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Abstract— A magnetic manipulator for noncontact steering
of magnetic objects is considered. This system utilizes a flexible
array of permanent magnets, each equipped with a servomotor
to independently control its direction. The total magnetic field
produced by the magnets can be shaped effectively by adjusting
the directions of all magnets, which in turn, provides an effective
control over the magnetic force it applies to a magnetic object.
The dynamics of this object under such controlled magnetic
force is inherently unstable and is represented by a set of highly
nonlinear state-space equations. Despite the nonlinear nature
of these equations, it is shown that an optimally designed linear
state feedback can successfully stabilize the object and steer it
along arbitrary reference trajectories inside a reasonably large
operation region. The key to this success is the optimal scheme
of this paper for linearizing the dynamics of the magnetic object.

I. INTRODUCTION

This paper is a follow up to our previous work on design,
optimization, and feedback control of noncontact permanent
magnet manipulators [1], [2]. Magnetic manipulators consist
of arrays of magnets (electromagnet or permanent magnet) to
generate and precisely control magnetic fields, which interact
with magnetic objects or fluids inside their operation region
to control them from a distance without a direct mechanical
contact [1]-[10]. Application of feedback control enables the
magnetic manipulators to drive magnetic objects precisely in
the directions required to perform certain tasks, for instance,
tracking a reference trajectory at a desired speed [1], [7], [8].

Since magnetic fields can propagate through nonmagnetic
barriers, they provide a unique ability to manipulate magnetic
objects behind such physical barriers without a direct contact.
This noncontact feature is successfully exploited in magnetic
manipulators for safe and precise operation of magnetically
driven medical tools inside the human body for noninvasive
surgical, imaging, and drug targeting procedures [11]-[21].
Furthermore, this feature is essential for actuating micro- and
nanoscale systems in which a direct contact for manipulation
and control is not feasible [22]-[27].

Our work principally focuses on permanent magnets as the
source of magnetic field, in opposition to the dominant trend
in most prior work that relies on electromagnets. The major
advantage of electromagnets over permanent magnets is their
easy control of magnetic field simply through their terminal
voltages. Hence, a spatially fixed array of electromagnets can
generate a controllable magnetic field simply by adjusting the

This work was supported by the National Science Foundation under Grant
ECCS-1941944.

The authors are with the Department of Electrical and Computer Engi-
neering, Southern Illinois University, Carbondale, IL, 62901 USA email:
{nayereh.riahi, akomaee}@siu.edu.

relative strength of their fields through their voltages [3]-[9].
Despite this key advantage, the downside of electromagnets
is their weak magnetic fields compared to their size, weight,
cost, and power consumption. For most medical applications,
which typically need strong magnetic forces at relatively long
distances (several decimeters), the required electromagnets
will be substantially large, heavy, and expensive. In addition,
large electromagnets consume large amounts of energy, need
cooling systems, and demonstrate slow dynamics (large time
constant) that turns them difficult to control.

On the other hand, permanent magnets offer a much higher
strength-to-size ratio compared to electromagnets: 1 cm? of a
rare-earth magnet can produce magnetic fields equivalent to
an electromagnet with some kilowatts power [10]. Besides,
permanent magnets do not require external sources of power
to operate, which renders them an attractive choice to design
compact, effective, and inexpensive magnetic manipulators.
The magnetic field in a permanent magnet manipulator must
be controlled mechanically by altering the spatial position of
its magnets, which indeed requires more complex design and
implementation to integrate mechanical actuators as means of
control. Even with this added complexity, permanent magnets
present a practical alternative (if not the only alternative) to
electromagnets in those applications that need large magnetic
forces at distances of some decimeters.

This paper considers a magnetic manipulator consisting of
permanent magnets and mechanical actuators, schematically
shown in Fig. 1. We first introduced this manipulator in [1]
and further studied its feedback control in [2]. The proposed
setup is designed to control the planar motion of a magnetic
bead inside a circular flat container filled with a viscous fluid.
An array of n = 6 radially magnetized permanent magnet
discs is arranged around the container at equal distances.
Each magnet is equipped with a servomotor to freely control
its angular position, and thereby, the direction of its magnetic
field. The servomotors are internally equipped with feedback
loops, which enable them to rapidly change the direction of
the magnets, as required. The total magnetic field inside the
circular container is controlled by adjusting the directions of
all » magnets, which in turn, provides an effective control
over the magnetic force applied to the magnetic bead in the
plane of motion.

The precise directions of all n = 6 magnets is determined
by a feedback controller in terms of the position and velocity
vectors of the magnetic bead. To establish a feedback control,
these vectors are directly measured by a sensing device. In an
experimental setup we are currently prototyping, this sensing
device is an optical camera equipped with image processing
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Fig. 1. Schematic diagram of a magnetic manipulator with n = 6 radially
magnetized permanent magnet discs equally spaced around a circular flat
container.

and estimation techniques for tracking the magnetic bead. In
medical applications, the sensing device can be a real-time
medical imaging system based on fluoroscopy [28].

Feedback control is an essential component of all magnetic
manipulators utilized for motion control of magnetic objects.
Application of feedback for motion control is required by the
very nature of magnetic fields. By Earnshaw’s theorem [29],
magnetic fields are unstable in the sense that the trajectories
of multiple magnetic particles moving under magnetic force
are divergent, even if they start at a very close distance [21].
Hence, any effort to control the motion of magnetic objects in
a magnetic field will eventually lead to some sort of feedback
stabilization problem.

The focus of this paper is on design of a feedback control
law that enables the magnetic manipulator of Fig. 1 to drive
the magnetic bead along an arbitrary reference trajectory. A
major challenge in development of such feedback law is the
highly nonlinear dynamics of this magnetic manipulator. In
our prior work, we proposed a feedback linearization scheme
to effectively compensate for the nonlinearity of the magnetic
manipulator [1], [2]. To implement such exact linearization,
an inverse problem is solved in real time, seeking the angular
position of all magnets to generate a required magnetic force
at the current location of the magnetic bead. This inverse
problem is defined by a system of highly nonlinear algebraic
equations with excessive computational complexity for real-
time implementation. Furthermore, this system of equations
involves some analytical model for the magnetic field of each
magnet, which is difficult to obtain and typically imprecise.

The goal in this paper is to develop a practical control law
with an affordable computational complexity, and with a few
parameters that can be easily tuned by direct measurement
of the magnetic field at a few spatial points inside the
operation region of the magnetic manipulator. Unlike the
more complex nonlinear control we developed in [1], [2], this
simple control law is not expected to perform uniformly well
over the entire operation region of the magnetic manipulator.
Alternatively, it is optimized for a reasonable performance
over the largest possible subregion, which can be sufficient
for some, but not all, applications. We are currently working
to expand this subregion by means of gain scheduling [30].
The core idea is to design multiple control laws for several
overlapping subregions, and smoothly switch between them
as the magnetic object moves from one subregion to another.

The control design approach adopted in this paper relies on
approximate linearization of the magnetic manipulator, and
then using a standard method of linear state feedback design
such as the method of linear quadratic regulator (LQR) [31].
This simple approach is then enhanced by a novel technique
to optimize the operating point at which the dynamics of the
magnetic manipulator is linearized. Our simulation results
indicate that this technique drastically improves the control
performance in terms of stability and the size of region over
which the magnetic bead can be precisely steered.

The linear control law in this paper exhibits a new feature
not adequately addressed in our prior work. In this paper, the
intrinsic low-pass dynamics of the servomotors is properly
involved in the dynamical model of the magnetic manipulator
and in the control design procedure. This low-pass dynamics
potentially has a notable effect in the overall performance of
the magnetic manipulator, which was simply neglected in our
previous work [1], [2].

II. DYNAMICAL MODEL

This section presents a mathematical model to describe the
motion of a magnetic bead inside the circular container of the
magnetic manipulator in Fig. 1. This model is a more realistic
version of the one introduced in [1], in the sense that the new
model includes the low-pass nature of the servomotors. In
developing this model, two planar coordinate systems shown
in Fig. 2 are utilized. The reference coordinate system in
Fig. 2(a) is fixed with respect to the magnetic manipulator
and its origin is at the center of the circular container. In
this coordinate system, the position of the magnetic bead is
represented by = [r; 72]” and the set of points inside
the circular container of radius a is denoted by ¥ C R2.
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Fig. 2. Planar diagram of the magnetic manipulator of Fig. 1 along with (a)
reference coordinate system, and (b) local coordinate system for magnet k
with the rotation angle 6.

The magnetic bead is manipulated by n identical radially
magnetized permanent magnet discs of radius b. The magnets
are equally spaced around the circular container at a distance
a+ b from its center. In the reference coordinate system, the
center of the kth magnet is fixed at the point
]T, ¢k _ 21w (k 1) '

n
The direction of this magnet is characterized by an angle 6y,
measured counterclockwise between vector pj and its north

pr=(a+b)[cosdy  singy



pole. A local coordinate system shown in Fig. 2(b) is fixed
to each magnet with the origin at the center of the magnet
and the first orthogonal axis aligned with its north pole.

Consider a point in the circular container and represent it
in the reference coordinate system by r. The representation of
this point in the local coordinate system attached to magnet &
is denoted by pj, and is determined by a linear transformation
of r that consists of a translation by p;, followed by a rotation
of angle 6 + ¢. This linear transformation is given by

i =R" (0 + é%) (r — p) , (1)

where R () = [cos ¢, — sin ¢; sin @, cos @] is a 2x 2 rotation
matrix.

Suppose the vector function h. () : R? — R? represents
the magnetic field of each magnet in its own local coordinate
system. Then, the magnetic field of magnet k is represented
in the reference coordinate system via the rotation of h. (px)
by the angle — (6), + ¢y), i.e., R (0 + ¢r) he (p&). By (1),
the contribution of magnet k at a point r € € is expressed
in the reference coordinate system by

hi (r,0) = R (01 + ¢i) he (RT 6k + 1) (r — p1)) -

The total magnetic field h (r, 8) produced by n magnets at a
point r € € is the superposition of the contributions of all n
magnets, that is

h(r,0) = R0k + éx) he (R” 0k + éx) (r — pi)) -
k=1

Here, 6 = [0; 0y --- Hn]T is an n X 1 vector containing
the rotation angles of all n magnets.

The total magnetic force applied to a magnetic bead at a
point r € € of the circular container is given by [32], [33]

Frag (1,0) = knV ||h (r,0)]|?

n

where k,, is a positive constant depending on the volume
and permeability of the magnetic bead, V is the gradient
operator with respect to 7, and ||-|| represents the Euclidean
norm. This expression is rewritten in the more compact form

fmag (Ta 9) =kmg (T‘, 9) 2)
by defining the vector function g (-) : R? x R" — R? as
g(r,0) =V 1 (r0)]".

The magnetic bead moves inside a viscous fluid under the
magnetic force (2) and the drag force fg,q4. By Stokes’” drag
law, this latter force linearly depends on the velocity v of the
magnetic bead [33], [34], that is

fdrag = —uv. (3)

Here, p is the friction coefficient, which is a positive constant
depending on the diameter of the magnetic bead and the
viscosity of its surrounding fluid [33], [34].

Newton’s second law of motion is applied to the magnetic
bead of mass m to obtain the differential equation

mo (t) = fmag (7' (t) ’ 0 (t)) + fdrag (t) :

Substituting (2) and (3) into this equation, and then defining
the positive constants o, = p1/m and k, = k,,, /e lead to

(1) = aukeg (r(t),0(t)) — 0w (). ©)

The direction of each permanent magnet is independently
controlled by a servomotor. The servomotor & is regarded as
a dynamical system with a scalar input uy (¢) and a scalar
output 6y, (t). Each servomotor is described by a first order
linear system with the time constant 7; hence, the dynamics
of all n servomotors is represented in vector form by

0(t) = —0.0 (t) + osu(t), (5)

where o, = 1/7 is a constant and v = [u; ug --- un]T is
a control vector including n scalar inputs to the servomotors.
This dynamics was neglected in our prior work for simplicity
of controller design [1], [2].

To describe the overall dynamics of the magnetic bead, the
state-space equations (4), (5), and 7 = v are gathered into

7 (t) =v () (6a)
0 (t) = ovkgg (r(t),0(t)) — ovv (t) (6b)
0(t) = —0,0(t) + osu(t). (6¢)

These equations represent a nonlinear dynamical system with
the state vector x (t) = (r(t),v(t),0(t)) in R*** and
the control vector w (¢) in R™. This state vector is directly
measured to establish a linear feedback control, as shown in
Fig. 3. The purpose of this controller is to generate a control
vector u (t) such that the position r (¢) of the magnetic bead
closely tracks a desired reference trajectory r4 (t) € €.

(1) =y
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Fig. 3. Block diagram of closed-loop system with a linear controller.

III. CONTROLLER DESIGN

The goal of this section is to develop an easy to implement
linear controller for the magnetic manipulator of Fig. 1. Of
course, the state-space equations (6) that describe this system
are inherently nonlinear through the nonlinear function g ().
Hence, the simple approach adopted here is to linearize these
equations around some equilibrium of the system, and then,
design a linear control law for the approximate linear model.
This procedure results in a family of linear control laws that
depend on the equilibrium point at which the dynamics (6) is
linearized. Then, this equilibrium point is optimized for the
best closed-loop performance.

A. Linearized Model

Our focus is on steering magnetic objects near the center
of the circular container in Fig. 1, therefore an equilibrium is
chosen at r = 0. Let 6, be any nx 1 constant vector satisfying

g(0,6c) = 0. )



Then, the constant control u = 6, applied to the servomotors
creates an equilibrium of (6) at (r,v,8) = (0,0, 6,). In order
to linearize (6) around this equilibrium, the Taylor expansion
of g (-) and (7) are used to approximate

g(r,0) ~ G, (0,0.)r+ Gy (0,60.) (60 —6.),

where G, (+) and Gy (+) are 2 x 2 and 2 x n matrices denoting
the Jacobian of g (r, #) with respect to r and 6, respectively.
Then, the linear approximation of (6) is expressed as

Z (t) = Az, (t) + Bu, (t)
r(t) = Czx. (t),

(8a)
(8b)

where z. = (r,v,0 — 0,) is the state vector, ue = u — 6, is
the control vector, and matrices A, B, and C are defined as

02><2 I2><2 02><n
A= |oykysGr(0,0.) —oplaxe 0ukeGo (0,6,) 9)
On><2 On><2 _GSIan
02><n
B=| Oaxn |, C=[Iax2 0O2x2 O2xn]-
GSIan

Note that the approximate model (8) depends on the actual
value of 6., which is optimized later in Section III-C to attain
the best closed-loop performance.

In opposition to the nonlinear state-space equation (6) that
requires the complete knowledge of the magnetic field .. (+),
the linearized model (8) only needs partial knowledge of the
magnetic field to compute matrices G, (0, 6.) and Gy (0, 6.).
Instead of relying on the theoretical models of the magnetic
field, these matrices can be estimated experimentally from
measurements of the magnetic field recorded at certain points
around r = 0. This helps to fill a possible gap between theory
and practice when tuning the linear controller designed based
on the approximate model (8).

It is worth mentioning that the linear system (8) is unstable
in nature, i.e., matrix A has at least one positive eigenvalue.
This essential property is independent of the point at which
the original system is linearized, and is a result of Earnshaw’s
theorem [29] that implies the Jacobian matrix G, (r, ) of a
magnetic force has at least one positive eigenvalue at every
point r [16], [21].

B. State Feedback Control

Despite the fact that (8a) characterizes an unstable system,
it can be stabilized using a state feedback law [31]. Consider
a simple scenario under which the magnetic bead starts from
an initial point  # 0 near the center of the container (see
Fig. 1), and is steered toward the equilibrium at » = 0. This
control goal can be achieved via the method of LQR [31] by
minimizing the quadratic cost function

J = /OO (zf (t) Que (t) +ul (t) Rue (t)) dt. (10)
0

This cost function simultaneously penalizes deviations of the
state vector z. (t) (i.e., position and velocity) and the control

vector u, (t) from the desired value of 0. The positive semi-
definite matrix () and the positive definite matrix R adjust
the relative importance of the deviations in state and control.

It is well-known [31] that this cost function is minimized
by the stabilizing linear state feedback

ue (1) = =Kz (t), (11)

where K = R™!BT P is an n x (n + 4) gain matrix. Here, P
is a positive definite matrix and the solution to the algebraic
Riccati equation

ATP4+ PA—PBR 'BTP+Q=0. (12)

The linear control law (11) is explicitly expressed in terms of
the state and control of the original system (6) as

u(t)=—Kyr(t)— Ky () — Ko (0(t) —0.)+0.. (13)

Here, the gain matrices K., K,, and Ky are the blocks of K
associated with the states r, v, and 6, respectively.

By incorporating an additional term into the linear control
law (13), it is modified for the purpose of trajectory tracking.
Suppose that r4 (t) € € is a trajectory near the point r = 0,
and the magnetic bead must be steered along this trajectory.
This task is performed by a state feedback law of the form

u(t) = —K,r({t)—Kyw({t)—Kg(0(t) — 0c)+0c+Karaq (),
(14)
where the gain matrix K is given by

T
Ky=— (c (A— BK)™" B)
Here, { denotes the Moore-Penrose inverse of matrices.

C. Performance Optimization

As indicated by (9), the matrix A in the approximate linear
model (8) depends on the actual value of 6., which creates an
equilibrium point by solving the algebraic equation (7). Thus,
the solution P = P (f.) to the Riccati equation (12), and as
a result, the gain matrices K, K,,, Ky, and K in the control
law (14) are functions of 6.. Hence, the performance of this
control law must depend on the specific value of 6., and can
be optimized by obtaining an optimal value of 6. = 67.

The optimality measure to obtain the best value of 8. = 07
can be derived from the cost function (10). It is well-known
that under the optimal control (11), this cost function attains
its minimum value [31]

J*(0.) = %T (0) P(0.)x(0).

Then, it is reasonable to minimize this function with respect
to . in order to obtain the optimal value 6. = 6. Of course,
the value of . (0) on the right-hand side of (15) is not known
in advance, so the maximum value
1P (0e)l| = o g (0) P (0e) ze (0)

z(0)||=1
of the right-hand side can be alternatively minimized. Noting
that 6. must solve the algebraic equation (7), the best value
of 6. = 07 is given by the constrained optimization problem

i P (6.

o 0 [P (0e)l
st.  ¢(0,0.) =0.

5)

(16)



The solution to this optimization problem is a vector with
generally unequal elements. Such asymmetric structure of 6,
results in an anisotropic control that performs differently in
different directions along which a magnetic object is driven.
Particularly, the operation subregion over which the magnetic
object can be effectively steered will not preserve the same
symmetry of the magnetic manipulator. To keep the control
isotropic, an additional constraint on 6, is imposed to ensure
its elements are equal, i.e., §, = i, where ¥ is a scalar and i
is an n x 1 vector of unit elements. With this constraint on 6.,
the geometric symmetry of the magnetic manipulator implies
that ¢ (0,91) = 0 identically holds for every ¥. Therefore,
the constrained optimization problem (16) is reduced into the
unconstrained scalar problem

min

P (i)
jmin [P ()]

a7
Because of the geometric symmetry, this optimization is only
performed over ¢ € [0, 7/2] rather than [0, 27].

IV. NUMERICAL SIMULATION

We developed computer simulations to study the magnetic
manipulator of Fig. 1 under feedback control. Our simulator
numerically solves the nonlinear state-space equations (6) for
control inputs generated by the linear feedback law (14). The
simulation results were generated for a setup with n = 6 disc
magnets of radius b = 0.5 and thickness d = 0.1, arranged
around a circular container of radius @ = 1. The values taken
for other parameters are k;, = 1, 0, = 1, and o, = 10. The
magnetic field k. () of the disc magnets was calculated from
an analytical formula existing in the literature [35]. To ensure
the credibility of our simulations, we evaluated the accuracy
of this formula experimentally [36].

The gain matrices K, K,, and Ky were determined using
the care function of MATLAB with @ = diag (I, I5,0,,)
and R = I,,. The optimal value of 1 is obtained as ¥* = 9°
by solving the optimization problem (17), as shown in Fig. 4.
According to this figure, the control performance drastically
improves at the optimal value ¥* = 9° as compared to more
trivial values at ¥ = 0 or ¥ = 7/2.

[P @)

e
0 20 40 60 80
9 (deg)

Fig. 4. Performance optimization by solving the optimization problem (17).
The values of || P (91)|| are illustrated versus ¢ and the minimum is attained
at the minimizer ¥* = 9°.

A key simulation result indicates that the control law (14)
can stabilize the unstable equilibrium at = 0. For different
initial states, the state trajectories of the closed-loop system

0.5

-0.5

Fig. 5. Cross section of ROA with the hyperplane (v, 0) = (0, ) under
the state feedback (14), with the optimal value ¥ = 9* = 9° (solid line),
and with the trivial value ¥ = 0 (dashed line).

were constructed under r4 (t) = 0 to examine whether they
approach the equilibrium at x = 0. By generating a large
number of such state trajectories with different initial states,
the region of attraction (ROA) was numerically constructed
for this equilibrium.

The ROA associated with the equilibrium x = 0 is the set
of all initial states for which the state trajectory tends toward
a2 = 0 under r4 (t) = 0. The size of this set is a key measure
for the stability of a system, and a major performance index
for a feedback controller. The cross section of ROA with the
hyperplane (v, 0) = (0, 6,) is shown in Fig. 5 for an optimal
controller with 9 = 9¥* = 9° and for a baseline controller
with ¢ = 0. This figure indicates that both linear controllers
are indeed able to stabilize a magnetic manipulator of highly
nonlinear nature, but only over some subregion of its entire
operation region (the circular region in Fig. 5). Moreover,
optimizing the feedback law with respect to the linearization
point 6. substantially enlarges this subregion.

The performance of trajectory tracking is investigated next.
A complex SIU-shaped path inside ROA is considered as the
reference trajectory r4 (t). The trajectory of a magnetic bead
driven along this reference trajectory is illustrated in Fig. 6. It
is observed in Fig. 6(a) that for a reference trajectory within
a 0.4 x 0.4 box around the center, the actual trajectory of the
magnetic bead stays rather close to the reference trajectory,
which indicates the effectiveness of the proposed control law.
As the extent of the reference trajectory grows in Fig. 6(b)
beyond the box, the tracking error becomes more significant,
due to the approximate model utilized for control design. If
the reference trajectory grows further beyond Fig. 6(b), the
feedback loop fails and the close-loop system turns unstable.

V. CONCLUSION

The performance of a permanent magnet manipulator was
studied under linear feedback control. This manipulator uses
an array of permanent magnets to precisely drive a magnetic
object along an arbitrary reference trajectory without direct
contact. The magnets are equipped with servomotors in order
to control their directions, and as a result, the total magnetic
force they apply to the magnetic object. It was shown that the
dynamics of this object under the magnetic force is nonlinear
and unstable, but it can be stabilized by means of feedback
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6. Trajectories of a magnetic bead (solid line) tracking a SIU-shaped

reference trajectory (dashed line) under the state feedback (14). As the

size

of the reference trajectory increases from (a) to (b), the tracking error

becomes more significant.

control. A linear state feedback was developed via the LQR
method and was optimized for the most effective stabilization
and tracking performance. The main advantages of this linear
control law over its high performance nonlinear counterparts

are

its low computational complexity, and the possibility for

easy tuning of its parameters.
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