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Abstract— A magnetic manipulator for noncontact steering
of magnetic objects is considered. This system utilizes a flexible
array of permanent magnets, each equipped with a servomotor
to independently control its direction. The total magnetic field
produced by the magnets can be shaped effectively by adjusting
the directions of all magnets, which in turn, provides an effective
control over the magnetic force it applies to a magnetic object.
The dynamics of this object under such controlled magnetic
force is inherently unstable and is represented by a set of highly
nonlinear state-space equations. Despite the nonlinear nature
of these equations, it is shown that an optimally designed linear

state feedback can successfully stabilize the object and steer it
along arbitrary reference trajectories inside a reasonably large
operation region. The key to this success is the optimal scheme
of this paper for linearizing the dynamics of the magnetic object.

I. INTRODUCTION

This paper is a follow up to our previous work on design,

optimization, and feedback control of noncontact permanent

magnet manipulators [1], [2]. Magnetic manipulators consist

of arrays of magnets (electromagnet or permanent magnet) to

generate and precisely control magnetic fields, which interact

with magnetic objects or fluids inside their operation region

to control them from a distance without a direct mechanical

contact [1]–[10]. Application of feedback control enables the

magnetic manipulators to drive magnetic objects precisely in

the directions required to perform certain tasks, for instance,

tracking a reference trajectory at a desired speed [1], [7], [8].

Since magnetic fields can propagate through nonmagnetic

barriers, they provide a unique ability to manipulate magnetic

objects behind such physical barriers without a direct contact.

This noncontact feature is successfully exploited in magnetic

manipulators for safe and precise operation of magnetically

driven medical tools inside the human body for noninvasive

surgical, imaging, and drug targeting procedures [11]–[21].

Furthermore, this feature is essential for actuating micro- and

nanoscale systems in which a direct contact for manipulation

and control is not feasible [22]–[27].

Our work principally focuses on permanent magnets as the

source of magnetic field, in opposition to the dominant trend

in most prior work that relies on electromagnets. The major

advantage of electromagnets over permanent magnets is their

easy control of magnetic field simply through their terminal

voltages. Hence, a spatially fixed array of electromagnets can

generate a controllable magnetic field simply by adjusting the
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relative strength of their fields through their voltages [3]–[9].

Despite this key advantage, the downside of electromagnets

is their weak magnetic fields compared to their size, weight,

cost, and power consumption. For most medical applications,

which typically need strong magnetic forces at relatively long

distances (several decimeters), the required electromagnets

will be substantially large, heavy, and expensive. In addition,

large electromagnets consume large amounts of energy, need

cooling systems, and demonstrate slow dynamics (large time

constant) that turns them difficult to control.

On the other hand, permanent magnets offer a much higher

strength-to-size ratio compared to electromagnets: 1 cm3 of a

rare-earth magnet can produce magnetic fields equivalent to

an electromagnet with some kilowatts power [10]. Besides,

permanent magnets do not require external sources of power

to operate, which renders them an attractive choice to design

compact, effective, and inexpensive magnetic manipulators.

The magnetic field in a permanent magnet manipulator must

be controlled mechanically by altering the spatial position of

its magnets, which indeed requires more complex design and

implementation to integrate mechanical actuators as means of

control. Even with this added complexity, permanent magnets

present a practical alternative (if not the only alternative) to

electromagnets in those applications that need large magnetic

forces at distances of some decimeters.

This paper considers a magnetic manipulator consisting of

permanent magnets and mechanical actuators, schematically

shown in Fig. 1. We first introduced this manipulator in [1]

and further studied its feedback control in [2]. The proposed

setup is designed to control the planar motion of a magnetic

bead inside a circular flat container filled with a viscous fluid.

An array of n = 6 radially magnetized permanent magnet

discs is arranged around the container at equal distances.

Each magnet is equipped with a servomotor to freely control

its angular position, and thereby, the direction of its magnetic

field. The servomotors are internally equipped with feedback

loops, which enable them to rapidly change the direction of

the magnets, as required. The total magnetic field inside the

circular container is controlled by adjusting the directions of

all n magnets, which in turn, provides an effective control

over the magnetic force applied to the magnetic bead in the

plane of motion.

The precise directions of all n = 6 magnets is determined

by a feedback controller in terms of the position and velocity

vectors of the magnetic bead. To establish a feedback control,

these vectors are directly measured by a sensing device. In an

experimental setup we are currently prototyping, this sensing

device is an optical camera equipped with image processing



permanent
magnet

container
circular

magnetic
bead

Fig. 1. Schematic diagram of a magnetic manipulator with n = 6 radially
magnetized permanent magnet discs equally spaced around a circular flat
container.

and estimation techniques for tracking the magnetic bead. In

medical applications, the sensing device can be a real-time

medical imaging system based on fluoroscopy [28].

Feedback control is an essential component of all magnetic

manipulators utilized for motion control of magnetic objects.

Application of feedback for motion control is required by the

very nature of magnetic fields. By Earnshaw’s theorem [29],

magnetic fields are unstable in the sense that the trajectories

of multiple magnetic particles moving under magnetic force

are divergent, even if they start at a very close distance [21].

Hence, any effort to control the motion of magnetic objects in

a magnetic field will eventually lead to some sort of feedback

stabilization problem.

The focus of this paper is on design of a feedback control

law that enables the magnetic manipulator of Fig. 1 to drive

the magnetic bead along an arbitrary reference trajectory. A

major challenge in development of such feedback law is the

highly nonlinear dynamics of this magnetic manipulator. In

our prior work, we proposed a feedback linearization scheme

to effectively compensate for the nonlinearity of the magnetic

manipulator [1], [2]. To implement such exact linearization,

an inverse problem is solved in real time, seeking the angular

position of all magnets to generate a required magnetic force

at the current location of the magnetic bead. This inverse

problem is defined by a system of highly nonlinear algebraic

equations with excessive computational complexity for real-

time implementation. Furthermore, this system of equations

involves some analytical model for the magnetic field of each

magnet, which is difficult to obtain and typically imprecise.

The goal in this paper is to develop a practical control law

with an affordable computational complexity, and with a few

parameters that can be easily tuned by direct measurement

of the magnetic field at a few spatial points inside the

operation region of the magnetic manipulator. Unlike the

more complex nonlinear control we developed in [1], [2], this

simple control law is not expected to perform uniformly well

over the entire operation region of the magnetic manipulator.

Alternatively, it is optimized for a reasonable performance

over the largest possible subregion, which can be sufficient

for some, but not all, applications. We are currently working

to expand this subregion by means of gain scheduling [30].

The core idea is to design multiple control laws for several

overlapping subregions, and smoothly switch between them

as the magnetic object moves from one subregion to another.

The control design approach adopted in this paper relies on

approximate linearization of the magnetic manipulator, and

then using a standard method of linear state feedback design

such as the method of linear quadratic regulator (LQR) [31].

This simple approach is then enhanced by a novel technique

to optimize the operating point at which the dynamics of the

magnetic manipulator is linearized. Our simulation results

indicate that this technique drastically improves the control

performance in terms of stability and the size of region over

which the magnetic bead can be precisely steered.

The linear control law in this paper exhibits a new feature

not adequately addressed in our prior work. In this paper, the

intrinsic low-pass dynamics of the servomotors is properly

involved in the dynamical model of the magnetic manipulator

and in the control design procedure. This low-pass dynamics

potentially has a notable effect in the overall performance of

the magnetic manipulator, which was simply neglected in our

previous work [1], [2].

II. DYNAMICAL MODEL

This section presents a mathematical model to describe the

motion of a magnetic bead inside the circular container of the

magnetic manipulator in Fig. 1. This model is a more realistic

version of the one introduced in [1], in the sense that the new

model includes the low-pass nature of the servomotors. In

developing this model, two planar coordinate systems shown

in Fig. 2 are utilized. The reference coordinate system in

Fig. 2(a) is fixed with respect to the magnetic manipulator

and its origin is at the center of the circular container. In

this coordinate system, the position of the magnetic bead is

represented by r = [r1 r2]
T

and the set of points inside

the circular container of radius a is denoted by C ⊂ R
2.

S N

S

N

S

N

SN

S

N

S

N

m

r

v

r1

r2

ρk

a

(a)

N

S

θk

p2k

p1k

ρk

(b)

Fig. 2. Planar diagram of the magnetic manipulator of Fig. 1 along with (a)
reference coordinate system, and (b) local coordinate system for magnet k
with the rotation angle θk .

The magnetic bead is manipulated by n identical radially

magnetized permanent magnet discs of radius b. The magnets

are equally spaced around the circular container at a distance

a+ b from its center. In the reference coordinate system, the

center of the kth magnet is fixed at the point

ρk = (a+ b) [cosφk sinφk]
T
, φk =

2π (k − 1)

n
.

The direction of this magnet is characterized by an angle θk
measured counterclockwise between vector ρk and its north



pole. A local coordinate system shown in Fig. 2(b) is fixed

to each magnet with the origin at the center of the magnet

and the first orthogonal axis aligned with its north pole.

Consider a point in the circular container and represent it

in the reference coordinate system by r. The representation of

this point in the local coordinate system attached to magnet k
is denoted by pk and is determined by a linear transformation

of r that consists of a translation by ρk followed by a rotation

of angle θk + φk . This linear transformation is given by

pk = RT (θk + φk) (r − ρk) , (1)

where R (ϕ) = [cosϕ,− sinϕ; sinϕ, cosϕ] is a 2×2 rotation

matrix.

Suppose the vector function hc (·) : R
2 → R

2 represents

the magnetic field of each magnet in its own local coordinate

system. Then, the magnetic field of magnet k is represented

in the reference coordinate system via the rotation of hc (pk)
by the angle − (θk + φk), i.e., R (θk + φk)hc (pk). By (1),

the contribution of magnet k at a point r ∈ C is expressed

in the reference coordinate system by

hk (r, θk) = R (θk + φk)hc

(

RT (θk + φk) (r − ρk)
)

.

The total magnetic field h (r, θ) produced by n magnets at a

point r ∈ C is the superposition of the contributions of all n
magnets, that is

h (r, θ) =

n
∑

k=1

R (θk + φk)hc

(

RT (θk + φk) (r − ρk)
)

.

Here, θ = [θ1 θ2 · · · θn]
T

is an n × 1 vector containing

the rotation angles of all n magnets.

The total magnetic force applied to a magnetic bead at a

point r ∈ C of the circular container is given by [32], [33]

fmag (r, θ) = km∇‖h (r, θ)‖
2
,

where km is a positive constant depending on the volume

and permeability of the magnetic bead, ∇ is the gradient

operator with respect to r, and ‖·‖ represents the Euclidean

norm. This expression is rewritten in the more compact form

fmag (r, θ) = kmg (r, θ) (2)

by defining the vector function g (·) : R2 × R
n → R

2 as

g (r, θ) = ∇‖h (r, θ)‖
2
.

The magnetic bead moves inside a viscous fluid under the

magnetic force (2) and the drag force fdrag. By Stokes’ drag

law, this latter force linearly depends on the velocity v of the

magnetic bead [33], [34], that is

fdrag = −µv. (3)

Here, µ is the friction coefficient, which is a positive constant

depending on the diameter of the magnetic bead and the

viscosity of its surrounding fluid [33], [34].

Newton’s second law of motion is applied to the magnetic

bead of mass m to obtain the differential equation

mv̇ (t) = fmag (r (t) , θ (t)) + fdrag (t) .

Substituting (2) and (3) into this equation, and then defining

the positive constants σv = µ/m and kg = km/µ lead to

v̇ (t) = σvkgg (r (t) , θ (t))− σvv (t) . (4)

The direction of each permanent magnet is independently

controlled by a servomotor. The servomotor k is regarded as

a dynamical system with a scalar input uk (t) and a scalar

output θk (t). Each servomotor is described by a first order

linear system with the time constant τ ; hence, the dynamics

of all n servomotors is represented in vector form by

θ̇ (t) = −σsθ (t) + σsu (t) , (5)

where σs = 1/τ is a constant and u = [u1 u2 · · · un]
T

is

a control vector including n scalar inputs to the servomotors.

This dynamics was neglected in our prior work for simplicity

of controller design [1], [2].

To describe the overall dynamics of the magnetic bead, the

state-space equations (4), (5), and ṙ = v are gathered into

ṙ (t) = v (t) (6a)

v̇ (t) = σvkgg (r (t) , θ (t))− σvv (t) (6b)

θ̇ (t) = −σsθ (t) + σsu (t) . (6c)

These equations represent a nonlinear dynamical system with

the state vector x (t) = (r (t) , v (t) , θ (t)) in R
n+4 and

the control vector u (t) in R
n. This state vector is directly

measured to establish a linear feedback control, as shown in

Fig. 3. The purpose of this controller is to generate a control

vector u (t) such that the position r (t) of the magnetic bead

closely tracks a desired reference trajectory rd (t) ∈ C .

Fig. 3. Block diagram of closed-loop system with a linear controller.

III. CONTROLLER DESIGN

The goal of this section is to develop an easy to implement

linear controller for the magnetic manipulator of Fig. 1. Of

course, the state-space equations (6) that describe this system

are inherently nonlinear through the nonlinear function g (·).
Hence, the simple approach adopted here is to linearize these

equations around some equilibrium of the system, and then,

design a linear control law for the approximate linear model.

This procedure results in a family of linear control laws that

depend on the equilibrium point at which the dynamics (6) is

linearized. Then, this equilibrium point is optimized for the

best closed-loop performance.

A. Linearized Model

Our focus is on steering magnetic objects near the center

of the circular container in Fig. 1, therefore an equilibrium is

chosen at r = 0. Let θe be any n×1 constant vector satisfying

g (0, θe) = 0. (7)



Then, the constant control u = θe applied to the servomotors

creates an equilibrium of (6) at (r, v, θ) = (0, 0, θe). In order

to linearize (6) around this equilibrium, the Taylor expansion

of g (·) and (7) are used to approximate

g (r, θ) ≃ Gr (0, θe) r +Gθ (0, θe) (θ − θe) ,

where Gr (·) and Gθ (·) are 2×2 and 2×n matrices denoting

the Jacobian of g (r, θ) with respect to r and θ, respectively.

Then, the linear approximation of (6) is expressed as

ẋe (t) = Axe (t) +Bue (t) (8a)

r (t) = Cxe (t) , (8b)

where xe = (r, v, θ − θe) is the state vector, ue = u− θe is

the control vector, and matrices A, B, and C are defined as

A =





02×2 I2×2 02×n

σvkgGr (0, θe) −σvI2×2 σvkgGθ (0, θe)
0n×2 0n×2 −σsIn×n



 (9)

B =





02×n

02×n

σsIn×n



 , C =
[

I2×2 02×2 02×n

]

.

Note that the approximate model (8) depends on the actual

value of θe, which is optimized later in Section III-C to attain

the best closed-loop performance.

In opposition to the nonlinear state-space equation (6) that

requires the complete knowledge of the magnetic field hc (·),
the linearized model (8) only needs partial knowledge of the

magnetic field to compute matrices Gr (0, θe) and Gθ (0, θe).
Instead of relying on the theoretical models of the magnetic

field, these matrices can be estimated experimentally from

measurements of the magnetic field recorded at certain points

around r = 0. This helps to fill a possible gap between theory

and practice when tuning the linear controller designed based

on the approximate model (8).

It is worth mentioning that the linear system (8) is unstable

in nature, i.e., matrix A has at least one positive eigenvalue.

This essential property is independent of the point at which

the original system is linearized, and is a result of Earnshaw’s

theorem [29] that implies the Jacobian matrix Gr (r, θ) of a

magnetic force has at least one positive eigenvalue at every

point r [16], [21].

B. State Feedback Control

Despite the fact that (8a) characterizes an unstable system,

it can be stabilized using a state feedback law [31]. Consider

a simple scenario under which the magnetic bead starts from

an initial point r 6= 0 near the center of the container (see

Fig. 1), and is steered toward the equilibrium at r = 0. This

control goal can be achieved via the method of LQR [31] by

minimizing the quadratic cost function

J =

∫ ∞

0

(

xT
e (t)Qxe (t) + uT

e (t)Rue (t)
)

dt. (10)

This cost function simultaneously penalizes deviations of the

state vector xe (t) (i.e., position and velocity) and the control

vector ue (t) from the desired value of 0. The positive semi-

definite matrix Q and the positive definite matrix R adjust

the relative importance of the deviations in state and control.

It is well-known [31] that this cost function is minimized

by the stabilizing linear state feedback

ue (t) = −Kxe (t) , (11)

where K = R−1BTP is an n×(n+ 4) gain matrix. Here, P
is a positive definite matrix and the solution to the algebraic

Riccati equation

ATP + PA− PBR−1BTP +Q = 0. (12)

The linear control law (11) is explicitly expressed in terms of

the state and control of the original system (6) as

u (t) = −Krr (t)−Kvv (t)−Kθ (θ (t)− θe) + θe. (13)

Here, the gain matrices Kr, Kv, and Kθ are the blocks of K
associated with the states r, v, and θ, respectively.

By incorporating an additional term into the linear control

law (13), it is modified for the purpose of trajectory tracking.

Suppose that rd (t) ∈ C is a trajectory near the point r = 0,

and the magnetic bead must be steered along this trajectory.

This task is performed by a state feedback law of the form

u (t) = −Krr (t)−Kvv (t)−Kθ (θ (t)− θe)+θe+Kdrd (t) ,
(14)

where the gain matrix Kd is given by

Kd = −
(

C (A−BK)
−1

B
)†

.

Here, † denotes the Moore-Penrose inverse of matrices.

C. Performance Optimization

As indicated by (9), the matrix A in the approximate linear

model (8) depends on the actual value of θe, which creates an

equilibrium point by solving the algebraic equation (7). Thus,

the solution P = P (θe) to the Riccati equation (12), and as

a result, the gain matrices Kr, Kv, Kθ, and Kd in the control

law (14) are functions of θe. Hence, the performance of this

control law must depend on the specific value of θe, and can

be optimized by obtaining an optimal value of θe = θ∗e .

The optimality measure to obtain the best value of θe = θ∗e
can be derived from the cost function (10). It is well-known

that under the optimal control (11), this cost function attains

its minimum value [31]

J∗ (θe) = xT
e (0)P (θe) xe (0) . (15)

Then, it is reasonable to minimize this function with respect

to θe in order to obtain the optimal value θe = θ∗e . Of course,

the value of xe (0) on the right-hand side of (15) is not known

in advance, so the maximum value

‖P (θe)‖ = max
‖xe(0)‖=1

xT
e (0)P (θe)xe (0)

of the right-hand side can be alternatively minimized. Noting

that θe must solve the algebraic equation (7), the best value

of θe = θ∗e is given by the constrained optimization problem

min
θe∈[0,2π]n

‖P (θe)‖

s.t. g (0, θe) = 0.
(16)



The solution to this optimization problem is a vector with

generally unequal elements. Such asymmetric structure of θe
results in an anisotropic control that performs differently in

different directions along which a magnetic object is driven.

Particularly, the operation subregion over which the magnetic

object can be effectively steered will not preserve the same

symmetry of the magnetic manipulator. To keep the control

isotropic, an additional constraint on θe is imposed to ensure

its elements are equal, i.e., θe = ϑi, where ϑ is a scalar and i
is an n×1 vector of unit elements. With this constraint on θe,

the geometric symmetry of the magnetic manipulator implies

that g (0, ϑi) = 0 identically holds for every ϑ. Therefore,

the constrained optimization problem (16) is reduced into the

unconstrained scalar problem

min
ϑ∈[0,π/2]

‖P (ϑi)‖ . (17)

Because of the geometric symmetry, this optimization is only

performed over ϑ ∈ [0, π/2] rather than [0, 2π].

IV. NUMERICAL SIMULATION

We developed computer simulations to study the magnetic

manipulator of Fig. 1 under feedback control. Our simulator

numerically solves the nonlinear state-space equations (6) for

control inputs generated by the linear feedback law (14). The

simulation results were generated for a setup with n = 6 disc

magnets of radius b = 0.5 and thickness d = 0.1, arranged

around a circular container of radius a = 1. The values taken

for other parameters are kg = 1, σv = 1, and σs = 10. The

magnetic field hc (·) of the disc magnets was calculated from

an analytical formula existing in the literature [35]. To ensure

the credibility of our simulations, we evaluated the accuracy

of this formula experimentally [36].

The gain matrices Kr, Kv, and Kθ were determined using

the care function of MATLAB with Q = diag (I2, I2, 0n)
and R = In. The optimal value of ϑ is obtained as ϑ∗ = 9◦

by solving the optimization problem (17), as shown in Fig. 4.

According to this figure, the control performance drastically

improves at the optimal value ϑ∗ = 9◦ as compared to more

trivial values at ϑ = 0 or ϑ = π/2.

0 20 40 60 80
0

5

10

15

ϑ (deg)

‖P
(ϑ
i)
‖

ϑ∗ = 9◦

Fig. 4. Performance optimization by solving the optimization problem (17).
The values of ‖P (ϑi)‖ are illustrated versus ϑ and the minimum is attained
at the minimizer ϑ∗ = 9◦.

A key simulation result indicates that the control law (14)

can stabilize the unstable equilibrium at x = 0. For different

initial states, the state trajectories of the closed-loop system
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Fig. 5. Cross section of ROA with the hyperplane (v, θ) = (0, θe) under
the state feedback (14), with the optimal value ϑ = ϑ∗ = 9◦ (solid line),
and with the trivial value ϑ = 0 (dashed line).

were constructed under rd (t) = 0 to examine whether they

approach the equilibrium at x = 0. By generating a large

number of such state trajectories with different initial states,

the region of attraction (ROA) was numerically constructed

for this equilibrium.

The ROA associated with the equilibrium x = 0 is the set

of all initial states for which the state trajectory tends toward

x = 0 under rd (t) = 0. The size of this set is a key measure

for the stability of a system, and a major performance index

for a feedback controller. The cross section of ROA with the

hyperplane (v, θ) = (0, θe) is shown in Fig. 5 for an optimal

controller with ϑ = ϑ∗ = 9◦ and for a baseline controller

with ϑ = 0. This figure indicates that both linear controllers

are indeed able to stabilize a magnetic manipulator of highly

nonlinear nature, but only over some subregion of its entire

operation region (the circular region in Fig. 5). Moreover,

optimizing the feedback law with respect to the linearization

point θe substantially enlarges this subregion.

The performance of trajectory tracking is investigated next.

A complex SIU-shaped path inside ROA is considered as the

reference trajectory rd (t). The trajectory of a magnetic bead

driven along this reference trajectory is illustrated in Fig. 6. It

is observed in Fig. 6(a) that for a reference trajectory within

a 0.4×0.4 box around the center, the actual trajectory of the

magnetic bead stays rather close to the reference trajectory,

which indicates the effectiveness of the proposed control law.

As the extent of the reference trajectory grows in Fig. 6(b)

beyond the box, the tracking error becomes more significant,

due to the approximate model utilized for control design. If

the reference trajectory grows further beyond Fig. 6(b), the

feedback loop fails and the close-loop system turns unstable.

V. CONCLUSION

The performance of a permanent magnet manipulator was

studied under linear feedback control. This manipulator uses

an array of permanent magnets to precisely drive a magnetic

object along an arbitrary reference trajectory without direct

contact. The magnets are equipped with servomotors in order

to control their directions, and as a result, the total magnetic

force they apply to the magnetic object. It was shown that the

dynamics of this object under the magnetic force is nonlinear

and unstable, but it can be stabilized by means of feedback
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Fig. 6. Trajectories of a magnetic bead (solid line) tracking a SIU-shaped
reference trajectory (dashed line) under the state feedback (14). As the
size of the reference trajectory increases from (a) to (b), the tracking error
becomes more significant.

control. A linear state feedback was developed via the LQR

method and was optimized for the most effective stabilization

and tracking performance. The main advantages of this linear

control law over its high performance nonlinear counterparts

are its low computational complexity, and the possibility for

easy tuning of its parameters.
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