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Abstract— Magnetic fields render a unique ability to control
magnetic objects without a direct mechanical contact. To exploit
this potential for a broad range of medical, microrobotics, and
microfluidics applications, noncontact magnetic manipulators
have been designed using both electromagnets and permanent
magnets. By feedback control of these manipulators, magnetic
objects can be precisely driven in the directions required by an
application of interest. The feedback design process for these
manipulators is normally complicated by their highly nonlinear
nature, particulary for those utilizing permanent magnets. Yet,
feedback linearization techniques can be applied to compensate
for the nonlinear nature of most magnetic manipulators. This
goal can be achieved by solving an underdetermined system of
nonlinear algebraic equations. This paper adopts a homotopy
continuation approach to solve this system of equations. It is
shown by simulations that the proposed feedback linearization
scheme drastically improves the control performance compared
to the alternative control design methods used in prior work.

I. INTRODUCTION

This paper concentrates on feedback control of noncontact
magnetic manipulators. These apparatus utilize arrangements
of multiple magnets to produce and flexibly control magnetic
fields, which interact with magnetic objects or fluids in their
region of influence in order to control them from a distance
without direct mechanical contact. The noncontact feature of
magnetic manipulators presents a unique means for operation
of magnetically driven tools inside the human body for non-
or minimally invasive medical procedures [1]-[12]. Further,
noncontact actuation and control are essential components of
micro- and nano-scale systems [13]—-[18].

By means of feedback control, magnetic manipulators are
able to precisely drive magnetic objects in the directions that
are required to perform a certain control task such as tracking
a reference trajectory at a desired speed [19]-[22]. The major
difficulty in design of such feedback control is the nonlinear
nature of magnetic manipulators. Yet, the specific structure
of nonlinearity in magnetic manipulators allows the use of
feedback linearization techniques to effectively compensate
for the nonlinearity [19]-[22]. The method used for feedback
linearization of magnetic manipulators relies on the solutions
to an underdetermined set of nonlinear algebraic equations.
This paper proposes a homotopy continuation [23] approach
for solving this set of algebraic equations.

A homotopy between two vector functions is a parametric
family of vector functions with a scalar parameter ranging in
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a closed interval. Varying this parameter from one end of the
interval to another end results in continuous deformation of
the first vector function toward the second. This continuous
deformation creates a continuous trajectory of isolated roots
of the family members extended from one end to another.
This continuous trajectory satisfies some known differential
equation that can be numerically solved with the root of one
vector function as its initial condition to determine one root
of the other vector function. Therefore, if one vector function
is chosen to have a trivial root, an isolated root of the other
vector function can be obtained easily.

To demonstrate the feedback linearization method of this
paper, a permanent magnet manipulator is utilized, which we
recently introduced as an alternative to the more conventional
electromagnet manipulators [22]. In our proposed magnetic
manipulator, the magnetic field is generated by an array of
permanent magnets, and control over magnetic field is gained
by mechanical movement of these magnets. The conventional
electromagnet manipulators have a rather simpler structure,
utilizing a spatially fixed array of electromagnets controlled
by their terminal voltages [19]-[21], [24]-[27]. Despite this
simple structure, electromagnets of reasonable size and cost
may not be capable to produce strong enough magnetic fields
for medical applications that typically require large magnetic
forces at relatively far distances (several decimeters). On the
other hand, permanent magnets offer a much higher strength
to size ratio [28], which can be exploited to develop more
compact, less expensive magnetic manipulators.

In Section II, the magnetic manipulator in [22] is briefly
described and a nonlinear state-space equation governing its
dynamics is presented. In Section III, the proposed feedback
linearization technique is applied to this state-space equation
to transform it into an equivalent linear system, for which a
linear controller is designed by the method of linear quadratic
regulator. Combining this linear controller with the nonlinear
transformation introduced by feedback linearization results in
an overall nonlinear controller, which enables the magnetic
manipulator to precisely drive a magnetic particle along any
arbitrary reference trajectory. Computation of this nonlinear
transformation using homotopy continuation is considered in
Section IV. The performance of proposed control is evaluated
in Section V using computer simulations, which demonstrate
that feedback linearization significantly improves the control
performance compared to a simple control developed in [22].

II. MODEL AND PROBLEM STATEMENT

In a recent paper, we presented the conceptual design of a
class of permanent magnet manipulators [22]. Currently, we
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Fig. 1: Experimental magnetic manipulator with 6 diametrically magnetized
permanent magnet discs. The permanent magnets can freely rotate a full 360
degrees inside their guiding cylinders using 6 independent servomotors. By
properly adjusting the directions of all magnets, the magnetic field inside a
circular container can be flexibly shaped to precisely steer a magnetic bead
along arbitrary reference trajectories.

are developing an experimental setup to evaluate this class of
magnetic manipulators in practice (in the near future). Fig. 1
shows the first prototype of this experimental setup.

The setup in this figure consists of a circular flat container
and an arrangement of diametrically magnetized permanent
magnet discs placed around the container at equal distances.
The container is filled with a thin layer of viscous fluid, and a
magnetic bead moves inside the fluid. The fluid layer is thin
enough to confine the magnetic bead in a plane. Each magnet
is rotated by an individual servomotor to control its direction
independently. The servomotors are equipped with internal
feedback control that enables them to rapidly and precisely
adjust the direction of magnets as requested. By appropriate
adjustment of the directions of all magnets, the total magnetic
field, and as a result, the total magnetic force applied to the
magnetic bead can be arbitrarily controlled. Then, by means
of feedback control, the magnetic bead can be driven along
arbitrary reference trajectories. To establish feedback control,
the instantaneous position and velocity of the magnetic bead
are measured by a real-time sensing device (not shown in
Fig. 1), such as a high-speed camera equipped with image
processing and tracking algorithms.

We developed a nonlinear state-space equation in [22] to
describe the dynamics of magnetic bead in the manipulator
of Fig. 1. To keep the paper self-contained, this state-space
equation is reproduced here without details of derivation. The
state vector in this equation contains the position 7 () € R?
and the velocity v (t) € R? of the magnetic bead in its plane
of motion. These vectors are presented in a planar orthogonal
coordinate system with the origin at the center of the circular
container and a fixed orientation with respect to the magnetic
manipulator, as shown in Fig. 2(a). The control § (¢) € R™ is
a vector containing the directions of n magnets employed by
the magnetic manipulator (n = 6 in Fig. 1). The direction of
magnet k = 1,2, ..., n is described by an angle 8 measured
counterclockwise between its north pole and a fixed vector py,
extended from the center of coordinate system toward the
center of magnet, as shown in Fig. 2(b). The control vector is
then given by 6 = (61,02,...,60,).

P2k

Fig. 2: Magnetic manipulator with n = 6 diametrically magnetized discs
of radius b equally spaced around a circular flat container of radius a: (a)
reference coordinate system r1 —r2; (b) local coordinate system p1j — pog
for magnet k with a rotation angle 6.

The dynamics of magnetic bead in the experimental setup
of Fig. 1 is governed by Newton’s second law of motion, and
incorporates the contribution of both magnetic force and fluid
resistance (drag). This dynamics is represented by the set of
state-space equations

(b)) =0 (t)
0 (t) = —ov(t) +ag(r(t),0(t)),

where g (+) : R? x R" — R? is a vector function and o and «
are positive constants. The linear term —ov (t) on the right-
hand side of (1b) represents the drag force normalized to the
mass of the magnetic bead, while the nonlinear term ag (-) is
the normalized magnetic force. For detailed description of the
parameters o and «, the interested reader is referred to [22].
Suppose that h (r, §) is the total magnetic field generated
by n magnets at a point 7 under a control vector €. The vector
function ¢ (-) in the state-space equation (1b) is defined as

g(r, 9) =V Hh (T‘, 9)”2

where V is the operator of gradient with respect to r and ||-||
stands for the Euclidean norm of vectors. The total magnetic
field is the superposition of magnetic fields generated by n
magnets, and is explicitly given in [22] by

(1a)
(1b)

h(r,&)_ZRk (Ok) he (R (0k) (r — pr)). ()

Here, Ry (+), k =1,2,...,n is the rotation matrix

cos(¢+L”) sin(¢+W)
—s1n(¢+ kl)) cos(qH- kl))
and pi, k=1,2,...,

Ry (¢) =

n is the 2 x 1 vector

0 27r(k—1)r7

n

pr = (a+0) [COS 2”(’;—1)

where a and b are the radii of the circular container and the
permanent magnet discs, respectively.

In the total magnetic field (2), h. (-) : R? — R? represents
the magnetic field of each permanent magnet disc in its own
coordinate system. As shown in Fig. 2(b), a local coordinate
system is fixed to each magnet with the origin at the center
of magnet and the first orthogonal axis aligned with its north



pole. For any point p in that local coordinate system, h. (p)
represents the magnetic field generated at p by that individual
magnet. An analytic form of h.. (-) has been proposed in [29],
which is adopted in this paper for both controller design and
numerical simulations. In a recent study, we experimentally
verified this analytic form by showing that its values closely
match the empirical data collected by a magnetic mapper.

A. Statement of Control Problem

The purpose of this paper is to develop a feedback control
law that enables the magnetic manipulator of Fig. 1 to steer a
magnetic object along a desired reference trajectory inside its
region of influence (circular container) ¥ C R2. The specific
goal is to develop a state feedback of the form

0(t) =p(r(t),v(t),ra(t) ©)

to control the state-space equations (1) in such a manner that
the position vector r (t) closely tracks a continuous reference
trajectory r4 (t). Here,  (+) : R2xR?xR? — R" is a control
law which in general is a nonlinear function, and r4 (t) € €
is any continuous function of time that represents a trajectory
inside the region of influence of the magnetic manipulator.

To improve the performance of feedback, the memoryless
control law (3) can be upgraded to a dynamical system that
includes integral, derivative, or lead-lag actions. Even though
this paper focuses on the state feedback (3) for the purpose
of computer simulations, the feedback linearization technique
proposed in Section III can be identically applied for design
of such dynamic feedback laws.

ITII. CONTROL DESIGN BY FEEDBACK LINEARIZATION

In design of feedback law for the state-space equations (1),
a major challenge is the nonlinear structure of these equations
caused by the nonlinear function g (-). On the other hand, the
large number of control variables in a magnetic manipulator
makes it possible to compensate for its nonlinearity, at least
within some region of operation. For a magnetic manipulator
with at least n = 3 magnets, g (r, 0) is a 2-dimensional vector
while 6 is at least 3-dimensional. Thus, the algebraic equation

g(r,0) ==z “)

is underdetermined and admits infinitely many solutions for 8
if the constant parameters r € R? and z € R? are taken from
a certain subset of R% x R2. In the remainder of this paper, .¥
denotes the largest subset of R? x R? such that the algebraic
equation (4) admits at least one solution for each (r, z) € .7

For any value of the pair (r, z) taken from ., the algebraic
equation (4) has a solution for 6 that depends on (r, z), and
can be expressed as = ¢! (r, z). Here, g7 (1) : ¥/ — R"
is a nonlinear vector function regarded as the inverse of g (-)
in the sense that

g(rg= (r2) =2 (rz) €. ©)

Obviously, the inverse function is nonunique and in general,
infinitely many of them exist.

Feedback linearization of magnetic manipulators relies on
the inverse function g~! (-) based on the concept illustrated
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Fig. 3: An essentially nonlinear magnetic manipulator is controlled under
a nonlinear feedback in such a manner that the nolinearity of the feedback
controller compensates for the nonlinearity of the magnetic manipulator, so
that the overall closed-loop system virtually behaves as a linear system.

in the block diagrams of Fig. 3. Consider an auxiliary control
vector z (t) € R? and apply a control of the form

0(t)=g~" (r(t),=(t)) (©)

to the state-space equations (1). By definition (5) for g=* (),
this feedback control transforms the nonlinear system (1) into
the linear system

(t) = v (t)

0 (t) = —ov (t) + az (t) M

with a new control z (¢). Of course, this linear model is only
applicable to those state and control trajectories that satisfy

(r(t),z() €~ ®)

during the entire course of control.

As shown in Fig. 3, the purposeful nonlinearity introduced
via transformation (6) entirely compensates for the intrinsic
nonlinearity of the magnetic manipulator such that the overall
closed-loop system behaves as a linear system. Therefore, the
control design problem for an essentially nonlinear magnetic
manipulator is reduced to design of a linear controller for the
linear system described by the state-space equations (7). This
controller must be designed in such a manner that in normal
mode of operation, it only yields state and control trajectories
that satisfy (8). The linear controller can be designed either as
a memoryless state feedback, or for higher performance, as a
dynamical system involving integral, derivative, or any other
filtering actions. After developing a suitable linear controller
using any standard design method, this controller is cascaded
with the nonlinear memoryless system (6) in order to develop
a nonlinear control law applied to the magnetic manipulator.

To develop a state feedback law of the form (3), the linear
controller adopted in this paper is the linear state feedback

z(t)=—K,(r(t) —ra(t)) — K, (t), )

where K, and K, are 2 2 gain matrices. The optimal values
of these gain matrices are determined using a linear quadratic
regulator approach (see [22] for the details). Combining this
linear controller with the nonlinear transformation (6) leads
to the nonlinear state feedback law

w(r,v,rg) = g_l(r, —K,(r—rq) — K, )

This control law is defined only for those vales of (r,v,74)
for which the inverse function g—! (-) exists. For this reason,
the linear mode of closed-loop operation is restricted only to
a subregion rather than the entire region of influence of the
magnetic manipulator, as discussed in Section V.

(10)



Practical implementation of the nonlinear control law (10)
relies on the numerical values of the inverse function g (-),
which must be computed in real time by solving the algebraic
equation (4) for 6. This underdetermined equation typically
admits infinitely many solutions that can be equally taken as
a value of the inverse function. In practice, however, certain
solutions may be preferred to others for technical reasons. In
our prior work [22], we proposed to select the most preferred
solution by solving certain constrained optimization problem.

An alternative approach adopted in this paper attempts to
compute a solution of (4) with minimal computational effort,
which is suitable for real-time implementation. Furthermore,
this solution is constructed in such a manner that effectively
reduces the rate of change of 6 (¢). It is reminded that 6 (¢) is
the input signal applied to servomotors, which are low-pass
systems in nature with practical limitations on their slew rate.
Thus, a slower reference signal 6 (t) elevates the performance
of servomotors, and as a consequence, the overall closed-loop
performance of the magnetic manipulator.

IV. HoMOTOPY CONTINUATION

This paper adopts the concept of homotopy continuation to
solve the nonlinear algebraic equation (4). The advantage of
this approach over its alternatives such as Newton’s method
is that its convergence to a solution of (4) barely depends on
the choice of initial guess for the solution [30]. This property
is in particular important for the real-time application of this
paper, which requires to frequently solve a complex equation
under different parameter values without reliance on human
intelligence to identify a suitable initial guess. In the rest of
this section, the concept of homotopy continuation is briefly
discussed and it is applied to the algebraic equation (4).

Suppose f (+) : R® — R™, m < n is a vector function and
the goal is to solve the algebraic equation f (w) = 0. When
a simple solution to this problem is not known, an alternative
is to use the method of homotopy described below. Consider
another vector function fj () : R™ — R™ that has a known
solution wy satisfying fy (wp) = 0. Take a scalar parameter s
and construct the family of vector functions

F(w,s) =sf(w)+(1=s) fo(w),

which is called a homotopy between f (-) and fo (). For the
purpose of solving f (w) = 0, any other family of functions
that holds two conditions f () = F'(-,1) and F' (wp,0) =0
can be equivalently employed.

Suppose w (s), s € [0, 1] is a continuous trajectory of the
solutions to the family of algebraic equations

F(w(s),s) =0,

s €[0,1],

s € [0,1].

This trajectory has the key properties that its value at s = 1
solves the algebraic equation f (w) = 0, and additionally, the
entire trajectory w (s), s € [0, 1] is the solution to the initial
value problem

(11a)
(11b)

provided that F (+) is differentiable. Hence, this problem can
be solved on s € [0, 1] to obtain w (1) that solves f (w) = 0.
The explicit form of (11a) is given by

Fy (w(s),s)w' (s)+ Fs (w(s),s) =0, (12)

where w’ (+) is the derivative of w (-), and F), (-) and Fj ()
denote the Jacobian matrices of F' (w, s) with respect to w
and s, respectively. This equation is linear in w’ (s), which is
explicitly solved to obtain the standard form

w'(s) = —Ff (w(s),s) Fs (w(s),s), (13)

where Ff (-) denotes the inverse of F, (-) when m = n, and
its Moore-Penrose inverse for m < n. The solution to (12) is
not unique when m < n, and (13) is only a possible solution.
Yet, this particular solution is computationally least complex,
as any other solution introduces an extra additive term on the
right-hand side of (13).

For solving the algebraic equation (4), fix the parameters r
and z, take any arbitrary initial guess 6y € R", and construct
the homotopy

F(w,s)=g(r,w)—sz—(1—25)g(r,6).

Using this homotopy, a solution of (4) can be determined by
solving the initial value problem

w' (s) = G (r,w (s)) (= = g (r, 60))

(14a)
(14b)

over s € [0, 1] and taking w (1) as that solution. Here, Gy ()
is the Jacobian matrix of g (r, ) with respect to 6.

The algebraic equation (4) does not admit any solution for
certain parameter values (7, z) ¢ .. This case is manifested
by the abnormal condition that the differential equation (14)
becomes singular at some s = § in the interval [0, 1), i.e., the
Moore-Penrose inverse G(T, (r,w (5)) becomes nonexistent. In
this case, w (3) is taken as a reasonable replacement for the
nonexistent value of the inverse function g=! (r, 2).

The initial guess 0 in the differential equation (14) can be
taken arbitrarily; however, by choosing its value smartly, two
key advantages are achieved simultaneously. Suppose that the
control # (t) is updated at a sampling rate 7', i.e., the values
of 8 (kT), k=0,1,2,... are generated by solving (4) with
the parameters r (kT') and z (kT'). Then, to compute 6 (kT),
the initial guess is taken as 6y = 0 (kT' — T'). Noting that the
parameters r (kT') and z (kT) change slowly with k, for this
initial guess, 6 (kT) typically stays close to 8 (kT — T'). This
property offers two advantages: effectively reduces the rate of
change of 6 (t), and lowers the computational cost of solving
the initial value problem (14).

V. SIMULATION RESULTS

The closed-loop performance of the magnetic manipulator
of Fig. 1 was evaluated by computer simulations developed in
Matlab. These simulations numerically solve the state-space
equations (1) under a control generated by the state feedback
law (10). In parallel, simulation results were produced under
an approximate control law, as a baseline for comparison. We



originally proposed this approximate control law in [22] as
an inexpensive alternative to the exact control law (10). This
control law approximates g~! (+) in (10) with

gt (r,2) = G} (r,0) (= = g (r,0)),
which is obtained by solving the approximate linear equation
g(r,0) ~g(r,0)+ Gy (r,0)0 = 2.

The simulations were designed to study two major issues:
closed-loop stability, and tracking performance. The stability
issue is in particular important, as the dynamics of magnetic
objects inside magnetic fields is intrinsically unstable, which
can be stabilized only by means of feedback. Such open-loop
instability is an essential property of magnetic manipulators
regardless of their type, design, and geometry, a fact directly
implied by Earnshaw’s theorem [8], [12].

The simulations investigate the asymptotic stability of the
equilibrium (r,v) = (0,0) under the control law (10) and
its approximation (15). Note that (r,v) = (0, 0) is indeed an
equilibrium point of (1) under 6 (¢) = 0, since g (0,0) = 0
holds by geometric symmetry. In addition, this equilibrium
is open-loop unstable, which can be shown by linearizing the
state-space equations (1) at the origin and verifying that the
linearized system has strictly positive poles.

5)

A. Numerical Results

The simulations were run for a magnetic manipulator with
n = 6 identical magnets of radius b = 0.5 spaced at equal
distances around a circle with a normalized radius @ = 1. The
numerical values of parameters in (1) were chosen as o0 =1
and o = 1. The 2 x 2 gain matrices K, and K, in the linear
controller (9) were determined as

K, = diag (31.6,31.6), K, = diag(7.01,7.01)

by the linear quadratic regulator method (see [22] for details).
The magnetic field h.. () of the individual magnets involved
in (2) was computed from an analytical formula in [29] for
magnets of radius b = 0.5 and thickness d = 0.1. The rest
of parameters in this formula were normalized to result in a
unit magnetic field at a unit distance from the magnet poles.

The simulation results demonstrate successful stabilization
of the unstable equilibrium at the origin (r,v) = (0,0) under
both control laws (10) and its approximate form (15), even
though the exact control (10) has a substantially larger region
of attraction (ROA). This improvement in the ROA is clearly
observed in Fig. 4, which illustrates the cross section of ROA
with the hyperplane v = 0 for both exact and approximate
control laws. This cross section represents a subregion within
the region of influence of the magnetic manipulator (circular
container) with the following property: under the feedback
control (10) with r4 (t) = 0, any magnetic particle initially
stationary inside this subregion moves toward and eventually
stops at the center = 0 of the subregion. A typical trajectory
of such magnetic particle is illustrated in Fig. 5.

For the magnetic manipulator of Fig. 1, the performance of
trajectory tracking under feedback control is studied in Fig. 6.
The control goal in this figure is to drive a magnetic bead at a

-1 05 0 05 1
1

Fig. 4: Cross section of ROA with the hyperplane v = 0 for the unstable

equilibrium at (r,v) = (0,0) under the exact state feedback (10) (inside

solid line) and its approximation (15) (inside dashed line). The approximate

control law stabilizes the equilibrium with a smaller ROA. The interior of

circle represents the region of influence of the magnetic manipulator.
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Fig. 5: State trajectories approaching the equilibrium (0, 0) under the exact
state feedback (10) (solid line) and its approximation (15) (dashed line).

constant speed along a reference trajectory resembling SIU.
Fig. 6(a) depicts the trajectory of magnetic bead (solid line)
as it tracks the reference trajectory (dash-dotted line) under
the feedback law (10). According to Fig. 6(a), this feedback
law enables the magnetic manipulator to precisely drive the
magnetic bead along a complex trajectory that covers a large
area in the region of influence of the magnetic manipulator.
Fig. 6(b) compares the tracking performance of the exact
control (10) with its approximation (15) from two points of
view. First, this figure indicates that the exact feedback law is
able to successfully steer the magnetic bead along reference
trajectories covering a much larger area, as compared to its
approximate counterpart. Second, the exact feedback law is
significantly more precise in tracking reference trajectories.
This second property can be also observed in Fig. 7 which
illustrates the trajectories of Fig. 6(b) versus time.

VI. CONCLUSION

A feedback linearization technique was introduced in this
paper to properly compensate for highly nonlinear dynamics
of noncontact magnetic manipulators. This technique mainly
relies on the solutions to an underdetermined set of nonlinear
algebraic equations. A homotopy continuation approach was
adopted to numerically solve this set of nonlinear equations
in real time. It was shown via computer simulations that the
control law designed by feedback linearization significantly
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Fig. 6: Magnetic bead tracks a SIU-shaped reference trajectory (dash-dotted
line) at a constant speed under (a) the exact control law (10) (solid line),
and (b) its approximation (15) (dashed line). The reference trajectory in (b)
is the largest possible that the magnetic bead can successfully track under
the approximate control law.
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Fig. 7: Trajectory of magnetic bead versus time as it tracks a SIU-shaped
reference trajectory (dash-dotted line) under the exact feedback control (10)
(solid line) and its approximation (15) (dashed line).

outperforms those designed in the past based on approximate
linearization methods.
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