using a basis that can capture change

points in the density, this enables the efficient estimation

of mesoscopic properties of the density, like the layering

structure in the cortex.

Generative models for connectomes

To create a realistic generative model for graphs, we need

to first specify the property of the graph we wish to

capture. One such property is the average degree of all

nodes. Random graph theory provides a wealth of

resources for generating graphs that have certain edge

and high-level properties [63�]. A more complex genera-

tive model could ask that graph metrics like clustering

and modularity match between real and synthesized data.

Such generative models can be introduced by building on

random graph models like the widely used ErdÅs-Renyi
random graph model [64], in which each pair of nodes is

assigned an edge with some fixed probability p. The

random overlapping communities (ROC) model is a good

example of a generative model that can generate over-

lapping communities as observed in neural circuits, and

has provable convergence in terms of its desired proper-

ties [10]. In this model, many subsets of the overall graph

are chosen at random, and dense ErdÅs-Renyi random

graphs are constructed on these (possibly overlapping)

subsets. Additionally, stochastic block models (SBMs) are

a class of generative models for synthesizing graphs [65],

which have been used to model hierarchical modules

within a connectome. In an SBM, the nodes of the graph

are divided into several blocks, and the probability of

connection between two nodes depends only on the

blocks in which they lie. Jonas and Kording [66��] intro-

duce a variant of SBMs to model connectivity between

neurons, where the blocks of the model correspond to cell

types, and where distances also affect the probability of

connection. They use Markov Chain Monte Carlo
www.sciencedirect.com 
(MCMC) methods to fit the parameters of the model,

thereby automatically inferring cell types from connec-

tomics data.

Hidden Markov model (HMMs) have also been applied

successfully to the graph structures representing the

branching of individual neurons. HMMs model the

growth of a graph or other data structure over time using

a Markov chain that depends on hidden variables that can

be statistically inferred but are not observed directly. For

example, the hidden state of a neuron as it grows might

include biochemical factors that are not directly observ-

able, even though they lead to observable data such as the

morphology of the neuron. In Farhoodi et al. [67], the

branching patterns of different types of neurons are

learned and incorporated into a generative model by

analyzing single-neuron morphological data compiled

by neuromorpho.org [68��]. The HMM inferred by Far-

hoodi et al. suggests that the probability of branching

within a neuron depends on the distance to the soma,

whether the branching occurs in a main branch or a side

branch, and what the type of neuron is. The model thus

yields both insights into the underlying factors that may

be at play in neural branching and also a procedure for

generative artificial neuronal morphologies. See also Far-

hoodi and Kording [3] for a generative approach to neuron

morphologies based on Markov chain Monte Carlo

(MCMC) sampling.

Modular and hierarchical generative models

Generative models built on top of hierarchical abstrac-

tions, typically will generate a sequence of items wherein

the probabilistic model depends upon what was gener-

ated at previous generate samples. To ensure that our

generative model matches the distribution of data, the

sequence of steps must generate an output that matches

the same sequence generation of real data.

SBMs (defined in the preceding section) are well-suited

to dissecting graphical data into hierarchically organized

modules. Lyzinski et al. [2��] combine SBMs with clus-

tering algorithms to decompose a partial Drosophila con-

nectome into blocks, which are then clustered into similar

subnetworks (motifs). The process is then repeated to

generate a hierarchy of motifs. Priebe et al. [69] apply

another generalization of SBMs to the Drosophila con-

nectome to explain variation in cells that is fit poorly by

simple clusters.

Generative models for image data
Whereas the generative models highlighted in the previ-

ous section require (often intensive) pre-processing steps

to first build an abstraction from image data, modern

machine learning methods make it possible to learn

a generative model from images directly. Learning

models from images directly could potentially allow

us to by-pass the initial steps of building an abstraction
Current Opinion in Neurobiology 2019, 55:112–120
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(e.g. segmenting or finding objects in images). Rather

than specifying what to look for in an image, the genera-

tive model would be able to automatically pull out

features from the image data that are important for

building realistic representations of neural structure

and capturing variability across examples. In this section,

we highlight matrix factorization and deep learning

approaches for learning generative models from collec-

tions of images, and discuss their applications in

neuroanatomy.

Latent variable models

Learning to model the distribution of high-dimensional

image data is extremely challenging. A first step is often

to form a low-dimensional representation that is easier to

model. A simple and widely used linear approach for

learning latent factors from data is principal component

analysis (PCA); PCA fits a k-dimensional linear approxi-

mation to a dataset with many examples, such as a

collection of many brain images. Other dimensionality

reduction techniques such as non-negative matrix fac-

torization [70], probabilistic PCA [71], and sparse PCA

[72] can all be used to form a low-dimensional represen-

tation of collection of data (see [73] for a comprehensive

review of dimensionality reduction techniques and their

applications in analyzing measurements of neural

activity).

After distilling data into a low-dimensional space, image

data can be reconstructed by inverting the low-dimen-

sional model learned in the analysis step (Figure 2, left).

This synthesis operation is visualized in Figure 2 for a

linear system learned in PCA. In this case, a new image is

created by either: reconstructing an input (pass in a noisy

signal and the output is a clean version) or generating a

new sample in the low-dimensional space and then using

the decoder to synthesize a new image as output. This

interpretation of linear matrix factorization (PCA) as a
Figure 2

Linear matrix factorization methods like PCA and their interpretation as a ge

decomposition of a data matrix consisting of examples along its columns, i

representation of the data in two dimensions. On the right, we show a reco

expand the low-d data back into a high-dimensional space again.
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generative model provides a simple strategy for creating

high-dimensional images when the data lie near a linear

subspace.

Autoencoders

Generative models that rely on PCA and other matrix

factorization approaches use linear transformations of

data. It is also possible to find nonlinear low-dimensional

representations of data. Autoencoders are now routinely

used for this task [74]. Autoencoders can be constructed

through different neural network architectures, encom-

passing models such as stacked convolutional autoenco-

ders [75] and variational autoencoders [6]. Essentially, an

autoencoder functions by passing high-dimensional input

through a sequence of layers, including a low-dimensional

‘bottleneck’ layer, then reconstructing the full-dimen-

sional input again in the output layer (see Figure 3, left).

The bottleneck layer thus learns a low-dimensional latent

representation of the data. The first part (up to the

bottleneck) is the encoder and the remainder (reconstruct-

ing the input) is the decoder. Thus, the encoder com-

presses the data to the latent representation, and the

decoder is a generative model that recreates data from

this latent representation. Thus autoencoders provide an

analogous architecture for generative modeling for the

nonlinear case as that depicted for the linear case in

Figure 2.

Generative adversarial networks

Within deep learning, generative adversarial networks

(GANs) have recently been developed to learn from an

unlabeled training dataset to generate artificial data

resembling examples from the dataset. Like autoenco-

ders, GANs learn a nonlinear generative process for data

via an artificial neural network. However, unlike auto-

encoders, which learn both an ‘encoding’ step and a

‘decoding’ (generative) step, GANs learn by pitting

two network algorithms against each other, with one
nerative modeling procedure. From left to right, we show the

nto a low-dimensional format. In the middle, we depict the low-d

nstructed or synthesized data matrix that uses the inverse mapping to

www.sciencedirect.com



Generative models and abstractions for neuroanatomy Rolnick and Dyer 117

Figure 3

Generative models for synthesizing structural brain images. On the left, we depict an autoencoder consisting of an input layer, a low-dimensional

hidden layer (latent space), and output layer. In the training phase, a low-dimensional model for data is learned and in the synthesis phase, a

sample from this model is generated and used to generate a new image. This architecture is applied to auto-fluorescence images of 1,700

different brains (25 micron resolution) to synthesize new images: on the right, a synthetically generated image (top), example of a real image used

to train the network (bottom), and a denoised (reconstructed) version of the image displayed on the bottom.
(the generator) attempting to generate plausible examples

from a dataset, while the other (the discriminator) tries to

tell the difference between real and fake examples, thus

forcing the generator to improve. While extensive appli-

cations to neuroanatomy have yet to be developed, GANs

have already been used to simulate neuron morphologies

[76] and spike trains [77]. A similar approach (using deep

learning methods distinct from GANs) uses the output of

one imaging modality to simulate the result of another

imaging modality [78��].

It is tempting to consider using the output of a GAN to

augment real data in fitting additional algorithms. How-

ever, there is so far no magical algorithm that replaces the

power of large real datasets. For example, while a GAN

might be used to learn from a thousand images and then

create a million more similar-seeming images, the artifi-

cial images would likely either fail in subtle ways to be

truly realistic or would fail to capture the full diversity of

real-world data. We therefore believe the function of

generative algorithms in neuroanatomy should be, for

the moment, more in modeling than in augmenting data

for training.

Conclusions
As neuroanatomy datasets become more numerous and

higher-dimensional, there is increasing need for genera-

tive models that capture variability across data samples

and subjects. Where traditional abstractions such as con-

nectomes compress data, generative ‘meta-abstractions’

compress distributions over data or over abstractions. We
www.sciencedirect.com 
believe that an understanding of the breadth of available

abstractions and concomitant generative models, each

suited to different questions and data modalities, is

essential to present-day neuroanatomy.

Many of the generative models we have described make

strong assumptions about the structure of the data — for

example, that it is well-approximated by a density func-

tion or succinctly described by a Markov chain. By

contrast, generative algorithms from deep learning typi-

cally have no such prior assumptions, and the models they

learn are often ‘black boxes’ that are hard to interpret.

Interpretation becomes increasingly difficult as we move

to full images and raw data because it is not always clear

what properties of the data are being modeled and how.

New approaches for ‘disentangling representations’ [79�]
aim to mitigate these issues and build architectures that

reveal more interpretable factors. An important line of

research is to build deep learning architectures that are

interpretable and can be used to draw inferences about

disease, inter-subject variability, and other changes to

neural structure.

Traditionally, neuroscience has provided views of the

structure of the nervous system that resolve or model

one aspect of the anatomy at a time. Neuroscience

methods are, however, increasingly moving towards

resolving multiple types of structures simultaneously to

provide multi-modal and multi-scale structural informa-

tion for large volumes, in some cases up to whole brains

[12,34��]. With increasing access to multi-modal
Current Opinion in Neurobiology 2019, 55:112–120



118 Machine learning, big data, and neuroscience
information, it is critical to develop abstractions and

generative models that distill the data into a usable

simplification that leverages the multi-modal data pro-

vided. Because traditional methods for modeling neuro-

anatomy have focused on modeling a single attribute of

the data (a graph, or a density), in some cases it is not clear

how best to integrate data formats and models across

different modalities of information. It is exceedingly

likely that different aspects of anatomy (change in density

of synapses or cells, or strengthening of connections in a

specific region of the brain) co-vary in complex and

nonlinear ways and multi-modal datasets will be neces-

sary to reveal these relationships.

Generative models are now being used to learn increas-

ingly complex attributes of a wide range of datasets.

We believe that they will be a useful tool moving forward

for modeling variability in large-scale neuroanatomy

datasets.
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