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Abstract— Magnetic fields render a unique ability to control
magnetic objects without a direct mechanical contact. To exploit
this potential for a broad range of medical, microrobotics, and
microfluidics applications, noncontact magnetic manipulators
have been designed using both electromagnets and permanent
magnets. By feedback control of these manipulators, magnetic
objects can be precisely driven in the directions required by an
application of interest. The feedback design process for these
manipulators is normally complicated by their highly nonlinear
nature, particulary for those utilizing permanent magnets. Yet,
feedback linearization techniques can be applied to compensate

for the nonlinear nature of most magnetic manipulators. This
goal can be achieved by solving an underdetermined system of
nonlinear algebraic equations. This paper adopts a homotopy
continuation approach to solve this system of equations. It is
shown by simulations that the proposed feedback linearization
scheme drastically improves the control performance compared
to the alternative control design methods used in prior work.

I. INTRODUCTION

This paper concentrates on feedback control of noncontact

magnetic manipulators. These apparatus utilize arrangements

of multiple magnets to produce and flexibly control magnetic

fields, which interact with magnetic objects or fluids in their

region of influence in order to control them from a distance

without direct mechanical contact. The noncontact feature of

magnetic manipulators presents a unique means for operation

of magnetically driven tools inside the human body for non-

or minimally invasive medical procedures [1]–[12]. Further,

noncontact actuation and control are essential components of

micro- and nano-scale systems [13]–[18].

By means of feedback control, magnetic manipulators are

able to precisely drive magnetic objects in the directions that

are required to perform a certain control task such as tracking

a reference trajectory at a desired speed [19]–[22]. The major

difficulty in design of such feedback control is the nonlinear

nature of magnetic manipulators. Yet, the specific structure

of nonlinearity in magnetic manipulators allows the use of

feedback linearization techniques to effectively compensate

for the nonlinearity [19]–[22]. The method used for feedback

linearization of magnetic manipulators relies on the solutions

to an underdetermined set of nonlinear algebraic equations.

This paper proposes a homotopy continuation [23] approach

for solving this set of algebraic equations.

A homotopy between two vector functions is a parametric

family of vector functions with a scalar parameter ranging in
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a closed interval. Varying this parameter from one end of the

interval to another end results in continuous deformation of

the first vector function toward the second. This continuous

deformation creates a continuous trajectory of isolated roots

of the family members extended from one end to another.

This continuous trajectory satisfies some known differential

equation that can be numerically solved with the root of one

vector function as its initial condition to determine one root

of the other vector function. Therefore, if one vector function

is chosen to have a trivial root, an isolated root of the other

vector function can be obtained easily.

To demonstrate the feedback linearization method of this

paper, a permanent magnet manipulator is utilized, which we

recently introduced as an alternative to the more conventional

electromagnet manipulators [22]. In our proposed magnetic

manipulator, the magnetic field is generated by an array of

permanent magnets, and control over magnetic field is gained

by mechanical movement of these magnets. The conventional

electromagnet manipulators have a rather simpler structure,

utilizing a spatially fixed array of electromagnets controlled

by their terminal voltages [19]–[21], [24]–[27]. Despite this

simple structure, electromagnets of reasonable size and cost

may not be capable to produce strong enough magnetic fields

for medical applications that typically require large magnetic

forces at relatively far distances (several decimeters). On the

other hand, permanent magnets offer a much higher strength

to size ratio [28], which can be exploited to develop more

compact, less expensive magnetic manipulators.

In Section II, the magnetic manipulator in [22] is briefly

described and a nonlinear state-space equation governing its

dynamics is presented. In Section III, the proposed feedback

linearization technique is applied to this state-space equation

to transform it into an equivalent linear system, for which a

linear controller is designed by the method of linear quadratic

regulator. Combining this linear controller with the nonlinear

transformation introduced by feedback linearization results in

an overall nonlinear controller, which enables the magnetic

manipulator to precisely drive a magnetic particle along any

arbitrary reference trajectory. Computation of this nonlinear

transformation using homotopy continuation is considered in

Section IV. The performance of proposed control is evaluated

in Section V using computer simulations, which demonstrate

that feedback linearization significantly improves the control

performance compared to a simple control developed in [22].

II. MODEL AND PROBLEM STATEMENT

In a recent paper, we presented the conceptual design of a

class of permanent magnet manipulators [22]. Currently, we
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Fig. 1: Experimental magnetic manipulator with 6 diametrically magnetized
permanent magnet discs. The permanent magnets can freely rotate a full 360
degrees inside their guiding cylinders using 6 independent servomotors. By
properly adjusting the directions of all magnets, the magnetic field inside a
circular container can be flexibly shaped to precisely steer a magnetic bead
along arbitrary reference trajectories.

are developing an experimental setup to evaluate this class of

magnetic manipulators in practice (in the near future). Fig. 1

shows the first prototype of this experimental setup.

The setup in this figure consists of a circular flat container

and an arrangement of diametrically magnetized permanent

magnet discs placed around the container at equal distances.

The container is filled with a thin layer of viscous fluid, and a

magnetic bead moves inside the fluid. The fluid layer is thin

enough to confine the magnetic bead in a plane. Each magnet

is rotated by an individual servomotor to control its direction

independently. The servomotors are equipped with internal

feedback control that enables them to rapidly and precisely

adjust the direction of magnets as requested. By appropriate

adjustment of the directions of all magnets, the total magnetic

field, and as a result, the total magnetic force applied to the

magnetic bead can be arbitrarily controlled. Then, by means

of feedback control, the magnetic bead can be driven along

arbitrary reference trajectories. To establish feedback control,

the instantaneous position and velocity of the magnetic bead

are measured by a real-time sensing device (not shown in

Fig. 1), such as a high-speed camera equipped with image

processing and tracking algorithms.

We developed a nonlinear state-space equation in [22] to

describe the dynamics of magnetic bead in the manipulator

of Fig. 1. To keep the paper self-contained, this state-space

equation is reproduced here without details of derivation. The

state vector in this equation contains the position r (t) ∈ R
2

and the velocity v (t) ∈ R
2 of the magnetic bead in its plane

of motion. These vectors are presented in a planar orthogonal

coordinate system with the origin at the center of the circular

container and a fixed orientation with respect to the magnetic

manipulator, as shown in Fig. 2(a). The control θ (t) ∈ R
n is

a vector containing the directions of n magnets employed by

the magnetic manipulator (n = 6 in Fig. 1). The direction of

magnet k = 1, 2, . . . , n is described by an angle θk measured

counterclockwise between its north pole and a fixed vector ρk
extended from the center of coordinate system toward the

center of magnet, as shown in Fig. 2(b). The control vector is

then given by θ = (θ1, θ2, . . . , θn).

S N

S

N

S

N

SN

S

N

S

N

m

r

v

r1

r2

ρk

a

(a)

N

S

θk

p2k

p1k

ρk

(b)

Fig. 2: Magnetic manipulator with n = 6 diametrically magnetized discs
of radius b equally spaced around a circular flat container of radius a: (a)
reference coordinate system r1−r2; (b) local coordinate system p1k−p2k
for magnet k with a rotation angle θk .

The dynamics of magnetic bead in the experimental setup

of Fig. 1 is governed by Newton’s second law of motion, and

incorporates the contribution of both magnetic force and fluid

resistance (drag). This dynamics is represented by the set of

state-space equations

ṙ (t) = v (t) (1a)

v̇ (t) = −σv (t) + αg (r (t) , θ (t)) , (1b)

where g (·) : R2×R
n → R

2 is a vector function and σ and α
are positive constants. The linear term −σv (t) on the right-

hand side of (1b) represents the drag force normalized to the

mass of the magnetic bead, while the nonlinear term αg (·) is

the normalized magnetic force. For detailed description of the

parameters σ and α, the interested reader is referred to [22].

Suppose that h (r, θ) is the total magnetic field generated

by n magnets at a point r under a control vector θ. The vector

function g (·) in the state-space equation (1b) is defined as

g (r, θ) = ∇‖h (r, θ)‖
2
,

where ∇ is the operator of gradient with respect to r and ‖·‖
stands for the Euclidean norm of vectors. The total magnetic

field is the superposition of magnetic fields generated by n
magnets, and is explicitly given in [22] by

h (r, θ) =

n
∑

k=1

RT

k (θk)hc

(

Rk (θk) (r − ρk)
)

. (2)

Here, Rk (·), k = 1, 2, . . . , n is the rotation matrix

Rk (φ) =





cos
(

φ+ 2π(k−1)
n

)

sin
(

φ+ 2π(k−1)
n

)

− sin
(

φ+ 2π(k−1)
n

)

cos
(

φ+ 2π(k−1)
n

)





and ρk, k = 1, 2, . . . , n is the 2× 1 vector

ρk = (a+ b)
[

cos 2π(k−1)
n

sin 2π(k−1)
n

]T

,

where a and b are the radii of the circular container and the

permanent magnet discs, respectively.

In the total magnetic field (2), hc (·) : R
2 → R

2 represents

the magnetic field of each permanent magnet disc in its own

coordinate system. As shown in Fig. 2(b), a local coordinate

system is fixed to each magnet with the origin at the center

of magnet and the first orthogonal axis aligned with its north



pole. For any point p in that local coordinate system, hc (p)
represents the magnetic field generated at p by that individual

magnet. An analytic form of hc (·) has been proposed in [29],

which is adopted in this paper for both controller design and

numerical simulations. In a recent study, we experimentally

verified this analytic form by showing that its values closely

match the empirical data collected by a magnetic mapper.

A. Statement of Control Problem

The purpose of this paper is to develop a feedback control

law that enables the magnetic manipulator of Fig. 1 to steer a

magnetic object along a desired reference trajectory inside its

region of influence (circular container) C ⊂ R
2. The specific

goal is to develop a state feedback of the form

θ (t) = µ (r (t) , v (t) , rd (t)) (3)

to control the state-space equations (1) in such a manner that

the position vector r (t) closely tracks a continuous reference

trajectory rd (t). Here, µ (·) : R2×R
2×R

2 → R
n is a control

law which in general is a nonlinear function, and rd (t) ∈ C

is any continuous function of time that represents a trajectory

inside the region of influence of the magnetic manipulator.

To improve the performance of feedback, the memoryless

control law (3) can be upgraded to a dynamical system that

includes integral, derivative, or lead-lag actions. Even though

this paper focuses on the state feedback (3) for the purpose

of computer simulations, the feedback linearization technique

proposed in Section III can be identically applied for design

of such dynamic feedback laws.

III. CONTROL DESIGN BY FEEDBACK LINEARIZATION

In design of feedback law for the state-space equations (1),

a major challenge is the nonlinear structure of these equations

caused by the nonlinear function g (·). On the other hand, the

large number of control variables in a magnetic manipulator

makes it possible to compensate for its nonlinearity, at least

within some region of operation. For a magnetic manipulator

with at least n = 3 magnets, g (r, θ) is a 2-dimensional vector

while θ is at least 3-dimensional. Thus, the algebraic equation

g (r, θ) = z (4)

is underdetermined and admits infinitely many solutions for θ
if the constant parameters r ∈ R

2 and z ∈ R
2 are taken from

a certain subset of R2×R
2. In the remainder of this paper, S

denotes the largest subset of R2×R
2 such that the algebraic

equation (4) admits at least one solution for each (r, z) ∈ S .

For any value of the pair (r, z) taken from S , the algebraic

equation (4) has a solution for θ that depends on (r, z), and

can be expressed as θ = g−1 (r, z). Here, g−1 (·) : S → R
n

is a nonlinear vector function regarded as the inverse of g (·)
in the sense that

g
(

r, g−1 (r, z)
)

= z, (r, z) ∈ S . (5)

Obviously, the inverse function is nonunique and in general,

infinitely many of them exist.

Feedback linearization of magnetic manipulators relies on

the inverse function g−1 (·) based on the concept illustrated

Nonlinear Controller Nonlinear System

Linear Controller

Cancelled

θ = g−1 (r, z)z z (r, v)θ
z = g (r, θ) ṙ = v

v̇ = −σv + αz
rd

(r, v) r r

Fig. 3: An essentially nonlinear magnetic manipulator is controlled under
a nonlinear feedback in such a manner that the nolinearity of the feedback
controller compensates for the nonlinearity of the magnetic manipulator, so
that the overall closed-loop system virtually behaves as a linear system.

in the block diagrams of Fig. 3. Consider an auxiliary control

vector z (t) ∈ R
2 and apply a control of the form

θ (t) = g−1 (r (t) , z (t)) (6)

to the state-space equations (1). By definition (5) for g−1 (·),
this feedback control transforms the nonlinear system (1) into

the linear system

ṙ (t) = v (t)

v̇ (t) = −σv (t) + αz (t)
(7)

with a new control z (t). Of course, this linear model is only

applicable to those state and control trajectories that satisfy

(r (t) , z (t)) ∈ S (8)

during the entire course of control.

As shown in Fig. 3, the purposeful nonlinearity introduced

via transformation (6) entirely compensates for the intrinsic

nonlinearity of the magnetic manipulator such that the overall

closed-loop system behaves as a linear system. Therefore, the

control design problem for an essentially nonlinear magnetic

manipulator is reduced to design of a linear controller for the

linear system described by the state-space equations (7). This

controller must be designed in such a manner that in normal

mode of operation, it only yields state and control trajectories

that satisfy (8). The linear controller can be designed either as

a memoryless state feedback, or for higher performance, as a

dynamical system involving integral, derivative, or any other

filtering actions. After developing a suitable linear controller

using any standard design method, this controller is cascaded

with the nonlinear memoryless system (6) in order to develop

a nonlinear control law applied to the magnetic manipulator.

To develop a state feedback law of the form (3), the linear

controller adopted in this paper is the linear state feedback

z (t) = −Kr

(

r (t)− rd (t)
)

−Kvv (t) , (9)

where Kr and Kv are 2×2 gain matrices. The optimal values

of these gain matrices are determined using a linear quadratic

regulator approach (see [22] for the details). Combining this

linear controller with the nonlinear transformation (6) leads

to the nonlinear state feedback law

µ (r, v, rd) = g−1
(

r,−Kr (r − rd)−Kvv
)

. (10)

This control law is defined only for those vales of (r, v, rd)
for which the inverse function g−1 (·) exists. For this reason,

the linear mode of closed-loop operation is restricted only to

a subregion rather than the entire region of influence of the

magnetic manipulator, as discussed in Section V.



Practical implementation of the nonlinear control law (10)

relies on the numerical values of the inverse function g−1 (·),
which must be computed in real time by solving the algebraic

equation (4) for θ. This underdetermined equation typically

admits infinitely many solutions that can be equally taken as

a value of the inverse function. In practice, however, certain

solutions may be preferred to others for technical reasons. In

our prior work [22], we proposed to select the most preferred

solution by solving certain constrained optimization problem.

An alternative approach adopted in this paper attempts to

compute a solution of (4) with minimal computational effort,

which is suitable for real-time implementation. Furthermore,

this solution is constructed in such a manner that effectively

reduces the rate of change of θ (t). It is reminded that θ (t) is

the input signal applied to servomotors, which are low-pass

systems in nature with practical limitations on their slew rate.

Thus, a slower reference signal θ (t) elevates the performance

of servomotors, and as a consequence, the overall closed-loop

performance of the magnetic manipulator.

IV. HOMOTOPY CONTINUATION

This paper adopts the concept of homotopy continuation to

solve the nonlinear algebraic equation (4). The advantage of

this approach over its alternatives such as Newton’s method

is that its convergence to a solution of (4) barely depends on

the choice of initial guess for the solution [30]. This property

is in particular important for the real-time application of this

paper, which requires to frequently solve a complex equation

under different parameter values without reliance on human

intelligence to identify a suitable initial guess. In the rest of

this section, the concept of homotopy continuation is briefly

discussed and it is applied to the algebraic equation (4).

Suppose f (·) : Rn → R
m, m 6 n is a vector function and

the goal is to solve the algebraic equation f (w) = 0. When

a simple solution to this problem is not known, an alternative

is to use the method of homotopy described below. Consider

another vector function f0 (·) : R
n → R

m that has a known

solution w0 satisfying f0 (w0) = 0. Take a scalar parameter s
and construct the family of vector functions

F (w, s) = sf (w) + (1− s) f0 (w) , s ∈ [0, 1],

which is called a homotopy between f (·) and f0 (·). For the

purpose of solving f (w) = 0, any other family of functions

that holds two conditions f (·) = F (·, 1) and F (w0, 0) = 0
can be equivalently employed.

Suppose w (s), s ∈ [0, 1] is a continuous trajectory of the

solutions to the family of algebraic equations

F (w (s) , s) = 0, s ∈ [0, 1].

This trajectory has the key properties that its value at s = 1
solves the algebraic equation f (w) = 0, and additionally, the

entire trajectory w (s), s ∈ [0, 1] is the solution to the initial

value problem

d

ds
F (w (s) , s) = 0, s ∈ [0, 1] (11a)

w (0) = w0, (11b)

provided that F (·) is differentiable. Hence, this problem can

be solved on s ∈ [0, 1] to obtain w (1) that solves f (w) = 0.

The explicit form of (11a) is given by

Fw (w (s) , s)w′ (s) + Fs (w (s) , s) = 0, (12)

where w′ (·) is the derivative of w (·), and Fw (·) and Fs (·)
denote the Jacobian matrices of F (w, s) with respect to w
and s, respectively. This equation is linear in w′ (s), which is

explicitly solved to obtain the standard form

w′ (s) = −F †
w (w (s) , s)Fs (w (s) , s) , (13)

where F †
w (·) denotes the inverse of Fw (·) when m = n, and

its Moore-Penrose inverse for m < n. The solution to (12) is

not unique when m < n, and (13) is only a possible solution.

Yet, this particular solution is computationally least complex,

as any other solution introduces an extra additive term on the

right-hand side of (13).

For solving the algebraic equation (4), fix the parameters r
and z, take any arbitrary initial guess θ0 ∈ R

n, and construct

the homotopy

F (w, s) = g (r, w)− sz − (1− s) g (r, θ0) .

Using this homotopy, a solution of (4) can be determined by

solving the initial value problem

w′ (s) = G†
θ
(r, w (s)) (z − g (r, θ0)) (14a)

w (0) = θ0 (14b)

over s ∈ [0, 1] and taking w (1) as that solution. Here, Gθ (·)
is the Jacobian matrix of g (r, θ) with respect to θ.

The algebraic equation (4) does not admit any solution for

certain parameter values (r, z) /∈ S . This case is manifested

by the abnormal condition that the differential equation (14)

becomes singular at some s = s̄ in the interval [0, 1), i.e., the

Moore-Penrose inverse G†
θ
(r, w (s̄)) becomes nonexistent. In

this case, w (s̄) is taken as a reasonable replacement for the

nonexistent value of the inverse function g−1 (r, z).
The initial guess θ0 in the differential equation (14) can be

taken arbitrarily; however, by choosing its value smartly, two

key advantages are achieved simultaneously. Suppose that the

control θ (t) is updated at a sampling rate T , i.e., the values

of θ (kT ), k = 0, 1, 2, . . . are generated by solving (4) with

the parameters r (kT ) and z (kT ). Then, to compute θ (kT ),
the initial guess is taken as θ0 = θ (kT − T ). Noting that the

parameters r (kT ) and z (kT ) change slowly with k, for this

initial guess, θ (kT ) typically stays close to θ (kT − T ). This

property offers two advantages: effectively reduces the rate of

change of θ (t), and lowers the computational cost of solving

the initial value problem (14).

V. SIMULATION RESULTS

The closed-loop performance of the magnetic manipulator

of Fig. 1 was evaluated by computer simulations developed in

Matlab. These simulations numerically solve the state-space

equations (1) under a control generated by the state feedback

law (10). In parallel, simulation results were produced under

an approximate control law, as a baseline for comparison. We



originally proposed this approximate control law in [22] as

an inexpensive alternative to the exact control law (10). This

control law approximates g−1 (·) in (10) with

g−1 (r, z) ≃ G†
θ
(r, 0) (z − g (r, 0)) , (15)

which is obtained by solving the approximate linear equation

g (r, θ) ≃ g (r, 0) +Gθ (r, 0) θ = z.

The simulations were designed to study two major issues:

closed-loop stability, and tracking performance. The stability

issue is in particular important, as the dynamics of magnetic

objects inside magnetic fields is intrinsically unstable, which

can be stabilized only by means of feedback. Such open-loop

instability is an essential property of magnetic manipulators

regardless of their type, design, and geometry, a fact directly

implied by Earnshaw’s theorem [8], [12].

The simulations investigate the asymptotic stability of the

equilibrium (r, v) = (0, 0) under the control law (10) and

its approximation (15). Note that (r, v) = (0, 0) is indeed an

equilibrium point of (1) under θ (t) = 0, since g (0, 0) = 0
holds by geometric symmetry. In addition, this equilibrium

is open-loop unstable, which can be shown by linearizing the

state-space equations (1) at the origin and verifying that the

linearized system has strictly positive poles.

A. Numerical Results

The simulations were run for a magnetic manipulator with

n = 6 identical magnets of radius b = 0.5 spaced at equal

distances around a circle with a normalized radius a = 1. The

numerical values of parameters in (1) were chosen as σ = 1
and α = 1. The 2×2 gain matrices Kr and Kv in the linear

controller (9) were determined as

Kr = diag (31.6, 31.6) , Kv = diag (7.01, 7.01)

by the linear quadratic regulator method (see [22] for details).

The magnetic field hc (·) of the individual magnets involved

in (2) was computed from an analytical formula in [29] for

magnets of radius b = 0.5 and thickness d = 0.1. The rest

of parameters in this formula were normalized to result in a

unit magnetic field at a unit distance from the magnet poles.

The simulation results demonstrate successful stabilization

of the unstable equilibrium at the origin (r, v) = (0, 0) under

both control laws (10) and its approximate form (15), even

though the exact control (10) has a substantially larger region

of attraction (ROA). This improvement in the ROA is clearly

observed in Fig. 4, which illustrates the cross section of ROA

with the hyperplane v = 0 for both exact and approximate

control laws. This cross section represents a subregion within

the region of influence of the magnetic manipulator (circular

container) with the following property: under the feedback

control (10) with rd (t) = 0, any magnetic particle initially

stationary inside this subregion moves toward and eventually

stops at the center r = 0 of the subregion. A typical trajectory

of such magnetic particle is illustrated in Fig. 5.

For the magnetic manipulator of Fig. 1, the performance of

trajectory tracking under feedback control is studied in Fig. 6.

The control goal in this figure is to drive a magnetic bead at a
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Fig. 4: Cross section of ROA with the hyperplane v = 0 for the unstable
equilibrium at (r, v) = (0, 0) under the exact state feedback (10) (inside
solid line) and its approximation (15) (inside dashed line). The approximate
control law stabilizes the equilibrium with a smaller ROA. The interior of
circle represents the region of influence of the magnetic manipulator.
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Fig. 5: State trajectories approaching the equilibrium (0, 0) under the exact
state feedback (10) (solid line) and its approximation (15) (dashed line).

constant speed along a reference trajectory resembling SIU.

Fig. 6(a) depicts the trajectory of magnetic bead (solid line)

as it tracks the reference trajectory (dash-dotted line) under

the feedback law (10). According to Fig. 6(a), this feedback

law enables the magnetic manipulator to precisely drive the

magnetic bead along a complex trajectory that covers a large

area in the region of influence of the magnetic manipulator.

Fig. 6(b) compares the tracking performance of the exact

control (10) with its approximation (15) from two points of

view. First, this figure indicates that the exact feedback law is

able to successfully steer the magnetic bead along reference

trajectories covering a much larger area, as compared to its

approximate counterpart. Second, the exact feedback law is

significantly more precise in tracking reference trajectories.

This second property can be also observed in Fig. 7 which

illustrates the trajectories of Fig. 6(b) versus time.

VI. CONCLUSION

A feedback linearization technique was introduced in this

paper to properly compensate for highly nonlinear dynamics

of noncontact magnetic manipulators. This technique mainly

relies on the solutions to an underdetermined set of nonlinear

algebraic equations. A homotopy continuation approach was

adopted to numerically solve this set of nonlinear equations

in real time. It was shown via computer simulations that the

control law designed by feedback linearization significantly
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is the largest possible that the magnetic bead can successfully track under
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(solid line) and its approximation (15) (dashed line).

outperforms those designed in the past based on approximate

linearization methods.
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