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Abstract

Methods for imaging the architecture of the brain at high res-
olutions, and across large volumes, are rapidly improving. With
the convergence of high-resolution datasets and new compu-
tational approaches for processing them, fully and semi-
automated methods for studying the brain will soon be within
reach. However, there are many challenges in developing
data-driven strategies for brain mapping with images at cellular
and sub-cellular resolutions. This review highlights some key
challenges in building models of brain structure from imaging
datasets; we describe some existing efforts to tackle these
challenges and potential solutions moving forward. Finally, we
discuss the need for concerted community efforts to adopt
common standards and coordinate systems for brain mapping,
which will enable us to achieve robust and scalable solutions
that work across different brain models and can accommodate
the intrinsic variability both between and within high-resolution
neuroimaging datasets.
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Introduction

Ever since Brodmann defined his namesake brain areas
in 1909 [56], mapping the function of the brain to its
structure has been a primary goal of neuroscience
research. Developing brain maps for different popula-
tions — healthy, sick, young, old, etc. — may provide us
with a way of studying inter-subject neurological vari-
ability, as well as processes that affect brain function,
including neurodegenerative disease, injury, and aging

[41]. Reliable methods for mapping the brain may also
play a significant role in personalized medicine [21] and
are, therefore, important in both fundamental neuro-
science and applied medical research. Magnetic reso-
nance (MR) and other macro-scale imaging methods are
popular ways to generate data that can be used to create
brain maps [20,19,11,14], but high-resolution histolog-
ical data are critical for generating maps that contain
cellular and sub-cellular information [1,43,11,20]. Brain
mapping is now a main focus of the ongoing BRAIN
Initiative [10], and suites of tools have been created to
facilitate comparisons across datasets and development
of brain atlases based on common structural or func-
tional features rather than the unique neuroanatomy of a
single individual.

Unfortunately, the inherent variability within and be-
tween brains renders the process of defining discrete
borders and comparing the brain areas of different in-
dividuals extremely difficult. Even in the absence of any
pathology, no two brains are alike, and finding
adequately descriptive signatures of neural structure
that can allow us to faithfully compare brains is difficult.
These problems are further exacerbated in high-
resolution datasets, as there is an increased ambiguity
in boundary definitions at the micro- and nano-scale.
Additionally, high-resolution data are more susceptible
to artifacts caused by variations in staining and pose the
unique problem of having to deal with variable fields of
view that arise from imaging different sections or slices
of the brain. Consequently, there is an acute need for
unbiased, accurate, and standardized methods of
representing the microstructure of the brain in a way
that allows us to then map and compare it across states
and subjects.

In this review article, we highlight several key chal-
lenges that arise when building high-resolution maps of
the brain (Figure 1) and describe how recent advances,
both in machine learning and image analysis, can be
leveraged to tackle these problems.

Challenges and potential solutions

When using light microscopy [52] or higher-resolution
methods like expansion microscopy [50], nanoCT
[54], or electron microscopy [27], slight differences in
tissue handling and preparation can produce major
changes in the final image. Small variations in the con-
centration of stains, washes, or contrast agents can result
in significant differences in the intensity distribution,
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Figure 1
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Overview of several challenges encountered in high-resolution brain mapping. (a) The overall goal is to generate maps of the brain based on high-
resolution histological data. (b) (i) Two sections of a porcine brain from the same study, showing differences in stain intensity due to small protocol
variations. (ii) Images from a mouse brain demonstrate the sensitivity of segmentation algorithms to changes in image intensity distributions. (¢) The
presence of folds and tears in tissue samples can introduce unwanted artifacts to samples of (i) porcine and (ii) mouse brain. (d) Histological data must
inherently come from subvolumes/slices of the brain, and not all brain regions can be included in a single sample.

color, contrast, and overall appearance of the sample
[15] (Figure 1B). Additionally, during the process of
cutting and transferring sections to slides, even minor
tears and folds can add undesirable artifacts to the
sample or render certain regions of interest (ROls)
inaccessible (Figure 1C). Improper device setup, in-
consistencies in section thickness, and lighting varia-
tions can also result in blur and other artifacts [25].
These may be troublesome for human pathologists to
deal with, but they can dramatically impede automated
image analysis and reduce classifier accuracy [8]. In
addition to experimental methods that simply bypass
the sectioning [45,16,12] or staining [36] steps required
in traditional histological preparation, computational
techniques have been developed to address problems
that arise as a result of process variations in either step.

Stain normalization and imaging artifacts

Two stained tissue samples, even if processed using the
same staining protocol and materials, can yield images
with dramatically different intensity distributions and

visual properties (Figure 1B). 'Traditional machine
learning methods of stain normalization, both super-
vised [23] and unsupervised [48], have been proposed
to address inter-batch differences in staining. In each
case, stain-specific transformations are applied to the
images based on either prior knowledge or estimations
of unique stain matrices that describe the dyes present.
These matrices relate stain concentrations to the
resulting color change and can be used to separate a red-
green-blue (RGB) image into up to three channels.
Images are then mapped and aligned with a target dis-
tribution. Extensions of this approach include the
incorporation of spatial features to account for color
variations that result from differences in cell
morphology [4]. While these methods may work well,
their performance often depends on knowledge of the
staining process and a level of domain expertise that can
be limiting.

Deep learning approaches have also been applied to the
problem of stain variation. These methods include
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generative adversarial networks (GANs) [17], in which
one deep network attempts to generate synthetic data
indistinguishable from the training set, while another
network is trained to tell the difference between the
two. GANs have been used for stain normalization,
including in renal histopathology [9] and breast cancer
[42]. Additionally, GANs have been used to perform
virtual histological staining, circumventing the need to
physically stain sections at all, essentially eliminating
the problem of stain variation [40]. Although virtual
staining is unlikely to soon replace traditional histopa-
thology, this work holds promise for accelerating pipe-
lines and reducing variation between labs. Style transfer
has also been used as a framework to distinguish be-
tween sets of images with different stains or staining
methods applied [7,42]. In this setup, particular stain-
ing conditions and appearances are treated as ‘styles.” A
GAN is trained to generate images with a selected style
and can then be used to normalize input images to that
stain’s unique style.

In addition to GANSs, novel neural network architectures
have also been proposed as a way of dealing with stain
variations [22]. Domain-adversarial neural networks, for
instance, consist of a bifurcating architecture, where one
branch assesses the stain and the other evaluates the
actual contents of the slide [28]. Other deep learning
approaches, such as variational auto encoders (VAEs)
[24] and deep convolutional Gaussian mixture models,
have been applied to this problem as well [55], in both
cases, by generating recolored copies of the input image
through nonlinear transformations learned during
training.

Noise, blur, and physical artifacts

Noise, blur, and/or physical artifacts can be introduced
at many different points in the imaging procedure, and
these types of artifacts pose a slightly different problem
than staining variations. Sophisticated models exist for
denoising images and volumes; for example, [51] is a
supervised, deep learning-based denoising algorithm for
fluorescence microscopy data that exploits the particular
nuances of the problem to train content-aware image
restoration networks that perform better than classical
content-agnostic approaches. On the other hand, [29] is
an example of a network that successfully learns to
denoise corrupt images, without ever having to look at
any pairs of clean, and noisy images. It is also possible to
use deep generative models such as GANs to learn to
denoise images, as shown by Ref. [46], which work by
finding the closest point on the GAN manifold (essen-
tially, the most similar synthetic image) to the corrupted
image.

In addition to noise, blur can also confound automated
image analysis and can result from out-of-focus images
or nonuniform section thickness. Classification of blurry

regions using local image statistics has been successful,
permitting these regions to be either left out or evalu-
ated manually, and bypassing the need for a reference
image to compare against [53]. Blur can also be a
product of tissue tears, bubbles, and folds, which may
arise during tissue cutting and mounting (Figure 1C).
Preliminary approaches to address these types of arti-
facts include the segmentation of folds using image
features and k-means clustering [26,37], but more
recent methods make use of deep learning architec-
tures. For instance, Ref. [3] used convolutional neural
networks to extract features from an image before
classification was performed by a support vector ma-
chine; classification of a single-folded patch within an
image flags the image for manual inspection. U-net
model architectures have also been used to perform
pixel-wise segmentation of regions with blurry, folded,
or damaged tissue [44]. These methods represent
innovative approaches to a common problem that arises
not just in neuroscience research but throughout his-
tology in general.

Different fields-of-view or partial data

Unlike MR and other macro-scale neuroimaging
methods that acquire consistent and standardized
images of the whole brain, high-resolution or micro-
scopic images can only capture a subset or subvolume
of brain tissue at a time. To deal with this, these data
are sometimes stitched together into a 3D volume, but
in many cases, smaller subvolumes are analyzed based
on the design considerations or other constraints on
the imaging setup (Figure 1D). This ultimately results
in certain ROIs or brain areas becoming inaccessible.
Registration of a new test sample to a reference brain is
one of the first steps in making a comparison [2,39],
but in the absence of an exact match to the reference
brain and/or labor-intensive manual annotation of
ROIs, it is challenging to register and analyze the
sample over large volumes. The fact that samples
are collected over limited fields of view is, therefore, a
key challenge in automating high-resolution brain

mapping.

A seemingly intuitive solution to this problem is to
interpolate or fill in the missing data in the imaged
volume to allow for registration to the reference brain
[47,35]. Methods used in the creation of probabilistic
brain atlases, designed to capture inter-subject varia-
tions in brain architecture rather than represent a single
average brain template that all other brains/ROIs need
to be registered to Ref. [38], are a prospective source of
ideas. Specifically, combining manual labeling ap-
proaches for building atlases [13] with methods for
Bayesian inference [32], as seen in Ref. [49], is a po-
tential method of performing automated label interpo-
lation across samples and sections. The field of
computer vision also presents a number of ways to
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address the partial correspondence problem; methods
based on iterative closest point and minimum distortion
correspondence [6] have previously been used with
some success.

Deep learning has also begun to find use in the
problem of partial or missing data. Candidates include
deep generative models such as GANs [33], which, in
this case, condition their outputs on some aspect of
the inputs, which lets them essentially ‘fill in the
blanks.” VAEs have also been used, for example, in
Ref. [18], where the model learns a ‘disentangled’
representation of the image features (essentially, the
model learns an interpretable set of image building
blocks rather than acting as a black box), which allows
for the explicable generation of synthetic data that
match the existing data. Specialized loss functions
like those in Refs. [5,31,34] can be used to train these
types of networks to model the distribution of the data
from partial, noisy, and/or heterogeneous observations
and further constrain the outputs of the networks such
that they are explicitly conditioned on the inputs and
allow for better reconstruction. While deep learning
methods for addressing partial or missing data have
mostly been applied to a broad variety of nonbiolog-
ical problems, they form a promising and quickly
advancing toolbox for the problem of neuroimaging
data interpolation.

Conclusion
Several key strengths of high-resolution histological
imaging — its inherent multimodality and ability to

capture fine-scale structure — can be problematic when
the goal is to develop models of the brain’s architecture.
Even slight differences in stains or experimental pro-
cedures can have pronounced effects on the accuracy of
brain mapping methods. Without intervention, blur and
other imaging artifacts, as well as tissue folds and similar
obstructions, can handicap the ability of automated
methods and restrict access to certain ROIs. Variable
fields of view pose a similar problem, limiting the space
that can be accessed in a single experiment. However,
these complications need not impede the use of histo-
logical images for brain mapping.

In this review, we focused on the challenges in data
integration and mapping that mainly arise due to the
imaging or preparation setup. Even when we are able to
account for these sources of variation, however,
comparing brains at high resolutions is difficult due to
the inherent variability in the brain (within an area) and
across subjects. A natural consequence of higher-
resolution data is the possibility for greater variability
between imaging experiments; anatomical structures
and boundaries that seem consistent between in-
dividuals on the macro-scale level will appear drastically
less so at subcellular resolutions. Fortunately, rapid
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advances in machine learning and image processing are
helping to address the challenges in large-scale brain
mapping. These methods represent innovative ap-
proaches to domain-specific problems, problems that are
not typically encountered in macro-scale imaging ap-
proaches. However, as we try to answer questions that
require larger sample sizes, which is not possible for any
one lab to generate, it will become increasingly impor-
tant to find ways to align and compare multi-modal
datasets and to utilize information from other images
that have fields of view not present in a single dataset of
interest. With such approaches for data integration, it
will be possible to tackle the types of problems
described in this review.

Leveraging the volume of data being collected across
labs and institutes will require a community effort to
develop standard frameworks for aggregating and
integrating information from different types of imag-
ing datasets at these resolutions. One example of such
an effort is the NIH BRAIN Initiative Cell Census
Network, whose aim is to build a common repository
for the genetic and morphological information about
individual cells and cell types. However, consolidation
has proven to be difficult due to the wide range of
preparation methods and the various types of infor-
mation represented by these different datasets. This
underscores our need for standards and for commu-
nities that are willing to work together to build
large datasets greater than the sum of their parts, to
fully realize the potential of high-resolution brain

mapping.

Definitively mapping the brain’s multitude of func-
tions to its complex structure is a significant and
ambitious objective. The implications for biomedicine
are clear, as are the ramifications such an achievement
would have for our fundamental understanding of the
human brain. Achieving this lofty goal will likely
require integration of experimental and computational
methods. Rapid advances in both domains provide new
opportunities to make progress on this problem,
despite the inherent difficulty of working with histo-
logical images. In the century since Brodmann’s anal-
ysis of Nissl-stained sections led him to define the
brain areas that bear his name [56], these types of
images have continued to represent a critical piece of
the brain mapping puzzle.

Conflicts of interest statement
Nothing declared.

Acknowledgements

The authors would like to thank Susan Margulies for the data presented in
Figure 1(b) (i) and 1(c) (i) and Judy Prasad for the X-ray microCT images in
1(d). The images presented in Figure 1(a), 1(b)(ii), 1(c)(ii) are selected
from the Allen Mouse Brain Atlas [30].

www.sciencedirect.com

Current Opinion in Biomedical Engineering 2019, 12:126—-131


www.sciencedirect.com/science/journal/24684511

130 Neural Engineering: High Resolution Cell Imaging

References
Papers of particular interest, published within the period of review,
have been highlighted as:

* of special interest
** of outstanding interest

1. Atzeni A, Jansen M, Ourselin S, Iglesias JE: A probabilistic
model combining deep learning and multi-atlas segmentation
for semi-automated labelling of histology. Medical Image
Computing and Computer Assisted Intervention — MICCAI 2018
2018:219-227.

2. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC:
A reproducible evaluation of ANTs similarity metric perfor-
mance in brain image registration. Neuroimage 2011, 54:
2033-2044.

3. Babaie M, Tizhoosh HR: Deep features for tissue-fold detection in
*  histopathology images. 2019. arXiv preprint, arXiv:1903.07011.
The authors compare five pre-trained CNNs of different depths as
feature extractors to characterize tissue folds in histopathological
images. They then train an SVM classifier on top of the extracted
features to perform classification for diagnosis with much success.

4. Bejnordi BE, Litiens G, Timofeeva N, Otte-Holler I, Homeyer A,
Karssemeijer N, van der Laak JA: Stain specific standardization
of whole-slide histopathological images. |[EEE Trans Med Im-
aging 2015, 35:404—-415.

5. Bora A, Price E, Dimakis AG: AmbientGAN: Generative models
from lossy measurements. In International conference on
learning representations (ICLR); 2018.

6. Bronstein AM, Bronstein MM: Not only size matters: regularized
partial matching of nonrigid shapes,. In 2008 IEEE computer
society conference on computer vision and pattern recognition
workshops. |EEE; 2008:1—-6.

7. Cho H, Lim S, Choi G, Min H: Neural stain-style transfer
learning using GAN for histopathological images.
arXiv:1710.08543v2 [cs.CV] 2017.

8. Ciompi F, Geessink O, Bejnordi BE, de Souza GS, Baidoshvili A,
Litiens G, van Ginneken B, Nagtegaal |, van der Laak J: The
importance of stain normalization in colorectal tissue clas-
sification with convolutional networks. In /[EEE 14th interna-
tional symposium on biomedical imaging; 2017.

9. de Bel T, Hermsen M, Kers J, van der Laak J, Litiens G: Stain-
transforming cycle-consistent generative adversarial net-
works for improved segmentation of renal histopathology.
Proc Mach Learn Res 2019, 102:151—-163.

10. Devor A, Bandettini PA, Boas DA, Bower JM, Buxton RB,
Cohen LB, Dale AM, Einevoll GT, Fox PT, Franceschini MA, et al.:
The challenge of connecting the dots in the brain. Neuron
2013, 80:270-274.

11. Ding S-L, Royall JJ, Sunkin SM, Ng L, Facer BA, Lesnar P,
Guillozet-Bongaarts A, McMurray B, Szafer A, Dolbeare TA,
Stevens A, Tirrell L, Benner T, Caldejon S, Dalley RA, Dee N,
Lau C, Nyhus J, Reding M, Riley ZL, Sandman D, Shen E, van
der Kouwe A, Varjabedian A, Wright M, Zollei L, Dang C,
Knowles JA, Koch C, Phillips JW, Sestan N, Wohnoutka P,
Zielke HR, Hohmann JG, Jones AR, Bernard A, Hawrylycz MJ,
Hof PR, Fischl B, Lein ES: Comprehensive cellular-resolution
atlas of the adult human brain. J Comp Neurol 2016, 524:
3127-3481. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/cne.24080.

A high-resolution, manually segmented human brain atlas is
constructed through annotation of structural MRI, DWI tractography,
and histologically-stained images of 1356 slices from a single brain. At
cellular resolution (1um), this atlas is annotated with 862 structures with
finely delineated features.

12. Dyer EL, Roncal WG, Prasad JA, Fernandes HL, Gursoy D, De
Andrade V, Fezzaa K, Xiao X, Vogelstein JT, Jacobsen C, et al.:
Quantifying mesoscale neuroanatomy using x-ray micro-
tomography. Eneuro 2017, 4.

13. Evans A: Three-dimensional correlative imaging: applications
in human brain mapping. In Functional neuroimaging: technical
foundations; 1994:145—-162.

14. Evans AC, Kamber M, Collins D, MacDonald D: An mri-based
probabilistic atlas of neuroanatomy. In Magnetic resonance
scanning and epilepsy. Springer; 1994:263—-274.

15. Farhoodi R, Lansdell BJ, Kording KP: Quantifying how staining

*  methods bias measurements of neuron morphologies. Front
Neuroinf 2019, 13:36.

Studies and quantifies the bias introduced by different staining

methods used in imaging by comparing their resultant extracted neuron

morphologies.

16. Glaser AK, Reder NP, Chen Y, McCarty EF, Yin C, Wei L,
Wang Y, True LD, Liu JT: Light-sheet microscopy for slide-free
non-destructive pathology of large clinical specimens. Nat
Biomed Eng 2017, 1.

17. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,
Ozair S, Courville A, Bengio Y: Generative adversarial nets. In
Advances in neural information processing systems; 2014:
2672-2680.

18. Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M,
Mohamed S, Lerchner A: Beta-VAE: learning basic
visual concepts with a constrained variational frame-
work. In International conference on learning representa-
tions, 3; 2017.

19. lIglesias JE, Augustinack JC, Nguyen K, Player CM, Player A,

*  Wright M, Roy N, Frosch MP, McKee AC, Wald LL, Fischl B, Van
Leemput K: A computational atlas of the hippocampal for-
mation using ex vivo, ultra-high resolution mri: application to
adaptive segmentation of in vivo MRI. Neuroimage 2015, 115:
117-137. Available: http://www.sciencedirect.com/science/
article/pii/S1053811915003420.

A statistical atlas of hippocampus is developed using manual seg-
mentations of 13 structures, with images taken at 0.13 mm across 15
ex vivo samples. The authors develop a novel atlas building algorithm
utilizing Bayesian inference that can analyze multimodal, variable
contrast MRI data. To make this multimodal and robust to
variable imaging quality, the authors develop a generative image for-
mation process that randomly samples to deform label meshes on the
volume.

20. Iglesias JE, Insausti R, Lerma-Usabiaga G, Bocchetta M, Van
** Leemput K, Greve DN, van der Kouwe A, Fischl B, Caballero-
Gaudes C, Paz-Alonso PM: A probabilistic atlas of the human
thalamic nuclei combining ex vivo mri and histology. Neuro-
image 2018, 183:314—-326. Available: http://www.sciencedirect.
com/science/article/pii/S1053811918307109.
This article presents similar techniques to that of Iglesias et al., in 2015,
but now applied to thalamus, rather than hippocampus. Atlas con-
struction techniques within are virtually indistinguishable from their
work in 2015, using some manual segmentation in addition to Bayesian
inference to develop a probabilistic atlas.

21. Irimia A, Chambers MC, Torgerson CM, Filippou M, Hovda DA,
Alger JR, Gerig G, Toga AW, Vespa PM, Kikinis R, Van Horn JD:
Patient-tailored connectomics visualization for the assess-
ment of white matter atrophy in traumatic brain injury. Front
Neurol 2012, 3:10.

22. Kamnitsas K, Baumgartner C, Ledig C, Newcombe V, Simpson J,
Kane A, Menon D, Nori A, Criminisi A, Rueckert D, et al.: Unsu-
pervised domain adaptation in brain lesion segmentation
with adversarial networks. In International conference on infor-
mation processing in medical imaging. Springer; 2017:597-609.

23. Khan AM, Rajpoot N, Treanor D, Magee D: A nonlinear mapping
approach to stain normalization in digital histopathology
images using image-specific color deconvolution. /[EEE (Inst
Electr Electron Eng) Trans Biomed Eng 2014.

24. Kingma DP, Welling M: Auto-encoding variational bayes. 2013.
arXiv preprint, arXiv:1312.6114.

25. Komura D, Ishikawa S: Machine learning methods for histo-
*  pathological image analysis. Comput Struct Biotechnol 2018,
16:34—-42.

Reviews machine learning methods that can be applied to digital his-
topathological image analysis. Discusses problems specific to histo-
pathological image analysis, such as extremely large image sizes,
insufficient image labels and colour variations, and suggests potential
future directions of research that may provide solutions, such as
interpretable deep learning and the use of convolutional neural net-
works for the discovery of novel objects.

Current Opinion in Biomedical Engineering 2019, 12:126—-131

www.sciencedirect.com


http://refhub.elsevier.com/S2468-4511(19)30062-5/sref1
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref1
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref1
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref1
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref1
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref2
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref2
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref2
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref2
http://arXiv:1903.07011
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref4
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref4
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref4
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref4
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref5
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref5
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref5
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref6
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref6
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref6
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref6
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref7
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref7
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref7
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref8
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref8
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref8
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref8
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref8
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref9
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref9
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref9
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref9
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref10
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref10
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref10
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref10
https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.24080
https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.24080
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref12
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref12
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref12
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref12
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref13
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref13
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref13
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref14
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref14
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref14
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref15
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref15
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref15
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref16
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref16
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref16
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref16
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref17
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref17
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref17
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref17
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref18
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref18
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref18
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref18
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref18
http://www.sciencedirect.com/science/article/pii/S1053811915003420
http://www.sciencedirect.com/science/article/pii/S1053811915003420
http://www.sciencedirect.com/science/article/pii/S1053811918307109
http://www.sciencedirect.com/science/article/pii/S1053811918307109
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref21
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref21
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref21
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref21
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref21
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref22
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref22
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref22
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref22
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref22
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref23
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref23
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref23
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref23
http://arXiv:1312.6114
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref25
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref25
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref25
www.sciencedirect.com/science/journal/24684511

26. Kothari S, Phan JH, Wang MD: Eliminating tissue-fold artifacts
in histopathological whole-slide images for improved image-
based prediction of cancer grade. J Pathol Inform 2013, 4:22.

27. Kuwajima M, Mendenhall JM, Harris KM: Large-volume recon-
struction of brain tissue from high-resolution serial section
images acquired by SEM-based scanning transmission
electron microscopy. Methods Mol Biol 2013, 950:253—-273.

28. Lafarge MW, Pluim JP, Eppenhof KA, Veta M: Domain-adver-
*  sarial neural networks to address the appearance variability
of histopathology images. arXiv:1707.06183v1 [cs.CV] 2019.
The authors propose to deal with staining variation in histopathological
images using domain-adversarial neural networks. The hypothesis
made and supported through experiments on breast cancer histopa-
thology images is that removing domain information from the model,
and ergo the variation that is introduced in the model due to light var-
jations in domain information, would lead to better generalization.

29. Lehtinen J, Munkberg J, Hasselgren J, Laine S, Karras T,
Aittala M, Aila T: Noise2noise: learning image restoration without
clean data. 2018. arXiv preprint, arXiv:1803.04189.

30. Lein ES, et al.: Genome-wide atlas of gene expression in the
adult mouse brain. Nature 2007, 445:168—176. https://doi.org/
10.1038/nature05453.

31. Li SC-X, Jiang B, Marlin B: MisGAN: Learning from incomplete
data with generative adversarial networks. 2019. arXiv preprint,
arXiv:1902.09599.

32. MacKay DJ: Bayesian interpolation. Neural Comput 1992, 4:
415-447.

33. Mirza M, Osindero S: Conditional generative adversarial nets.
2014. arXiv preprint, arXiv:1411.1784.

34. Nazabal A, Olmos PM, Ghahramani Z, Valera |: Handling
incomplete heterogeneous data using VAEs. 2018. arXiv preprint,
arXiv:1807.03653.

35. Olafsdéttir H, Pedersen H, Hansen MS, Larsson H, Larsen R:
Improving image registration by correspondence interpola-
tion. In 2011 IEEE international Symposium on biomedical im-
aging: from Nano to macro. |IEEE; 2011:1524—1527.

36. Orringer DA, et al.: Rapid intraoperative histology of unpro-
cessed surgical specimens via fibre-laser-based stimulated
Raman scattering microscopy. Nat Biomed Eng 2017.

37. Palokangas S, Selinummi J, Yli-Harja O: Segmentation of folds
in tissue section images. In 2007 29th annual international
Conference of the IEEE Engineering in Medicine and biology
society. |IEEE; 2007:5641-5644.

38. Pauli WM, Nili NA, Tyszka JM: A high-resolution probabilistic

* invivo atlas of human subcortical brain nuclei. Scientific Data
2018, 5.

Authors build a probabilistic in vivo atlas of subcortical nuclei through

diffeomorphic (affine and mirroring) registration of 168 structural

images. The resulting atlas has 700 um isotropic resolution.

39. PengH, Chung P, Long F, Qu L, Jenett A, Seeds AM, Myers EW,
Simpson JH: BrainAligner: 3d registration atlases of
drosophila brains. Nat Methods 2011, 8:493-500.

40. Rivenson Y, Wang H, Wei Z, de Haan K, Zhang Y, Wu Y,

**  GUnayddn H, Zuckerman JE, Chong T, Sisk AE, et al.: Virtual
histological staining of unlabelled tissue-autofluorescence
images via deep learning. Nat Biomed Eng 2019, 3:466.

The authors propose using a generative adversarial network to trans-
form wide-field autofluorescence images of unlabelled tissue sections
into images that are equivalent to the bright-field images of histologi-
cally stained versions of the same samples. Results show that the
proposed virtual-staining method bypasses the typically labour-
intensive and costly histological staining process, and can be used
as a blueprint for the virtual staining of tissue images acquired with
other label-free imaging modalities.

41. Seghier ML, Price CJ: Interpreting and utilising intersubject
variability in brain function. Trends Cogn Sci 2018.

42. Shaban MT, Baur C, Navab N, Albarqgouni S: StainGAN: stain

** style transfer for digital histological images. /SB/ 2019:
953-956.

Proposes an end-to-end deep-learning based solution inspired by

CycleGANSs (generative adversarial networks that use a cyclic loss) for

Brain mapping at high resolutions Milligan et al. 131

stain style transfer and colour normalization. Subsequent AUC (area
under curve) results of performing digitized histological diagnosis even
in the presence of colour and stain variations are improved by 12% on
a breast cancer classification dataset.

43. Spitzer H, Amunts K, Harmeling S, Dickscheid T: Parcellation of

** visual cortex on high-resolution histological brain sections
using convolutional neural networks,. In 2017 IEEE 14th in-
ternational symposium on biomedical imaging (ISBI 2017); April
2017:920-923.

A CNN architecture learns texture features from partially annotated

2um histological brain sections of visual areas and then takes advan-

tage of probabilistic atlases to perform nearly automatic cytoarchitec-

tonic mapping with reasonable accuracy.

44. Swiderska-Chadaj Z, Markiewicz T, Gallego J, Bueno G, Grala B,
Lorent M: Deep learning for damaged tissue detection and
segmentation in Ki-67 brain tumor specimens based on the
U-net model. Bull Pol Acad Sci Tech Sci 2018, 66.

45. Tanaka N, Kanatani S, Tomer R, Sahlgren C, Kronqyvist P,
Kaczynska D, Louhivuori L, Kis L, Lindh C, Mitura P, Stepulak A,
Corvigno S, Hartman J, Micke P, Mezheyeuski A, Strell C,
Carlson JW, Moro CF, Dahlstrand H, Ostman A, Matsumoto K,
Wiklund P, Oya M, Miyakawa A, Deisseroth K, Uhlen P: Whole-
tissue biopsy phenotyping of three-dimensional tumours re-
veals patterns of cancer heterogeneity. Nat Biomed Eng 2017.

46. Tripathi S, Lipton ZC, Nguyen TQ: Correction by projection:
denoising images with generative adversarial networks. 2018.
arXiv preprint, arXiv:1803.04477.

47. Tward D, Brown T, Kageyama Y, Patel J, Hou Z, Mori S, Albert M,
** Troncoso J, Miller M: Diffeomorphic registration with intensity
transformation and missing data: application to 3D digital
pathology of Alzheimer’s disease. BioRxiv 2019. Available:
https://www.biorxiv.org/content/early/2019/01/04/494005.
This paper solves a challenging image registration problem in the
presence of multiple tissue artifacts, imaging modalities, and de-
formations. The work therein performs three key steps: 1) contrast
transformation to match modality intensities, 2) filling missing data
through expectation maximization, and finally 3) registration through
deformation of histological slices to post mortem 3D MRI data.

48. Van Eycke Y-R, Allard J, Salmon |, Debeir O, Decaestecker C:
Image processing in digital pathology: an opportunity to
solve inter-batch variability of immunohistochemical stain-
ing. Sci Rep 2017, 7:42964.

49. Van Leemput K: Encoding probabilistic brain atlases using
Bayesian inference. |[EEE Trans Med Imaging 2008, 28:
822-837.

50. Wassie AT, Zhao Y, Boyden ES: Expansion microscopy:
principles and uses in biological research. Nat Methods 2018:
1.

51. Weigert M, Schmidt U, Boothe T, Mdller A, Dibrov A, Jain A,
Wilhelm B, Schmidt D, Broaddus C, Culley S, et al.: Content-
aware image restoration: pushing the limits of fluorescence
microscopy. Nat Methods 2018, 15:1090.

52. Weisenburger S, Tejera F, Demas J, Chen B, Manley J,
Sparks FT, Traub FM, Daigle T, Zeng H, Losonczy A, Vaziri A:
Volumetric ca2+ imaging in the mouse brain using hybrid
multiplexed sculpted light microscopy. Cell 2019, 177:
1050—-1066.

53. Wu H, Phan JH, Bhatia AK, Cundiff CA, Shehata BM, Wang MD:
Detection of blur artifacts in histopathological whole-slide
images of endomyocardial biopsies. In 2015 37th annual in-
ternational Conference of the IEEE Engineering in Medicine and
biology society (EMBC). |EEE; 2015:727-730.

54. Yang X, De Andrade V, Scullin W, Dyer EL, Kasthuri N, De
Carlo F, Gursoy D: Low-dose x-ray tomography through a
deep convolutional neural network. Sci Rep 2018, 8:2575.

55. Zanjani FG, Zinger S, de With PH, Bejnordi BE, van der Laak JA:
Histopathology stain-color normalization using deep gener-
ative models. In 1st Conference on medical Imaging with deep
learning; 2018.

56. Zilles K: Brodmann: a pioneer of human brain mapping - his
impact on concepts of cortical organization. Brain 2018, 141:
3262-3278.

www.sciencedirect.com

Current Opinion in Biomedical Engineering 2019, 12:126—-131


http://refhub.elsevier.com/S2468-4511(19)30062-5/sref26
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref26
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref26
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref27
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref27
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref27
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref27
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref28
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref28
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref28
http://arXiv:1803.04189
https://doi.org/10.1038/nature05453
https://doi.org/10.1038/nature05453
http://arXiv:1902.09599
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref32
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref32
http://arXiv:1411.1784
http://arXiv:1807.03653
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref35
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref35
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref35
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref35
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref36
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref36
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref36
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref37
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref37
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref37
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref37
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref38
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref38
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref38
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref39
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref39
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref39
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref40
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref40
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref40
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref40
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref40
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref41
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref41
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref42
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref42
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref42
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref43
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref43
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref43
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref43
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref43
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref44
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref44
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref44
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref44
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref45
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref45
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref45
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref45
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref45
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref45
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref45
http://arXiv:1803.04477
https://www.biorxiv.org/content/early/2019/01/04/494005
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref48
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref48
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref48
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref48
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref49
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref49
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref49
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref50
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref50
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref50
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref51
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref51
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref51
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref51
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref52
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref52
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref52
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref52
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref52
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref53
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref53
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref53
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref53
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref53
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref54
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref54
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref54
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref55
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref55
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref55
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref55
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref56
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref56
http://refhub.elsevier.com/S2468-4511(19)30062-5/sref56
www.sciencedirect.com/science/journal/24684511

	Brain mapping at high resolutions: Challenges and opportunities
	Introduction
	Challenges and potential solutions
	Stain normalization and imaging artifacts
	Noise, blur, and physical artifacts
	Different fields-of-view or partial data

	Conclusion
	Conflicts of interest statement
	Acknowledgements
	References


