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ABSTRACT

Ionic transport through a charged nanopore at low ion concentration is governed by the surface
conductance. Several experiments have reported various power-law relations between the surface
conductance and ion concentration, i.e., Gg,rr X ¢§. However, the physical origin of the varying
exponent, a, is not yet clearly understood. By performing extensive coarse-grained Molecular
Dynamics (MD) simulations for various pore diameters, lengths, and surface charge densities,
we observe varying power-law exponents even with a constant surface charge and show that a
depends on how electrically “perfect” the nanopore is. Specifically, when the net charge of the
solution in the pore is insufficient to ensure electroneutrality, the pore is electrically “imperfect”
and such nanopores can exhibit varying a depending on the degree of “imperfectness”. We

present an ionic conductance theory for electrically “imperfect” nanopores that not only explains
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the various power-law relationships but also describes most of the experimental data available in

the literature.
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The distinctive characteristics of micro and nanoscale ion transport have been utilized
extensively for various applications in science and engineering. The surface-charge-governed ion
transport' theory has been used, in conjunction with experimental ionic conductance data at low
concentration, to estimate the surface charge density of a nanopore/channel.>* Furthermore, the
dimensions of the nanoscale conduit, which are not easy to measure due to their tiny scale, have
been determined by using the ion transport theory on measured current data.>”’ The molecular-
level sensitivity of ion transport through an ultra-thin nanopore has greatly contributed to
advances in DNA sequencing and translocation technologies.®!! Biological organisms take
advantage of selective ion transport to maintain metabolism.'?> Molecular scale separation of
ions'>!* and electricity generation using osmotic energy>'> have also been actively studied.
Despite the importance of ion transport phenomena, there is still a considerable knowledge gap
in the scaling behavior of ion conductance (the power-law relation between conductance and
concentration is given by, G « c§). Generally, at high ionic concentration, the ion transport is
governed by the bulk transport mechanism where the exponent @ = 1 holds. On the other hand,

at low concentration, the ion transport is dominated by the surface transport mechanism. In this

regime, various scaling laws (0 < a < 1) have been reported in different experimental settings
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over the past few years. However, the physical origins of the various scaling laws are not clearly
understood.

The scaling behavior of ion transport has been studied extensively since the cornerstone work
done by Stein et al.! In this work, the conductance saturation (@ ~ 0) was observed in silica-
oxide micro-nano channels. They have shown that at low concentration the transport is
dominated by counterions that accumulate near the charged surface to maintain electroneutrality.
In subsequent work, Smeets et al.'® observed that the conductance does not saturate (a ~ 0.3) in
their silica-oxide nanopores. This non-zero exponent was explained by a variable-charge model
(referred to as charge regulation) where the surface charge density was considered to change as a
function of ion concentration in reservoir. Secchi et al.'” observed that the conductance in CNTs
exhibited @ ~ 1/3 scaling law for all the tested diameters (3.5 nm ~ 35 nm) and pH (4 ~ 10).
They also suggested charge regulation as a possible interpretation of this scaling-law and derived
the @« = 1/3 scaling law using the Gouy-Chapman model.'®!° Similarly, Biesheuvel and
Bazant?® derived the power-law, @ = 1/2, by using charge regulation with Langmuir isotherm.
Uematsu et al.?! showed that the crossover among the power-laws (a¢ = 0, 1/3 and 1/2)

122 analytically arrived at the scaling of

depends on the ion concentration and pH. Manghi ef a
a = 1/2,1/3 and 2/3 by introducing charge regulation and slip.
However, not only those exponents, almost any power-law exponent ranging from 0 < a < 1

2325 graphene Al, 05 pores,?® silica

have been observed in prior studies on graphene nanopores,
nitride pores,”’ silica oxide nanochannels/pores,'®?%? CNT,!73® wCNTPs,’! and biological
nanopores.*> To elucidate the physical origin of the various exponents, we performed extensive

coarse-grained MD simulations where explicit ions and implicit solvent are used. The results

show that depending on the geometry of the pore, the electroneutrality in the pore region may not
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be satisfied and the electrical potential in the pore due to surface charge leaks into the reservoir.
Considering the leakage of surface potential, we develop an ion conductance theory that
describes the various power-law exponents and the theory is shown to accurately predict MD as

well as experimental data.

RESULTS AND DISCUSSION
Electrophoretic conductance and access resistance

The ionic conductance through a charged nanopore is enhanced, when compared to the bulk
conductance, due to the diffuse layer transport near the pore surface. In a cylindrical pore with a

1:1 electrolyte and u = u, = u_, the enhanced electrophoretic transport can be modeled as

Gon = 2FcouV1+ 57 )_1, (1)

L
TR2
where F is the Faraday constant, u is the ion mobility (in m?s~1V™1), ¢, is the reservoir

concentration (in mol - m™3), L is the length of the pore, and R is the pore radius. Eq (1) can be

33,34 17,20

derived from the Space-Charge (SC) theory with Donnan equation or from the electro-

)35,36

chemical equilibrium (the mean-field Poisson-Boltzmann theory with the electroneutrality

assumption in the pore. We introduce a dimensionless number G as the ratio between the net

charge concentration required in the pore for electroneutrality and the charge concentration of

the bulk solution, i.e., @ = q+<CE;ENJ;q;iC'>EN, where g, is the charge of cation/anion, {c)gy is
+~q-)Co - =

the ensemble averaged concentration of cation/anion for the Electrically Neutral (EN) condition.
For a 1:1 electrolyte and homogeneous charge distribution in a cylindrical pore, the

dimensionless parameter can be rewritten as

M
Il

FeoR’ 2

N



where o is the surface charge density (in C/m?). Note that the Dukhin number,27:3537 Du =

Ksurf
)
RKpulk

is equal to |6| when electroosmosis is ignored, where kg, is the surface conductivity and
Kpuik 18 the bulk conductivity. The sign of & is an opposite sign of surface charge and this
facilitates to consider the direction of surface current. The absolute value of 6 provides an
important interpretation of the ion transport mechanism. When |G| < 1 (generally at high ¢;), Eq

1 reduces to the bulk conductivity limit, i.e., Ky = 2Fcou. When |&| > 1 (generally at low

Co), Eq 1 reduces to the surface-charge-governed conductivity limit, ie., Kgyrf = |G| Kpuk =

u}lal’ which is independent of the reservoir concentration.! The summation of these two limits of

Eq 1 is taken to be the electrophoretic conductance as suggested by earlier works:>*%%

-1

Gon ~ Goulk + Gaurt = 2Fcon(1+161) () 3)

Eq 3 provides insights into bulk and surface transport mechanism. Nonetheless, Eq 1, where
the bulk and surface transport occur as a coupled mechanism, is physically accurate compared to
Eq 3, where the bulk and surface transport are decoupled and assumed to be independent of each
other. Both Eq 1 and Eq 3 are suitable for long (L >> R) nanopores where the access resistance is
negligible. For nanopores with L ~ R, the access resistance needs to be included in the

conductance model. The access resistance can be modeled by the Maxwell-Hall access resistance,

Ryt = — % By introducing the Maxwell-Hall access resistance, the electrophoretic
2KR

conductance can be written as,

-1
Gon = 2FcouV1+67 (= + ) . @)

2R

-1
. 1 .
We can also simply express the conductance as G = K(#+§) , where Kk is the

conductivity.?**** Note that, Eq 4 reduces to Eq 1 in the limit of L > R. We compared the



model in Eq 4 with MD simulations using implicit water for various pore geometries and surface
charges. The surface charge density in MD is assumed to be constant with respect to the
reservoir concentration, i.e., no charge regulation is used. The details of the coarse-grained MD
simulation are given in the Methods Section. Note that both Eq 4 and the coarse-grained MD

simulation only consider the electrophoretic ion transport. Figure 1 shows that Eq 4 agrees well
with the MD data only in the bulk transport dominant regime ¢, > %’ (i.e., cg > 0.23 M for the

cases in Figure 1A). Note that if the access resistance is omitted (i.e., Eq 1), the model does not

accurately predict the bulk conductance for short pores (L < R) (see Figure S1). In the regime
where the surface conductance is dominant (¢, < g), Eq 4 deviates from the MD data. These

discrepancies are greater for short pores (L is small). For a constant surface charge, the

conductance model in Eq 4 predicts the conductance saturation (G = constant) at low ¢ .

According to MD simulation, however, even at low concentration, the conductance decreases
continuously as the reservoir concentration decreases following the power-law, Gg,s  c§ (i.e.,
linear log(G) - log(cy) curve).

Electrophoretic conductance with electric-potential-leakage

To understand the physical origin of the various power-law exponents, we examined if
electroneutrality is maintained in the pore as assumed in Eq 4. Figure 2 shows the distribution of
the net charge of solution along the axial coordinate of the pore normalized by the pore length. In
all the tested cases, the net charge of solution in the pore is insufficient to maintain the
electroneutral condition, (¢, )gn — {(c_)gn = 2¢od. This deficiency of net charge is worse at the
pore edges. Similar phenomena, referred to as charge overspill, end effects, and electroneutrality

breakdown have been reported.**’ It should be noted that the lack of electroneutrality in the



pore region does not indicate that the electroneutrality of the whole system fails. The
electroneutrality of the entire system is maintained by the combination of the net charge of
solution in the pore and that of in the reservoir. The physical origin of the net charge deficiency
in the pore is the leakage of the surface-electric-potential (electric potential due to the surface
charge density of the pore) into the reservoir, where the leaked electric potential does not
contribute to the surface conductance. To incorporate the leakage of surface-electric-potential
into the conductance model, the electrochemical equilibrium between the reservoir and pore is
considered, for a 1:1 electrolyte, as
(s + kgTlogcg = Cx + kT log(cy), + ety 6
where { is the chemical potential of a cation ({,) and anion ({_), kg is the Boltzmann
constant, T is the temperature, (c, )p is the ensemble averaged concentration of a cation/anion in
the pore without electroneutrality assumption and 1/_)p is the mean potential in the pore. First, if

there is no leakage of surface-electric-potential, the mean potential lﬁp is equal to the Donnan

potential, . From Eq 5 and the electroneutrality condition, the Donnan potential is described

as35

Pp = kBTTlog (Vi+62-0). 6)

If the surface-electric-potential leaks, the mean potential in the pore is smaller than the Donnan
potential, l/;p < p.48 In this case, the pore potential can be modeled as

l/_’p = (1 - a)yp, (7)

where « is the fraction of the surface-electric-potential that leaks out of the pore: @ = 0 means

no leakage and @ = 1 means perfect leakage. Combining Eqs 5-7, the ensemble averaged

concentration in the pore is derived as



(c)p = co(VIF225) ®)

The electrophoretic conductivity is given by,
Kpn & F(ia{csdp + Ho(c2)p). 9)
The mean-field approximation in Eq 9 is acceptable for pores with diameters larger than 3 nm
and for moderate surface charge where the mobility of ions is nearly invariant near the surface.
The mobility of ions in highly confined pores is typically lower than the bulk value. However,
this effect can usually be neglected for pores larger than 3 nm.*” Under these assumptions,
modeling the pore conductivity can be simplified into modeling ion concentration in the pore.

From Eq 8 and 9, the nanopore conductivity is given by,

oon = Feo (1 (VI+ 82 +6)  +u_(VI+a2-8) ). (10)
The conductivity model presented in Eq 10 includes two types of transport mechanisms in a
coupled form; one is bulk transport, where Ky X ¢y and the other is the surface transport,
where kg, r X c§ (see Figure 3A). In case @ = 0 (electrically perfect nanopore), the conductivity
saturates as reservoir concentration decreases. If @ = 1 (no surface-electric-potential is present in
the pore), Eq 10 reduces to the bulk conductivity. Similarly, if there is no surface charge, |o| =
0, Eq 10 reduces to the bulk conductivity. The absolute value of the surface charge density, |o]|,
is proportional to the magnitude of the surface conductivity (see Figure 3B). The conductivity
model presented in Eq 10 fits well with the MD data for various lengths, diameters, and surface
charge densities (see Figure S2).
For a cylindrical geometry, the ionic conductance can be described as the product of the
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geometrical parameters and ionic conductivity as, G = K( +%) . Using Eq 10, the

conductance can be written as



Gon = Feo (1 (VI+ 62 +6) " +u-(VIta2-48)  J(=+ i)_l. (11)

We note that Eq 11 is a general form of conductance that can reproduce all the earlier
conductance models (Eq 1, 3 and 4). Figure 1 shows that the theory given by Eq 11 compares
well with the MD data for various lengths, diameters and surface charge densities. Figure 1A
shows that the power-law exponent « of the surface conductance increases as the pore length
decreases. Interestingly, Eq 11, as well as the MD data, predict that at very low concentrations,
longer pores have higher conductance compared to shorter pores. Figure 1C shows that a
decreases as the pore diameter decreases. Thus, the diameter and length of the pore have an
opposite effect on a. Also, it is observed from MD that pores with different D and L but with the
same D /L ratio, have necarly the same exponent, o (see Figure S3). Therefore, it can be
concluded that « ~ 1 when D/L > 1 and a« ~ 0 when D/L < 1. This observation is consistent
with earlier experimental studies on long channel/pore (D/L <« 1) that have shown almost no
power-law dependence (a ~ 0)'** and nanopores with D/L = 1 that have shown relatively high
a values.??*?" Figure 1D shows that |o| is proportional to the magnitude of the surface
conductance but it has little effect on a. This observation is similar to the experimental

observation on pH dependence of ionic conductance!-!7-26-3!

where pH value has a small effect on
a but pH value is directly related to the magnitude of the surface conductance. We note that a
depends not only on the pore geometry but also on how the surface charges are distributed.
When both the supporting membranes and the pore surface are charged, the a values are smaller
than when only the pore surface is charged (see Figure 1A-B).

For an intuitive model, we consider the summation of the two limits, bulk and surface

conductance, of Eq (11). At the high concentration limit, [6| < 1, Gpp ~ Gpuik = Fco (e +



-1
1 . . o
Ueo) (nRZ ZR) , where p¢ and p., are the counter-ion and co-ion mobility. At the low

-1
concentration limit, G > 1, Gpp~Gsursr = FColict| 26| _“( ;2 +i) . By adding these two

limits, the electrophoretic conductance can be approximated as

-1
Gph ~ Gbulk + Gsurf FCO{(]- + |20'|1 a)#ct + .uco}( : ) . (12)

R2 2R
The model in Eq 12 provides an intuitive understanding of ion transport through a charged

pore. The dimensionless term, |26|1~%

, represents the conductance enhancement due to the
counterion transport in the diffuse layer. When 1 > |26|'~¢, the bulk transport is dominant and
when 1 « |26|17%, the surface conductance is dominant. Eq (12) is a reasonable approximation
toEq(11) for0 < a < 0.7.

Total conductance with electric-potential-leakage

In addition to the bulk and diffuse layer ion transport (electrophoresis), the total conductance is
also affected by the water transport driven by the ionic migration (electroosmosis). The
electroosmotic flow generates an ionic current due to the net charge of solution in the pore.>® The

electroosmotic transport can be incorporated into Eq 11 by using electroosmotic mobility pe,.

Then, the total conductance can be written as

— 1@ 1\ 1
6 =Feo{(s + o) (VIF 7 +6) (o~ ) (VT2 -0) (G t57) - (1)
Electroosmotic mobility enhances the counter-ion transport but reduces the co-ion transport.
The direction of electroosmotic flow is considered in the sign of electroosmotic mobility, which

is the opposite sign of the surface charge. The electroosmotic contribution to the total

conductance (Eq 13) can be written as,

Geo = Footteo {(VIT 62 +6) = (VT+62-6)  }(5+ 2 )_1. (14)

2R
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This formulation is consistent with the fact that the electroosmotic current is generated by the
net charge in the pore. At low concentration limit (6 > 1), the total surface conductance

(including the electroosmotic component) is given by,

|Ueol ~11— L 1\7!
Gsurf = FCollct (1 +l:l_ct) |20|1 a(m*’;) . (15)

If e, 1s assumed constant and independent of the reservoir concentration, G, has the same

power-law exponent, a, as that of Eq 11 (see Figure S4). The dimensionless parameter Iteol s the

Hct

enhancement factor in surface conductance due to the electroosmotic flow. In experimental
situations, the surface charge density of the nanopore is generally unknown. Hence, the
conductance theories are used to estimate the surface charge density by matching the theory with
experimental conductance-concentration dataset.”*?3! We note that, the theory with
electroosmosis predicts lower |o| than the theory without electroosmosis for a same

conductance-concentration dataset. In the expression for electroosmotic conductance suggested

kgT

by Levine et al,*® the electroosmotic mobility is given by, |ue,| = En—e’ where 71 is the

viscosity of the solution. This expression for electroosmotic mobility is suitable for non-
overlapped (Electrical Double Layer) EDL system. Similarly, the electroosmotic mobility

derived by Biesheuvel and Bazant?® using SC theory** and Donnan equation is given by, feo =

%’ This mobility is valid for highly overlapped EDL systems where the pore potential is almost

invariant. Figure S10 shows the results from Eq (13) with these electroosmotic mobilities in
comparison to all-atom MD and MD using implicit water. Those suggested electroosmotic
mobilities shows a better prediction to the all-atom MD simulation. However, the electroosmotic
mobility for electrically imperfect nanopore with slip is absent and further research is needed.

Ion selectivity

11



For a deeper understanding of ion transport in electrically imperfect/non-neutral nanopore, the
contributions of each ion are investigated. Eq 13 can be decomposed into the contributions of

cations and anions, i.e., G = G, + G_. Each contribution is given by,

Gy = Foo{ (e + peo) VI+ 82 46) (5 +2 )_1. (16)

TTR2 2R

The ion selectivity is defined as,

St

Q
@ ||+

(17)
Using Eq 16 and 17, the ion selectivity can be calculated. Figure 4A-B show the contribution of
counter-ion and co-ion conductance to total conductance, respectively. At high concentration,
both K* and CI~ ions contribute almost equally to the conductance. However, at low
concentration the co-ion (C17) contribution decays faster than that of counter-ions (K¥). As a
result, at low concentration, the counter-ion transport governs ionic conductance. Moreover, the
theory can also predict the ion selectivity of nanopore. Figure 4C shows that the ion selectivity
obtained from MD and theory are in good agreement predicting that ion selectivity increases and
approaches one as the concentration decreases. We note that electroosmosis is a important factor
in the selective ion transport according to Eq 16-17 (see Figure S5).

Comparison with experimental data

The experimentally measured power-law exponents from various studies are shown in Figure
SA. It should be noted that physically « is the fraction of the surface-electric-potential that leaks
out of the pore and mathematically a is the power-law exponent of surface conductivity. Most
experimental data show a consistent behavior that a increases as R/L increases despite varying
nanopore sizes (see Figure 5B). This consistency among the various independent experimental
studies support the validity of the conductance model with electrically non-neutral or imperfect

pores. In addition, the consistency among different materials can be understood as the surface
12



transport (for pore D = 3 nm) is governed by the electrostatic force, which is characterized by
the surface charge density, o, in the model. The deviations observed for CNT data may imply
that there could be other omitted physics. For example, the surface charge density of CNT
immersed in the solution may depend on the reservoir concentration (charge regulation).'®17-20-22
The a values obtained from MD simulation assume an ideal case of a perfect cylindrical
geometry (no mechanical and chemical defects) with a homogeneous charge distribution. In this

case, a can be empirically modeled as

1

o) i

In practical cases, in addition to pore geometrical parameters, a can also be affected by the
charge distribution. For sub-3nm pores or highly confined system, @ can depend on the material
type (e.g. SiO2, SisNa, etc.), as at these length scales, in addition to electrostatic interactions, van
der Waals interactions and the finite size of the ions®' also play an important role.

Finally, we tested the conductance theory for electrically imperfect nanopores given in Eqs 13
and 18 with the published experimental data. For this comparison, we assumed p., = 0 due to
the absence of electroosmotic mobility for electrically imperfect nanopore as we discussed
earlier. Therefore, the actual surface charge density can be lower to some extent than the
estimated value. Most of the experimental data are well described by the theory we present (see
Figure 6). The estimated surface charge density of Si3sN4 and SiO2 are in the reasonable range
compared to the typical value 0 ~ — 20 mC/m?°? and o ~ — 100 mC/m?>* respectively. In the
case of small-diameter CNT, the estimated |a| is very large at high pH. One possible explanation

of this is a strong osmotic current amplified by a large slip on the hydrophobic surface. The

conductance model also describes the conductance of biological nanopores that have sub-3 nm

13



effective diameter. However, the quantitative estimation of surface charge density in sub-3 nm
pore may require a comprehensive ion transport model including interfacial phenomena such as

4954 yvan der Waals type adsorption, finite size of ion on EDL’!

near-surface mobility/viscosity,
and wall/fluid slip.>

CONCLUSION

The net charge in the EDL near a pore surface is the source of the surface conductance. Our
coarse-grained MD simulations demonstrate that various power-laws can be observed in pores
with a constant surface charge. We also investigated the axial net charge distribution in the pore
and conclude that there is leakage of surface-electric-potential from the pore into the reservoir.
By considering the electrochemical equilibrium with the electric-potential-leakage, we developed
an ion conductance theory that describes power-laws with exponents between zero and one. The
ion conductance theory accounting for the leakage of surface-electrical-potential describes the
conductance and selectivity obtained from MD simulation of nanopores of various lengths,
diameters, and surface charge densities. Analysis of the published experimental and MD data
reveals that the exponent of the power-law is related to the aspect ratio of the nanopore. An
empirical model is proposed to describe the exponent of the power-law by using MD data on a

perfect cylindrical pore and homogeneous surface charge. The ion conductance theory with

empirical power-law relation describes well most of the experimental data.
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METHODS

For ion transport studies, coarse-grained MD simulations were performed with implicit water
and explicit ions. Utilizing implicit water enables us to perform several orders of magnitude
more efficient ion transport studies compared to all-atom MD simulations as the number of
atoms in the system are significantly reduced. The coarse-grained MD simulations implicitly
consider the viscosity, thermal collision, hydration energy, distance-dependent dielectric
permittivity, and therefore properly reproduces concentration dependent ion mobility, the ionic
structure in the solution, and the ionic interfacial structure. The Langevin dynamics is used to
generate the thermal motion of ions. The damping parameters of Langevin Dynamics are

adjusted to reproduce the viscosity of the solution by matching the experimental ion mobility (for

both K* and C17) in a dilute solution (the Stokes’ drag of ion, n = #ir’ where E is electric field,

r is radius of ion). We refer to an earlier study on the implicit water MD simulation done by

1'56

Lenart et al.”® for distance-dependent dielectric permittivity and hydration energy correction. The

: . . e 5. —5. -
distance-dependent dielectric primitivity is modeled as €4(r) = 2;65 4= >  tanh (r ;me)’
€

where € is the bulk solution permittivity, 1, and o, are free parameters representing the
location of the first hydration shell and the distance scale of the permittivity recovery. This
model assumes that most of the bulk dielectric permittivity is recovered after the first hydration

_ (T_Tmh)2>

. . . . H
shell. The hydration energy is modeled as a Gaussian function, Eyyq = %—Zﬁexp< 207
where H is the intensity factor of hydration energy, 1;,, is mean and oy, is standard deviation. In
the original work, these free parameters were optimized by fitting concentration-dependent

activity coefficient and Radial Distribution Function (RDF) of cation and anion. In the present

study, all free parameters were re-optimized to reproduce the concentration dependence of molar
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conductivity, A(cy), and RDFs of all ion pairs (see Figure S6 for optimization procedure). The
molar conductivity and the RDFs obtained from the optimized potential are shown in Figure S7-
8. Finally, EDL is reproduced by adjusting LJ potentials between ions and carbon (see Figure
S9). The optimized force-field for implicit water and explicit ions is listed in Table S1. The
benchmark study of ion transport using this potential is shown in Figure S10.

For ion transport studies using implicit water, a nanopore and two reservoirs attached to the
edges of the pore were considered. Three reservoirs of sizes 35 nm, 50 nm and 70 nm cube are
considered depending on the reservoir concentration (a lower concentration requires a larger
reservoir). Aqueous KCl solution and a fixed cylindrical pore made of carbons is considered. The
effective diameters of the pores were determined by subtracting the wall-fluid L] diameter’’
from the center-to-center diameter of pore. The pore surface and membranes are homogeneously
charged. We applied electric potential difference in the linear regime of current-voltage curve
(less than 0.5 V). For electrically neutral systems, extra counterions are added to the system.*
MD simulation is initially performed under the NVT ensemble for 20 ns to 100 ns with the
electric field until the system reaches the steady state. Then, the atomic trajectories are integrated
by the NVE ensemble. The time step is set to 10 fs and the data were obtained during 10 ns ~
500 ns (lower concentrations require longer data collection time).

For all-atom MD simulation, SPC/E water’® was utilized. The bond angle and length are
maintained by the SHAKE algorithm.®® The long-range Coulomb potential is computed by the
PPPM method.®' The interatomic interactions among the molecular pairs are modeled by the LJ
potential. We used the optimized ion forcefield for use with SPC/E water.®* We used the carbon-
water interatomic potential reproducing a proper contact angle.®> The rest of atomic pair
potentials are modeled by the Lorentz-Berthelot mixing rule. The force-fields are summarized in

16



Table S2. The NVT ensemble is utilized for velocity integration with 2 fs time step. Nose-
Hoover dynamics are employed to maintain the temperature by adjusting only the velocity
components that are perpendicular to the electric field. The relatively small size reservoir, 15nm,
is considered due to the high computational cost of all-atom MD. The other conditions are the
same as those used in the implicit water model. For short and long range potential, GPU-
accelerated calculation was utilized.**%

The ion current is computed by counting the number of ions passing the pore. The Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS)® is used for all simulations.
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Figure 1. Ionic conductance versus reservoir ion concentration (G-c, curve). In (A-B), the pore
length is varied, and the diameter and surface charge density are fixed, D = 5.1nmand ¢ =
—50 mC/m?. In (C), diameter is varied and the pore length and surface charge density are fixed,
L = 20nm and ¢ = —50 mC/m?. In (D), surface charge density is varied and pore length and
diameter are fixed, L = 20 nm and D = 5.1 nm. As shown in the inset, only the pore surface
is assumed to be charged in (A) and both the pore and membrane surface are assumed to be

charged in (B). The best-fit curves of Eq 11 to the MD datasets are obtained by fitting a.
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Figure 2. Axial distribution of the net charge concentration of solution inside the pore. The
symbols represent MD simulation data obtained with D = 5.1 nm, ¢ = =50 mC/m?, ¢, =
0.03 M and the length of the nanopore is varied. The external electric field is applied in the

positive z-direction.
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Figure 4. Contribution of counter-ion and co-ion to ionic conductance (A) counter-ion
contribution (in this case 0 < 0) and (B) co-ion contribution. (C) The ionic selectivity as a
function of ion concentration. The all data are for nanopore with L = 20nm, D = 5.1 nm, ¢ =
—50 mC/m?. In MD simulation, the selectivity is directly computed from the definition, S =
G./G. The bulk conductance and Donnan-Boltzmann prediction of conductance are special

cases of Eq 16 with @« = 1 and @ = 0, respectively.
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Figure 5. Power-law exponents relations obtained from MD and experiments. (A) The exponent

of the power-law versus the aspect ratio of the pore (R/L or H/L for a rectangular channel). The

exponent of the power-law is determined from the slope of the conductance-concentration curve

in the log-log scale at low concentration. The dashed line is Eq 18. (B) A phase diagram of

electrical imperfectness of nanopore determined by Eq 18 (color bar indicates a ). The

experimental datasets considered here include: Graphene,>** Graphene-Alo032® Si3N4?’

Si0,!6282 BNNT,? CNT,!” and biological nanopore.*? For the MD data plotted here both the

supporting membrane and the pore surface are charged.
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Figure 6. Conductance-concentration curves from various experiments and the conductance

theory given in Eqs 13 and 18. Here, o (the surface charge density) is the only fitting parameter

in the theory. In (C) conductivity is plotted instead of conductance. The legend in each subplot

shows

[R (nm), L (nm), o] (mC/m?)]

for

circular

pores

and

[H (nm), W (nm), L (nm), |o| (mC/m?)] for rectangular channels. The sources for experimental

data are (A) Venkatesan et al.?® (B) blue: Kumar et al.;** red: Shan et al.® (C) Siria et al.? (D)

Lee et al.”’ (E) red: Martins et al.,%” green/blue: Stein et al.;! violet: Smeets et al.'® (F) orange:
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Roy and Hall;* the remaining colors: Petrossian et al.?® (G) Queralt-Martin et al.3* (H-I) Secchi

etal.’
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