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ABSTRACT 

Ionic transport through a charged nanopore at low ion concentration is governed by the surface 

conductance. Several experiments have reported various power-law relations between the surface 

conductance and ion concentration, i.e., 𝐺surf ∝ 𝑐0
𝛼. However, the physical origin of the varying 

exponent, 𝛼, is not yet clearly understood. By performing extensive coarse-grained Molecular 

Dynamics (MD) simulations for various pore diameters, lengths, and surface charge densities, 

we observe varying power-law exponents even with a constant surface charge and show that 𝛼 

depends on how electrically “perfect” the nanopore is. Specifically, when the net charge of the 

solution in the pore is insufficient to ensure electroneutrality, the pore is electrically “imperfect” 

and such nanopores can exhibit varying 𝛼  depending on the degree of “imperfectness”. We 

present an ionic conductance theory for electrically “imperfect” nanopores that not only explains 
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the various power-law relationships but also describes most of the experimental data available in 

the literature. 
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The distinctive characteristics of micro and nanoscale ion transport have been utilized 

extensively for various applications in science and engineering. The surface-charge-governed ion 

transport1 theory has been used, in conjunction with experimental ionic conductance data at low 

concentration, to estimate the surface charge density of a nanopore/channel.2–4 Furthermore, the 

dimensions of the nanoscale conduit, which are not easy to measure due to their tiny scale, have 

been determined by using the ion transport theory on measured current data.5–7 The molecular-

level sensitivity of ion transport through an ultra-thin nanopore has greatly contributed to 

advances in DNA sequencing and translocation technologies.8–11 Biological organisms take 

advantage of selective ion transport to maintain metabolism.12 Molecular scale separation of 

ions13,14 and electricity generation using osmotic energy3,15 have also been actively studied. 

Despite the importance of ion transport phenomena, there is still a considerable knowledge gap 

in the scaling behavior of ion conductance (the power-law relation between conductance and 

concentration is given by, 𝐺 ∝ 𝑐0
𝛼). Generally, at high ionic concentration, the ion transport is 

governed by the bulk transport mechanism where the exponent 𝛼 = 1 holds. On the other hand, 

at low concentration, the ion transport is dominated by the surface transport mechanism. In this 

regime, various scaling laws (0 ≤ 𝛼 ≤ 1) have been reported in different experimental settings 
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over the past few years. However, the physical origins of the various scaling laws are not clearly 

understood. 

The scaling behavior of ion transport has been studied extensively since the cornerstone work 

done by Stein et al.1 In this work, the conductance saturation (𝛼 ≈ 0) was observed in silica-

oxide micro-nano channels. They have shown that at low concentration the transport is 

dominated by counterions that accumulate near the charged surface to maintain electroneutrality. 

In subsequent work, Smeets et al.16 observed that the conductance does not saturate (𝛼 ~ 0.3) in 

their silica-oxide nanopores. This non-zero exponent was explained by a variable-charge model 

(referred to as charge regulation) where the surface charge density was considered to change as a 

function of ion concentration in reservoir. Secchi et al.17 observed that the conductance in CNTs 

exhibited 𝛼 ~ 1/3 scaling law for all the tested diameters (3.5 nm ~ 35 nm) and pH (4 ~ 10). 

They also suggested charge regulation as a possible interpretation of this scaling-law and derived 

the 𝛼 =  1/3  scaling law using the Gouy-Chapman model.18,19 Similarly, Biesheuvel and 

Bazant20 derived the power-law, 𝛼 =  1/2, by using charge regulation with Langmuir isotherm. 

Uematsu et al.21 showed that the crossover among the power-laws (𝛼 =  0 , 1/3  and 1/2 ) 

depends on the ion concentration and pH. Manghi et al.22 analytically arrived at the scaling of 

𝛼 =  1/2, 1/3 and 2/3 by introducing charge regulation and slip. 

However, not only those exponents, almost any power-law exponent ranging from 0 ≤ 𝛼 < 1 

have been observed in prior studies on graphene nanopores,23–25 graphene Al2O3 pores,26 silica 

nitride pores,27 silica oxide nanochannels/pores,16,28,29 CNT,17,30 wCNTPs,31 and biological 

nanopores.32 To elucidate the physical origin of the various exponents, we performed extensive 

coarse-grained MD simulations where explicit ions and implicit solvent are used. The results 

show that depending on the geometry of the pore, the electroneutrality in the pore region may not 
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be satisfied and the electrical potential in the pore due to surface charge leaks into the reservoir. 

Considering the leakage of surface potential, we develop an ion conductance theory that 

describes the various power-law exponents and the theory is shown to accurately predict MD as 

well as experimental data. 

 

RESULTS AND DISCUSSION 

Electrophoretic conductance and access resistance 

The ionic conductance through a charged nanopore is enhanced, when compared to the bulk 

conductance, due to the diffuse layer transport near the pore surface. In a cylindrical pore with a 

1:1 electrolyte and 𝜇 = 𝜇+ = 𝜇−, the enhanced electrophoretic transport can be modeled as 

 𝐺ph = 2𝐹𝑐0𝜇√1 + 𝜎̃2 (
𝐿

𝜋𝑅2)
−1

, (1) 

where 𝐹  is the Faraday constant, 𝜇  is the ion mobility (in m2s−1V−1 ), 𝑐0  is the reservoir 

concentration (in mol ∙ m−3), 𝐿 is the length of the pore, and 𝑅 is the pore radius. Eq (1) can be 

derived from the Space-Charge (SC) theory33,34 with Donnan equation17,20 or from the electro-

chemical equilibrium (the mean-field Poisson-Boltzmann theory)35,36 with the electroneutrality 

assumption in the pore. We introduce a dimensionless number 𝜎̃ as the ratio between the net 

charge concentration required in the pore for electroneutrality and the charge concentration of 

the bulk solution, i.e., 𝜎̃ ≡
𝑞+〈𝑐+〉EN+𝑞−〈𝑐−〉EN

(𝑞+−𝑞−)𝑐0
, where  𝑞± is the charge of cation/anion,  〈𝑐±〉EN is 

the ensemble averaged concentration of cation/anion for the Electrically Neutral (EN) condition. 

For a 1:1 electrolyte and homogeneous charge distribution in a cylindrical pore, the 

dimensionless parameter can be rewritten as 

 𝜎̃ =
−𝜎

𝐹𝑐0𝑅
, (2) 
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where 𝜎  is the surface charge density (in C/m2). Note that the Dukhin number,27,35,37 Du =

𝜅surf

𝑅𝜅bulk
, is equal to |𝜎̃| when electroosmosis is ignored, where 𝜅surf is the surface conductivity and 

𝜅bulk  is the bulk conductivity. The sign of 𝜎̃  is an opposite sign of surface charge and this 

facilitates to consider the direction of surface current. The absolute value of 𝜎̃  provides an 

important interpretation of the ion transport mechanism. When |𝜎̃| ≪ 1 (generally at high 𝑐0), Eq 

1 reduces to the bulk conductivity limit, i.e., 𝜅bulk = 2𝐹𝑐0𝜇. When |𝜎̃| ≫ 1 (generally at low 

𝑐0 ), Eq 1 reduces to the surface-charge-governed conductivity limit, i.e., 𝜅surf = |𝜎̃|𝜅bulk =

2𝜇|𝜎|

𝑅
, which is independent of the reservoir concentration.1 The summation of these two limits of 

Eq 1 is taken to be the electrophoretic conductance as suggested by earlier works:2,38,39 

 𝐺ph ≈ 𝐺bulk + 𝐺surf = 2𝐹𝑐0𝜇(1 + |𝜎̃|) (
𝐿

𝜋𝑅2)
−1

. (3) 

Eq 3 provides insights into bulk and surface transport mechanism. Nonetheless, Eq 1, where 

the bulk and surface transport occur as a coupled mechanism, is physically accurate compared to 

Eq 3, where the bulk and surface transport are decoupled and assumed to be independent of each 

other. Both Eq 1 and Eq 3 are suitable for long (𝐿 ≫ 𝑅) nanopores where the access resistance is 

negligible. For nanopores with 𝐿 ~ 𝑅 , the access resistance needs to be included in the 

conductance model. The access resistance can be modeled by the Maxwell-Hall access resistance, 

𝑅Hall =
1

2𝜅𝑅
.40–42 By introducing the Maxwell-Hall access resistance, the electrophoretic 

conductance can be written as, 

 𝐺ph = 2𝐹𝑐0𝜇√1 + 𝜎̃2 (
𝐿

𝜋𝑅2 +
1

2𝑅
)

−1
. (4) 

We can also simply express the conductance as 𝐺 = 𝜅 (
𝐿

𝜋𝑅2 +
1

2𝑅
)

−1
, where 𝜅  is the 

conductivity.24,43,44 Note that, Eq 4 reduces to Eq 1 in the limit of  𝐿 ≫ 𝑅. We compared the 
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model in Eq 4 with MD simulations using implicit water for various pore geometries and surface 

charges. The surface charge density in MD is assumed to be constant with respect to the 

reservoir concentration, i.e., no charge regulation is used. The details of the coarse-grained MD 

simulation are given in the Methods Section. Note that both Eq 4 and the coarse-grained MD 

simulation only consider the electrophoretic ion transport. Figure 1 shows that Eq 4 agrees well 

with the MD data only in the bulk transport dominant regime 𝑐0 ≫
|𝜎|

𝐹𝑅
, (i.e., 𝑐0 ≫ 0.23 M for the 

cases in Figure 1A). Note that if the access resistance is omitted (i.e., Eq 1), the model does not 

accurately predict the bulk conductance for short pores (𝐿 ≲ 𝑅) (see Figure S1). In the regime 

where the surface conductance is dominant (𝑐0 ≪
|𝜎|

𝐹𝑅
), Eq 4 deviates from the MD data. These 

discrepancies are greater for short pores ( 𝐿  is small). For a constant surface charge, the 

conductance model in Eq 4 predicts the conductance saturation ( 𝐺＝constant) at low 𝑐0 . 

According to MD simulation, however, even at low concentration, the conductance decreases 

continuously as the reservoir concentration decreases following the power-law, 𝐺surf ∝ 𝑐0
𝛼 (i.e., 

linear log(𝐺) - log(𝑐0) curve). 

Electrophoretic conductance with electric-potential-leakage 

To understand the physical origin of the various power-law exponents, we examined if 

electroneutrality is maintained in the pore as assumed in Eq 4. Figure 2 shows the distribution of 

the net charge of solution along the axial coordinate of the pore normalized by the pore length. In 

all the tested cases, the net charge of solution in the pore is insufficient to maintain the 

electroneutral condition, ⟨𝑐+⟩EN − ⟨𝑐−⟩EN = 2𝑐0𝜎̃. This deficiency of net charge is worse at the 

pore edges. Similar phenomena, referred to as charge overspill, end effects, and electroneutrality 

breakdown have been reported.45–47 It should be noted that the lack of electroneutrality in the 
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pore region does not indicate that the electroneutrality of the whole system fails. The 

electroneutrality of the entire system is maintained by the combination of the net charge of 

solution in the pore and that of in the reservoir. The physical origin of the net charge deficiency 

in the pore is the leakage of the surface-electric-potential (electric potential due to the surface 

charge density of the pore) into the reservoir, where the leaked electric potential does not 

contribute to the surface conductance. To incorporate the leakage of surface-electric-potential 

into the conductance model, the electrochemical equilibrium between the reservoir and pore is 

considered, for a 1:1 electrolyte, as 

 𝜁± + 𝑘B𝑇 log 𝑐0 = 𝜁± + 𝑘B𝑇 log〈𝑐±〉p ± 𝑒𝜓̅p, (5) 

where 𝜁±  is the chemical potential of a cation (𝜁+ ) and anion (𝜁− ), 𝑘B  is the Boltzmann 

constant, 𝑇 is the temperature, 〈𝑐±〉p is the ensemble averaged concentration of a cation/anion in 

the pore without electroneutrality assumption and 𝜓̅p is the mean potential in the pore. First, if 

there is no leakage of surface-electric-potential, the mean potential 𝜓̅p is equal to the Donnan 

potential, 𝜓̅D. From Eq 5 and the electroneutrality condition, the Donnan potential is described 

as35 

 𝜓̅D =
𝑘B𝑇

𝑒
log (√1 + 𝜎̃2 − 𝜎̃). (6) 

If the surface-electric-potential leaks, the mean potential in the pore is smaller than the Donnan 

potential, 𝜓̅p < 𝜓̅D.48 In this case, the pore potential can be modeled as  

 𝜓̅p ≡ (1 − 𝛼)𝜓̅D, (7) 

where 𝛼 is the fraction of the surface-electric-potential that leaks out of the pore: 𝛼 = 0 means 

no leakage and 𝛼 = 1  means perfect leakage. Combining Eqs 5-7, the ensemble averaged 

concentration in the pore is derived as 
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 〈𝑐±〉p = 𝑐0(√1 + 𝜎̃2 ± 𝜎̃)
1−𝛼

. (8) 

The electrophoretic conductivity is given by, 

 𝜅ph ≈ 𝐹(𝜇+〈𝑐+〉p + 𝜇−〈𝑐−〉p). (9) 

The mean-field approximation in Eq 9 is acceptable for pores with diameters larger than 3 nm 

and for moderate surface charge where the mobility of ions is nearly invariant near the surface. 

The mobility of ions in highly confined pores is typically lower than the bulk value. However, 

this effect can usually be neglected for pores larger than 3 nm.49 Under these assumptions, 

modeling the pore conductivity can be simplified into modeling ion concentration in the pore. 

From Eq 8 and 9, the nanopore conductivity is given by, 

 𝜅ph = 𝐹𝑐0 {𝜇+(√1 + 𝜎̃2 + 𝜎̃)
1−𝛼

+ 𝜇−(√1 + 𝜎̃2 − 𝜎̃)
1−𝛼

}. (10) 

The conductivity model presented in Eq 10 includes two types of transport mechanisms in a 

coupled form; one is bulk transport, where 𝜅bulk ∝ 𝑐0  and the other is the surface transport, 

where 𝜅surf ∝ 𝑐0
𝛼 (see Figure 3A). In case 𝛼 = 0 (electrically perfect nanopore), the conductivity 

saturates as reservoir concentration decreases. If 𝛼 = 1 (no surface-electric-potential is present in 

the pore), Eq 10 reduces to the bulk conductivity. Similarly, if there is no surface charge, |𝜎| =

0, Eq 10 reduces to the bulk conductivity. The absolute value of the surface charge density, |𝜎|, 

is proportional to the magnitude of the surface conductivity (see Figure 3B). The conductivity 

model presented in Eq 10 fits well with the MD data for various lengths, diameters, and surface 

charge densities (see Figure S2). 

For a cylindrical geometry, the ionic conductance can be described as the product of the 

geometrical parameters and ionic conductivity as, 𝐺 = 𝜅 (
𝐿

𝜋𝑅2 +
1

2𝑅
)

−1
. Using Eq 10, the 

conductance can be written as 
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 𝐺ph = 𝐹𝑐0 {𝜇+(√1 + 𝜎̃2 + 𝜎̃)
1−𝛼

+ 𝜇−(√1 + 𝜎̃2 − 𝜎̃)
1−𝛼

} (
𝐿

𝜋𝑅2 +
1

2𝑅
)

−1
. (11) 

We note that Eq 11 is a general form of conductance that can reproduce all the earlier 

conductance models (Eq 1, 3 and 4). Figure 1 shows that the theory given by Eq 11 compares 

well with the MD data for various lengths, diameters and surface charge densities. Figure 1A 

shows that the power-law exponent 𝛼 of the surface conductance increases as the pore length 

decreases. Interestingly, Eq 11, as well as the MD data, predict that at very low concentrations, 

longer pores have higher conductance compared to shorter pores. Figure 1C shows that 𝛼 

decreases as the pore diameter decreases. Thus, the diameter and length of the pore have an 

opposite effect on 𝛼. Also, it is observed from MD that pores with different 𝐷 and 𝐿 but with the 

same 𝐷 𝐿⁄  ratio, have nearly the same exponent, α (see Figure S3). Therefore, it can be 

concluded that 𝛼 ~ 1 when 𝐷 𝐿⁄ ≫ 1 and 𝛼 ~ 0 when 𝐷 𝐿⁄ ≪ 1. This observation is consistent 

with earlier experimental studies on long channel/pore (𝐷 𝐿⁄ ≪ 1) that have shown almost no 

power-law dependence (𝛼 ≈ 0)1,2,4 and nanopores with 𝐷 𝐿⁄ ≳ 1 that have shown relatively high 

𝛼  values.23,24,27 Figure 1D shows that |𝜎|  is proportional to the magnitude of the surface 

conductance but it has little effect on 𝛼 . This observation is similar to the experimental 

observation on pH dependence of ionic conductance1,17,26,31 where pH value has a small effect on 

𝛼 but pH value is directly related to the magnitude of the surface conductance. We note that 𝛼 

depends not only on the pore geometry but also on how the surface charges are distributed. 

When both the supporting membranes and the pore surface are charged, the 𝛼 values are smaller 

than when only the pore surface is charged (see Figure 1A-B). 

For an intuitive model, we consider the summation of the two limits, bulk and surface 

conductance, of Eq (11). At the high concentration limit, |𝜎̃| ≪ 1 , 𝐺ph ~ 𝐺bulk = 𝐹𝑐0(𝜇ct +
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𝜇co) (
𝐿

𝜋𝑅2 +
1

2𝑅
)

−1
, where 𝜇ct  and 𝜇co  are the counter-ion and co-ion mobility. At the low 

concentration limit, 𝜎̃ ≫ 1 , 𝐺ph~𝐺surf = 𝐹𝑐0𝜇ct|2𝜎̃|1−𝛼 (
𝐿

𝜋𝑅2 +
1

2𝑅
)

−1
. By adding these two 

limits, the electrophoretic conductance can be approximated as 

 𝐺ph ≈ 𝐺bulk + 𝐺surf = 𝐹𝑐0{(1 + |2𝜎̃|1−𝛼)𝜇ct + 𝜇co} (
𝐿

𝜋𝑅2 +
1

2𝑅
)

−1
. (12) 

The model in Eq 12 provides an intuitive understanding of ion transport through a charged 

pore. The dimensionless term, |2𝜎̃|1−𝛼 , represents the conductance enhancement due to the 

counterion transport in the diffuse layer. When 1 ≫ |2𝜎̃|1−𝛼, the bulk transport is dominant and 

when 1 ≪ |2𝜎̃|1−𝛼, the surface conductance is dominant. Eq (12) is a reasonable approximation 

to Eq (11) for 0 ≤ 𝛼 ≲ 0.7. 

Total conductance with electric-potential-leakage 

In addition to the bulk and diffuse layer ion transport (electrophoresis), the total conductance is 

also affected by the water transport driven by the ionic migration (electroosmosis). The 

electroosmotic flow generates an ionic current due to the net charge of solution in the pore.50 The 

electroosmotic transport can be incorporated into Eq 11 by using electroosmotic mobility 𝜇eo. 

Then, the total conductance can be written as 

𝐺 = 𝐹𝑐0 {(𝜇+ + 𝜇eo)(√1 + 𝜎̃2 + 𝜎̃)
1−𝛼

+ (𝜇− − 𝜇eo)(√1 + 𝜎̃2 − 𝜎̃)
1−𝛼

} (
𝐿

𝜋𝑅2
+

1

2𝑅
)

−1

. (13) 

Electroosmotic mobility enhances the counter-ion transport but reduces the co-ion transport. 

The direction of electroosmotic flow is considered in the sign of electroosmotic mobility, which 

is the opposite sign of the surface charge. The electroosmotic contribution to the total 

conductance (Eq 13) can be written as, 

 𝐺eo = 𝐹𝑐0𝜇eo {(√1 + 𝜎̃2 + 𝜎̃)
1−𝛼

− (√1 + 𝜎̃2 − 𝜎̃)
1−𝛼

} (
𝐿

𝜋𝑅2 +
1

2𝑅
)

−1
. (14) 



11 

 

This formulation is consistent with the fact that the electroosmotic current is generated by the 

net charge in the pore. At low concentration limit ( 𝜎̃ ≫ 1 ), the total surface conductance 

(including the electroosmotic component) is given by, 

 𝐺surf = 𝐹𝑐0𝜇ct (1 +
|𝜇eo|

𝜇ct
) |2𝜎̃|1−𝛼 (

𝐿

𝜋𝑅2 +
1

2𝑅
)

−1
. (15) 

If 𝜇eo is assumed constant and independent of the reservoir concentration, 𝐺surf has the same 

power-law exponent, 𝛼, as that of Eq 11 (see Figure S4). The dimensionless parameter 
|𝜇𝑒𝑜|

𝜇𝑐𝑡
 is the 

enhancement factor in surface conductance due to the electroosmotic flow. In experimental 

situations, the surface charge density of the nanopore is generally unknown. Hence, the 

conductance theories are used to estimate the surface charge density by matching the theory with 

experimental conductance-concentration dataset.1–4,26,31 We note that, the theory with 

electroosmosis predicts lower |𝜎|  than the theory without electroosmosis for a same 

conductance-concentration dataset. In the expression for electroosmotic conductance suggested 

by Levine et al.,38 the electroosmotic mobility is given by, |𝜇𝑒𝑜| =
2𝜖𝑘B𝑇

𝜂𝑒
, where 𝜂  is the 

viscosity of the solution. This expression for electroosmotic mobility is suitable for non-

overlapped (Electrical Double Layer) EDL system. Similarly, the electroosmotic mobility 

derived by Biesheuvel and Bazant20 using SC theory33 and Donnan equation is given by, 𝜇eo =

−𝜎𝑅

4𝜂
. This mobility is valid for highly overlapped EDL systems where the pore potential is almost 

invariant. Figure S10 shows the results from Eq (13) with these electroosmotic mobilities in 

comparison to all-atom MD and MD using implicit water. Those suggested electroosmotic 

mobilities shows a better prediction to the all-atom MD simulation. However, the electroosmotic 

mobility for electrically imperfect nanopore with slip is absent and further research is needed. 

Ion selectivity 
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For a deeper understanding of ion transport in electrically imperfect/non-neutral nanopore, the 

contributions of each ion are investigated. Eq 13 can be decomposed into the contributions of 

cations and anions, i.e., 𝐺 = 𝐺+ + 𝐺−. Each contribution is given by, 

 𝐺± = 𝐹𝑐0 {(𝜇± ± 𝜇eo)(√1 + 𝜎̃2 ± 𝜎̃)
1−𝛼

} (
𝐿

𝜋𝑅2 +
1

2𝑅
)

−1
. (16) 

The ion selectivity is defined as, 

 𝑆± ≡
𝐺± 

𝐺
. (17) 

Using Eq 16 and 17, the ion selectivity can be calculated. Figure 4A-B show the contribution of 

counter-ion and co-ion conductance to total conductance, respectively. At high concentration, 

both K+  and Cl−   ions contribute almost equally to the conductance. However, at low 

concentration the co-ion (Cl−) contribution decays faster than that of counter-ions (K+). As a 

result, at low concentration, the counter-ion transport governs ionic conductance. Moreover, the 

theory can also predict the ion selectivity of nanopore. Figure 4C shows that the ion selectivity 

obtained from MD and theory are in good agreement predicting that ion selectivity increases and 

approaches one as the concentration decreases. We note that electroosmosis is a important factor 

in the selective ion transport according to Eq 16-17 (see Figure S5). 

Comparison with experimental data 

The experimentally measured power-law exponents from various studies are shown in Figure 

5A. It should be noted that physically 𝛼 is the fraction of the surface-electric-potential that leaks 

out of the pore and mathematically 𝛼 is the power-law exponent of surface conductivity. Most 

experimental data show a consistent behavior that 𝛼 increases as 𝑅/𝐿 increases despite varying 

nanopore sizes (see Figure 5B). This consistency among the various independent experimental 

studies support the validity of the conductance model with electrically non-neutral or imperfect 

pores. In addition, the consistency among different materials can be understood as the surface 
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transport (for pore 𝐷 ≳ 3 nm) is governed by the electrostatic force, which is characterized by 

the surface charge density, 𝜎, in the model. The deviations observed for CNT data may imply 

that there could be other omitted physics. For example, the surface charge density of CNT 

immersed in the solution may depend on the reservoir concentration (charge regulation).16,17,20–22 

The 𝛼  values obtained from MD simulation assume an ideal case of a perfect cylindrical 

geometry (no mechanical and chemical defects) with a homogeneous charge distribution. In this 

case, 𝛼 can be empirically modeled as 

 𝛼~
1

√𝜋
(

𝐿

𝑅
+

1

2
)

−
1

2
. (18) 

In practical cases, in addition to pore geometrical parameters, 𝛼 can also be affected by the 

charge distribution. For sub-3nm pores or highly confined system, 𝛼 can depend on the material 

type (e.g. SiO2, Si3N4, etc.), as at these length scales, in addition to electrostatic interactions, van 

der Waals interactions and the finite size of the ions51 also play an important role.  

Finally, we tested the conductance theory for electrically imperfect nanopores given in Eqs 13 

and 18 with the published experimental data. For this comparison, we assumed 𝜇eo = 0 due to 

the absence of electroosmotic mobility for electrically imperfect nanopore as we discussed 

earlier. Therefore, the actual surface charge density can be lower to some extent than the 

estimated value. Most of the experimental data are well described by the theory we present (see 

Figure 6). The estimated surface charge density of Si3N4 and SiO2 are in the reasonable range 

compared to the typical value 𝜎 ~ − 20 mC/m252 and 𝜎 ~ − 100 mC/m253 respectively. In the 

case of small-diameter CNT, the estimated |𝜎| is very large at high pH. One possible explanation 

of this is a strong osmotic current amplified by a large slip on the hydrophobic surface. The 

conductance model also describes the conductance of biological nanopores that have sub-3 nm 
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effective diameter. However, the quantitative estimation of surface charge density in sub-3 nm 

pore may require a comprehensive ion transport model including interfacial phenomena such as 

near-surface mobility/viscosity,49,54 van der Waals type adsorption, finite size of ion on EDL51 

and wall/fluid slip.55 

CONCLUSION 

The net charge in the EDL near a pore surface is the source of the surface conductance. Our 

coarse-grained MD simulations demonstrate that various power-laws can be observed in pores 

with a constant surface charge. We also investigated the axial net charge distribution in the pore 

and conclude that there is leakage of surface-electric-potential from the pore into the reservoir. 

By considering the electrochemical equilibrium with the electric-potential-leakage, we developed 

an ion conductance theory that describes power-laws with exponents between zero and one. The 

ion conductance theory accounting for the leakage of surface-electrical-potential describes the 

conductance and selectivity obtained from MD simulation of nanopores of various lengths, 

diameters, and surface charge densities. Analysis of the published experimental and MD data 

reveals that the exponent of the power-law is related to the aspect ratio of the nanopore. An 

empirical model is proposed to describe the exponent of the power-law by using MD data on a 

perfect cylindrical pore and homogeneous surface charge. The ion conductance theory with 

empirical power-law relation describes well most of the experimental data.  
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METHODS 

For ion transport studies, coarse-grained MD simulations were performed with implicit water 

and explicit ions. Utilizing implicit water enables us to perform several orders of magnitude 

more efficient ion transport studies compared to all-atom MD simulations as the number of 

atoms in the system are significantly reduced. The coarse-grained MD simulations implicitly 

consider the viscosity, thermal collision, hydration energy, distance-dependent dielectric 

permittivity, and therefore properly reproduces concentration dependent ion mobility, the ionic 

structure in the solution, and the ionic interfacial structure. The Langevin dynamics is used to 

generate the thermal motion of ions. The damping parameters of Langevin Dynamics are 

adjusted to reproduce the viscosity of the solution by matching the experimental ion mobility (for 

both K+ and Cl−) in a dilute solution (the Stokes’ drag of ion, 𝜂 =
𝑞𝐸

6𝜋𝜇𝑟
, where 𝐸 is electric field, 

𝑟 is radius of ion). We refer to an earlier study on the implicit water MD simulation done by 

Lenart et al.56 for distance-dependent dielectric permittivity and hydration energy correction. The 

distance-dependent dielectric primitivity is modeled as  𝜖d(𝑟) =
5.2+𝜖s

2
+

𝜖s−5.2

2
tanh (

𝑟−𝑟me

𝜎ϵ
) , 

where 𝜖s  is the bulk solution permittivity, 𝑟me  and 𝜎ϵ  are free parameters representing the 

location of the first hydration shell and the distance scale of the permittivity recovery. This 

model assumes that most of the bulk dielectric permittivity is recovered after the first hydration 

shell. The hydration energy is modeled as a Gaussian function, 𝐸hyd =
𝐻

𝜎h√2𝜋
exp (−

(𝑟−𝑟mh)2

2𝜎h
2 ), 

where 𝐻 is the intensity factor of hydration energy, 𝑟mh is mean and 𝜎h is standard deviation. In 

the original work, these free parameters were optimized by fitting concentration-dependent 

activity coefficient and Radial Distribution Function (RDF) of cation and anion. In the present 

study, all free parameters were re-optimized to reproduce the concentration dependence of molar 
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conductivity, 𝛬(𝑐0), and RDFs of all ion pairs (see Figure S6 for optimization procedure). The 

molar conductivity and the RDFs obtained from the optimized potential are shown in Figure S7-

8. Finally, EDL is reproduced by adjusting LJ potentials between ions and carbon (see Figure 

S9). The optimized force-field for implicit water and explicit ions is listed in Table S1. The 

benchmark study of ion transport using this potential is shown in Figure S10. 

For ion transport studies using implicit water, a nanopore and two reservoirs attached to the 

edges of the pore were considered. Three reservoirs of sizes 35 nm, 50 nm and 70 nm cube are 

considered depending on the reservoir concentration (a lower concentration requires a larger 

reservoir). Aqueous KCl solution and a fixed cylindrical pore made of carbons is considered. The 

effective diameters of the pores were determined by subtracting the wall-fluid LJ diameter57 

from the center-to-center diameter of pore. The pore surface and membranes are homogeneously 

charged. We applied electric potential difference in the linear regime of current-voltage curve 

(less than 0.5 V). For electrically neutral systems, extra counterions are added to the system.58 

MD simulation is initially performed under the NVT ensemble for 20 ns to 100 ns with the 

electric field until the system reaches the steady state. Then, the atomic trajectories are integrated 

by the NVE ensemble. The time step is set to 10 fs and the data were obtained during 10 ns ~ 

500 ns (lower concentrations require longer data collection time).  

For all-atom MD simulation, SPC/E water59 was utilized. The bond angle and length are 

maintained by the SHAKE algorithm.60 The long-range Coulomb potential is computed by the 

PPPM method.61 The interatomic interactions among the molecular pairs are modeled by the LJ 

potential. We used the optimized ion forcefield for use with SPC/E water.62 We used the carbon-

water interatomic potential reproducing a proper contact angle.63 The rest of atomic pair 

potentials are modeled by the Lorentz-Berthelot mixing rule. The force-fields are summarized in 
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Table S2. The NVT ensemble is utilized for velocity integration with 2 fs time step. Nose-

Hoover dynamics are employed to maintain the temperature by adjusting only the velocity 

components that are perpendicular to the electric field. The relatively small size reservoir, 15nm, 

is considered due to the high computational cost of all-atom MD. The other conditions are the 

same as those used in the implicit water model. For short and long range potential, GPU-

accelerated calculation was utilized.64,65 

The ion current is computed by counting the number of ions passing the pore. The Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS)66 is used for all simulations. 
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Figure 1. Ionic conductance versus reservoir ion concentration (𝐺-𝑐0 curve). In (A-B), the pore 

length is varied, and the diameter and surface charge density are fixed, 𝐷 =  5.1 nm and 𝜎 =

−50 mC/m2. In (C), diameter is varied and the pore length and surface charge density are fixed, 

𝐿 =  20 nm and 𝜎 = −50 mC/m2. In (D), surface charge density is varied and pore length and 

diameter are fixed, 𝐿 =  20 nm and 𝐷 =  5.1 nm. As shown in the inset, only the pore surface 

is assumed to be charged in (A) and both the pore and membrane surface are assumed to be 

charged in (B). The best-fit curves of Eq 11 to the MD datasets are obtained by fitting 𝛼. 
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Figure 2. Axial distribution of the net charge concentration of solution inside the pore. The 

symbols represent MD simulation data obtained with 𝐷 = 5.1 nm , 𝜎 = −50 mC/m2 ,  𝑐0 =

0.03 M and the length of the nanopore is varied. The external electric field is applied in the 

positive z-direction.   
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Figure 3. The role of α and σ in the ion conductivity theory given by Eq 10 (A) 𝛼 is varied and 𝜎 

is fixed (B) 𝛼 is fixed and 𝜎 is varied.  
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Figure 4. Contribution of counter-ion and co-ion to ionic conductance (A) counter-ion 

contribution (in this case 𝜎 < 0) and (B) co-ion contribution. (C) The ionic selectivity as a 

function of ion concentration. The all data are for nanopore with 𝐿 = 20 nm, 𝐷 = 5.1 nm, 𝜎 =

−50 mC/m2. In MD simulation, the selectivity is directly computed from the definition, 𝑆 ≡

𝐺+ 𝐺⁄ . The bulk conductance and Donnan-Boltzmann prediction of conductance are special 

cases of Eq 16 with 𝛼 = 1 and 𝛼 = 0, respectively. 
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Figure 5. Power-law exponents relations obtained from MD and experiments. (A) The exponent 

of the power-law versus the aspect ratio of the pore (𝑅/𝐿 or 𝐻/𝐿 for a rectangular channel). The 

exponent of the power-law is determined from the slope of the conductance-concentration curve 

in the log-log scale at low concentration. The dashed line is Eq 18. (B) A phase diagram of 

electrical imperfectness of nanopore determined by Eq 18 (color bar indicates 𝛼 ). The 

experimental datasets considered here include: Graphene,24,25 Graphene-Al2O3,
26 Si3N4,

27 

SiO2,
16,28,29 BNNT,2 CNT,17 and biological nanopore.32 For the MD data plotted here both the 

supporting membrane and the pore surface are charged. 
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Figure 6. Conductance-concentration curves from various experiments and the conductance 

theory given in Eqs 13 and 18. Here, 𝜎 (the surface charge density) is the only fitting parameter 

in the theory. In (C) conductivity is plotted instead of conductance. The legend in each subplot 

shows [𝑅 (nm), 𝐿 (nm), |𝜎| (mC/m2)]  for circular pores and 

[𝐻 (nm), 𝑊 (nm), 𝐿 (nm), |𝜎| (mC/m2)] for rectangular channels. The sources for experimental 

data are (A) Venkatesan et al.26 (B) blue: Kumar et al.;24 red: Shan et al.25 (C) Siria et al.2 (D) 

Lee et al.27 (E) red: Martins et al.,67 green/blue: Stein et al.;1 violet: Smeets et al.16 (F) orange: 
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Roy and Hall;29 the remaining colors: Petrossian et al.28 (G) Queralt-Martín et al.32 (H-I) Secchi 

et al.17 
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