
The Communication Complexity of Optimization

Santosh S. Vempala∗ Ruosong Wang† David P. Woodruff‡

Abstract

We consider the communication complexity of a number
of distributed optimization problems. We start with the
problem of solving a linear system. Suppose there is a
coordinator together with s servers P1, . . . , Ps, the i-th
of which holds a subset A(i)x = b(i) of ni constraints
of a linear system in d variables, and the coordinator
would like to output an x ∈ Rd for which A(i)x = b(i)

for i = 1, . . . , s. We assume each coefficient of each con-
straint is specified using L bits. We first resolve the ran-
domized and deterministic communication complexity
in the point-to-point model of communication, showing
it is eΘ(d2L + sd) and eΘ(sd2L), respectively. We ob-
tain similar results for the blackboard communication
model. As a result of independent interest, we show
the probability a random matrix with integer entries in
{−2L, . . . , 2L} is invertible is 1− 2−Θ(dL), whereas pre-
viously only 1− 2−Θ(d) was known.

When there is no solution to the linear system, a
natural alternative is to find the solution minimizing
the ‘p loss, which is the ‘p regression problem. While
this problem has been studied, we give improved upper
or lower bounds for every value of p ≥ 1. One takeaway
message is that sampling and sketching techniques,
which are commonly used in earlier work on distributed
optimization, are neither optimal in the dependence on
d nor on the dependence on the approximation ε, thus
motivating new techniques from optimization to solve
these problems.

Towards this end, we consider the communication
complexity of optimization tasks which generalize linear
systems, such as linear, semidefinite, and convex pro-
gramming. For linear programming, we first resolve the
communication complexity when d is constant, showing
it is eΘ(sL) in the point-to-point model. For general d

and in the point-to-point model, we show an eO(sd3L)

upper bound and an eΩ(d2L + sd) lower bound. In fact,
we show if one perturbs the coefficients randomly by
numbers as small as 2−Θ(L), then the upper bound iseO(sd2L)+poly(dL), and so this bound holds for almost

∗Georgia Tech. Email: vempala@cc.gatech.edu.
†Carnegie Mellon University. Email:

ruosongw@andrew.cmu.edu.
‡Carnegie Mellon University. Email: dwoodruf@cs.cmu.edu.

all linear programs. Our study motivates understand-
ing the bit complexity of linear programming, which
is related to the running time in the unit cost RAM
model with words of O(log(nd)) bits, and we give the
fastest known algorithms for linear programming in this
model.

1 Introduction

Large-scale optimization problems often cannot fit into
a single machine, and so they are distributed across
a number s of machines. That is, each of servers
P1, . . . , Ps may hold a subset of constraints that it
is given locally as input, and the goal of the servers
is to communicate with each other to find a solution
satisfying all constraints. Since communication is often
a bottleneck in distributed computation, the goal of the
servers is to communicate as little as possible.

There are several different standard communication
models, including the point-to-point model and the
blackboard model. In the point-to-point model, each
pair of servers can talk directly with each other. This
is often more conveniently modeled by looking at the
coordinator model, for which there is an extra server
called the coordinator, and all communication must
pass through the coordinator. This is easily seen to
be equivalent, from a total communication perspective,
to the point-to-point model up to a factor of 2, for
forwarding messages from server Pi to server Pj , and
a term of log s per message to indicate which server
the message should be forwarded to. Another model of
computation is the blackboard model, in which there is a
shared broadcast channel among all the s servers. When
a server sends a message, it is visible to each of the other
s − 1 servers and determines who speaks next, based
upon an agreed upon protocol. We mostly consider
randomized communication, in which for every input,
we require the coordinator to output the solution to the
optimization problem with high probability. For linear
systems we also consider deterministic communication
complexity.

A number of recent works in the theory community
have looked at studying specific optimization problems
in such communication models, such as principal com-
ponent analysis [35, 39, 13] and kernel [8] and robust

1733
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

variants [59, 23], computing higher correlations [35], ‘p
regression [55, 23] and sparse regression [15], estimating
the mean of a Gaussian [61, 28, 15], database problems
[31, 58], clustering [17], statistical [56], graph problems
[43, 56] and many, many more.

There are also a large number of distributed learn-
ing and optimization papers, for example [7, 61, 63, 1,
14, 40, 60, 19, 44, 26, 24, 25, 32, 47, 46, 62, 4, 34].
With a few exceptions, these works do not study general
communication complexity, but rather consider specific
classes of algorithms. Namely, a number of these works
only allow gradient and Hessian computations in each
round, and do not allow arbitrary communication. An-
other aspect of these works is that they typically do
not count total bit complexity, but rather only count
number of rounds, whereas we are interested in total
communication. In a number of optimization problems,
the bit complexity of storing a single number in an
intermediate computation may be as large as storing
the entire original optimization problem. It is there-
fore infeasible to transmit such a number. While one
could round this number, the effect of rounding is often
unclear, and could destroy the desired approximation
guarantee. One exception to the above is the work of
[52], which studies the problem in which there are two
servers, each holding a convex function, who would like
to find a solution so as to minimize the sum of the two
functions. The upper bounds are in a different com-
munication model than ours, where the functions are
added together, while the lower bounds only apply to a
restricted class of protocols.

Noticeably absent from previous work is the com-
munication complexity of solving linear systems, which
is a fundamental primitive in many optimization tasks.
Formally, suppose there is a coordinator together with
s servers P1, . . . , Ps, the i-th of which holds a subset
A(i)x = b(i) of ni constraints of a d-dimensional lin-
ear system, and the coordinator would like to output
an x ∈ Rd for which A(i)x = b(i) for i = 1, . . . , s.
We further assume each coefficient of each constraint
is specified using L bits. The first question we ask is
the following.

Question 1.1. What is the communication complexity
of solving a linear system?

When there is no solution to the linear system,
a natural alternative is to find the solution minimiz-
ing the ‘p loss, which is the ‘p regression problem
minx∈Rd kAx − bkp, where for an n-dimensional vector

y, kykp = (
Pn
i=1 |yi|p)

1/p
is its ‘p norm.

In the distributed ‘p regression problem, each server
has a matrix A(i) ∈ Rni×d and a vector b(i) ∈ Rni ,
and the coordinator would like to output an x ∈ Rd

so that kAx− bkp is approximately minimized, namely,
that kAx − bkp ≤ (1 + ε) minx0 kAx0 − bkp. Note that
here A ∈ Rn×d is the matrix obtained by stacking
the matrices A(1), . . . , A(s) on top of each other, where
n =

Ps
i=1 ni. Also, b ∈ Rn is the vector obtained by

stacking the vectors b(1), . . . , b(s) on top of each other.
We assume that each entry of A and b is an L-bit integer,
and we are interested in the randomized communication
complexity of this problem.

While previous work [41, 55] has looked at the
distributed ‘p regression problem, such work is based
on two main ideas: sampling and sketching. Such
techniques reduce a large optimization problem to a
much smaller one, thereby allowing servers to send
succinct synopses of their constraints in order to solve
a global optimization problem.

Sampling and sketching are the key techniques of
recent work on distributed low rank approximation
[55, 35] and regression algorithms. A natural ques-
tion, which will motivate our study of more complex
optimization problems below, is whether other tech-
niques in optimization can be used to obtain more
communication-efficient algorithms for these problems.

Question 1.2. Are there tractable optimization prob-
lems for which sampling and sketching techniques are
suboptimal in terms of total communication?

To answer Question 1.2 it is useful to study opti-
mization problems generalizing both linear systems and
‘p regression for certain values of p. Towards this end,
we consider the communication complexity of linear,
semidefinite, and convex programming. Formally, in the
linear programming problem, suppose there is a coor-
dinator together with s servers P1, . . . , Ps, the i-th of
which holds a subset A(i)x ≤ b(i) of ni constraints of a
d-dimensional linear system, and the coordinator, who
holds a vector c ∈ Rd, would like to output an x ∈ Rd
for which cTx is maximized subject to A(i)x ≤ b(i) for
i = 1, . . . , s. We further assume each coefficient of each
constraint, as well as the objective function c, is speci-
fied using L bits.

Question 1.3. What is the communication complexity
of solving a linear program?

One could try to implement known linear program-
ming algorithms as distributed protocols. The main
challenge here is that known linear programming al-
gorithms operate in the real RAM model of computa-
tion, meaning that basic arithmetic operations on real
numbers can be performed in constant time. This is
problematic in the distributed setting, since it might
mean real numbers need to be communicated among the

1734
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

servers, resulting in protocols that could have infinite
communication. Thus, controlling the bit complexity of
the underlying algorithm is essential, and this motivates
the study of linear programming algorithms in the unit
cost RAM model of computation, meaning that a word is
O(log(nd)) bits, and only basic arithmetic operations on
words can be performed in constant time. Such a model
is arguably more natural than the real RAM model. If
one were to analyze the fastest linear programming al-
gorithms in the unit cost RAM model, their time com-
plexity would blow up by poly(dL) factors, since the
intermediate computations require manipulating num-
bers that grow exponentially large or small. Surpris-
ingly, we are not aware of any work that has addressed
this question:

Question 1.4. What is the best possible running time
of an algorithm for linear programming in the unit cost
RAM model?

As far as time complexity is concerned, it is not
even known if linear programming is inherently more
difficult than just solving a linear system. Indeed, a long
line of work on interior point methods, with the current
most recent work of [20], suggests that solving a linear
program may not be substantially harder than solving
a linear system. One could ask the same question for
communication.

Question 1.5. Is solving a linear program inherently
harder than solving a linear system? What about just
checking the feasibility of a linear program versus that
of a linear system?

Recent Independent Work. A recent indepen-
dent work [5] also studies solving linear programs in
the distributed setting, although their focus is to study
the tradeoff between round complexity and communi-
cation complexity in low dimensions, while our focus is
to study the communication complexity in arbitrary di-
mensions. Note, however, that we also provide nearly
optimal bounds for constant dimensions for linear pro-
gramming in both coordinator and blackboard models.

1.1 Our Contributions We make progress on an-
swering the above questions, with nearly tight bounds
in many cases. For a function f , we let eO(f) =

f polylog(sndL/ε) and similarly define eΘ and eΩ.

1.1.1 Linear Systems We begin with linear sys-
tems, for which we obtain a complete answer for both
randomized and deterministic communication, in both
coordinator and blackboard models of communication.

Theorem 1.1. In the coordinator model, the random-
ized communication complexity of solving a linear sys-
tem is eΘ(d2L + sd), while the deterministic communi-

cation complexity is eΘ(sd2L). In the blackboard model,
both the randomized communication complexity and the
deterministic communication complexity are eΘ(d2L+s).

Theorem 1.1 shows that randomization provably
helps for solving linear systems. The theorem also shows
that in the blackboard model the problem becomes
substantially easier.

1.1.2 Approximate Linear Systems, i.e., ‘p Re-
gression We next study the ‘p regression problem in
both the coordinator and blackboard models of com-
munication. Finding a solution to a linear system is
a special case of ‘p regression; indeed in the case that
there is an x for which Ax = b we must return such an
x to achieve (1 + ε) relative error in objective function
value for ‘p regression. Consequently, our lower bounds
for linear systems apply also to ‘p regression for any
ε > 0.

We first summarize our results in Table 1 and
Table 2 for constant ε. We state our results primarily for
randomized communication. However, in the case of ‘2

regression, we also discuss deterministic communication
complexity.

One of the main takeaway messages from Table 1
is that sampling-based approaches, namely those based
upon the so-called Lewis weights [22], would require
Ω(dp/2) samples for ‘p regression when p > 2, and thus
communication. Another way for solving ‘p regression
for p > 2 is via sketching, as done in [55], but then
the communication is Ω(n1−2/p). Our method, which
is deeply tied to linear programming, discussed more
below, solves this problem in eO(sd3L) communication.
Thus, this gives a new method, departing from sampling
and sketching techniques, which achieves much better
communication. Our method involves embedding ‘p
into ‘∞, and then using distributed algorithms for linear
programming to solve ‘∞ regression.

As with linear systems, one takeaway message from
the results in Table 2 is that the problems have signif-
icantly more communication-efficient upper bounds in
the blackboard model than in the coordinator model.
Indeed, here we obtain tight bounds for ‘1 and ‘2 re-
gression, matching those that are known for the easier
problem of linear systems.

We next describe our results for non-constant ε in
both the coordinator model and the blackboard model.
Here we focus on ‘1 and ‘2, which illustrate several
surprises.

One of the most interesting aspects of the results

1735
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

Error Measure Upper Bound Lower Bound Theorem

‘1 (randomized) eO(sd2L) eΩ(d2L + sd) Theorem 7.1, 3.5

‘1 (deterministic) eO(sd2L) eΩ(sd2L) Theorem 7.1, 3.3

‘2 (randomized) eO(sd2L) eΩ(d2L + sd) Theorem 6.1, 3.5

‘2 (deterministic) eO(sd2L) eΩ(sd2L) Theorem 6.1, 3.3

‘p for constant p > 2 eO(sd3L) eΩ(d2L + sd) Theorem 8.2, 3.5

‘∞ eO(sd3L) eΩ(d2L + sd) Theorem 8.1, 3.5

Table 1: Summary of our results for ‘p regression in the coordinator model for constant ε.

Error Measure Upper Bound Lower Bound Theorem

‘1
eO(s + d2L) eΩ(s + d2L) Theorem 7.2, 3.5

‘2
eO(s + d2L) eΩ(s + d2L) Theorem 6.2, 3.5

‘p for constant p > 2 O(min{sd + d4L, sd3L}) eΩ(s + d2L) Theorem 8.2, 3.5

‘∞ O(min{sd + d4L, sd3L}) eΩ(s + d2L) Theorem 8.1, 3.5

Table 2: Summary of our results for ‘p regression in the blackboard model for constant ε.

Error Measure Upper Bound Lower Bound Theorem

‘1
eO(min(sd2L + d2L

ε2 , sd
3L
ε) eΩ(d2L + sd) Theorem 7.2, 7.3, 3.5

‘2 (randomized) eO(sd2L) eΩ(d2L + sd) Theorem 6.1, 3.5

‘2 (deterministic) eO(sd2L) eΩ(sd2L) Theorem 6.1, 3.3

Table 3: Summary of our results for ‘1 and ‘2 regression in the coordinator model for general ε.

in Table 3 is our dependence on ε for ‘1 regression,
where for small enough ε relative to sd, we achieve a 1/ε
instead of a 1/ε2 dependence. We note that all sampling
[22] and sketching-based solutions [55] to ‘1 regression
have a 1/ε2 dependence. Indeed, this dependence
on ε comes from basic concentration inequalities. In
contrast, our approach is based on preconditioned first-
order methods described in more detail below.

A takeaway message from Table 4 is that our lower
bound shows some dependence on ε is necessary both for
‘1 and ‘2 regression, provided ε is not too small. This
shows that in the blackboard model, one cannot obtain
the same eO(d2L+s) upper bound for these problems as
for linear systems, thereby separating their complexity
from that of solving a linear system.

1.1.3 Linear Programming One of our main tech-
nical ingredients is to recast ‘p regression problems
as linear programming problems and develop the first
communication-efficient solutions for distributed linear
programming. Despite this problem being one of the
most important problems that we know how to solve in
polynomial time, we are not aware of any previous work
considering its communication complexity in generality

besides a recent independent work [5]
First, when the dimension d is constant, we obtain

nearly optimal upper and lower bounds.

Theorem 1.2. In constant dimensions, the random-
ized communication complexity of linear programming
is eΘ(sL) in the coordinator model and eΩ(s + L) in the
blackboard model. Our upper bounds allow the coordina-
tor to output the solution vector x ∈ Rd, while the lower
bounds hold already for testing if the linear program is
feasible. Here the eΘ(·) notation and the eΩ(·) notation
suppress only polylog(sL) factors.

Despite the fact that we do not have tight upper
bounds matching the eΩ(s + L) lower bounds in the
blackboard model, under the additional assumption
that each constraint in the linear program is placed
on a random server, we develop an algorithm with a
matching eO(s + L) communication cost. Partitioning
constraints randomly across servers instead is common
in distributed computation, see, e.g., [6]. Neverthelss
we leave it as an open problem in the blackboard model
in constant dimensions, to remove this requirement.

For solving a linear system in constant dimensions,
the randomized communication complexity is eΘ(s + L)

1736
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

Error Measure Upper Bound Lower Bound Theorem

‘1
eO(s + d2L

ε2) eΩ(s + d
ε + d2L) for s > Ω(1/ε) Theorem 7.2, 3.5, 5.1

‘2
eO(s + d2L

ε) eΩ(s + d
ε1/2

+ d2L) for s > Ω(1/
√
ε) Theorem 6.2, 3.5, 5.2

Table 4: Summary of our results for ‘1 and ‘2 regression in the blackboard model for general ε.

in both models. Again, the eΘ(·) notation suppresses
only polylog(sL) factors. Thus, in the coordinator
model, we separate the communication complexity of
these problems. We can also separate the complexi-
ties in the blackboard model if we instead look at the
feasibility problem. Here instead of requiring the coor-
dinator to output the solution vector, we just want to
see if the linear system or linear program is feasible. We
have the following theorem for this.

Theorem 1.3. In constant dimensions, the random-
ized communication complexity of checking whether a
system of linear equations is feasible is O(s logL) in ei-
ther the coordinator or blackboard model of communica-
tion.

Combining Theorem 1.2 and Theorem 1.3, we see
that for feasibility in the blackboard model, linear
programming requires eΩ(s+L) bits, while linear system

feasibility takes eO(s) bits, and thus we separate these
problems in the blackboard model as well.

Returning to linear programs, we next consider the
complexity in arbitrary dimensions.

Theorem 1.4. In the coordinator model, the random-
ized communication complexity of exactly solving a lin-
ear program max{cTx : Ax ≤ b} with n constraints
in dimension d and all coefficients specified by L-bit
numbers is eO(sd3L). Moreover it is lower bounded byeΩ(d2L + sd). Here the upper and lower bounds require
the coordinator to output the solution vector x ∈ Rd.

The lower bound in Theorem 1.4 just follows from
our lower bound for linear systems. The upper bound
is based on an optimized distributed cutting-plane al-
gorithm. We describe the idea below.

While the upper bound is eO(sd3L), one can further
improve it as follows. We show that if the coefficients
of A in the input to the linear program are perturbed
independently by i.i.d. discrete Gaussians with variance
as small as 2−Θ(L), then we can improve the upper
bound for solving this perturbed problem to eO(sd2L +
d4L), where now the success probability of the algorithm
is taken over both the randomness of the algorithm and
the random input instance, which is formed by a random
perturbation of a worst-case instance. Note that this
is an improvement for sufficiently large s. Our model

coincides with the well-studied smooth complexity model
of linear programming [48, 11, 49]. However, a major
difference is that the variance of the perturbation needs
to be at least inverse polynomial in their works, whereas
we allow our variance to be as small as 2−Θ(L).

Theorem 1.5. In the smoothed complexity model with
discrete Gaussians of variance 2−Θ(L), the communi-
cation complexity of exactly solving a linear program
max{cTx : Ax ≤ b} with n constraints in dimension
d and all coefficients specified by L-bit numbers, with
probability at least 9/10 over the input distribution and

randomness of the protocol, is eO(sd2L+d4L) in the co-
ordinator model.

While our focus in this paper is on communica-
tion, our upper bounds also give a new technique for
improving the time complexity in the unit cost RAM
model of linear programming, where arithmetic opera-
tions on words of size O(log(nd)) can be performed in
constant time. For this fundamental problem we obtain
the fastest known algorithm even in the non-smoothed
setting of linear programming.

Theorem 1.6. The time complexity of solving an n ×
d linear program with L-bit coefficients is eO(ndωL +
poly(dL)) in the unit cost RAM model.

We note that this is for solving an LP exactly
in the RAM model with words of size O(log(nd))
bits. The current fastest linear programming algorithms
[37, 38, 20] state the bounds in terms of additive error
ε, which incurs a multiplicative factor of at least Ω(dL)
to solve the problem exactly. Also such algorithms
manipulate large numbers at intermediate points in the
algorithm, which are at least L bits, which could take
Ω(L) time to perform a single operation on. It seems
that transferring such results to the unit cost RAM
model with O(log(nd)) bit words incurs time at least
Ω(nd2.5L2 + dw+1.5L2). This holds true even of the
recent work [20], which focuses on the setting n = O(d)
and does not improve the leading nd2.5L2 term. Even
such a bit-complexity bound needs careful checking of
the number of bits required as recent improvements use
sophisticated inverse maintenance methods to save on
the number of operations (an exercise that was carried
out thoroughly for the Ellipsoid method in [29]).

1737
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

1.1.4 Implications for Convex Optimization
and Semidefinite Programming Our upper bounds
also extend to more general convex optimization prob-
lems. For these, we must modify the problem statement
to finding an ε-additive approximation rather than the
exact solution. We obtain the following upper bound
for a convex program in Rd.
Theorem 1.7. The communication complexity of solv-
ing the convex optimization problem min{cTx : x ∈T
iKi} for convex sets Ki ⊆ RBn, one per server,

to within an additive error ε, i.e., finding a point
y s.t. cT y ≤ OPT + ε and y ∈

T
iKi + εBn is

O(sd2 log(Rd/ε) log d).

If the objective function is not known to all servers,
we incur an additional O(sdL) communication. For
semidefinite programs with d × d symmetric matri-
ces and n linear constraints this gives a bound ofeO(sd4 log(1/ε)). Note that we can simply send all the
constraints to one server in O(nd2L) communication, so
this is always an upper bound.

1.2 Our Techniques

1.2.1 Linear Systems To solve linear systems in the
distributed setting, the coordinator can go through the
servers one by one. The coordinator and all servers
maintain the same set C of linearly independent linear
equations. For each server Pi, if there is a linear
equation stored by Pi that is linearly independent with
linear equations in C, then Pi sends that linear equation
to all other servers and adds that linear equation into
C. In the end, C will be a maximal set of linearly
independent equations, and thus the coordinator can
simply solve the linear equations in C. This protocol
is deterministic and has communication complexity
O(sd2L) in the coordinator model and O(s + d2L) in
the blackboard model, since at most d linear equations
will be added into the set C.

In fact, the preceding protocol is optimal for de-
terministic protocols, even just for testing the feasibil-
ity of linear systems. To prove lower bounds, we first
prove the following new theorem about random matrices
which may be of independent interest.

Theorem 1.8. (Informal version of Theorem 3.1)
Let R be a d × d matrix with i.i.d. random integer
entries in {−2L, . . . , 2L}. The probability that R is
invertible is 1− 2−Θ(dL).

The previous best known probability bound was only
1 − 2−Θ(d) [50, 12]; we stress that the results of [12]
are not sufficient1 to prove our stronger bound with the

1We have verified this with Philip Matchett Wood, who is an

extra factor of L in the exponent, which is crucial for
our lower bound.

With Theorem 1.8, in Lemma 3.2, we use the
probabilistic method to construct a set of |H| = 2Ω(d2L)

matrices H ⊆ Rd×d with integral entries in [−2L, 2L],
such that for any S, T ∈ H, S−1ed 6= T−1ed, where ed
is the d-th standard basis vector.

Now consider any deterministic protocol for testing
the feasibility of linear systems. Suppose the linear
system on the i-th server is Hix = ed for some Hi ∈ H,
then the entire linear system is feasible if and only if
H1 = H2 = . . . = Hs. This is equivalent to the
problem in which each server receives a binary string
of length log(|H|), and the goal is to test whether
all strings are the same or not. In the coordinator
model, a deterministic lower bound of Ω(s log(|H|)) for
this problem can be proved using the symmetrization
technique in [43, 57], which gives an optimal Ω(sd2L)
lower bound. An optimal Ω(s+d2L) deterministic lower
bound can also be proved in the blackboard model.
More details can be found in Section 3.3.

For solving linear systems, an Ω(d2L) lower bound
holds even for randomized algorithms in the coordinator
model. When there is only a single server which holds a
linear system Hx = ed for some H ∈ H, in order for the
coordinator to know the solution x = H−1ed, standard
information-theoretic argument shows that log(|H|) bits
of communication is necessary, which gives an Ω(d2L)
lower bound. This idea is formalized in Section 3.4. A
natural question is whether the O(sd2L) upper bound
is optimal for randomized protocols.

We first show that in order to test feasibility, it
is possible to achieve a communication complexity of
O(sd2 log(dL)), which can be exponentially better than
the bound for deterministic protocols. The idea is
to use hashing. With randomness, the servers can
first agree on a random prime number p, and test
the feasibility over the finite field Fp. It suffices to
have the prime number p randomly generated from
the range [2,poly(dL)], and thus the L factor in the
communicataion complexity of deterministic protocols
can be improved to log p = log(dL). However, it is
still unclear if solving linear systems in the coordinator
model will require Ω(sd2L) bits of communication for
randomized protocols.

Quite surprisingly, we show that O(sd2L) is not the
optimal bound for randomized protocols, and the opti-
mal bound is eΘ(d2L + sd). In the deterministic pro-

author of [12]. The issue is that in their Corollary 1.2, they
have an explicit constraint on the cardinality of the set S, i.e.,
|S| = O(1). In their Theorem 2.2, it is assumed that |S| = no(n).
Thus, as far as we are aware, there are no known results sufficient
to prove our singularity probability bound.

1738
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

tocol with communication complexity O(sd2L), most
communication is wasted on synchronizing the set C,
which requires the servers to send linear equations to
all other servers. In our new protocol, only the coordi-
nator maintains the set C. The issue now, however, is
that the servers no longer know which linear equation
they own is linearly independent with those equations
in C. On the other hand, each server can simply gener-
ate a random linear combination of all linear equations
it owns. We can show that if a server does have a lin-
ear equation that is linearly independent with those in
C, with constant probability, the random linear com-
bination is also linearly independent with those in C,
and thus the coordinator can add the random linear
combination into C. Notice that taking random linear
combinations to preserve the rank of a matrix is a spe-
cial case of dimensionality reduction or sketching, which
comes up in a number of applications, see, for example
compressed sensing [16, 10], data streams [3], and ran-
domized numerical linear algebra [54]. Here though, a
crucial difference is that we just need the fact that if a
set of vectors S is not contained in the span of another
set of vectors V , then a random linear combination of
the vectors in S is also not in the span of V with high
probability. This allows us to adaptively take as few lin-
ear combinations as possible to solve the linear system,
enabling us to achieve much lower communication than
would be possible by just sketching the linear systems
at each server and non-adaptively combining them.

If we implement this protocol näıvely, then the com-
munication complexity will be eO(d2L + sdL), since at
most d linear equations will be added into C, and there
is an eO(dL) communication complexity associated with
each of them. Furthermore, even if a server does not
have any linear equation that is linearly independent
with C, it still needs to send random linear combinations
to the coordinator, which would require eO(sdL) com-

munication. To improve this further to eO(sd), we can
still use the hashing trick mentioned before. If a server
generates a random linear combination, it can first test
whether the linear combination is linearly independent
with C over the finite field p, for a random prime p cho-
sen in [2,poly(dL)]. This will reduce the communication

complexity to eO(d) for each test. If the linear equation
is indeed linearly independent with C, then the server
sends the original linear equation (without taking the
residual modulo p) to the coordinator. Again the total
communication complexity for sending the original lin-
ear equations is upper bounded by O(d2L). Thus, the
total communication complexity is upper bounded byeO(d2L + sd). See Section 4.2 for details.

By a reduction from the OR of s − 1 copies of
the two-server set-disjointness problem to solving linear

systems, we can prove an extra eΩ(sd) lower bound,
which holds even for testing feasibility of linear systems.
Here the idea is to interpret vectors in {0, 1}d as
characteristic vectors of subsets of [d]. One of the
servers will fix the solution of the linear system to be
a predefined vector x. Each server Pi has a single
linear equation aTi x = 1. By interpreting vectors as
sets, aTi x = 1 implies the set represented by ai and x
are intersecting. Thus, the servers are actually solving
the OR of s− 1 copies of the two-server set-disjointness
problem, which is known to have eΩ(sd) communication
complexity [43, 56]. This lower bound is formally given
in Section 3.4.

1.2.2 Linear Regression For an ‘2 regression in-
stance minx kAx− bk2, the optimal solution can be cal-
culated using the normal equations, i.e., the optimal
solution x satisfies ATAx = AT b. This already gives
a simple yet nearly optimal deterministic protocol for
‘2 regression in the coordinator model: the coordina-
tor calculates ATA and AT b using only eO(sd2L) bits
of communication by collecting the covariance matrices
from each server and summing them up. The eO(sd2L)
communication complexity matches our lower bound
for solving linear systems for deterministic protocols in
the coordinator model. However, when implemented
in the blackboard model, the communication complex-
ity of this protocol is still eO(sd2L). To improve this
bound, we first show how to efficiently obtain approxi-
mations to leverage scores in both models. Our proto-
col is built upon the algorithm in [21], but implemented
in a distributed manner. The resulting algorithm haseO(sd2L) communication complexity in the coordinator

model but only eO(s + d2L) communication complexity
in the blackboard model. With approximate leverage
scores, the coordinator can then sample eO(d/ε2) rows
of the matrix A to obtain a subspace embeeding, at which
point it will be easy to calculate a (1 + ε)-approximate
solution to the ‘2 regression problem. The number of
sampled rows can be further improved to eO(d/ε) using
Sárlos’s argument [45] since solving ‘2 regression does
not necessarily require a full (1 + ε) subspace embed-
ding, which results in a protocol with communication
complexity eO(s+ d2L/ε) in the blackboard model. Full
details can be found in Section 6.

One may wonder if the dependence on 1/ε is neces-
sary for solving ‘2 regression in the blackboard model.
In Section 5, we show that some dependence on 1/ε is
actually necessary. We show an Ω(d/

√
ε) lower bound

whenever s > Ω(1/
√
ε). The hardness follows from

the fact that if the matrix A satisfies A(i) = I for
all i ∈ [s], then the optimal solution is just the aver-
age of b(1), b(2), . . . , b(s). Thus, if we can get sufficiently

1739
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

good approximation to the ‘2 regression problem, then
we can actually recover the sum of b(1), b(2), . . . , b(s),
at which point we can resort to known communication
complexity lower bound in the blackboard model [43].
This argument will also give an Ω(d/ε) lower bound
for (1 + ε)-approximate ‘1 regression in the blackboard
model, whenever s > Ω(1/ε). Details can be found in
Section 5.

For ‘1 regression, we can no longer use the normal
equations. However, we can obtain approximations to
‘1 Lewis weights by using approximations to leverage
scores, as shown in [22]. With approximate ‘1 Lewis
weights of the A matrix, the coordinator can then obtain
a (1 + ε) ‘1 subspace embedding by sampling eO(d/ε2)
rows. This will give an O(sd2L + d2L/ε2) upper bound
for (1 + ε)-approximate ‘1 regression in the coordinator
model, and an O(s+d2L/ε2) upper bound in the black-
board model. It is unclear if the number of sampled
rows can be further reduced since there is no known
‘1 version of Sárlos’s argument. A natural question is
whether the 1/ε2 dependence is optimal. We show that
the dependence on ε can be further improved to 1/ε,
by using optimization techniques, or more specifically,
first-order methods. Despite the fact that the objective
function of ‘1 regression is neither smooth nor strongly-
convex, it is known that by using Nesterov’s Acceler-
ated Gradient Descent and smoothing reductions [42],
one can solve ‘1 regression using only O(1/ε) full gra-
dient calculations. On the other hand, the complexity
of first-order methods usually has dependences on var-
ious parameters of the input matrix A, which can be
unbounded in the worst case. Fortunately, recent devel-
opments in ‘1 regression [27] show how to precondition
the matrix A by simply doing an ‘1 Lewis weights sam-
pling, and then rotating the matrix appropriately. By
carefully combining this preconditioning procedure with
Accelerated Gradient Descent, we obtain an algorithm
for (1 + ε)-approximate ‘1 regression with communica-

tion complexity eO(sd3L/ε) in the coordinator model,
which shows it is indeed possible to improve the ε de-
pendence for ‘1 regression. More details can be found
in Section 7.

For general ‘p regression, if we still use Lewis
weights sampling, then the number of sampled rows
and thus the communication complexity will be Ω(dp/2).
Even worse, when p = ∞, Lewis weights sampling will
require an unbounded number of samples. However,
‘∞ regression can be easily formulated as a linear
program, which we show how to solve exactly in the
distributed setting. Inspired by this approach, we
further develop a general reduction from ‘p regression
to linear programming. Our idea is to use the max-
stability of exponential random variables [2] to embed

‘p into ‘∞, write the optimization problem in ‘∞ as
a linear program and then solve the problem using
linear program solvers. However, such embeddings
based on exponential random variables usually produce
heavy-tailed random variables and makes the dilation
bound hard to analyze. Here, since our goal is just
to solve a linear regression problem, we only need
the dilation bound for the optimal solution of the
regression problem. In Section 8, we show that (1 + ε)-
approximate ‘p regression can be reduced to solving a

linear program with eO(d/ε2) variables, which implies a
communication protocol for ‘p regression without the
Ω(dp/2) dependence.

1.2.3 Linear and Convex Programs We adapt
two different algorithms from the literature for efficient
communication and implement them in the distributed
setting. The first is Clarkson’s algorithm, which works
by sampling O(d2) constraints in each iteration and
finds an optimal solution to this subset; the sampling
weights are maintained implicitly. In each iteration
the total communication is O(d3L) for gathering the

constraints and an additional eO(sd2L) per round to
send the solution to this subset of constraints to all
servers. This solution is used to update the sampling
weights. Clarkson’s algorithm has the nice guarantee
that it needs only O(d log n) rounds with high probabil-
ity. A careful examination of this algorithm shows that
the bit complexity of the computation (not the commu-
nication) is dominated by checking whether a proposed
solution satisfies all constraints, i.e., computing Ax for
a given x. We show this can be done with time com-
plexity eO(ndωL) in the unit cost RAM model and this
is the leading term of the claimed time bound.

Notice that the eO(sd3L) term in the communication
complexity of Clarkson’s algorithm comes from the fact
that the protocol needs to send an optimal solution x∗

of a linear program with size O(d2) × d for a total
of O(d log n) times. However, when each server Pi
receives x∗, all Pi will do is to check whether x∗ satisfies
the constraints stored on Pi or not. Notice that here
entries in the constraints have bit complexity L, whereas
the solution vector x∗ has bit complexity eO(dL) for
each entry. Intuitively, for most linear programs, we
don’t need such a high precision for the solution vector
x∗. This leads to the idea of smoothed analysis. We
show that if the coefficients of A in the input to the
linear program are perturbed independently by i.i.d.
discrete Gaussians with variance as small as 2−Θ(L),
then we can improve the upper bound for solving this
perturbed problem to eO(sd2L + d4L). The reason here
is that with Gaussian noise, we can round each entry
of the solution vector x∗ to have bit complexity eO(L),

1740
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

which would suffice for verifying whether x∗ satisfies the
constraints or not, for most linear programs. Details
regarding Clarkson’s algorithm can be found in Section
10. The smoothed analysis model and running time of
Clarkson’s lgorithm in the unit cost RAM model can be
found in the full version [53].

One minor drawback of Clarkson’s algorithm is it
has a dependence on log n. In constant dimensions, oureΩ(s + L) lower bound in the blackboard model holds
only when n = 2Ω(L), in which case the communication
complexity of Clarkson’s algorithm will be eO(sL+L2).

Under the additional assumption that each con-
straint in the linear program is placed on a random
server, we develop an algorithm with communication
complexity eO(s + L) in the blackboard model. To
achieve this goal, we modify Seidel’s classical algorithm
and implement it in the distributed setting. Seidel’s al-
gorithm benefits from the additional assumption from
two aspects. On the one hand, Seidel’s classical al-
gorithm needs to go through all the constraints in a
random order, which can be easily achieved now since
all constraints are placed on a random server. On the
other hand, Seidel’s classical algorithm needs to make
a recursive call each time it finds one of d constraints
that determines the optimal solution, and will makePn
i=1 d/i = Θ(d log n) recursive calls in expectation.

To implement Seidel’s algorithm in the distributed set-
ting, each time we find one of the d constraints that
determines the optimal solution, the current server also
needs to broadcast that constraint. Thus, näıvely we
need to broadcast O(d log n) constraints during the ex-
ecution, which would result in O(s + L log n) commu-
nication. Under the additional assumption, with good
probability, the first server P1 stores at least Ω(n/s)
constraints. Since the first server P1 does not need
to make any recursive calls or broadcasts, the total
number of recursive calls (and thus broadcasts) will bePn
i=Ω(n/s) d/i = Θ(d log s). The formal analysis is given

in the full version.
For convex programming, we have to use a more

general algorithm. We use a refined version of the
classical center-of-gravity method. The basic idea is
to round violated constraints that are used as cutting
planes to O(d log d) bits. We optimize over the ellipsoid
method in the following two ways. First, we round
the violated constraint sent in each iteration by locally
maintaining an ellipsoid to ensure the rounding error
does not affect the algorithm. Roughly speaking, each
server maintains a well-rounded current feasible set, and
the number of bits needed in each round is thus onlyeO(d). Secondly, we use the center of gravity method to
make sure the volume is cut by a constant factor rather
than a (1 − 1/d) factor in each iteration, even when

constraints are rounded. See Section 11 for details.

2 Preliminaries

2.1 Notation For m matrices A(1) ∈ Rd×n1 , A(2) ∈
Rd×n2 , . . . , A(m) ∈ Rd×nm , we use [A(1) A(2) · · · A(m)]
to denote the matrix in Rd×(n1+n2+···+nm) whose first
n1 columns are the same as A(1), the next n2 columns
are the same as A(2), . . . , and the last nm columns are
the same as A(m).

For a matrix A ∈ Rn×d, we use span(A) = {Ax |
x ∈ Rd} to denote the subspace spanned by the columns
of the matrix A. For a set of vectors S ⊆ Rd, we use
span(S) to denote the subspace spanned by the vectors
in S. For a set of linear equations C, we also span(C)
to denote all linear combinations of linear equations in
C. We use Ai to denote the i-th column of A and Ai

to denote the i-th row of A. We use A† to denote the
Moore-Penrose inverse of A. We use rank(A) to denote
the rank of A over the real numbers and rankp(A) to
denote the rank of A over the finite field Fp.

For a vector x ∈ Rd, we use kxkp =
Pd
i=1 |xi|p

1/p

to denote its ‘p norm. For two vectors x and y, we use
hx, yi to denote their inner product.

For matrices A and B, we say A ≈κ B if and only
if 1
κB A κB, where refers to the Löwner partial

ordering of matrices, i.e., A B if B − A is positive
semi-definite.

2.2 Models of Computation and Problem Set-
tings We study the distributed linear regression prob-
lem in two distributed models: the coordinator model
(a.k.a. the message passing model) and the blackboard
model. The coordinator model represents distributed
computation systems with point-to-point communica-
tion, while the blackboard model represents those where
messages can be broadcasted to each party.

In the coordinator model, there are s ≥ 2 servers
P1, P2, . . . , Ps, and one coordinator. These s servers can
directly send messages to the coordinator through a two-
way private channel. The computation is in terms of
rounds: at the beginning of each round, the coordinator
sends a message to some of the s servers, and then
each of those servers that have been contacted by the
coordinator sends a message back to the coordinator.

In the alternative blackboard model, the coordinator
is simply a blackboard where the s servers P1, P2, . . . , Ps
can share information; in other words, if one server
sends a message to the coordinator/blackboard then the
other s − 1 servers can see this information without
further communication. The order for the servers
to send messages is decided by the contents of the
blackboard.

1741
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

For both models we measure the communication
cost which is defined to be the total number of bits sent
through the channels.

In the distributed linear system problem, there is a
data matrix A ∈ Rn×d and a vector b of observed values.
All entries in A and b are integers between [−2L, 2L],
where L is the bit complexity. The matrix [A b] is
distributed row-wise among the s servers P1, P2, . . . , Ps.
More specifically, for each server Pi, there is a matrix
[A(i) b(i)] stored on Pi, which is a subset of rows of [A b].
Here we assume {[A(1) b(1)], [A(2) b(2)], . . . , [A(s) b(s)]}
is a partition of all rows in [A b]. The goal of the
feasibility testing problem is to design a protocol, such
that upon termination of the protocol, the coordinator
reports whether the linear system Ax = b is feasible
or not. The goal of the linear system solving problem
is to design a protocol, such that upon termination of
the protocol, either the coordinator outputs a vector
x∗ ∈ Rd, such that Ax∗ = b, or the coordinator reports
the linear system Ax = b is infeasible. It can be seen
that the linear system solving problem is strictly harder
than the feasibility testing problem.

In the distributed linear regression problem, there is
a data matrix A ∈ Rn×d and a vector b of observed
values, which is distributed in the same way as in
the distributed linear system problem. The goal of
the distributed ‘p regression problem is to design a
protocol, such that upon termination of the protocol,
the coordinator outputs a vector x∗ ∈ Rd to minimize
kAx− bkp.

In the distributed linear programming problem, there
is a matrix A ∈ Rn×d and a vector b, which is distributed
in the same way as in the distributed linear system
problem. The goal of the feasibility testing problem
is to design a protocol, such that upon termination
of the protocol, the coordinator reports whether the
linear program Ax ≤ b is feasible or not. In the linear
programming solving problem, the goal is to design a
protocol, such that upon termination of the protocol,
the coordinator outputs a vector x∗ ∈ Rd such that
Ax∗ ≤ b is satisfied. There can also be a vector c ∈ Rd
which is known to all servers, and in this case the goal
is to minimize (or maximize) hc, xi under the constraint
that Ax ≤ b.

2.3 Row Sampling Algorithms

Definition 2.1. ([21]) Given a matrix A ∈ Rn×d.
The leverage score of a row Ai is defined to be τi(A) =
Ai(ATA)†(Ai)T . Given another matrix B ∈ Rn0×d, the
generalized leverage score of a row Ai w.r.t. B is defined

to be

τBi (A) =

(
Ai(BTB)†(Ai)T if Ai ⊥ ker(B),

∞ otherwise.

Definition 2.2. ([22]) Given a matrix A ∈ Rn×d.
The ‘1 Lewis weights {wi}ni=1 are the unique weights

such that for each i ∈ [n] we have wi = τi W
−1/2

A ,

where W is the diagonal matrix formed by putting
{wi}ni=1 on the diagonal.

Theorem 2.1. ([21]) There exists an absolute con-
stant C such that for any matrix A ∈ Rn×d and any set
of sampling values pi satisfying pi ≥ Cτi(A) log dε−2,
if we generate a matrix S with N =

Pn
i=1 pi rows,

each chosen independently as the i-th basis vector, times

p
−1/2
i with probability pi/N , then with probability at

least 0.99, for all vector x ∈ Rd, (1 − ε)kAxk2 ≤
kSAxk2 ≤ (1 + ε)kAxk2.

Theorem 2.2. ([22]) There exists an absolute con-
stant C such that for any matrix A ∈ Rn×d and any
set of sampling values pi satisfying pi ≥ Cwi log dε−2,
if we generate a matrix S with N =

Pn
i=1 pi rows, each

chosen independently as the i-th basis vector, times p−1
i

with probability pi/N , then with probability at least 0.99,
for all vectors x ∈ Rd, (1 − ε)kAxk1 ≤ kSAxk1 ≤
(1 + ε)kAxk1. Here {wi}ni=1 are the ‘1 Lewis weights
of the matrix A.

3 Communication Complexity Lower Bound
for Linear Systems

3.1 The Hard Instance In this section, we con-
struct a family of matrices, which will be used to prove
a communication complexity lower bound in the subse-
quent section.

We need the following theorem on the singularity
probability of discrete random matrices.

Theorem 3.1. Let Mn ∈ Rn×n be a matrix whose
entries are i.i.d. random variables with the same
distribution as the summation of t random signs, for
sufficiently large t, Pr [Mn is singular] ≤ t−Cn, where
C > 0 is an absolute constant.

The proof of Theorem 3.1 closely follows previous
approaches for bounding the singularity probability of
random ±1 matrices (see, e.g., [33, 50, 51, 12].). For
completeness, we include a proof of Theorem 3.1 in the
full version [53].

Lemma 3.1. For any d > 0 and sufficiently large t,
there exists a set of matrices T ⊆ Rd×(d−1) with integral
entries in [−t, t] for which |T | = tΩ(d2) and

1742
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

1. For any T ∈ T , rank(T) = d− 1;

2. For any S, T ∈ T such that S 6= T , span([S T]) =
Rd.

Proof. We use the probabilisitic method to prove the ex-
istence. The proof can be found in the full version [53].

The following lemma can be easily proved using
Lemma 3.1. See the full version [53] for the formal proof.

Lemma 3.2. For any d > 0 and sufficiently large t,
there exists a set of matrices H ⊆ Rd×d with integral
entries in [−t, t] for which |H| = tΩ(d2) and

1. For any T ∈ H, T is non-singular;

2. For any S, T ∈ H, S−1ed 6= T−1ed, where ed is the
d-th standard basis vector.

3.2 Deterministic Lower Bound for the Equality
Problem In this section, we prove our deterministic
communication complexity lower bound for the Equality
problem in the coordinator model, which will be used as
an intermediate problem in Section 3.3. In the Equality
problem, each server Pi receives a binary string ti ∈
{0, 1}n. The goal is to test whether t1 = t2 = . . . = ts.
We will prove an Ω(sn) lower bound for deterministic
communication protocols. The case s = 2 has a well-
known Ω(n) lower bound.

Lemma 3.3. (See, e.g., [36, p11]) Any deterministic
protocol for solving the Equality problem with s = 2
requires Ω(n) bits of communication.

Our plan is to reduce the case s = 2 to the case
s > 2, using the symmetrization technique [43, 57]. In
the full version [53], we prove the following theorem.

Theorem 3.2. Any deterministic protocol for solving
the Equality problem with s servers in the coordinator
model requires Ω(sn) bits of communication.

3.3 Deterministic Lower Bound for Testing
Feasibility of Linear Systems In this section, we
present our deterministic communication complexity
lower bound for testing the feasibility of linear systems,
in the coordinator model and the blackboard model.
The proof can be found in the full version [53].

Theorem 3.3. For any deterministic protocol P,

• If P can test whether Ax = b is feasible or not
in the coordinator model, then the communication
complexity of P is Ω(sd2L);

• If P can test whether Ax = b is feasible or not
in the blackboard model, then the communication
complexity of P is Ω(s + d2L);

3.4 Randomized Lower Bound for Solving Lin-
ear Systems In this section, we prove randomized
communication complexity lower bounds for solving lin-
ear systems. We first prove an Ω(d2L) lower bound,
which already holds for the case s = 2. When s = 2
the coordinator model and the blackboard model are
equivalent in terms of communication complexity, and
thus we shall not distinguish these two models in the
remaining part of this proof.

Consider the set H constructed in Lemma 3.2 with
t = 2L. In the hard instance, only server P1 receives a
matrix H ∈ H, and the goal is to let the coordinator
output the solution to the linear system Hx = ed.
For any two H1, H2 ∈ H and H1 6= H2, we must
have H−1

1 ed 6= H−1
2 ed. Thus, by standard information-

theoretic arguments, in order for the coordinator to
output the solution to Hx = ed, the communication
complexity is at least Ω(log(|H|)) = Ω(d2L). Formally,
we have proved the following theorem.

Theorem 3.4. Any randomized protocol that succeeds
with probability at least 0.99 for solving linear systems
requires Ω(d2L) bits of communication in the coordina-
tor model and the blackboard model. The lower bound
holds even when s = 2.

In the full version [53], we prove another lower

bound of eΩ(sd) for solving linear systems in the coor-
dinator model, based on the lower bound for the OR of
s − 1 copies of the two-player set-disjointness problem
proved in [43, 56]. Combining this lower bound and the
trivial Ω(s) lower bound in the blackboard model with
Theorem 3.4, we have the following theorem.

Theorem 3.5. Any randomized protocol that succeeds
with probability at least 0.99 for solving linear systems
requires eΩ(sd + d2L) bits of communication in the
coordinator model and Ω(s+d2L) bits of communication
in the blackboard model.

4 Communication Protocols for Linear
Systems

4.1 Testing Feasibility of Linear Systems In this
section we present a randomized communication proto-
col for testing feasibility of linear systems, which has
communication complexity O(sd2 log(dL)) in the coor-
dinator model and O(s + d2 log(dL)) in the blackboard
model. The protocol is described in Figure 1.

In the full version [53], we prove the following
theorem.

Theorem 4.1. The protocol in Figure 1 is a random-
ized protocol for testing feasibility of linear systems and
has communication complexity O(sd2 log(dL)) in the co-
ordinator model and O(s+d2 log(dL)) in the blackboard

1743
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

1. The coordinator generates a random prime
number p in [2,poly(dL)] and sends p to all
servers.

2. Each server Pi tests the feasibility of its own
linear system. If the linear system is infeasible
then Pi terminates the protocol.

3. Each server maintains the same set of linear
equations C. Initially C is the empty set.

4. For i = 1, 2, . . . , s

(a) Pi checks whether the linear system formed
by all linear equations in C and all linear
equations stored on Pi is feasible over the
finite field Fp. Pi terminates the protocol
if it is infeasible.

(b) For each linear equation stored on Pi that
is linearly independent with linear equa-
tions in C over the finite field Fp, Pi sends
that linear equation to all servers, after
taking the residual of each entry modulo
p. All servers add that linear equation into
C.

Figure 1: Randomized protocol for testing feasibility

model. The protocol succeeds with probability at least
0.99.

4.2 Solving Linear Systems In this section we
present communication protocols for solving linear sys-
tems. We start with deterministic protocols, in which
case we can get a protocol with communication com-
plexity O(sd2L) in the coordinator model and O(s +
d2L) in the blackboard model.

In order to solve linear systems, we can still use
the protocol in Figure 1, but we don’t use the prime
number p any more. In Step 4a of the protocol, we
no longer check the feasibility over the finite field.
In Step 4b of the protocol, we no longer takes the
residual modulo p before sending the linear equations.
At the end of the protocol, each server can use the
set of linear equations C, which is a maximal set of
linear equations of the original linear system, to solve
the linear system. The communication complexity is
O(sd2L) in the coordinator model and O(s + d2L) in
the blackboard model since at most d linear equations
will be added into the set C, and each linear equation

requires O(dL) bits to describe.
Formally, we have proved the following theorem.

Theorem 4.2. There exists a deterministic protocol
for solving linear systems which has communication
complexity O(sd2L) in the coordinator model and O(s+
d2L) in the blackboard model.

Now we turn to randomized protocols. We describe
a protocol for solving linear systems with communica-
tion complexity eO(d2L + sd) in the coordinator model.
The description is given in Figure 2, and we prove the
correctness of the protocol and analyze the communica-
tion complexity of the protocol in the full version [53].

1. Each server Pi tests the feasibility of their own
linear system. If the linear system is infeasible
then Pi terminates the protocol. Otherwise,
each server Pi finds a maximal set of linearly
independent linear equations, say Si.

2. The coordinator maintains a set of linear equa-
tions C. At the beginning C is the empty set.

3. For i = 1, 2, . . . , s

(a) Repeat the followings for O(log d) times

i. Server Pi calculates a linear equation
c =

P
t∈Si rt · t, here {rt}t∈Si is a set

of i.i.d. random signs. Pi sends the
linear equation c to the coordinator.

ii. The coordinator terminates the proto-
col if C∪{c} is infeasible. Otherwise if
c is not a linear combination of those
linear equations in C, then the coordi-
nator adds c into C, and then goes to
Step 3a, i.e., repeats another O(log d)
times.

4. The coordinator obtains the solution by solving
all equations in C.

Figure 2: Randomized protocol for solving linear sys-
tems in the coordinator model

Theorem 4.3. The protocol described in Figure 2 is
a randomized protocol for solving linear systems which
has communication complexity eO(sd + d2L) in the co-

ordinator model. Here the eO(·) notation hides only
polylog(dL) factors. The protocol succeeds with prob-
ability at least 0.99.

1744
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

5 Communication Complexity Lower Bounds
for Linear Regression in the Blackboard
Model

In this section, we prove communication complexity
lower bounds for linear regression in the blackboard
model.

We first define the k-XOR problem and the k-
MAJ problem. In the blackboard model, each server
Pi receives a binary string xi ∈ {0, 1}d. In the k-XOR
problem, at the end of a communication protocol, the
coordinator correctly outputs the coordinate-wise XOR
of these vectors, for at least 0.99d coordinates. In the k-
MAJ problem, at the end of a communication protocol,
the coordinator correctly outputs the coordinate-wise
majority of these vectors, for at least 0.99d coordinates.

We need the following lemma for our lower bound
proof, whose proof can be found in the full version [53].

Lemma 5.1. Any randomized communication protocol
that solves the k-XOR problem or the k-MAJ problem
and succeeds with probability at least 0.99 has commu-
nication complexity Ω(dk).

In the full version [53], we give a reduction from
k-MAJ to (1 + ε)-approximate ‘1 regression in the
blackboard model, and prove an Ω(d/ε) lower bound
when s > Ω(1/ε). We also give a reduction from k-XOR
to (1 + ε)-approximate ‘2 regression in the blackboard
model, and prove an Ω(d/

√
ε) lower bound when s >

Ω(1/
√
ε). These reductions, together with Lemma 5.1,

lead to the following theorems.

Theorem 5.1. When s > Ω(1/ε), any randomized
protocol that succeeds with probability at least 0.99 for
solving (1+ε)-approximate ‘1 regression requires Ω(d/ε)
bits of communication in the blackboard model.

Theorem 5.2. When s > Ω(1/
√
ε), any randomized

protocol that succeeds with probability at least 0.99
for solving (1 + ε)-approximate ‘2 regression requires
Ω(d/

√
ε) bits of communication in the blackboard model.

6 Communication Protocols for ‘2 Regression

In this section, we design distributed protocols for
solving the ‘2 regression problem.

6.1 A Deterministic Protocol In this section, we
design a simple deterministic protocol for ‘2 regression
in the distributed setting with communication complex-
ity eO(sd2L) in the coordinator model.

According to the normal equations, the optimal
solution to the ‘2 regression problem minx kAx−bk2 can
be attained by setting x∗ = (ATA)†AT b. In Figure 3, we
show how to calculate ATA and AT b in the distributed
model.

1. Each server Pi calculates (A(i))TA(i) and
(A(i))T b(i), and then sends them to the coor-
dinator.

2. The coordinator calculates ATA =Ps
i=1(A(i))TA(i) and AT b =

Ps
i=1(A(i))T b(i),

and then calculates x = (ATA)† ·AT b.

Figure 3: Protocol for ‘2 regression in the coordinator
model

Notice that the bit complexity of entries in ATA and
AT b is O(L+log n) since the bit complexity of entries in
A and b is L, which implies the communication complex-
ity of the protocol in Figure 3 is O(sd2(L + log n)), in
both the coordinator model and the blackboard model.

Theorem 6.1. The protocol in Figure 3 is a determin-
istic protocol which exactly solves ‘2 regression, and the
communication complexity is O(sd2(L+ log n)), in both
the coordinator model and the blackboard model.

6.2 A Protocol in the Blackboard Model In this
section, we design a recursive protocol for obtaining
constant approximations to leverage scores in the dis-
tributed setting, which is described in Figure 4. We
then show how to solve ‘2 regression by using this pro-
tocol.

The protocol described in Figure 4 is basically
Algorithm 2 in [21] for approximating leverage scores,
implemented in the distributed setting. We analyze the
communication complexity of the protocol in the full
version [53].

Lemma 6.1. The protocol described in Figure 4 is a
randomized protocol with communication complexityeO(sd2L) in the coordinator model and eO(s + d2L) in
the blackboard model, such that with constant probabil-
ity, upon termination of the protocol, each server Pi has
constant approximations to leverage scores of all rows in
A(i).

Our protocol for solving the ‘2 regression problem
in the blackboard model is described in Figure 5. We
analyze the communication complexity of the protocol
in the full version [53].

Theorem 6.2. The protocol described in Figure 5 is a
randomized protocol which returns a (1+ε)-approximate
solution to ‘2 regression with constant probability, and
the communication complexity is eO(s + d2L/ε) in the
blackboard model .

1745
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

Input: An n× d matrix A =


A(1)

A(2)

...
A(s)

, where A(i)

is stored on server Pi.
Output: An O(d log d)× d matrix eA such that

Ω(1)kAxk2 ≤ k eAxk2 ≤ O(1)kAxk2

for all x ∈ Rd, which is stored on the coordinator
and all servers.

1. If n ≤ O(d log d), then each server Pi sends A(i)

to the coordinator, and then the coordinator
sends A to each server, and returns.

2. Each server Pi locally uniformly samples half

of the rows from A(i) to form A(i) 0
. Then

each server takes A(i) 0
as input and invokes

the protocol recursively to compute fA0 for

A0 =


A(1) 0

A(2) 0

...

A(s) 0

 such that Ω(1)kA0xk2 ≤

kfA0xk2 ≤ O(1)kA0xk2 for all x ∈ Rd.

3. Using fA0, each server Pi calculates generalized
leverage scores (Definition 2.1) of all rows in

A(i) with respect to fA0.

4. The coordinator and all servers obtain eA by
sampling and rescaling O(d log d) rows using
Theorem 2.1, by setting pi ≥ Ceτi log d, where

eτi =

τ
eA
i (A) if row Ai is sampled in Step 2,

1
1+ 1

τ
eA
i

(A)

otherwise.

Figure 4: Protocol for approximating leverage scores in
the distributed setting

7 Communication Protocols for ‘1 Regression

In this section, we design distributed protocols for
solving the ‘1 regression problem.

7.1 A Simple Protocol In this section, we design
a simple protocol for obtaining a (1 + ε)-approximate
solution to the ‘1 regression problem in the distributed

1. Use the protocol in Figure 4 to approximate
leverage scores of A.

2. The coordinator obtains SA and Sb by sam-
pling and rescaling O(d/ε + d log d) rows of
[A b], using the sampling process in Theorem
2.1.

3. The coordinator calculates x = minx kSAx −
Sbk2.

Figure 5: Protocol for ‘2 regression in the blackboard
model

setting. The protocol is described in Figure 6. We
prove its correctness and analyze the communication
complexity in the full version [53].

1. Each server Pi calculates an O(d log d/ε2)× n
matrix S(i) such that for all x ∈ Rd, (1 −
ε)kA(i)x − b(i)k1 ≤ kS(i)A(i)x − S(i)b(i)k1 ≤
(1 + ε)kA(i)x− b(i)k1, and then sends S(i)A(i)

and S(i)b(i) to the coordinator.

2. Let eA =


S(1)A(1)

S(2)A(2)

...
S(s)A(s)

 ,eb =


S(1)b(1)

S(2)b(2)

...
S(s)b(s)

. The

coordinator solves minx k eAx−ebk1.

Figure 6: Protocol for ‘1 regression in the coordinator
model

Theorem 7.1. The protocol described in Figure 6 is
a deterministic protocol which returns a (1 + ε)-
approximate solution to the ‘1 regression problem, and
the communication complexity is eO(sd2L/ε2) in both the
coordinator model and the blackboard model.

7.2 A Protocol Based on ‘1 Lewis Weights
Sampling In this section, we first design a protocol for
obtaining constant approximations to ‘1 Lewis weights
in the distributed setting, which is described in Figure
7, and then solves the ‘1 regression problem based on
this protocol.

The protocol described in Figure 7 is basically the

1746
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

1. Each server Pi initializes wi = 1 for all rows in
A(i).

2. For t = 1, 2, . . . , T

(a) Each server Pi obtains constant approxi-
mations to leverage scores of W−1/2A, for
all rows stored on Pi using the protocol in
Lemma 6.1, where W is the diagonal ma-
trix formed by putting the elements of w
on the diagonal.

(b) Set wi = (wiτi(W
−1/2A))1/2.

Figure 7: Protocol for approximating ‘1 Lewis weights

algorithm in Section 3 of [22] for approximating ‘1 Lewis
weights, implemented in the distributed setting. Using
the same analysis, by setting T = O(log log n), we can
show wi are constant approximations to the ‘1 Lewis
weights of A. We analyze its communication complexity
in the full version [53].

Lemma 7.1. The protocol described in Figure 7 is a
randomized protocol with communication complexityeO(s + d2L) in the blackboard model and eO(sd2L) in
the blackboard model, such that with constant probabil-
ity, upon termination of the protocol, each server Pi has
constant approximations to the ‘1 Lewis weights of all
rows in A(i).

Our protocol for solving the ‘1 regression problem
in the blackboard model is described in Figure 8. We
prove its correctness and analyze the communication
complexity in the full version [53].

1. Use the protocol in Figure 7 to approximate ‘1

Lewis weights of [A b].

2. The coordinator obtains SA and Sb by sam-
pling and rescaling O(d log d/ε2) rows of [A b],
using the sampling process in Theorem 2.2.

3. The coordinator calculates x = minx kSAx −
Sbk1.

Figure 8: Protocol for ‘1 regression in the blackboard
model

Theorem 7.2. The protocol described in Figure 8 is a
randomized protocol which returns a (1+ε)-approximate
solution to the ‘1 regression problem with constant
probability, and the communication complexity is eO(s+

d2L/ε) in the blackboard model and eO(sd2L + d2L/ε2)
in the coordinator model.

7.3 A Protocol Based on Accelerated Gradi-
ent Descent In the full version, we present a protocol
for the ‘1 regression problem in the coordinator model
based on accelerated gradient descent, whose communi-
cation complexity is eO(sd3L/ε).

Theorem 7.3. There is a randomized protocol which
returns a (1 + ε)-approximate solution to the ‘1 regres-
sion problem with constant probability, and the com-
munication complexity is eO(sd3L/ε) in the coordinator
model.

8 Communication Protocols for ‘p Regression

In this section, we design distributed protocols for
solving the ‘p regression problem, including p =∞.

8.1 Communication Protocols for ‘∞ Regres-
sion Any ‘∞ regression instance minx kAx − bk∞ can
be formulated as the following linear program,

minimize v

subject to hAi, xi − bi ≤ v,

hAi, xi − bi ≥ −v,

which has 2n constraints and d + 1 variables. Thus,
any linear programming protocol implies a protocol
for solving the ‘∞ regression problem, with the same
communication complexity. Using the linear program
solvers in Section 10 and Section 11, we have the
following theorem.

Theorem 8.1. ‘∞ regression can be solved determin-
istically and exactly with communication complexityeO(sd3L) in the coordinator model, and randomly and

exactly with communication complexity eO(min{sd +
d4L, sd3L}) in the blackboard model.

8.2 Communication Protocols for ‘p Regression
When p > 2 In the full version [53], we develop an
approach that reduces (1+ε)-approximate ‘p regression

to linear programs with eO(d/ε2) variables. Using the
linear program solvers in Section 10 and Section 11, we
have the following theorem.

Theorem 8.2. (1 + ε)-approximate ‘p regression can
be solved by a randomized protocol with communica-
tion complexity eO(sd3L/ε6) in the coordinator model, or

1747
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

by a randomized protocol with communication complex-
ity eO(min{sd3L/ε6, sd/ε2 + d4L/ε8}) in the blackboard
model.

9 Communication Complexity Lower Bound
for Linear Programming

In this section, we prove a communication complexity
lower bound for testing feasibility of linear programs.

We need the following lemma to construct our hard
instance.

Lemma 9.1. Let L be a sufficiently large integer. We

use mi ∈ R2 to denote the vector mi = i
2L

, 1− i2

2·4L .

For any 1 ≤ i, j ≤ 2L/100, we have

1. kmik22 ≥ 1 + 1
24L+2 ;

2. For any i 6= j, hmi,mji ≤ 1.

Now we reduce the lopsided set disjiontness problem
to testing feasibility of linear programs. In this problem,
for a choice of universe size U , the last server Ps receives
an element u ∈ [U], and for each i < s, server Pi
receives a set Si ⊆ [U]. The goal is to test whether there
exists i such that u ∈ Si. We reduce this problem with
U = 2L/100 to testing the feasibility of linear programs
for d = 2, where L is the bit complexity of the linear
program.

For the reduction, server Ps adds a constraint x =
mu, for the element u ∈ [U] that Ps receives. I.e., server
Ps forces the solution x to be mu. For each i < s, for
each v ∈ Si, server Pi adds a constraint hmv, xi ≤ 1.
Here mu and mv are as defined in Lemma 9.1. By
Lemma 9.1, this linear program is feasible if and only if
u /∈

S
i<s Si.

In the full version [53], we show the lopsided set dis-
jointness problem has an Ω(s logU/ log s) randomized
communication complexity lower bound in the coordi-
nator Formally, we have the following theorem.

Theorem 9.1. Any randomized protocol that succeeds
with probability at least 0.99 for testing feasibility of lin-
ear programs requires Ω(s logL/ log s) bits of communi-
cation in the coordinator model and Ω(s+L) bits of com-
munication in the blackboard model. The lower bound
holds even when d = 2.

Notice that by Theorem 4.1, testing feasibility of
linear systems for d = 2 requires only O(s logL) ran-
domized communication complexity. This shows an ex-
ponential separation between testing feasibility of lin-
ear systems and linear programs, in the communication
model.

10 Clarkson’s Algorithm

In this section, we discuss how to implement Clarkson’s
algorithm to solve linear programs in the distributed
setting. The protocol is described in Figure 9. During
the protocol, each server Pi maintains a multi-set Hi of
constraints (i.e., each constraint can appear more than
once in Hi). Initially, Hi is the set of constraints stored
on Pi. Furthermore, the coordinator maintains |Hi|,
which is initially set to be the number of constraints
stored on each server.

1. The coordinator obtains 9d2 constraints R, by
sampling uniformly at random from H1 ∪H2 ∪
. . . ∪Hs.

2. The coordinator calculates the optimal solu-
tion xR, which is the optimal solution to the
linear program satisfying all constraints in R.
The coordinator sends xR to each server.

3. Each server Pi calculates the total number of
constraints that are stored on Pi and violated
by xR, i.e., |Vi| where Vi = {h ∈ Hi |
xR violates h}.

4. The coordinator calculates |V | =
Ps
i=1 |Vi|

where V = {h ∈ H \ R | xR violates h} and
sends |V | to each server.

(a) If |V | = 0 then xR is a feasible solution
and the protocol terminates.

(b) If |V | ≤ 2
9d−1 |H|, then each server up-

dates Hi ← Hi ∪ Vi and the coordinator
updates |Hi| ← |Hi|+ |Vi|.

(c) Goto Step 1.

Figure 9: Clarkson’s Algorithm

The protocol in Figure 9 is basically Clarkson’s
algorithm [18], implemented in the distributed setting.
Using the analysis in [18], the expected number of
iterations is O(d log n). The correctness also directly
follows from the analysis in [18]. We analyze its
communication complexity in the full version [53].

Theorem 10.1. The expected communication complex-
ity of the protocol in Figure 9 is eO(sd3L + d4L) in the

coordinator model and eO(sd + d4L) in the blackboard
model

1748
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

11 The Center of Gravity Method

In this section, we discuss how to implement the center-
of-gravity cutting-plane method [30] in the distributed
setting. The description of the protocol can be found in
Figure 10.

The servers each maintain a polytope P (the same
one for all servers), adding a constraint in each iteration.
Each server also maintains the center of the polytope z
and its covariance C.

For any vector a ∈ Rd, its ε-rounding ea w.r.t.
to C is defined as follows: Let B = C1/2. We take
the unit vector BTa/kBTak2, round it down to the
nearest multiple of ε in each coordinate. So we have
kea−BTa/kBTak2k2 ≤ ε

√
d.

1. Set P = [−R,R]n, z = 0, C = I.

2. Repeat, while no feasible solution found, and
at most T times:

(a) Set z to be the centroid of P and C to
be the covariance matrix of the uniform
distribution over P , i.e., C = Ex∼P (x −
z)(x− z)T .

(b) Each server Pi checks z against their sub-
set of constraints. If a violated constraint
a · z > bi is found, and no violation has
been reported by other servers so far, then
it rounds a to ea and broadcasts. If a vi-
olation has been reported, it uses the ea
broadcast by the server that first found
the violation.

(c) Set P = P ∩ {x : C−1/2ea · x ≤ C−1/2ea ·
z + εd3/2kC−1/2eak2}.

Figure 10: Center-of-Gravity Algorithm

If each server were to report the exact violated
constraint, the volume of P would drop by a constant
factor in each iteration. To reduce the communication,
we round the constraint and shift it away a bit to make
sure that the rounded constraint (1) is still valid for the
target LP and (2) it is close enough that the volume
still drops by a constant factor.

Lemma 11.1. ([9]) Let z be the center of gravity of an
isotropic convex body K in Rd. Then, for any halfspace
H within distance t of z, we have

vol(K ∩H) ≥ 1

e
− t vol(K).

The proof of the following lemma can be found in
the full version [53].

Lemma 11.2. For ε < 0.1/d
√
d, the volume of the poly-

tope P maintained by each server drops by a constant
factor in each iteration.

We prove the following two theorems in the full
version [53].

Theorem 11.1. The protocol in Figure 10 is a deter-
ministic protocol for solving linear programming with
communication complexity O(sd3L log2 d) in both the
coordinator model and the blackboard model.

Theorem 11.2. The communication complexity of the
protocol in Figure 10 for solving convex programming is
O(sd2 log d log(Rd/ε)).

12 Discussion

The lens of communication complexity reveals surpris-
ing structure about well-known optimization problems.
A very interesting open question is to fully resolve the
randomized communication complexity of linear pro-
gramming as a function of s, d, and L. Another in-
teresting direction is to design more efficient linear pro-
gramming algorithms in the RAM model with unit cost
operations on words of size O(log(nd)) bits; such algo-
rithms while being inherently useful may also give rise
to improved communication protocols. While our re-
gression algorithms illustrated various shortcomings of
previous techniques, there are still interesting gaps in
our bounds to be resolved.

Acknowledgments

Santosh S. Vempala was supported in part by NSF
awards CCF-1717349 and DMS-1839323. Ruosong
Wang and David P. Woodruff were supported in part
by Office of Naval Research (ONR) grant N00014-18-1-
2562. Part of this work was done while the authors were
visiting the Simons Institute for the Theory of Comput-
ing.

1749
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

References

[1] Alekh Agarwal, Olivier Chapelle, Miroslav Dud́ık,
and John Langford. A reliable effective terascale
linear learning system. Journal of Machine Learning
Research, 15(1):1111–1133, 2014.

[2] Alexandr Andoni. High frequency moments via max-
stability. In Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on,
pages 6364–6368. IEEE, 2017.

[3] Alexandr Andoni et al. Eigenvalues of a matrix in the
streaming model. In Proceedings of the twenty-fourth
annual ACM-SIAM symposium on Discrete algorithms,
pages 1729–1737. Society for Industrial and Applied
Mathematics, 2013.

[4] Yossi Arjevani and Ohad Shamir. Communication
complexity of distributed convex learning and opti-
mization. In Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural Infor-
mation Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 1756–1764, 2015.

[5] Sepehr Assadi, Nikolai Karpov, and Qin Zhang. Dis-
tributed and streaming linear programming in low di-
mensions. In Proceedings of the 38th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 236–253. ACM, 2019.

[6] Sepehr Assadi and Sanjeev Khanna. Randomized com-
posable coresets for matching and vertex cover. In Pro-
ceedings of the 29th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 2017, Wash-
ington DC, USA, July 24-26, 2017, pages 3–12, 2017.

[7] Maria-Florina Balcan, Avrim Blum, Shai Fine, and
Yishay Mansour. Distributed learning, communication
complexity and privacy. In COLT 2012 - The 25th
Annual Conference on Learning Theory, June 25-27,
2012, Edinburgh, Scotland, pages 26.1–26.22, 2012.

[8] Maria-Florina Balcan, Yingyu Liang, Le Song,
David P. Woodruff, and Bo Xie. Communication ef-
ficient distributed kernel principal component analy-
sis. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, August 13-17, 2016,
pages 725–734, 2016.

[9] D. Bertsimas and S. Vempala. Solving convex pro-
grams by random walks. J. ACM, 51(4):540–556, 2004.

[10] P Bickel, P Diggle, S Fienberg, U Gather, I Olkin, and
S Zeger. Springer series in statistics. 2009.

[11] Avrim Blum and John Dunagan. Smoothed analysis
of the perceptron algorithm for linear programming.
In Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 905–914.
Society for Industrial and Applied Mathematics, 2002.

[12] Jean Bourgain, Van H Vu, and Philip Matchett Wood.
On the singularity probability of discrete random ma-
trices. Journal of Functional Analysis, 258(2):559–603,
2010.

[13] Christos Boutsidis, David P. Woodruff, and Peilin
Zhong. Optimal principal component analysis in dis-

tributed and streaming models. In Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 236–249, 2016.

[14] Stephen P. Boyd, Neal Parikh, Eric Chu, Borja Peleato,
and Jonathan Eckstein. Distributed optimization and
statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine
Learning, 3(1):1–122, 2011.

[15] Mark Braverman, Ankit Garg, Tengyu Ma, Huy L.
Nguyen, and David P. Woodruff. Communication
lower bounds for statistical estimation problems via a
distributed data processing inequality. In Proceedings
of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA,
USA, June 18-21, 2016, pages 1011–1020, 2016.

[16] Emmanuel J Candès and Terence Tao. Decoding by
linear programming. IEEE Transactions on Informa-
tion Theory, 51(12):4203–4215, 2005.

[17] Jiecao Chen, He Sun, David P. Woodruff, and Qin
Zhang. Communication-optimal distributed cluster-
ing. In Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Informa-
tion Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 3720–3728, 2016.

[18] Kenneth L Clarkson. Las vegas algorithms for linear
and integer programming when the dimension is small.
Journal of the ACM (JACM), 42(2):488–499, 1995.

[19] Kenneth L. Clarkson and David P. Woodruff. Numer-
ical linear algebra in the streaming model. In Proceed-
ings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, May
31 - June 2, 2009, pages 205–214, 2009.

[20] M. B. Cohen, Y. Tat Lee, and Z. Song. Solving Linear
Programs in the Current Matrix Multiplication Time.
In STOC, 2019.

[21] Michael B Cohen, Yin Tat Lee, Cameron Musco,
Christopher Musco, Richard Peng, and Aaron Sidford.
Uniform sampling for matrix approximation. In Pro-
ceedings of the 2015 Conference on Innovations in The-
oretical Computer Science, pages 181–190. ACM, 2015.

[22] Michael B Cohen and Richard Peng. ‘p row sam-
pling by lewis weights. In Proceedings of the forty-
seventh annual ACM symposium on Theory of com-
puting, pages 183–192. ACM, 2015.

[23] Graham Cormode, Charlie Dickens, and David P.
Woodruff. Leveraging well-conditioned bases: Stream-
ing and distributed summaries in minkowski p-norms.
In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, pages 1048–1056,
2018.

[24] Andrew Cotter, Ohad Shamir, Nati Srebro, and
Karthik Sridharan. Better mini-batch algorithms via
accelerated gradient methods. In Advances in neu-
ral information processing systems, pages 1647–1655,
2011.

[25] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and

1750
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

Lin Xiao. Optimal distributed online prediction using
mini-batches. Journal of Machine Learning Research,
13(Jan):165–202, 2012.

[26] John C Duchi, Alekh Agarwal, and Martin J Wain-
wright. Dual averaging for distributed optimization:
Convergence analysis and network scaling. IEEE
Transactions on Automatic control, 57(3):592–606,
2012.

[27] David Durfee, Kevin A Lai, and Saurabh Sawlani.
‘1 regression using lewis weights preconditioning and
stochastic gradient descent. In Conference On Learn-
ing Theory, pages 1626–1656, 2018.

[28] Ankit Garg, Tengyu Ma, and Huy L. Nguyen. On
communication cost of distributed statistical estima-
tion and dimensionality. In Advances in Neural In-
formation Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, De-
cember 8-13 2014, Montreal, Quebec, Canada, pages
2726–2734, 2014.

[29] M. Grotschel, L. Lovász, and A. Schrijver. Geometric
algorithms and combinatorial optimization. Springer,
1988.

[30] B. Grunbaum. Partitions of mass-distributions and
convex bodies by hyperplanes. Pacific J. Math.,
10:1257–1261, 1960.

[31] Dirk Van Gucht, Ryan Williams, David P. Woodruff,
and Qin Zhang. The communication complexity of dis-
tributed set-joins with applications to matrix multipli-
cation. In Proceedings of the 34th ACM Symposium
on Principles of Database Systems, PODS 2015, Mel-
bourne, Victoria, Australia, May 31 - June 4, 2015,
pages 199–212, 2015.

[32] Martin Jaggi, Virginia Smith, Martin Takác, Jonathan
Terhorst, Sanjay Krishnan, Thomas Hofmann, and
Michael I Jordan. Communication-efficient distributed
dual coordinate ascent. In Advances in neural infor-
mation processing systems, pages 3068–3076, 2014.

[33] Jeff Kahn, János Komlós, and Endre Szemerédi. On
the probability that a random±1-matrix is singu-
lar. Journal of the American Mathematical Society,
8(1):223–240, 1995.

[34] Daniel M Kane, Roi Livni, Shay Moran, and Amir
Yehudayoff. On communication complexity of classi-
fication problems. arXiv preprint arXiv:1711.05893,
2017.

[35] Ravi Kannan, Santosh Vempala, and David P.
Woodruff. Principal component analysis and higher
correlations for distributed data. In Proceedings of
The 27th Conference on Learning Theory, COLT 2014,
Barcelona, Spain, June 13-15, 2014, pages 1040–1057,
2014.

[36] Eyal Kushilevitz and Noam Nisan. Communication
Complexity. Cambridge University Press, New York,
NY, USA, 1997.

[37] Yin Tat Lee and Aaron Sidford. Path finding methods
for linear programming: Solving linear programs in
õ(vrank) iterations and faster algorithms for maximum
flow. In 55th IEEE Annual Symposium on Foundations

of Computer Science, FOCS 2014, Philadelphia, PA,
USA, October 18-21, 2014, pages 424–433, 2014.

[38] Yin Tat Lee and Aaron Sidford. Efficient inverse main-
tenance and faster algorithms for linear programming.
In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 230–249, 2015.

[39] Yingyu Liang, Maria-Florina Balcan, Vandana Kan-
chanapally, and David P. Woodruff. Improved dis-
tributed principal component analysis. In Advances
in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 3113–3121, 2014.

[40] Dhruv Mahajan, S Sathiya Keerthi, S Sundararajan,
and Léon Bottou. A parallel sgd method with strong
convergence. arXiv preprint arXiv:1311.0636, 2013.

[41] Xiangrui Meng and Michael W. Mahoney. Low-
distortion subspace embeddings in input-sparsity time
and applications to robust linear regression. In Sympo-
sium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 91–100,
2013.

[42] Yu Nesterov. Smooth minimization of non-smooth
functions. Mathematical programming, 103(1):127–
152, 2005.

[43] Jeff M Phillips, Elad Verbin, and Qin Zhang. Lower
bounds for number-in-hand multiparty communication
complexity, made easy. In Proceedings of the twenty-
third annual ACM-SIAM symposium on Discrete Algo-
rithms, pages 486–501. SIAM, 2012.

[44] Peter Richtárik and Martin Takáč. Distributed coor-
dinate descent method for learning with big data. The
Journal of Machine Learning Research, 17(1):2657–
2681, 2016.

[45] Tamas Sarlos. Improved approximation algorithms for
large matrices via random projections. In Foundations
of Computer Science, 2006. FOCS’06. 47th Annual
IEEE Symposium on, pages 143–152. IEEE, 2006.

[46] Ohad Shamir and Nathan Srebro. Distributed stochas-
tic optimization and learning. In Communication,
Control, and Computing (Allerton), 2014 52nd Annual
Allerton Conference on, pages 850–857. IEEE, 2014.

[47] Ohad Shamir, Nati Srebro, and Tong Zhang.
Communication-efficient distributed optimization us-
ing an approximate newton-type method. In Inter-
national conference on machine learning, pages 1000–
1008, 2014.

[48] Daniel Spielman and Shang-Hua Teng. Smoothed
analysis of algorithms: Why the simplex algorithm
usually takes polynomial time. In Proceedings of
the thirty-third annual ACM symposium on Theory of
computing, pages 296–305. ACM, 2001.

[49] Daniel A Spielman and Shang-Hua Teng. Smoothed
analysis of termination of linear programming algo-
rithms. Mathematical Programming, 97(1-2):375–404,
2003.

[50] Terence Tao and Van Vu. On random±1 matrices:

1751
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

singularity and determinant. Random Structures &
Algorithms, 28(1):1–23, 2006.

[51] Terence Tao and Van Vu. On the singularity prob-
ability of random bernoulli matrices. Journal of the
American Mathematical Society, 20(3):603–628, 2007.

[52] John N Tsitsiklis and Zhi-Quan Luo. Communication
complexity of convex optimization. Journal of Com-
plexity, 3(3):231–243, 1987.

[53] Santosh S Vempala, Ruosong Wang, and David P
Woodruff. The communication complexity of optimiza-
tion. arXiv preprint arXiv:1906.05832, 2019.

[54] David P Woodruff et al. Sketching as a tool for
numerical linear algebra. Foundations and Trends R

in Theoretical Computer Science, 10(1–2):1–157, 2014.
[55] David P. Woodruff and Qin Zhang. Subspace embed-

dings and ‘p-regression using exponential random vari-
ables. In COLT 2013 - The 26th Annual Conference
on Learning Theory, June 12-14, 2013, Princeton Uni-
versity, NJ, USA, pages 546–567, 2013.

[56] David P. Woodruff and Qin Zhang. When distributed
computation is communication expensive. In Dis-
tributed Computing - 27th International Symposium,
DISC 2013, Jerusalem, Israel, October 14-18, 2013.
Proceedings, pages 16–30, 2013.

[57] David P Woodruff and Qin Zhang. An optimal lower
bound for distinct elements in the message passing
model. In Proceedings of the twenty-fifth annual ACM-
SIAM symposium on Discrete algorithms, pages 718–
733. Society for Industrial and Applied Mathematics,
2014.

[58] David P. Woodruff and Qin Zhang. Distributed statis-
tical estimation of matrix products with applications.
In Proceedings of the 37th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems,
Houston, TX, USA, June 10-15, 2018, pages 383–394,
2018.

[59] David P. Woodruff and Peilin Zhong. Distributed
low rank approximation of implicit functions of a
matrix. In 32nd IEEE International Conference on
Data Engineering, ICDE 2016, Helsinki, Finland, May
16-20, 2016, pages 847–858, 2016.

[60] Tianbao Yang. Trading computation for communica-
tion: Distributed stochastic dual coordinate ascent. In
Advances in Neural Information Processing Systems,
pages 629–637, 2013.

[61] Yuchen Zhang, John C. Duchi, and Martin J. Wain-
wright. Communication-efficient algorithms for statis-
tical optimization. Journal of Machine Learning Re-
search, 14(1):3321–3363, 2013.

[62] Yuchen Zhang and Xiao Lin. Disco: Distributed
optimization for self-concordant empirical loss. In
International conference on machine learning, pages
362–370, 2015.

[63] Martin Zinkevich, Markus Weimer, Alexander J.
Smola, and Lihong Li. Parallelized stochastic gradi-
ent descent. In Advances in Neural Information Pro-
cessing Systems 23: 24th Annual Conference on Neural
Information Processing Systems 2010. Proceedings of a

meeting held 6-9 December 2010, Vancouver, British
Columbia, Canada., pages 2595–2603, 2010.

1752
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

12
/3

0/
20

 to
 4

5.
17

.1
62

.3
5.

 R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s

	Introduction
	Our Contributions
	Linear Systems
	Approximate Linear Systems, i.e., p Regression
	Linear Programming
	Implications for Convex Optimization and Semidefinite Programming

	Our Techniques
	Linear Systems
	Linear Regression
	Linear and Convex Programs

	Preliminaries
	Notation
	Models of Computation and Problem Settings
	Row Sampling Algorithms

	Communication Complexity Lower Bound for Linear Systems
	The Hard Instance
	Deterministic Lower Bound for the Equality Problem
	Deterministic Lower Bound for Testing Feasibility of Linear Systems
	Randomized Lower Bound for Solving Linear Systems

	Communication Protocols for Linear Systems
	Testing Feasibility of Linear Systems
	Solving Linear Systems

	Communication Complexity Lower Bounds for Linear Regression in the Blackboard Model
	Communication Protocols for 2 Regression
	A Deterministic Protocol
	A Protocol in the Blackboard Model

	Communication Protocols for 1 Regression
	A Simple Protocol
	A Protocol Based on 1 Lewis Weights Sampling
	A Protocol Based on Accelerated Gradient Descent

	Communication Protocols for p Regression
	Communication Protocols for Regression
	Communication Protocols for p Regression When p > 2

	Communication Complexity Lower Bound for Linear Programming
	Clarkson's Algorithm
	The Center of Gravity Method
	Discussion

