
Brain computation by assemblies of neurons
Christos H. Papadimitrioua,1, Santosh S. Vempalab , Daniel Mitropolskya, Michael Collinsa, and Wolfgang Maassc

aDepartment of Computer Science, Columbia University, New York, NY 10027; bCollege of Computing, Georgia Institute of Technology, Atlanta, GA 30332;
and cInstitute of Theoretical Computer Science, Graz University of Technology, 8010 Graz, Austria

Contributed by Christos H. Papadimitriou, March 27, 2020 (sent for review February 6, 2020; reviewed by Angela D. Friederici and Tomaso A. Poggio)

Assemblies are large populations of neurons believed to imprint
memories, concepts, words, and other cognitive information. We
identify a repertoire of operations on assemblies. These opera-
tions correspond to properties of assemblies observed in experi-
ments, and can be shown, analytically and through simulations, to
be realizable by generic, randomly connected populations of neu-
rons with Hebbian plasticity and inhibition. Assemblies and their
operations constitute a computational model of the brain which
we call the Assembly Calculus, occupying a level of detail interme-
diate between the level of spiking neurons and synapses and that
of the whole brain. The resulting computational system can be
shown, under assumptions, to be, in principle, capable of carrying
out arbitrary computations. We hypothesize that something like
it may underlie higher human cognitive functions such as reason-
ing, planning, and language. In particular, we propose a plausible
brain architecture based on assemblies for implementing the syn-
tactic processing of language in cortex, which is consistent with
recent experimental results.

neuronal assemblies | Assembly Calculus | computation |
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How does the brain beget the mind? How do molecules,
cells, and synapses effect cognition, behavior, intelligence,

reasoning, and language? The remarkable and accelerating
progress in neuroscience, both experimental and theoretical–
computational, does not seem to bring us closer to an answer:
The gap is formidable, and seems to necessitate the development
of new conceptual frameworks. As Richard Axel (1) recently put
it, “we do not have a logic for the transformation of neural activ-
ity into thought and action. I view discerning [this] logic as the
most important future direction of neuroscience.” What kind of
formal system, embodying and abstracting the realities of neural
activity, would qualify as the sought “logic”?

We propose a formal computational model of the brain based
on assemblies of neurons; we call this system the Assembly Cal-
culus. In terms of detail and granularity, the Assembly Calculus
occupies a position intermediate between the level of individual
neurons and synapses and the level of the whole-brain models
useful in cognitive science (e.g., refs. 2 and 3).

The basic elementary object of our system is the assembly of
excitatory neurons. The idea of assemblies is, of course, not new.
They were first hypothesized seven decades ago by Donald O.
Hebb (4) to be densely interconnected sets of neurons whose
loosely synchronized firing in a pattern is coterminous with the
subject thinking of a particular concept or idea. Assembly-like
formations have been sought by researchers during the decades
following Hebb’s prediction (see, e.g., ref. 5), until they were
clearly identified more than a decade ago through calcium imag-
ing (6, 7). More recently, assemblies (sometimes called ensem-
bles) and their dynamic behavior have been studied extensively
in the animal brain (see, e.g., ref. 8), while assemblies are the
central theme of György Buzsáki’s recent book (9).

Our calculus outfits assemblies with certain operations that
create new assemblies and/or modify existing ones: project, recip-
rocal project, associate, merge, and a few others. These operations
reflect known properties of assemblies observed in experiments,
and they can be shown, either analytically or through simula-
tions (often both), to result from the activity of neurons and

synapses. In other words, the high-level operations of this system
can be “compiled down” to the world of neurons and synapses—
a fact reminiscent of the way in which high-level programming
languages are translated into machine code.

Model
Our mathematical results, as well as most of our simulation
results, employ a simplified and analytically tractable, yet plausi-
ble, model of neurons and synapses. We assume a finite number
of brain areas denoted A,B ,C , etc., intended to stand for an
anatomically and functionally meaningful partition of the cortex
(Fig. 1). Each area contains a population of n excitatory neurons
with random recurrent connections.∗ By this, we mean that each
ordered pair of neurons in an area has the same small proba-
bility p of being connected by a synapse, independently of what
happens to other pairs—this is a well-studied framework usu-
ally referred to as Erdõs–Renyi graph or Gn,p (10). In addition,
for certain ordered pairs of areas, say (A,B), there are random
afferent synaptic interconnections from A to B ; that is, for every
neuron in A and every neuron in B , there is a chance p that there
is a synaptic connection from the former to the latter.†

We use this model to fathom, quantitatively, the creation
and manipulation of assemblies of neurons. Since the model
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Fig. 1. A mathematical model of the brain. Our analytical results, as well as most of our simulations, use a formal model of the brain intended to capture
cognitive phenomena in the association cortex. Our model encompasses a finite number of brain areas denoted A, B, . . ., each containing n excitatory
neurons. We assume that any pair of neurons in each area have a recurrent synaptic connection independently with probability p, and that, for certain pairs
of areas (A, B), there are also afferent connections from any neuron in A to any in B, also independently and with probability p. We assume that firing of
neurons proceeds in discrete steps, and, at each step, k of the neurons in each area fire: namely, those k neurons which have the largest sum of presynaptic
inputs from neurons that fired in the previous step. Synaptic weights are modified in a Hebbian fashion, in that synapses that fired (i.e., the presynaptic
neuron fired, and, in the next step, the postsynaptic neuron did) have their weight multiplied by (1+ β), where β is a plasticity constant. In our simulations,
we typically use n = 107, k = 104, p = 0.001, and β= 0.1.

is probabilistic (by virtue of the random synaptic connectivity),
our analytical results postulating the effectiveness of the vari-
ous operations must contain the clause “with high probability,”
where the event space is implicitly the underlying random graph.
We assume that all cells in an assembly x belong to the same
brain area, denoted area(x ).

Our model also encompasses simplified forms of plasticity
and inhibition. We assume multiplicative Hebbian plasticity: If
at a time step neuron i fires and, at the next time step, neu-
ron j fires, and there is a synapse from i to j , the weight of
this synapse is multiplied by (1+β), where β > 0 is the final
parameter of our model (along with n, p, and k). Larger values
of the plasticity coefficient β result in the operations converg-
ing faster, and render many of our proofs simpler. Finally, we
model inhibition and excitatory–inhibitory balance by postulat-
ing that neurons fire in discrete time steps, and, at any time, only

a fixed number k of the n excitatory neurons in any area fire—in
particular, those neurons which receive the k highest excitatory
inputs.

The four basic parameters of our model are these: n (the
number of excitatory neurons in an area, and the basic param-
eter of our model), p (the probability of recurrent and afferent
synaptic connectivity), k (the maximum number of firing neu-
rons in any area), and the plasticity coefficient β. Typical val-
ues of these parameters in our simulations are n =106−7, p=
10−3, k =102−3, and β=0.1.

Our model, as described so far, would result, through plastic-
ity, in gigantic synaptic weights after a long time of operation.
We further assume that synaptic weights are renormalized, at
a slower time scale, so that the sum of presynaptic weights at
each neuron stays relatively stable. This process of homeosta-
sis through renormalization is orthogonal to the phenomena we
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describe here, and it interferes minimally with our arguments and
simulations.

We emphasize that our model is generic in the sense that it
is not assumed that neural circuits specific to various tasks are
already in place, beyond random connectivity between excitatory
neurons within an area and between selected pairs of areas. Its
functionality—the needed apparatus for each task, such as imple-
menting an assembly operation—emerges from the randomness
of the network and the selection of the k neurons with highest
synaptic input as an almost certain consequence of certain simple
events—such as the repeated firing of an assembly.

Assembly Projection. How do assemblies in the association cor-
tex come about? It has been hypothesized (see, e.g., ref. 13) that
an assembly imprinting, for example, a familiar face in a sub-
ject’s medial temporal lobe (MTL) is created by the projection
of a neuronal population, perhaps in the inferotemporal cortex,
encoding this face as a whole object. By projection of an assem-
bly x , we mean the creation of an assembly y in a downstream
area that can be thought of as a “copy” of x , and such that y will
henceforth fire every time x fires.

How is the new assembly y formed in a downstream area B by
the repeated firing of x in area A? The process was vividly pre-
dicted in the discussion section of ref. 14, for the case in which
A is the olfactory bulb and B is the piriform cortex. Once x has
fired once, synaptic connectivity from area A to area B excites
many neurons in area B . Inhibition will soon limit the firing in
area B to a smaller set of neurons, let us call it y1, consisting, in
our framework, of k neurons (Fig. 2A). Next, the simultaneous
firing of x and y1 creates a stronger excitation in area B (one
extra reason for this is plasticity, which has already strengthened
the connections from x to y1), and, as a result, a new set of k
neurons from area B will be selected to fire, call it y2. One would
expect y2 to overlap substantially with y1—this overlap can be
calculated in our mathematical model to be roughly 50% for
a broad range of parameters. If x continues firing, a sequence
{yt} of sets of neurons of size k in area B will be created.
For a large range of parameters and for high enough plastic-
ity, this process can be proved to converge exponentially fast,
with high probability, to create an assembly y , the result of the
projection.

We denote the projection process described above as
project(x ,B , y). Assembly projection has been demonstrated
both analytically (16, 17) and through detailed simulations (18,
19); simulation results in our model, as well as improved analysis,
are presented in Fig. 2B4. Once the project(x ,B , y) operation
has taken place, we write B = area(y) and x = parent(y).

Dense Intraconnection of Assemblies. Hebb (4) hypothesized that
assemblies are densely intraconnected—that is, the chance that
two neurons have a synaptic connection is significantly larger
when they belong to the same assembly than when they do not—
and our analysis and simulations verify this hypothesis (Fig. 2C).
From the point of view of computation, this is rather surprising,
because the problem of finding a dense subgraph of a certain size
in a sparse graph is a known difficult problem in computer sci-
ence (20), and thus the very existence of an assembly may seem
surprising. How can the brain deal with this difficult computa-
tional problem? The creation of an assembly through projection
as outlined in the previous paragraphs provides an explanation:
Since the elements of assembly y were selected to have strong
synaptic input from the union of x and y , one intuitively expects
the synaptic recurrent connectivity of y to be higher than ran-
dom. In addition, the weights of these synapses should be higher
than average because of plasticity.

The Random Projection and Cap Primitive. It can be said that
assembly operations, as described here, are powered exclusively

by two forces known to be crucial for life more generally: ran-
domness and selection (in addition to plasticity). No special
purpose neural circuits are required to be in place; all that is
needed is random synaptic connectivity between, and recurrently
within, areas, and selection, through inhibition in each area, of
the k out of n cells currently receiving highest synaptic input. All
assembly computation described here consists of applications of
this operator, which we call random projection and cap (RP&C).
We believe that RP&C is an important primitive of neural com-
putation, and computational learning more generally, and can
be shown to have a number of potentially useful properties. For
example, we establish, analytically and through simulations, that
RP&C preserves overlap of assemblies remarkably well (as first
noticed empirically in ref. 21). Finally, we used RP&C in experi-
ments as the nonlinearity in each layer of a deep neural network,
in the place of the sigmoid or the rectified linear unit typically
used in machine leaning, and we found that it seems to perform
at a level competitive with these.

Association and Pattern Completion. In a recent experiment (15),
electrocorticography recordings of human subjects revealed that
a neuron in a subject’s MTL consistently responding to the
image of a particular familiar place—such as the Pyramids—
starts to also respond to the image of a particular familiar
person—say, the subject’s sibling—once a combined image has
been shown of this person in that place. A compelling parsimo-
nious explanation of this and many similar results is that two
assemblies imprinting two different entities adapt to the cooc-
currence, or other observed affinity, of the entities they imprint
by increasing their overlap, with cells from each migrating to
the other while other cells leave the assemblies to maintain its
size to k ; we say that the two assemblies are associating with
one another. The association of two assemblies x and y in the
same brain area is denoted associate(x , y), with the common
area area(x )= area(y) implicit. We can show, analytically and
through simulations, that the simultaneous sustained firing of the
two parents of x and y does effect such increase in overlap, while
similar results have been obtained by simulations of networks
of spiking neurons through spiked timing-dependent plasticity
(STDP) (18).

Assemblies are large and, in many ways, random sets of neu-
rons, and, as a result, any two of them, if in the same area, may
overlap a little by chance. If the assembly size k is about less
than the square root of n , as we often assume in our simula-
tions, this random overlap, if any, should be very few cells. In
contrast, overlap resulting from the operation associate(x , y)
is quite substantial: The results of ref. 15 suggest an overlap
between associated assemblies in the MTL of about 8 to 10%
of the size of an assembly. The association between assemblies
evokes a conception of a brain area as the arena of complex asso-
ciation patterns between the area’s assemblies; for a discussion of
certain mathematical aspects of this view, see ref. 22.

One important and well-studied phenomenon involving
assemblies is pattern completion: the firing of the whole assem-
bly x in response to the firing of a small subset of its cells
(8); presumably, such completion happens with a certain a pri-
ori probability depending on the particular subset firing. In our
experiments, pattern completion happens in a rather striking
way, with small parts of the assembly being able to complete, very
accurately, the whole assembly (Fig. 2 F1 and F2).

We believe that association and pattern completion open up
fascinating possibilities for a genre of probabilistic computation
through assemblies, a research direction which should be further
pursued.

Merge. The most sophisticated and complex operation in
the repertoire of the Assembly Calculus is merge. Denoted
merge(x , y ,A, z ), this operation starts with two assemblies x and
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Fig. 2. Assembly operations. (A) An
RP&C: If an assembly x fires in area A, and
there is afferent connectivity to area B,
the ensuing synaptic input will cause a set
of k neurons in area B, call it y, to fire. The
set y contains the k neurons in area B that
receive the highest synaptic input from
assembly x. This is an important primitive
called RP&C. (B1–B3) If assembly x fires
again, afferent synaptic input from area
A will be combined with recurrent synap-
tic input from y1 in area B to cause a
new set of k neurons in area B, y2, to
fire. Continued firing of x will create a
sequence of sets of firing neurons in area
B: y1, y2, y3, . . .. In the presence of Heb-
bian plasticity, this sequence converges
exponentially fast to a set of neurons, an
assembly y which we call the projection of
x to B. If, subsequently, x fires, y will fol-
low suit. (B4) Exponential convergence of
assembly projection: The horizontal axis is
the number of times assembly x fires; the
vertical axis is the total number of neu-
rons in area B that fired in the process.
Different color lines represent different
values of the plasticity coefficient β; for
higher levels of β, convergence is faster.
(C) Synaptic density within the resulting
assembly increases with higher values of β
(blue line), and is always higher than the
baseline random synaptic connectivity p
(dashed red line). (D) Preservation of over-
lap: Assembly overlap is preserved under
RP&C. The x axis represents the overlap in
two assemblies that are then projected to
a new area once (RP&C); the y axis repre-
sents the percentage overlap of the two
resulting assemblies in B. (E) Association:
If two assemblies in two different areas
have been independently projected in a
third area to form assemblies x and y,
and, subsequently, the two parent assem-
blies fire simultaneously, then each of x, y
will respond by having some of its neu-
rons migrate to the other assembly; this
is called association of x and y. Such over-
lap due to association may reach 8 to 10%
(15). The figure shows results from simu-
lation: first, two separate, stable assem-
blies are created in two areas, A and B.
Then, the assemblies in A and B are pro-
jected simultaneously into C for x time
steps, represented by the x axis; the y axis
shows the resulting overlap in the pro-
jected assemblies of A and B after the
simultaneous firing. (F1) Pattern comple-
tion: The firing of a few cells of an assembly results in the firing of the whole assembly. (F2) An assembly is created in an area A by repeated firing of its
parent; the number of times the parent fires is depicted in the horizontal axis. Next, 40% of neurons of the assembly are selected at random and fire for
a number of steps; the y axis shows the overlap of the resulting assembly with the original assembly. With more reinforcement of the original assembly,
the subset recovers nearly all of the original assembly. (G1) Merge: The most advanced, and demanding in its implementation, operation of the Assembly
Calculus involves five brain areas; areas B and C contain the assemblies x, y to be merged, while areas B′ and C′ contain the parents of these assemblies. The
simultaneous spiking of the parents induces the firing of x and y, which then initiates a process whereby two-way afferent computation between areas B
and A, as well as areas C and A, results in the adjustment of both x and y and the creation of an assembly xy in area A having strong synaptic connections
to and from both x and y. (G2) Speed of convergence depends critically on β.

y , in different brain areas, and creates a new assembly z , in a
third area A, such that there is ample synaptic connectivity from
x and y to z , and also vice versa, from z to both x and y .

Linguists had long predicted that the human brain is capable
of combining, in a particularly strong sense, two separate entities
to create a new entity representing this specific combination (23,
24), and that this ability is recursive in that the combined entity

can, in turn, be combined with others. This is a crucial step in the
creation of the hierarchies (trees of entities) that seem necessary
for the syntactic processing of language, but also for hierarchical
thinking more generally (deduction, discourse, planning, story-
telling, etc.). Recent fMRI experiments (25) have indicated that,
indeed, the completion of phrases and sentences (the completion
of auditory stimuli such as “hill top” and “ship sunk”) activates
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parts of Broca’s area—in particular, the pars opercularis BA
44 for phrases, and the pars triangularis BA 45 for sentences.
In contrast, unstructured word sequences such as “hill ship” do
not seem to activate Broca’s area. Recall that Broca’s area has
long been believed to be implicated in the syntactic processing of
language.

A parsimonious explanation of these findings is that phrases
and sentences are represented by assemblies in Broca’s area
that are the results of the merge of assemblies represent-
ing their constituents (that is, assemblies for words such as
“ship” and “sunk”); presumably, the word assemblies reside
in Wernicke’s area implicated in word selection in lan-
guage. As these hierarchies need to be traversed both in
the upward and in the downward direction (e.g., in the pro-
cesses of language parsing and language generation, respec-
tively), it is natural to assume that merge must have two-way
connections between the new assembly and the constituent
assemblies.

Our algorithm for implementing merge, explained in Results
and Methods, is by far the most complex in this work, as it involves
the coordination of five different brain areas with ample recipro-
cal connectivity between them, and requires stronger plasticity
than other operations; our simulation results are reported in
Section 2; see also Fig. 2 G1 and G2.

Finally, a simpler operation with similar yet milder com-
plexity is reciprocal.project(x ,A, y): It is an extension of
project(x ,A, y), with the additional functionality that the
resulting y has strong backward synaptic connectivity to x . Recip-
rocal projection has been hypothesized to be instrumental for
implementing variable binding in the brain—such as designating
“cats” as the subject of the sentence “cats chase mice” (see ref.
19). The plausibility of reciprocal.project has been exper-
imentally verified through detailed simulations of networks of
spiking neurons with STDP (19), as well as in our simplified
model.

Readout and Control Operations. The purpose of the Assembly
Calculus is to provide a formal system within which high-
level cognitive behavior can be expressed. Ultimately, we want
to be able to write meaningful programs—in fact, parallel
programs—in this system, for example, containing segments
such as

if read (A) is null then project(x ,A, y).

With this goal in mind, we next introduce certain additional
low-level control operations, sensing and affecting the state
of the system. First, a simple read operation. In an influen-
tial review paper on assemblies, Buzsáki (7) proposes that,
for assemblies to be functionally useful, readout mechanisms
must exist that sense the current state of the assembly sys-
tem and trigger appropriate further action. Accordingly, the
Assembly Calculus contains an operation read(A) that identi-
fies the assembly which has just fired in area A, and returns null
otherwise.

Finally, the Assembly Calculus contains two simple control
operations. We assume that an assembly x in an area A can
be explicitly caused to fire by the operation fire(x ). That is to
say, at the time an assembly x is created, a mechanism is set
in place for activating it; in view of the phenomenon of pattern
completion discussed above, in which firing a tiny fragment of
an assembly leads to the whole assembly firing, this does not
seem implausible. We also assume that, by default, the excita-
tory cells in an area A are inhibited, unless explicitly disinhibited
by the operation disinhibit(A) for a limited period, whose end
is marked by the operation inhibit(A); the plausibility of the
disinhibition–inhibition primitives is argued in ref. 26 in terms of
vasoactive intestinal peptide cells (27).

Example. For a simple example of a program in the Assembly
Calculus, the command project(x ,B , y) where area(x )=A, is
equivalent to the following:

disinhibit(B)
repeat T times: fire(x )
inhibit(B).

Simulations show that, with typical parameters, a stable assem-
bly is formed after about T =10 steps. An alternative version of
this program, relying on the function read, is the following:

disinhibit(B)
repeat fire(x ) until read(B) is not null
inhibit(B).

For another simple example, the command associate(x , y),
whose effect is to increase the overlap of two assemblies in the
same area A, is tantamount to this:

disinhibit(A)
repeat T times: do in parallel {fire (parent((x )),

fire(parent(y))}
inhibit(A).

A far more elaborate program in the Assembly Calculus, for
a proposed implementation of the creation of syntax trees in the
generation of natural language, is described in Discussion.

Computational Power. We can show (SI Appendix) that the
Assembly Calculus as defined above is capable of implementing,
under appropriate assumptions, arbitrary computations on O( n

k
)

bits of memory—and, under much weaker assumptions, O(
√
n
k
)

bits. This suggests—in view of the well-established equivalence
between parallel computation and space-bounded computation
(28)—that any parallel computation with a few hundred paral-
lel steps, and using a few hundred registers, can, in principle, be
carried out by the Assembly Calculus.

The Assembly Hypothesis. The Assembly Calculus is a formal sys-
tem with a repertoire of rather sophisticated operations, where
each of these operations can be ultimately reduced to the fir-
ing of randomly connected populations of excitatory neurons
with inhibition and Hebbian plasticity. The ensuing computa-
tional power of the Assembly Calculus may embolden one to
hypothesize that such a computational system—or rather a neu-
ral system far less structured and precise, which, however, can be
usefully abstracted this way—underlies advanced cognitive func-
tions, especially in the human brain, such as reasoning, planning,
and language.

Related Work. Assemblies of excitatory neurons are, of course,
not new: They have been hypothesized (4, 5), identified in vivo
(6, 7), studied experimentally (8), and discussed extensively (29)
over the past decades—even, occasionally, in connection to com-
putation (see ref. 30). However, we are not aware of previous
work in which assemblies, with a suite of operations, are pro-
posed as the basis of a computational system intended to explain
cognitive phenomena.

Assemblies and their operations as treated here bear a cer-
tain resemblance to the research tradition of hyperdimensional
computing (see refs. 31–33), systems of high-dimensional sparse
vectors equipped with algebraic operations, typically component-
wise addition, component-wise multiplication, and permutation
of dimensions. Indeed, an assembly can be thought of as a
high-dimensional vector, namely, the characteristic vector of its
support; but this is where the similarity ends. While assembly
operations as introduced here are meant to model and pre-
dict cognitive function in the brain, hyperdimensional computing
is a machine learning framework—inspired, of course, by the
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brain, like many other such frameworks—and used successfully,
for example, for learning semantics in natural language (33). In
sparse vector systems, there is no underlying synaptic connectiv-
ity between the dimensions, or partition of the dimensions into
brain areas. Finally, the operations of the Assembly Calculus
(project, associate, and merge) are very different in nature, style,
detail, and intent from the operations in sparse vector systems
(add, multiply, and permute).

Assembly computation is closer in spirit to Valiant’s model
of neuroids and items (34), which was an important source of
inspiration for this work. One difference is that, whereas, in
Valiant’s model, the neuron (called neuroid there) has con-
siderable local computational power—for example, to set its
presynaptic weights to arbitrary values—in our formalism, com-
putational power comes from a minimalistic model of inhibi-
tion and plasticity; both models assume random connectivity.
Another important difference is that, in contrast to an item in
Valiant’s theory, an assembly is densely intraconnected, while the
mechanism for its creation is described explicitly.

Results and Methods
Projection. The operation project(x ,B , y) entails activating,
repeatedly, assembly x while B is disinhibited. Such repeated
activation creates, in the disinhibited area B , a sequence of sets
of k cells, let us call them y1, y2, . . . , yt , . . .. The mathematical
details are quite involved, but the intuition is the following: Cells
in B can be thought of as competing for synaptic input. At the
first step, only x provides synaptic input, and thus y1 consists
of the k cells in B which happen to have the highest sum of
synaptic weights originating in x—note that these weights are
subsequently increased by a factor of (1+β) due to plasticity. At
the second step, neurons in both x and y1 spike, and, as a result,
a new set y2 of “winners” from among cells of B is selected;
for typical parameters, y2 overlaps heavily with y1. This contin-
ues as long as x keeps firing, with certain cells in yt replaced by
either “new winners”—cells that never participated in a yt′ with
t ′< t—or by “old winners”—cells that did participate in some
yt′ with t ′< t . We say that the process has converged when there
are no new winners. Upon further firing of x , yt may evolve
further slowly, or cycle periodically, with past winners coming
in and out of yt ; in fact, this mode of assembly firing (cells of
the assembly alternating in firing) is very much in accordance
with how assemblies have been observed to fire in Ca+ imaging
experiments in mice; see, for example, ref. 35. It is theoretically
possible that a new winner cell may come up after convergence;
but it can be proved that this is a highly unlikely event, and
we have never noticed it in our simulations. The number of
steps required for convergence depends on the parameters, but,
most crucially, on the plasticity coefficient β; this dependence is
fathomed analytically and through simulations in Fig. 2B4.

Density. It was postulated by Hebb (4) that assemblies are
densely interconnected—presumably such density was thought to
cause their synchronized firing. Since assemblies are created by
projection, increased density is intuitively expected: Cells in yt
are selected to be highly connected to yt−1, which is increasingly
closer to yt as t increases. It is also observed in our simulations
(Fig. 2C) and predicted analytically in our model.

Association and Pattern Completion. Our simulations (Fig. 2E), as
well as analytical results, show that the overlap of two assem-
blies x , y in the same area increases substantially in response to
simultaneous firing of the two parent assemblies parent(x ) and
parent(y) (assumed to be in two different areas). The amount of
postassociation overlap observed in our simulations is compati-
ble with the estimates in the literature (36, 37), and increases
with the extent of cooccurrence (the number of consecutive
simultaneous activations of the two parents).

Since association between assemblies is thought to capture
affinity of various sorts, the question arises: If two associated
assemblies x and y are both projected in another area, will the
size of their overlap be preserved? Our results, both analytical
and through simulations, strongly suggest that assembly overlap
is indeed conserved reasonably well under projection (see Sec-
tion 2 and Fig. 2). This is important, because it means that the
signal of affinity between two assemblies is not lost when the two
assemblies are further projected in a new brain area.

Pattern completion involves the firing, with some probability,
of an assembly x following the firing of a few of its neurons (8,
35). Simulations in our model (Fig. 2F2) show that, indeed, if the
creation of an assembly is completed with a sufficient number of
activations of its parent, then firing fewer than half of the neu-
rons of the assembly will result in most, or essentially all, of the
assembly firing.

Reciprocal Projection and Merge. Reciprocal projection, denoted
reciprocal.project(x ,B , y), is a more elaborate version of
projection. It involves parent(x ) firing, which causes x in area
A to fire, which, in turn, causes, as with ordinary projection, a set
y1 in B to fire. The difference is that now there is synaptic con-
nectivity from area B to area A (in addition to connectivity from
A to B), which causes, in the next step, x to move slightly to a
new assembly x1, while y1 has become y2. This continuing inter-
action between the xt and the yt±1 eventually converges, albeit
slower than with ordinary projection, and under conditions of
ampler synaptic connectivity and plasticity. The resulting assem-
bly y has strong synaptic connectivity both to and from x (instead
of only from x to y , as is the case with ordinary projection). That
reciprocal projection works as described above has been shown
both analytically and through simulations in our model, as well
as in simulations in a more realistic neural model with explicit
inhibitory neurons and STDP in ref. 26.

The operation merge(x , y ,A, z ) is essentially a double recip-
rocal projection. It involves the simultaneous repeated firing, in
different areas, of the parents of both x and y , which causes
the simultaneous repeated firing, also in two different areas B
and C , of x and y . In the presence of enabled afferent two-
way connectivity between A and B , and also between A and
C , this initiates a process whereby a new assembly z is even-
tually formed in area A, which, through its firing, modifies the
original assemblies x and y . In the resulting assemblies, there is
strong two-way synaptic connectivity between x and z , as well as
between y and z . Analytical and simulation results are similar to
those for reciprocal projection (Fig. 2G1).

Simulations. We gain insights into the workings of our model,
and validate our analytical results, through simulations. In a typ-
ical simulation task, we need to simulate a number of discrete
time steps in two or three areas, in a random graph with ∼n2p
nodes (where the notation ∼ f means ”a small constant multi-
ple of f ). Creating this graph requires ∼n2p computation. Next,
simulating each firing step entails selecting, in each area, the k
out of n cells that receive that largest synaptic input. This takes
∼ knp computations per step. Since the number of steps needed
for convergence is typically much smaller than the ratio n/k , the
n2p computation for the creation of the graph dominates the
computational requirements of the whole simulation (recall that
n >> k).

In our simulator, we employ a maneuver which reduces this
requirement to∼ knp, enabling simulations of the required scale
on a laptop. The trick is this: We do not generate all∼n2p edges
of the random graph a priori, but generate them “on demand”
as the simulation proceeds. Once we know which cells fired at
the previous step, we generate the k cells in the area of inter-
est that receive the most synaptic input, as well as their incoming
synapses from the firing cells, by sampling from the tail of the

Papadimitriou et al. PNAS | June 23, 2020 | vol. 117 | no. 25 | 14469

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

O
ct

ob
er

 3
, 2

02
0 



appropriate binomial distribution; we then compare with previ-
ously generated cells in the same area to select the k cells that
will fire next.

Our simulation system is available online, making it possible
to reproduce and extend our simulation results: http://github.
com/dmitropolsky/assemblies.

Discussion
We have defined a formal system intended to model the com-
putations underlying cognitive functions. Its elementary object
is an assembly, a set of excitatory neurons all belonging to the
same brain area, and capable of near-simultaneous firing. The
operations of this system enable an assembly to create a “copy”
of itself in a new brain area through projection, two assemblies
to increase their overlap in order to reflect observed cooccur-
rence in the world or other similarity, and, furthermore, two
assemblies to create a new assembly with ample connectivity to
and from the two original ones. These operations do not rely
on preexisting neural circuits; instead, their apparatus is gen-
erated on-the-fly, with high probability, through plasticity and
randomness of synaptic connectivity. The resulting formal sys-
tem, equipped with certain simple control operations, is fraught
with considerable computational power. Central to our work is
the speculation that something akin to this formal system may
underlie cognitive functions, especially in the human brain.

What is an assembly, exactly? The precise definition is a
conundrum. In our narrative so far, assembly is simply a set of k
excitatory neurons in a brain area capable of synchronous firing.
According to Hebb’s prediction (4) as well as current observa-
tions (8) and neurorealistic simulations (18), the neurons of an
assembly are not all activated simultaneously, but instead fire in a
“pattern” with different neurons firing at different times.‡ In our
formalism, and in our analytical proofs and our experiments, the
assumption of discrete time steps suppresses, to a large extent,
this sequential behavior. But, even in our model, once the pro-
jection project(x ,B , y) has stabilized (no new neurons in area
B fire that had never fired before), a small number of neurons
often keep coming in and out of the spiking set yt . One possible
principled definition of an assembly is this: An assembly in an
area B is a sparse distribution on the neurons of area B , whose
support (the set of neurons with nonzero probability) is not much
larger than k .

One aspect of our assembly operations is the crucial role of
plasticity. While plasticity is well studied as an important aspect
of the way the brain works and learning happens, we are not
aware of many models in which plasticity takes place at the
subsecond time scale, as it is hypothesized to do in assembly
operations. Our use of assemblies as the basis of a computational
system also departs from the usual discourse on assemblies, typ-
ically considered, implicitly, as fairly stable representations. In
contrast, here we conjecture that assemblies can be formed and
modified by the human brain at 4 Hz, the frequency of syllables
in language (see the discussion on language below).

Our results and simulations assume uniformly random synap-
tic connectivity; however, experimental measurements (11, 12)
suggest a departure from uniformity (but not from randomness).
Our analytical results can be extended routinely to nonuniform
random synaptic connectivity of this kind. In fact, our conclu-
sions regarding the density and stability of assemblies can be
further strengthened in such regimes. For example, suppose
that, conditioned on the existence of two directed edges (a, b)
and (a, c), the presence of edge (b, c) is much more likely, as
concluded in ref. 11. Depending on the precise values of the
parameters n, k , p, this would likely trigger a “birthday paradox”

‡ In musical metaphor, an assembly is thought to be not an octave but a cord sequence.

phenomenon (existence of two assembly cells b, c with synap-
tic connections from the same cell a of the parent assembly)
that would further enhance the synaptic density, and hence the
stability, of assemblies.

The basic operations of the Assembly Calculus as pre-
sented here—projection, association, reciprocal projection, and
merge—correspond to neural population events which 1) are
plausible, in the sense that they can be reproduced in simulations
and predicted by mathematical analysis, and 2) provide parsi-
monious explanations of experimental results (for the merge
and reciprocal project operations, see the discussion of language
below). In contrast, the read and control operations—read, fire,
disinhibit—however simple and elementary, lack in such justifi-
cation, and were added for the purpose of rendering the Assem-
bly Calculus a programmable computational system. Replacing
them with more biologically plausible control operations leading
to the same effect would be very interesting.

Assemblies and Language. We hypothesized that assemblies and
their operations may be involved in mediating higher cognitive
functions in humans. In ending, we speculate below on how
assemblies may be implicated in language.

Linguists have long argued that the language faculty is unique
to humans, and that the human brain’s capability for syntax (i.e.,
for mastering the rules that govern the structure of sentences in a
language) lies at the core of this ability (23, 24). In particular, the
linguistic primitive Merge has been proposed as a minimalistic
basis of syntax. Merge combines two syntactic units to form one
new syntactic unit; recursive applications of Merge can create a
syntax tree, which captures the structure of a sentence (Fig. 3A).
If this theory is correct, then which are the brain correlates of
syntax and Merge? Recent experiments provide some clues; see
ref. 38 for an extremely comprehensive and informative recent
treatment of the subject.

1) Two different brain areas of the left superior temporal
gyrus (which contains Wernicke’s area, known since the 19th
century to be implicated in the use of words in language)
seem to respond to the subject vs. the object of a presented
sentence (39).

2) The completion of phrases and sentences presented is marked
by activity in Broca’s area in the left hemisphere (40), known
to be implicated in syntax.

3) A sequence of sentences consisting of four monosyllabic words
(such as “Bad cats eat fish”) presented at the rate of four
words per second (the natural frequency of articulated sylla-
bles) elicits a pattern of brain responses with energy peaks
at 1, 2, and 4 Hz, consistent with the hypothesis that syn-
tax trees for the sentences are being constructed during the
presentation (41).

If one accepts the hypothesis that, indeed, something akin to
syntax trees is constructed in our brain during the parsing—and
presumably also during the generation—of sentences, one must
next ask, How is this accomplished? According to ref. 38, chap-
ter 4, these and a plethora of other experimental results point
to a functional cortical network for lexical and syntactic process-
ing, involving the MTL, Broca’s areas BA 44 an BA 45, and
Wernicke’s area in the superior temporal gyrus, as well as axon
fibers connecting these four areas, all in the left hemisphere. Syn-
tactic processing of language seems to entail a complex sequence
of activations of these areas and transmission through these
fibers. How is this orchestrated sequence of events carried out?
Does it involve the generation and processing, on-the-fly, of rep-
resentations of the constituents of language (words, phrases,
sentences)? Angela Friederici (ref. 38, p. 134) proposes that, “for
language there are what I call mirror neural ensembles through
which two distinct brain regions communicate with each other.”
Could it be that assemblies and their operations play this role?
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Fig. 3. A proposed cortical architecture for syntax in language (see also
ref. 38). In order to generate a simple sentence such as “The boy kicks the
ball,” the subject must first find, in the left MTL, the representations of
the verb, subject, and object of the sentence. Next, these three assemblies
are reciprocal-projected to the corresponding subareas of Wernicke’s area.
Next, the verb and the object are merged in BA 44 of Broca’s area to form a
representation p of the verb phrase “kicks the ball,” and, finally, p is merged
with the subject to create a representation s of the whole sentence in BA
45. This concludes the phase of building of the sentence’s syntax tree. Now,
in order to articulate the sentence, s fires, and this results in the firing of the
constituents of the tree, until, eventually, the three words in the MTL fire
in the correct order for the subject’s language—an order learned at infancy
(in English, subject–verb–object). This latter activation of the three words
mobilizes the corresponding motor functions resulting in the production of
sound.

We propose a dynamic brain architecture for the generation
of a simple sentence, powered by assemblies and the opera-
tions reciprocal.project and merge, and consistent with the
experimental results and their interpretations outlined above
(Fig. 3). In particular, we propose that the construction of the
syntax tree of a simple sentence being generated by a subject
can be implemented by the following program of the Assembly
Calculus:

do in parallel:
find-verb(Im,MTL, x ),
find-subj(Im,MTL, y),
find-obj(Im,MTL, z );

do in parallel:
reciprocal.project(x ,WVb, x ′),
reciprocal.project(y ,WSubj, y ′),
reciprocal.project(x ,WObj, z ′);

merge (x ′, z ′, Broca44, p);
merge (y ′, p, Broca45, s).

The generation of a sentence such as “The boy kicks the ball”
starts with a desire by the subject to assemble—and possibly

articulate—a particular fact. The raw fact to be put together is
denoted here by Im—an image, sensed or mental. In the first
line, a brain area containing the lexicon is searched in order to
identify the verb (the action in the fact relayed in Im), the sub-
ject (the agent of the fact), and the object (the patient of the fact).
Here we are assuming that the lexicon is a searchable collection
of tens of thousands of assemblies in the left MTL of the subject,
representing words in the language; this is in rough agreement
with current views (42), even though much still remains to be
understood about the representation of words and the associated
information. We also assume that the corresponding brain func-
tions find-verb, etc., are already in place. For the example “The
boy kicks the ball,” the three assemblies x , y , and z are identi-
fied after the first step, encoding the words “kick”, “boy”, and
“ball”, respectively. In the second line, these three assemblies
are projected to the three subareas of Wernicke’s area special-
izing in the verb, subject, and object of sentences, respectively.
In fact, instead of ordinary projection, the reciprocal.project
operation is used, as first proposed in ref. 26, for reasons that
will become clear soon. Next, an assembly p is formed in the
pars opercularis of Broca’s area (BA 44) representing the verb
phrase “kicks the ball” through the merge operation applied to
the two assemblies x ′ and z ′ encoding the constituent words of
the phrase in Wernicke’s area. Finally, an assembly s correspond-
ing to the whole sentence is formed in the pars triangularis of
Broca’s area (BA 45) via the merge of assemblies p and y ′, com-
pleting the construction of the rudimentary syntax tree of the
whole sentence.

The Assembly Calculus program above accounts only for the
first phase of sentence production, during which the syntax tree
of the sentence is constructed. Next, the sentence formed may
be articulated, and we can speculate on how this process is car-
ried out: Assembly s is activated, and this eventually causes the
assemblies x ′, y ′, z ′—the leaves of the syntax tree—to fire. The
activation of these three assemblies is done in the order spe-
cific to the speaker’s language learned at infancy (for example, in
English, subject–verb–object). Note that the first phase of build-
ing the syntax tree was largely language independent. Eventually,
the lexicon assemblies will be activated in the correct order (this
activation was the purpose of using the reciprocal.project
operation), and these, in turn, will activate the appropriate motor
functions which will ultimately translate the word sequence into
sounds.

The above narrative is only about the building of the basic syn-
tactic structure—the “scaffold”—of extremely simple sentences,
and does not account for many other facets: how the three find-
tasks in the first line are implemented; how the noun phrases
are adorned by determiners such as “the,” and how the verb
is modified to reflect person and tense (“kicks” or “kicked”),
and the important inverse processes of parsing and comprehen-
sion, among a myriad of other aspects of language that remain a
mystery.
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