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Abstract—Taylor-Couette flow (TCF) is the turbulent fluid motion created between two concentric and independently rotating cylinders.
It has been heavily researched in fluid mechanics thanks to the various nonlinear dynamical phenomena that are exhibited in the flow.
As many dense coherent structures overlap each other in TCF, it is challenging to isolate and visualize them, especially when the
cylinder rotation ratio is changing. Previous approaches rely on 2D cross sections to study TCF due to its simplicity, which cannot
provide the complete information of TCF. In the meantime, standard visualization techniques, such as volume rendering / iso-surfacing
of certain attributes and the placement of integral curves/surfaces, usually produce cluttered visualization. To address this challenge
and to support domain experts in the analysis of TCF, we developed a visualization framework to separate large-scale structures
from the dense, small-scale structures and provide an effective visual representation of these structures. Instead of using a single
physical attribute as the standard approach which cannot efficiently separate structures in different scales for TCF, we adapt the feature
level-set method to combine multiple attributes and use them as a filter to separate large- and small-scale structures. To visualize these
structures, we apply the iso-surface extraction on the kernel density estimate of the distance field generated from the feature level-set.
The proposed methods successfully reveal 3D large-scale coherent structures of TCF with different control parameter settings, which
are difficult to achieve with the conventional methods.

Index Terms—Flow visualization, Taylor-Couette turbulence, coherent structures

1 INTRODUCTION

Taylor-Couette flow (TCF) is the fluid motion between two coaxial,
independently rotating cylinders. TCF has become an important model
system in fluid dynamics, because it helps to understand the develop-
ment of hydrodynamic stabilities and pattern formation. Thanks to the
simple geometry of the system, fluid mechanics experts can set up a
well-controlled experiment to study fundamental nonlinear dynamical
phenomena in fluid flows; thus, TCF has become a canonical experi-
ment for the study of shear turbulence. Some practical applications of
TCF include solvent extraction in chemical engineering [24] and heat
transfer in electric motors [13].

TCF is linearly unstable when angular momentum decreases with
radius, and different configurations of inner and outer cylinder rotation
lead to diverse dynamics. At low Reynolds numbers, TCF is dominated
by a stacking of large-scale structures called Taylor vortices, which
arise due to centrifugal instabilities and fill the entire gap between the
cylinders. As the Reynolds number increases, and the flow becomes
turbulent, structures with increasingly smaller length- and time-scales
appear. The large-scale vortices remain, and are relatively stationary in
time (e.g., Figure 1(a)). In addition to the theory that large structures
depend on the Reynolds numbers, the recent statistic-based method [14]
indicates that the turbulent rolls may re-appear with different cylinder
rotation ratios RΩ, as also shown in our later results. Nonetheless,
the large-scale structures (e.g., Taylor vortices or other coherent struc-
tures) modulate the appearance of small-scale structures, and can act
as transport barriers; thus, they are particularly interesting to the do-
main experts. In practice, rather than studying the configurations of
the individual vortices (or other small-scale structures) themselves, the
spatial distributions of these structures in different scales (especially in
large-scale) are of interest in the analysis of TCF.

To identify the different scale structures in TCF, domain experts
traditionally rely on the rudimentary visualization techniques (e.g.,
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volume rendering, iso-surfacing, and thresholding) based on the phys-
ical attributes, such as vorticity or Q-criterion [11]. As illustrated in
Figure 2, different parameter settings (here, different threshold values
for Q) may lead to structures with significantly different shapes and
density, making the identification and tracking of the desired structures
difficult. Making this worse is that attributes such as vorticity and
Q-criterion in small structures have different value ranges from those
in large structures as reported previously [39]. Often, high positive
Q-criterion corresponds to vortices with small-scale structures due to
its definition, i.e., it is based on vorticity and strain which are inherently
local and small-scale quantities, while small Q values may exist both
inside and outside the large structures. Furthermore, as shown later
(Figure5), one single attribute with one single threshold value is not
sufficient to clearly separate multi-scale coherent structures, especially
when the cylinder rotation ratio changes. All these challenges force
the fluid mechanic researchers to resort to the visualization of 2D cross
section (Figure 1 (a)) through cylinders for TCF analysis, losing impor-
tant 3D configuration information of the structures. To the best of our
knowledge, no existing works provide an effective 3D visualization of
TCF that separates the large- and small-scale structures to aid the study
of the re-appearance of certain coherent structures (especially, Taylor
vortices) in TCF under different rotation ratios.

To address this challenge, we propose a first 3D visualization frame-
work that enables the clear separation of large- and small- scale struc-
tures in TCF. To overcome the limitation of the separation of structures
in different scales with a single attribute, our framework employs
multiple attributes for feature extraction and separation. This is also
supported by a recent work on 2D TCF [31] that shows that streamwise
velocity aligns reasonably well with the position of the Taylor roll in
the flow domain. By extending the feature level-set method [16] to take
into account values in a range, we can combine the characteristics of
multiple attributes in one analysis to increase the difference between the
small- and large- scale structures, making their separation easier and
more accurate. To extract a 3D surface representation for the coherent
structures, we construct iso-surfaces from the kernel density estimate
of the distance field obtained from the feature level-set. Considering
the characteristic that TCF with certain rotation ratio may be depicted
by its 2D cross sections, referred to as the WS planes formed by the
wall-normal and spanwise directions (Figure 1 (a)(c)), we compute the
2D summary configuration of vortices in TCF by projecting the 3D
information onto the WS plane. Compared to the visualizations gener-
ated with the conventional approaches in both 2D and 3D, our method
produces a much cleaner visualization. Our framework is implemented



in CUDA, making it suitable for the efficient analysis of TCF.

Fig. 1. (a) The Taylor-Couette system consists of two coaxial cylinders,
which have an inner cylinder with radius of ri and an outer cylinder
with radius of ro. Both cylinders are of height L. The inner cylinder
rotates with an angular velocity ωi and the outer cylinder rotates with
an angular velocity of ωo. (b) Twente Turbulent Taylor-Couette (T3C)
experimental facility [26]. (c) Domain transformation from the cylindrical
to the Cartesian coordinate.

Our framework has been applied to three different TCFs simulated
with different control parameters. These three TCFs have different
levels of turbulence, making the separation of large-scale structures
from the small ones extremely challenging. Our framework successfully
reveals the configurations of large-scale coherent structures in all three
TCFs. This is the first time the large-scale structures in TCFs are
visualized in 3D. From these new visualizations, domain experts not
only can see a clear separation of large- and small- scale structures, but
they also can see the 3D configuration of large-scale structures in TCFs
with low cylinder rotation ratios to better understand the procedure
of the formation of Taylor rolls (or Taylor vortices). The efficient
computation of our framework will enable the study of the impact of
the rotation ratio to the 3D configuration of Taylor rolls in a finer scale
and set up the foundation for the study of the time-dependent behavior
of TCFs in the future.

2 BACKGROUND

In this section we provide the numerical setup to simulate Taylor-
Couette flow (TCF) used in this work and review existing works on
vortex detection and visualization frameworks for turbulent flow.

2.1 Numerical Simulation details
In the limit of vanishing curvature, which is more amenable to analy-
sis, Taylor-Couette can be described as the flow between two parallel
plates separated by a distance d, which move with equal, but opposite
velocities ±U/2. To represent the different rotations of the cylinders, a
solid body rotation Ω is added in the spanwise direction. The two non-
dimensional parameters that define the flow are the (shear) Reynolds
number Re =Ud/ν , where ν is the kinematic viscosity of the fluid, and
the rotation number RΩ = 2dΩ/U . A schematic of the flow is shown

in Figure 3. We fix Res = 104, and vary from RΩ = 0 to RΩ = 0.1,
which generate a sufficiently diverse range of length-scales, while also
featuring fixed Taylor vortices [31].

To perform the direct numerical simulations, we solve the Navier-
Stokes equation using a second-order energy-conserving finite differ-
ence code [45]. The two wall-parallel directions are taken as periodic,
with periodicity lengths Lx = 25.12d and Lz = 12.56d respectively.
This means that the simulation covers a subset of the spatio-temporal
domain, [0,25.12]× [0,1]× [0,12.56]. The resolution of the simulation
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Fig. 2. Traditional issues with Q threshold selection. Domain experts
rely on the Q-criterion to extract the vortices and suffer from the issues
with the occlusion, because many different scale vortices overlap each
others. Note that while visually these dense layouts of vortices form
groups that may indicate the formation of Taylor rolls/vortices, they do
not align with the location of Taylor vortices as indicated by the velocity
field as illustrated in Figure 1 (a).

is 1024×384×1024 (i.e., the number of grid points in the x,y and z
dimension. ). The simulation is time-dependent. However, due to the
large data size and the complexity of the flow, this work focuses on a
single instantaneous snapshot in the statistically stationary regime.
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Fig. 3. Schematic of the simulation domain. The third (spanwise) dimen-
sion z is omitted for clarity.

2.2 Related Works
There is a large body of literature on the analysis and visualization of
flow data [11, 19, 20]. In this section, we focus on the most closely-
related works which includes the vortex detection methods and existing
visualization frameworks for turbulent flow in general, and for Taylor-
Couette flow in particular.

2.2.1 Vortex Detection

Most vortex definitions [11] include two concepts that are still actively
researched to this day: (1) vortex coreline – a line or curve that any mass
of fluid moving around [21] and (2) an appropriate reference frame so
that when instantaneous streamlines mapped onto a plane normal to the
vortex core they exhibit a roughly circular or spiral pattern [30]. Based
on these two concepts, there are several groups of methods that identify
the vortex corelines and vortex regions, respectively.

Region-based methods identify a volume of vortex-like behavior
based on some physical attributes, such as pressure [15], vorticity, he-
licity, Q-criterion, Okubo-Weiss criterion and λ2 criterion [11]. Most
region-based methods require the selection of threshold, which may
miss vortices with smaller values. Line-based methods focus on the
extraction of corelines of vortices. In steady flow, corelines can be
identified using reduced velocity criterion [46], while in unsteady flow,
there exist several methods [11]. The most popular coreline detec-
tion approach is via the Parallel Vector operator [28]. However, most



Fig. 4. The pipeline of our framework.

line-based methods are numerically unstable and easily result in frag-
mented corelines, which may be challenging to clean up. Geometric
methods construct the skeleton of vortex tube. For 2D flows, Sadar-
joen et al. [32, 33] presented two geometric approaches based on the
shape of streamlines. Their curvature center method computes the
density of curvature centers for a given set of streamlines. Their sec-
ond method uses winding angle of streamlines to identify regions of
swirling flow. Streamlines having winding angles larger than a thresh-
old are considered part of vortices. Again, selecting proper threshold is
challenging. Objective methods aim to identify the optimal reference
frame so that small-scale vortices can be revealed [11]. Integration-
based measures such as particle density estimation [48] and analyzing
of Jacobian [46] were proposed to address the possible missing vortices
with the above local method. Finally, there is a need to detect vortex
boundary to measure the size of a vortex [11]. Haller et al. [12] pro-
posed elliptic Lagrangian coherent structure (LCS), which preserves
arc length and area in incompressible 2D flows and considered the
outermost elliptic LCS, of a family of nested elliptic LCSs, as the
boundary of a coherent vortex.

2.3 Multi-scale Processing of Flow Data

Given the increasing complexity of flow data and the multi-scale nature
of the turbulence flow, multi-scale processing is required to delineate
physical events arising across different scales. There are two types of
multi-scale processing of flow data. The first group of methods con-
struct the topological hierarchy of the velocity (or vector) fields. Both
bottom-up and top-down strategies have been introduced. The bottom-
up strategy is usually realized as some simplification process, that
gradually merges (or cancels) pairs of topological features, including
fixed points [5,6,37,38,41,43,44,47,49] and periodic orbits [3], based
on certain proximity (e.g., Euclidean or flow distance) between features.
In contrast, the top-down approaches usually start with a coarse struc-
ture and gradually refine (or split) it. The top-down strategies are only
seen in techniques based on Morse decomposition [2, 4, 40], where the
structure with different fineness can be obtained with different particle
advection times (i.e., a multi-valued flow map). Nonetheless, for turbu-
lent flows, topology based approach may generate too many detailed
structures that complicate the interpretation of the flow behavior.

Different from the above topology-based multi-scale processing, the
non-topology-based methods define the scales in frequency space. Mun-
dane methods of filtering out scales for coherent structure extraction,
such as Fourier transforms [1, 10, 22] have been applied successfully.
They have seen wide applications in homogeneous isotropic turbulence,
and provided glimpses on how the real-world turbulent cascade oper-

ates. However, they are inherently non-local and are in practice limited
to periodic and homogeneously discretized domains. Wavelet meth-
ods [7–9, 23] were developed to overcome the limitations of Fourier
transforms, but have not seen widespread adoption in fluid mechanics.
This is because for turbulence analysis, the wavelets considered rapidly
become complicated and problem-specific instead of universal [34].

As the goal for the visualization of Taylor-Couette flows is to ef-
fectively separate the large-scale structures from the small-scale ones
to facilitate its analysis, we adopt a feature level-set based strategy
coupled with a density estimation, which is detailed next.

3 OUR METHOD

Overview. As stated earlier, our goal is to separate large-scale vortex
structure from the small-scale ones and provide an intuitive and interac-
tive visual representation so that fluid mechanics experts can quickly
evaluate their hypotheses.

To achieve this goal, we propose a pipeline as illustrated in Figure 4.
We first derive multiple attributes from the input velocity field. By
analyzing the characteristics of the attributes in each cylinder rotation
ratio and with knowledge from the expert, we select attributes and their
corresponding value ranges that can partially indicate the existence
and location of large- and small- scale structures (Section 3.1). To
extract and visualize the structures in 3D, we adapt the recently in-
troduced feature level-set [16] to compute a distance field to combine
the selected attributes and their corresponding value ranges to better
locate and separate large- and small- scale structures (Section 3.2). To
achieve a smooth representation of the shape of the large- or small-
scale structures, we further apply a kernel density estimation on the
regions extracted from the obtained distance field (Section 3.3), from
which a surface that approximates the geometric configuration of the
large- or small- scale structure is extracted for visualization. Attribute
information can be visualized on the extracted surface to provide ad-
ditional information of the structure. To provide a summary view of
the TCF in 2D, we project the areas in the individual 2D cross sections
(parallel to the WS plane) with the attribute values falling within the re-
spective selected value ranges onto the first cross section. This process
is illustrated in Figure 4 under 2D Representation. This aggregated
information is color coded on top of the LIC texture of the 2D flow in
the first cross section. An example of this summary 2D visualization is
shown in Figure 8 (e) and (f).

3.1 Attribute Selection
Physical attributes for the region-based vortex extraction. Given
a steady vector field v, its spatial gradient ∇xv is referred to as its



(c) Q vs Shear

(d) Shear

(a) Q

(b) Streamwise Velocity
Fig. 5. Visualization of (a) Q, (b) Streamwise velocity, (d) Shear in 2D cuts
along the wall-normal direction, and (c) in the streamwise direction with
Rω = 0.05. Q is noisier than the streamwise velocity and Shear in the wall-
normal and streamwise directions and not able to separate structures
with different scales here. By combining the streamwise velocity and
Shear, we can better capture the prominent structures in both wall-normal
and streamwise direction.

Jacobian, denoted by J. J can be decomposed as J = S+R, where S =
1
2 [J+(J)�] and R = 1

2 [J−(J)�] are the symmetric and anti-symmetric
components of J, respectively. In addition to the velocity magnitude
and the individual (u, v, and w) components of the velocity field, a
number of flow attributes related to coherent structures, especially
vortices, can be derived from v, J, S and R [29], such as:

• vorticity magnitude, ||∇×v||.
• λ2, computed as the second largest eigenvalue of the tensor S2 +

R2 [17].

• Q = 1
2 (‖R‖2 −‖S‖2).

• local shear rate, defined as the Frobenius norm of S.

These scalar attributes can help to identify regions of vortical be-
havior. For example, if the Euclidean norm of the vorticity tensor
R is greater than the magnitude of strain rate tensor S, then the re-
gion contains a vortex. This criterion is equivalent with the condition
Q > 0. The main drawback of the region-based methods is that the
local attributes with a single threshold value tend to focus on small-
scale features. Thus, the conventional thresholding approach is not
sufficient for the extraction of large-scale structures. Nonetheless, for
TCF, structures with different scales may be associated with certain
value ranges of some attributes. By carefully selecting these ranges
of certain attributes, small- and large-scale structures may be better
separated for the subsequent processing.

In our pipeline, domain experts can select a single attribute, and
then analyze it through statistical-based methods [18] or with the aid of
volume rendering to obtain the desired value ranges which potentially
reveal the location and shape of the coherent structures. As illustrated
in Figure 2, small vortices can be extracted with Q > 2 for the sim-
ulation setting Rω = 0.1. In contrast, the large-scale structures can
be observed via the volume rendering of Q with values ∈ [0,0.1] (
Figure 6). Interestingly, for TCF, we found a correlation between the
rotation ratio Rω and the value range of Q. In particular, we can use a
value range of [0,Rω ] for Q to roughly reveal the large-scale structure.
This observation is also confirmed previously [39].

In addition to the value selection for a single attribute, the experts
can also select multiple attributes to better extract large-scale structures.
The motivation for combining different attributes comes from the issue
of using a single attribute like Q, which may only perform well in
the TCF with a high cylinder rotation ratio Rω . With lower rotation
ratio, Q produces noisy data, making the extraction more difficult.
As illustrated in Figure 5, Q is noisier than the streamwise velocity
and Shear in the wall-normal and streamwise direction for Rω = 0.05.
Either the streamwise velocity or Shear along is NOT sufficient in
both directions; but by combining the features revealed by both the
streamwise velocity and Shear, we can fully capture the prominent
structures in the 3D configuration (Figure 11).

Even though we can see the assembling of the structures in the
volume rendering after selecting the proper value ranges of certain

Fig. 6. Volume rendering of Q-criterion corresponding to the large-scale
structures (blue with Q ∈ [0,0.1]) and small-scale structures (red with
Q > 2), respectively.

attributes, as illustrated in Figure 6, effectively isolating and extracting
them is not trivial. Next, we will describe how we address this challenge
with the help of feature level-set extraction.

3.2 Feature Level-Set Extension

To extract 3D coherent structures, we adapt the feature level-set method
to combine the characteristics of the selected attributes. Feature level-
set is the generalization of the concept of level-set (i.e., iso-surface)
from uni-variate to multi-variate data. It is superior to the method
proposed by Schneider et al. [35] in which the authors try to find fea-
tures in the spatial overlap of iso-surfaces extracted from two attributes.
That method does not work if there is no intersection between the
iso-surfaces. Feature level-set does not suffer from the issue. In the
original version, feature level-set only works with a single (thresh-
old) value for each attribute. We modify the distance metric so it can
work with values within a range. Assume that we have N attributes
A = {a1,a2, · · · ,aN} for each point p in the spatial domain. We de-

note
{{

vi,1,vi,2
} | vi,1 ≤ vi,2, i ∈ [1,N]

}
as the selected value ranges

for either small-scale or large-scale features for these attributes. The
scalar distance or level to each point p is defined as follows:

dp =

{
0, if ∃i, ai ∈

[
vi,1,vi,2

]
min

i∈[1,N]
min

{∥∥ai − vi,1
∥∥ ,∥∥ai − vi,2

∥∥} , otherwise.

(1)
Given the attribute thresholds for small- or large- scale features, the
feature level-set outputs a distance field in which the regions with
smaller distance value belong to the small- or large- scale structures.



To increase the smoothness of the distance function, we attempted
to replace the Frobenius norm with the sigmoid function. However,
the result did not improve significantly. Frobenius norm is ultimately
selected because of its high accuracy and low computational complexity.
It is important to note that we normalize the attribute values before
computing the distance field. Thus, all attributes are in the same range,
making the distance comparison feasible.

(d)

(a) (b) (c)

Fig. 7. Motivation for the kernel density estimation. (a) Original iso-
surfaces using Q-criterion lead to visual clutter. (b) The extracted iso-
surfaces from the distance field computed with the feature level-set. (c)
Iso-surfaces extracted from the density field provide cleaner visualization.
σ = 0.56, h = 0.6, m = 8. (d) The combined visualization of (b) and (c).

3.3 Kernel Density Estimation

Once we compute the distance field, the straightforward method to
extract the surface representation for coherent structures is to apply
iso-surfacing with a small distance threshold. In practice, however, the
distance field is not always smooth as shown in Figure 7(b), leading
to the disconnected and noisy iso-surfaces. To overcome this, we pro-
pose to group the (likely disconnected) regions that correspond to the
large- (or small-) scale structures based on their spatial proximity, then
provide the abstract visualization for each structure. To characterize
their spatial distribution, we apply the kernel density estimation (KDE)
to map the distance values into a density field in which higher density
values correspond to the area containing more structures with similar
scale. KDE was first proposed by [27], and it is a well-established
method to achieve a non-parametric estimation for spatial density. We
approximate the density function using a Gaussian kernel density esti-
mate similar to [25] in a cube-like neighborhood area P centered at x
with size n = m3:

f (x) =
1

n(h
√

2π)d

n

∑
i=1

exp(−||x− pi||2
2h2

)×w (2)

with ||x− pi||2 being the Euclidean distance between grid points, h
being the bandwidth of KDE, d being the dimension of the grid. We
utilize the Silverman method [36] to compute the optimal bandwidth

which gives us h = 1.06σN− 1
5 with σ the standard deviation and N

the number of grid points. Note that we assume the true distribution
of the data is Gaussian. Compared to the conventional KDE, we add
a weighing term, w, which sets the density values to zero for the grid
points not enclosed by a large- (or small-) scale structure. A point
belongs to a coherent structure if the distance value is zero. Thus, the
value of the weight term w is equal to 1 if the distance value is zero,
otherwise w = 0. We do not set w to the actual values of distance values
because the purpose of KDE in this step is to reveal how dense the
small distance values are in a certain neighborhood area. Based on the
computed density field, iso-surfaces are extracted to provide a visual
representation of large- (or small-) scale structure groups. As can be
seen in Figure 7, we can derive three main groups for a sub-volume of
the flow, which are represented by three large iso-surfaces (blue) in (c)
from eighty nine small regions in (a). The density iso-surfaces provide
a cleaner visualization.

3.4 Generate Composite Visualization
Selecting the threshold for KDE iso-surface is a trial and error process.
Based on our experiments, however, we observe that setting the thresh-
old to half of the density value range can produce a reasonable result.
If the density value at a grid point is greater than the half of the value
range, it means that the majority of its neighbors belong to the desired
coherent structures. Half of the density value range is set by default for
all of our results. The color of KDE iso-surfaces is mapped to one of
the selected physical attributes in the feature level-set extraction step.
A smooth color surface indicates a better physical alignment of the
obtained surfaces.

Streamlines can be used to depict the flow motion, and verify the
correctness of the extracted coherent structures as they should wrap
around the structures in the simulation with high Rω values. To generate
a small set of such streamlines, we use a straight seeding rake that is
close and parallel to the surface of the large (or small) scale structures.
Some sample streamlines are shown in Figure 8(b)(d) and Figure 11.
Combined with the extracted boundary surfaces, they provide a more
informative visualization.

As we described in Section 2.1, the TC simulation is carried out in
Cartesian coordinates where the cylindrical streamwise coordinate is
unwrapped onto a straight line. To provide a more intuitive visualiza-
tion, we wrap back the streamwise dimension from the straight to the
cylindrical setting. Coordinate transformation is a widely solved math
problem. Assume R1 is the radius of the inner cylinder. We denote
NX as the number of points in the streamwise direction, sx,sy,sz are
the spacings between two neighboring points along the streamwise,
wall-normal, and spanwise directions, respectively. For each grid point
(i,j,k) in the regular grid in the Cartesian space, we can derive the
corresponding point (x,y,z) in the cylindrical coordinate as follows:⎧⎪⎨

⎪⎩
x = r cos( j ∗2π/NX)

y = r sin( j ∗2π/NX)

z = ksz

(3)

where r = R1 + i∗ sy. R1 is a user-specified value and can be obtained
from the simulation spatial information. In our results, R1 = 4.

4 RESULTS

We have applied our analysis and visualization framework to Taylor-
Couette flows simulated with three different cylinder rotation ratios,
RΩ = 0.1,0.05,0 (Section 2.1), respectively. The velocity fields of
these three simulations are stored in the VTK binary format with the
size of 12GB each. In this section, we first demonstrate how the
proposed framework can produce a first effective 3D visualization of
TCF to depict the 3D behaviors of TCF. We then discuss how our 3D
visualization helps domain experts analyze the 3D behaviors of TCFs
with low cylinder rotation ratios (i.e., R = 0.05 and R = 0) that was not
possible with the traditional 2D visualizations. We compare our method
with the most widely used approach in multi-scale structure extraction –
the convolution kernel filter, and point out a potential combination of
the convolution kernel filter with the proposed method. Last but not
least, we report the performance of our implementation.

TCF with RΩ = 0.1. Figure 8 provides the visualization of the TCF
with R = 0.1. It is known by the expert that the large-scale Taylor rolls
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Fig. 8. Visualization of the large-scale structures for TCF with R = 0.1. (a) shows the combined view of the small-scale vortices extracted with the
threshold Q > 2 (red) and the large-scale structures (blue) using the proposed method. (b) visualizes the large-scale structures that are alike Taylor
rolls with streamlines swirling around them. The surface color is mapped to Q. The red arrow indicates the streamwise direction. (c)(d) provide the
close-up views of (a) and (b), respectively. (e) A 2D abstract representation focuses on the high concentration of small-scale structures (red). (f)
shows a WS plane with the LIC texture and the corresponding boundaries of the small- (red) and large- (yellow) scale structures.

are fully formed in this simulation. These large-scale Taylor rolls can be
depicted by their corresponding Taylor vortices with opposite rotation
in the 2D cross section. Figure 8(a) shows the combined visualization
of the extracted small-scale vortices (the red iso-surfaces) and large-
scale structures (the blue tubes). The closeup view is presented in
Figure 8(c). From this overview visualization, the expert can easily
see the configuration of the small- and large-scale structures that form
interleaving spatial layout along spanwise direction. This is verified by
the conventional 2D visualization (e.g., the LIC texture shown in Figure
8(f)). The feature level-set is computed by using the two attributes Q
and the velocity magnitude in which Q ∈ [0,0.1], and the velocity
magnitude ∈ [0.05,0.1].

Another prominent characteristic revealed in this visualization is
that the large-scale structures (blue surfaces) are mostly following the
streamwise direction (i.e., their orientation is aligned with the horizontal
boundary). The red arrow indicates the streamwise direction in Figure
8(b). This characteristic is known as the streamwise invariant property
of Taylor rolls, which means that the behavior of the flow on a cross
section perpendicular to the streamwise direction is almost identical
and independent of the location of the cross sectional cut along the
streamwise direction. This is the reason why domain experts often
use 2D visualization to study TCF with large cylinder rotation ratio.
Nonetheless, 2D visualization emphasizes the large Taylor roll vortices
as they are visually dominant in the LIC texture and may not capture
the small-scale vortices that do not intersect with the 2D cross section.

Fig. 9. Visualization of the regions (enclosed by transparent surfaces)
with small-scale structures not belonging to the Taylor rolls for Rω = 0.1.

To verify that the large-scale features extracted with our approach
approximate the Taylor rolls in the TCF, we compute a number of
streamlines along these features ( Figure 8(b)). We see that these
streamlines are swirling around the respective surfaces, indicating the
rotation motion of the flow. The rotation bundles formed by these
streamlines mostly match the geometry of the extracted surfaces. Figure



(a) Structures in the Cylindrical View

(b) Close-up view
Fig. 10. (a) Visualization of the small-scale (left) and large-scale (right)
features in TCF with R = 0.1 in the cylindrical coordinate reveals the
well-known Taylor roll structure. (b) provides the close-up view for the
small- (left) and large-scale (right) structures, respectively.

8(d) provides a closeup look. In addition to streamlines, we also color
the extracted surfaces using the Q attribute measured on them. Our
assumption is that if the color is close to constant on the surface, the
surface is aligned well with the corresponding attribute. As can be seen
in the provided visualization, most parts of the surfaces have similar
colors except for a few spots, indicating a good alignment with the Q
attribute. In summary, our visualization demonstrates that the extracted
surfaces do approximate the Taylor rolls.

When compared to the 3D visualization using simple thresholding
shown in Figure 2, our visualization provides a much cleaner separation
of the regions dominated by the small-scale and large-scale features,
respectively. It also enables the depiction of the large-scale flow mo-
tion, which is not easy to capture with the local physical attributes
(i.e., vorticity, Q, and/or λ2). This is because this large-scale motion
corresponds to low values of those physical attributes. Our method can
successfully identify them.

Figure 8(e) shows a density field which is computed based on the
projection of small-scale structures onto a 2D cross section of the
streamwise axis (i.e., parallel to the WS plane). Nx cross sections
uniformly distributed in the streamwise direction are used (Nx = 512
in our experiments). The places with high concentration of the density
field (i.e., corresponding to regions where more small-scale features
reside) coincide with the places with high velocity magnitude (f). Note
that this density field visualization indicates that the majority of the
small-scale structures stays close to the boundary and form a clear
periodic spatial distribution layout, indicating the formation of the
Taylor rolls/vortices. Such a summary view is not easily obtained with
the conventional approach.

With the separation of the regions with small-scale and large-scale
structures, the expert can now study their different behavior separately.
While Figure 8(b) focuses on large-scale structures, Figure 9 reveals
the detailed behavior of the small-scale structures. The red iso-surfaces
represent the small vortices extracted by using the threshold Q > 2. The
gap between the 3D transparent surfaces that enclose all small vortices
are the places where 3D Taylor rolls reside.

To enable an intuitive understanding of TCF in the real-world setting
(Figure 1), we transform the extracted features with our method to a

cylindrical coordinate system. Figure 10 provides such a visualization.
Specifically, Figure 10 (a) provides the entire flow in the cylindrical
view for both small-scale (left) and large-scale (right) features. Figure
10 (b) provides a close-up view.

TCF with RΩ = 0.05. Next, we apply our framework to a TCF with
RΩ = 0.05 (i.e., half of the rotation ratio used to generate the above
TCF). This TCF is less ordered than the one seen above with RΩ = 0.1.
As shown in Figure 5 (a), Q attribute is not sufficient in capturing
the large-scale structures in this case. By examining other attributes,
we found that both local shear rate and the streamwise velocity can
reveal a cleaner configuration of the large-scale structure (Figure 5
(b)(d)). Therefore, we use these two attributes in the feature level-set
computation. The value ranges for these two attributes are [0.05, 0.2]
for the streamwise velocity and [0.8, 2] for shear, respectively. Figure
11 (b) shows the overview of the flow with the red small vortices
identified with Q = 2. Compared to the TCF with RΩ = 0.1 (Figure
2), these small-scale vortices are less structured (in other words, more
chaotic). Figure 11 (a)(c) show the visualization of this TCF using
our framework. As can be seen, the identified approximate boundary
surfaces of the large structures (curious blue) are not fully connected.
This indicates the insufficient separation of the large-scale structures
from the small-scale vortices, suggesting that the Taylor roll is not
fully formed. This is better conveyed in the projected density field of
the small-scale features shown in Figure 11 (g)(h), in which the high
concentration of small-scale features (in red) are less structured and
rather noisy. Nonetheless, these large structures still resemble Taylor
rolls seen in the TCF with RΩ = 0.1. This is indicated by the seeded
streamlines (Figure 11(c)). These streamlines still warp around the
extracted surfaces, though not well-organized. Figure 11(f) offers a
closeup look at these streamlines. Again, we color the extracted surface
using one of the selected attributes (shear in this case). Based on the
color distribution shown on the surface, we can see that the geometry
of the surfaces aligns well with the local shear rate of the flow.

TCF with RΩ = 0.0. Finally, we apply our method to the TCF
simulated with RΩ = 0.0. This is the most chaotic scenario in which
the rotation is minimum. As shown in Figure 12(a), the small-scale
vortices extracted using Q criterion cover almost the entire domain,
making the separation of the large- and small- scale structures using
attribute Q impossible. It is also known to the experts that there are
no Taylor rolls in this TCF. Nonetheless, there may still exist other
large-scale coherent structures. To reveal them, we again employ local
shear rate and the streamwise velocity to compute the feature level-set
for the extraction of the large-scale structure. The value ranges for these
two attributes used here are [0.075, 0.15] for the streamwise velocity
and [2.0, 5.0] for shearing, respectively.

Figure 12(b) visualizes the extracted surfaces approximating the
large-scale structures. The streamline seeded at one of the surfaces
corresponding to the large-scale structure has nearly flat geometry (i.e.,
not circulating around the corresponding surface as seen in the previous
TCF results). This indicates that the flow motion at or near these
large-scale structures is not rotational, which in turn shows that these
structures are NOT Taylor rolls.

Expert evaluation. We have shown our results to an expert from the
fluid mechanics community. In his impression, the visualization for
the TCF with RΩ = 0.1 adequately captures the regions of vortex gen-
eration, and the “quiet” regions. Furthermore, the method is able to
summarize the regions where vortices are formed from small-scale data,
and this shows promise for application in a wide variety of problems
like thermal convection, shear flows and wall turbulence. More impres-
sively, the method is also able to extract the coarse-grain regions where
the large-scale rolls are not streamwise invariant, but show a more
complicated geometry (e.g., for the TCF with RΩ = 0.05), providing a
rapid intuition of where transport barriers can arise.

In addition, the expert pointed out that our 3D visualization en-
ables a more thorough inspection of the 3D behaviors of TCFs that
were not possible with his existing 2D visualizations. Specifically,
when RΩ = 0.1, each Taylor roll rotates in the opposite direction to
its neighboring rolls, as observed in the respective 2D cross sections
(Figure1(a)). The circulating motion of the flow is nicely depicted by
the sampled streamlines that wrap around the extracted tubular struc-
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Fig. 11. Result on a TFC with RΩ = 0.05. (a) the overview of the large-scale structures. The surface color is mapped to the shear attribute. (b) the
small-scale vortices (in red) extracted with Q = 2, and slice cuts show the intersection of large structures and the WS planes. (c) streamlines wrap
around a large structure. (d)(e)(f) provide the closeup views at the corresponding black rectangles in (a)(b)(c). (g) 2D abstraction representation
indicates the regions with high concentration of the small structures, and (h) the projection of the small structures (red) on a LIC texture.

(a) Q>2

(b) Large-scale CS

Fig. 12. Visualization of (a) the vortices extracted by using the threshold
Q > 2 for a TCF simulation with Rω =0. It is impossible to visually distin-
guish the difference between the large- and small- scale structures as
the vortices are distributed everywhere in the spatial domain, and the
Taylor rolls are not clearly formed. (b) The large-scale structures are
extracted using local shear rate and the streamwise velocity. The seeded
streamlines (magenta) in the bottom have an overall flat configuration,
indicating the absence of Taylor rolls.

ture, which give an idea of how many wraparounds happen as the fluid
particles transverse the flow. This large-scale configuration is relatively
streamwise invariant (i.e., they are not shifting up and down) and re-
main stable in streamwise direction. In contrast, when RΩ = 0.05, the
large-scale structure extracted is not streamwise invariant (moving up
and/or down). In addition, this structure is not always connected along
streamwise direction. This indicates the well-shaped Taylor rolls as
seen in the RΩ = 0.1 simulation are not formed. In this case, inspect-
ing only 2D cross sections of the flow is not sufficient, as some cross
sections may have well-shaped vortices while the others do not.

For TCF with RΩ = 0, there is no existing method that can effec-
tively isolate the large-scale structures from the small ones. Although
the proposed method does not completely overcome this challenge,
the extracted surfaces partially reveal the shapes and positions of the
structures that the expert hypothesizes. This suggests that the proposed
framework can be applied to a more systematic study on how RΩ im-
pacts the configuration of Taylor rolls and to identify the threshold
value of RΩ that leads to the fully developed Taylor rolls.

Although the presented method is able to isolate the Taylor roll
successfully, the robustness of the isolation of the vortex remains to
be properly assessed, and in the expert’s opinion we have to go be-
yond visualization to quantify several aspects of the roll dynamics,
such as its energy and position through time. The current approach
cannot accurately capture the Taylor rolls for their quantitative analysis.
Nonetheless, the expert believes that the method developed here could
be used as springboard for low-order modelling of these structures, a
very relevant research aim of the turbulence community in the present.

Comparison with the convolution kernel approach. To demonstrate
the advantage of our framework over the traditional methods that usu-
ally perform smoothing to remove small-scale features, we compare our
result with the most commonly used convolution kernel approach [42].
Figure 13 (b) shows the results using a convolution kernel - usually an
averaging box filter with a kernel size of 12×12×12 to the velocity
field. Although the convolution kernel can generate a smoother result
and better-connected surfaces, our approach aligns better with physics.



(a) Small-scales (b) Convolution Kernel (c) Our Result
Fig. 13. Comparison with the convolution kernel on a TFC with RΩ = 0.05. The large-scale structures extracted with the convolution kernel falsely
includes an area occupied by small-scale features. In contrast, our method correctly excludes this region from the extracted large-scale structure.

This is because the convolution kernel may falsely enclose areas that are
occupied by small-scale features. As highlighted by a black dashed cir-
cle in Figure 13, a region that is dominated by the small-scale vortices
becomes part of the large-scale structure after applying convolution
kernel (Figure 13 (b)). In contrast, our method correctly detects this
area and excludes it from the construction of the large-scale structure.
In addition, we can see that the attribute values on the surfaces extracted
using the convolution kernel have large variations (e.g., a few large
areas colored in red on the those surfaces, indicating that the geometry
there does not align well with the physical attribute (i.e., those parts
should not belong to the extracted structure).

Performance. All numerical experiments reported are carried out on
a PC with an Intel Core i7-9750H CPU, 128GB DDR3 RAM and a
NVIDIA GeForce GTX1660Ti 6G graphic card. The framework is
implemented with C++, and we use CUDA to parallelize the attribute,
feature level-set and KDE computations. Note that the computation
at each grid point is independent from the other points; hence, the

computational complexity is reduced from N3 for the sequential imple-
mentation (N is the spatial resolution in each dimension) to nearly a
constant for our parallelized version.

Parameter discussion. Our approach depends on two types of param-
eters, i.e., the value ranges of the selected attributes, the neighborhood
size m for the KDE computation and the iso-value for surface extrac-
tion. The discussion on how to properly select value ranges for the
feature level-set computation is provided in Section 3.1. For the KDE
computation, the larger m is, the smoother the obtained surfaces will
be. However, if m is too large, the density field can be overly smoothed,
resulting in connected large-scale features (an example is provided
in the supplemental document). Based on our experiments, m = 10
usually yields the best results. To extract the iso-surfaces with an ideal
covering percentage of coherent structures, the iso-value is set to half
of the density value range. An example showing surfaces extracted
using different iso-values is provided in the supplemental document.
Table 1 reports the optimal KDE parameter values and the optimal
covering percentages (explained next) of large-scale structures for the
three TCFs described above.

Accuracy measurement. To measure the accuracy of our results, we
compute two covering percentages: (1) the percentage of the large-scale
structures enclosed by the obtained surfaces and (2) the percentage of
the small-scale structures enclosed by the surfaces. The former is
computed as the ratio between the number of voxels enclosed by the
surfaces that intersect with the large-scale structures (determined by the
value ranges of the selected attributes) and the number of voxels in the
entire domain that intersect with large-scale structures. This essentially
estimates the true positive (TP). The latter is computed as the ratio
between the number of voxels enclosed by the surfaces that intersect
with the small-scale structures and the number of all voxels enclosed by
the surfaces. This is measuring the false positive (FP). An ideal surface
should have TP close to 100% and FP close to 0. Table 1 reports the
accuracy measurement of our results. As a comparison, the TP and FP
values for the convolutional kernel result shown in Figure 13 (b) are

92.32% and 18.4%, respectively. Although it achieves slightly better
coverage of large-scale structures than our result ( Figure 13 (c)), it
covers significantly more small-scale structures than it should, which
makes it less accurate than our result.
Table 1. Parameters used for all TCFs with m = 10 and their accuracy
measurement.

RΩ Bandwidth Iso-values Large-scale CS
covering (TP)

Small-scale CS
covering (FP)

0.1 0.72 0.061 94.4% 7.3%

0.05 0.60 0.050 89.8% 9.5%

0.0 0.42 0.043 85.7% 17.6%

5 CONCLUSION

In this paper, we present a framework for the visualization and analy-
sis of Taylor-Couette flow (TCF), a well-known turbulence flow that
is frequently studied in various situations. However, existing meth-
ods cannot effectively separate the large-scale structures (i.e., Taylor
rolls/vortices) from the dense, space-filling small-scale structures for
the study of transport barriers. To address this issue, we propose a novel
visualization framework. First, we derive physical attributes, and find a
combination among these attributes via the feature level-set technique
to better capture the difference between the large- and small- scale
features. Second, we extract the iso-surface from the kernel density
estimation of the distance field obtained from the feature level-set com-
putation. We also provide 2D abstract representation through the plane
projection along the streamwise direction to highlight the concentrated
positions of structures with different scales. Our method is simple yet
effective, enabling the separation of the large-scale structures from the
smaller ones. It leads to cleaner visualization of this turbulence flow,
facilitating its analysis for the experts. We have applied our framework
to three TCFs simulated with different parameters to assess its effec-
tiveness. We show that our framework can be used to distinguish TFC
with different configurations.

Though we successfully separate regions with small-scale features
from those with large-scale ones for TCF, there are still a number of
limitations that need to be addressed in the future. First, the quality
of the extracted surface representation for large-scale structures still
depends on the proper selection of the value ranges of certain relevant
attributes. This is not trivial and the thresholds can be arbitrary, as
criticized by the expert. Second, we do not really extract the large-scale
structures precisely, instead, we only provide an approximation on the
regions where they may reside. In the meantime, the expert wishes to
see the more accurate transport barriers of this flow, i.e., the boundaries
of Taylor rolls, to quantify their dynamics. Finally, we focus on one
time step for each TCF despite TCFs are unsteady flows. Nonetheless,
the efficient computation of our framework enables us to explore an
in-situ visualization and analysis of TCFs during their simulations. We
plan to address these limitations in the future work.
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[41] H. Theisel, C. Rössl, and H.-P. Seidel. Compression of 2D Vector Fields

Under Guaranteed Topology Preservation. In Eurographics (EG 03), vol.

22(3) of Computer Graphics forum, pp. 333–342, Sept. 1–6 2003.

[42] M. Treib, K. Bürger, F. Reichl, C. Meneveau, A. Szalay, and R. Wester-

mann. Turbulence visualization at the terascale on desktop pcs. IEEE
Transactions on Visualization and Computer Graphics, 18(12):2169–2177,

2012.

[43] X. Tricoche, G. Scheuermann, and H. Hagen. A topology simplification

method for 2d vector fields. In Proceedings of IEEE Visualization 2000,

pp. 359–366. IEEE Computer Society Press, Los Alamitos, CA, USA,

2000.

[44] X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology sim-

plification of planar vector fields. In Proceedings of IEEE Visualization
2001, pp. 159–166, 2001.

[45] E. P. van der Poel, R. O. Mónico, J. Donners, and R. Verzicco. A pencil

distributed finite difference code for strongly turbulent wall-bounded flows,

2015.

[46] T. Weinkauf and H. Theisel. Streak lines as tangent curves of a derived

vector field. IEEE Transactions on Visualization and Computer Graphics,

16(6):1225–1234, 2010.

[47] T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege, and H.-P. Seidel. Extracting

higher order critical points and topological simplification of 3d vector

fields. In IEEE Vis, pp. 559–566, 2005.

[48] A. Wiebel, R. Chan, C. Wolf, A. Robitzki, A. Stevens, and G. Scheuer-



mann. Topological flow structures in a mathematical model for rotation-

mediated cell aggregation. In Topological Methods in Data Analysis and
Visualization, pp. 193–204. Springer, 2011.

[49] E. Zhang, K. Mischaikow, and G. Turk. Vector field design on surfaces.

ACM Transactions on Graphics, 25(4):1294–1326, 2006.


