

Research paper

Normalization criteria determine the interpretation of nitrogen effects on the root hydraulics of pine seedlings

Andrei Toca^{1,2,4}, Pedro Villar-Salvador¹, Juan A. Oliet³ and Douglass F. Jacobs²

¹Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida, Universidad de Alcalá, Apdo 20, Alcalá de Henares, Madrid 28805, Spain; ²Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, 715 West State Street, West Lafayette, IN 47907, USA;

³Departamento de Sistemas y Recursos Naturales, E.T.S. Ingenieros de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid Universitaria s/n, Madrid, 28040 Madrid, Spain; ⁴Corresponding author (andrei.o.toca@gmail.com)

Received December 22, 2019; accepted May 27, 2020; handling Editor Maurizio Mencuccini

Plant hydraulics is key for plant survival and growth because it is linked to gas exchange and drought resistance. Although the environment influences plant hydraulics, there is no clear consensus on the effect of nitrogen (N) supply, which may be, in part, due to different hydraulic conductance normalization criteria and studied species. The objective of this study was to compare the variation of root hydraulic properties using several normalization criteria in four pine species in response to three contrasting N fertilization regimes. We studied four closely related, yet ecologically distinct species: *Pinus nigra* J.F. Arnold, *Pinus pinaster* Ait., *Pinus pinea* L. and *Pinus halepensis* Mill. Root hydraulic conductance (K_h) was measured with a high-pressure flow meter, and values were normalized by total leaf area (leaf specific conductance, K_l), xylem cross-section area (xylem specific conductance, K_s), total root area (root specific conductance, K_r) and the area of fine roots (fine root specific conductance, K_{fr}). Controlling for organ size differences allowed comparison of the hydraulic efficiency of roots to supply or absorb water among fertilization treatments and species. The effect of N on the root hydraulic efficiency depended on the normalization criteria. Increasing N availability reduced K_l and K_s , but increased K_h , K_r and especially K_{fr} . The positive effect of N on K_r and K_{fr} was positively related to seedling relative growth rate and was also consistent with published results at the interspecific level, whereby plant hydraulics is positively linked to photosynthesis and transpiration rate and fast growth. In contrast, normalization by leaf area and xylem cross-sectional area (K_l and K_s) reflected opposite responses to K_r and K_{fr} . This indicates that the normalization criteria determine the interpretation of the effect of N on plant hydraulics, which can limit species and treatment comparisons.

Keywords: ecophysiology, high-pressure flow meter, nitrogen fertilization, *Pinus* spp., plant hydraulics, root hydraulic conductance, specific hydraulic conductance, water relations.

Introduction

The absorption and transport of water are key physiological processes for plant growth and survival, especially under drought stress (Lambers et al. 2008). Plant hydraulics has evolved concurrently with foliar physiology by placing a limit to the gas exchange capacity of plants (Brodrribb 2009). Accordingly, photosynthesis rate and stomatal conductance are frequently positively correlated with plant hydraulics across plant species in several biomes such as rain forests (Brodrribb and Feild

2000, Santiago et al. 2004), dry tropical forests (Brodrribb et al. 2002), temperate forests (Choat et al. 2011) and in grasslands (Maherali et al. 2008). Such a positive relationship was also found among ferns, conifers and angiosperms (Brodrribb et al. 2004). Hydraulic traits thus form part of a unified plant economics spectrum, where high hydraulic conductance is positively linked to a set of attributes associated with high carbon assimilation rate and fast growth (Zhang and Cao 2009, Reich 2014, Mencuccini et al. 2019).

The plant hydraulic system includes roots (water uptake), xylem (water transport) and leaves (main evaporative surfaces) (Cruziat et al. 2002). The structure and physiology of these organs varies widely, resulting in large differences in water transport capacity among plant species (Mencuccini 2003, Wright et al. 2006, Hernández et al. 2009). Hydraulic conductance (K_h), the flow of water through the plant or a specific organ per unit of pressure, scales up with the foliage and root absorption area and the stem xylem water transport capacity of plants (Cruziat et al. 2002). Therefore, several normalization criteria have been used to compare K_h among plants. Most studies have used the leaf specific conductance (K_l), which normalizes K_h by the total leaf area supported by the plant or a specific organ. K_h can also be normalized by xylem cross-section area (xylem specific conductance, K_s) or by root surface area (root specific conductance, K_r) (Fichot et al. 2011, Nardini and Tyree 1999). These specific conductance assessments are methods for comparing the efficiency of the plant hydraulic system, i.e., the capacity to transport or supply water for meeting the plant water demand.

Plants adjust their water absorption and transport capacity with changes in the environment, such as in response to drought (Cochard et al. 1996) or low temperature (Fennell and Markhart 1998). Soil fertility, especially that of nitrogen (N), can also affect plant hydraulics, particularly during early life stages (Mencuccini 2003, Lambers et al. 2008, Wang et al. 2017). Increase in soil N generally promotes aboveground over belowground growth, resulting in reduced root-to-shoot-mass ratio that potentially creates an imbalance in water uptake relative to plant demand (Birk and Vitousek 1986, Villar-Salvador et al. 2012). However, high soil N availability during growth can increase the diameter and density of xylem conduits, the xylem cross-section area and the expression of aquaporins (Hacke et al. 2010, Borghetti et al. 2016). These changes at the within-species scale in the hydraulic system can be interpreted as anatomical and physiological adjustments to match the water transport capacity with increasing plant water demand due to N availability, which also tends to augment gas exchange, particularly photosynthesis due to increased leaf area and intrinsic carboxylation rate (Evans 1989, Ripullone et al. 2003, Oliet et al. 2013, Zhang et al. 2018). Thus, published literature suggests that plants have acclimation responses to coordinate the hydraulic system, gas-exchange rate and growth with N supply (Hajek et al. 2014). Additionally, root growth undergoes significant adjustments with increasing soil N availability, but changes are not unidirectional. While most studies show that an increase in N increases root growth (Hernández et al. 2009), others have reported a decrease (Wang et al. 2017) or no change (Trubat et al. 2006). In addition, N can reduce the ratio of fine to coarse roots and specific root length (Li et al. 2015). Fine roots are more efficient in the uptake and transport of water than coarse roots (Sands et al. 1982), and they account for a

high portion of root surface area and consequently of the water and nutrient absorption capacity of the root system (Green and Clothier 1999, Wells and Eissenstat 2002, Rewald et al. 2011). Changes in fine root growth, therefore, can have important consequences for plant hydraulics at the within-species scale (Brissette and Chambers 1992, Steudle and Meshcheryakov 1996).

The different K_h normalization criteria for comparing the efficiency of the hydraulic system among plants should integrate effects of potential sources of changes on the plant attributes listed above, including soil N. However, published studies that analyzed plant hydraulics in response to soil N availability have used different normalization criteria (Lovelock et al. 2004, Samuelson et al. 2007, Wang et al. 2017), and the results are frequently discordant. Most studies indicate that K_l and K_s (measured in roots or shoots) decrease with N (Bucci et al. 2006, Hernández et al. 2009, Luis et al. 2010, Wang et al. 2016), while fewer studies have shown a positive or no effect of N availability (Clearwater and Meinzer 2001, Hacke et al. 2010). Similarly, the effect of N on K_r is in most cases neutral or positive (Steudle and Meshcheryakov 1996, Trubat et al. 2006, 2012, Wang et al. 2017), although some negative effects have been reported (Hernández et al. 2009, Luis et al. 2010). In addition to differences in normalization criteria and the experimental conditions, it is possible that variation among studies may be attributed to differences in species ecology, as species might differ in their response of hydraulics and biomass allocation patterns to N (Hernández et al. 2009).

The objective of this study was to compare the variation of root hydraulic properties using several normalization criteria in seedlings of four ecologically distinct pine species in response to N supply. These species (*Pinus halepensis* Mill., *Pinus pinea* L., *Pinus pinaster* Ait., *Pinus nigra* Arnold) are widespread across southern Europe, are distributed along an aridity and temperature gradient, and show contrasting ecological and growth patterns (Climent et al. 2011, Fernández-Pérez et al. 2018). *Pinus halepensis* and *P. pinea* are found in low- and mid-altitude locations in a typical Mediterranean climate, with mild to cool and humid winters and hot, dry summers (Navarro Cerrillo et al. 2013, Puertolas et al. 2013). At these sites, summer water stress is the main limiting factor for plant life (Mitrakos 1980). At the other extreme, the high mountain species *P. nigra* thrives in environments where low winter temperature is the main limiting factor for plant life (Barbero et al. 1998, Peñuelas et al. 2013). Finally, *P. pinaster* is usually found in habitats with intermediate drought and temperature conditions compared with the previous species (Lafuente et al. 2013). These pine species differ in their response of frost tolerance (Toca et al. 2018) and dynamics of root growth and architecture (Toca et al. 2019) to N supply. Due to their ecological variation, these pine species have different biomass allocation pattern (Climent et al. 2011), which may also differ in response to increasing soil N that can

differentially affect their hydraulic architecture. In addition, using closely related species reduces phylogenetic bias in comparative studies. Because fine roots are directly related to the rate of water and nutrient absorption (Green and Clothier 1999, Wells and Eissenstat 2002, Rewald et al. 2011), we proposed to normalize root K_h using fine root (≤ 1 mm in diameter) surface area (fine root specific hydraulic conductance, K_{fr}). We hypothesized that the efficiency of the root hydraulic system, measured as K_l , K_s , K_r and K_{fr} , would increase in response to N availability in order to match the water transport capacity to the increase in assimilation and transpiration capacity of the plant. To test this hypothesis, we performed an experiment where seedlings were cultivated under several N fertilization regimes and their root hydraulic conductance measured and compared using several normalization criteria. We used seedlings as this life stage is an important bottleneck for pine recruitment (Herrero et al. 2013).

Materials and methods

Plant material and experimental design

Seeds of the four pine species were collected in the southern part of the Iberian range (eastern Iberian Peninsula, Alía Miranda et al. 2009). Climate of these provenances, geographical coordinates of seed sources and mean climatic characteristics in the species range in Spain are described in Table S1 available as Supplementary Data at *Tree Physiology Online*. To obtain the climatic characteristics, we used distribution data for continental Spain from the third Spanish Forest Inventory, which analyzed adults and saplings of all woody species in plots distributed over forest ecosystems according to a 1-km² grid. For each studied species, we selected those plots classified as natural pine forests based on the Spanish Regions of Provenance (Ruiz-Benito et al. 2012) that had presence of seedlings. Mean values of climatic variables were calculated overlapping the selected plots on a climate map with 1-km² spatial resolution (Gonzalo 2008).

Seeds were sown in February 2012 at the Centro Nacional de Recursos Genéticos Forestales 'El Serranillo' (Central Spain, 40°40'N, 3°10'W, 650 m above sea level (a.s.l.)) into plastic trays (Plasnor® 190/300-45, Legazpi, Spain), which have 45,300-ml cells, at a cultivation density of 283 plants m⁻². Growing medium was Sphagnum peat moss pH = 4.7, enriched with a 16-10-20 NPK slow release fertilizer at a rate of 0.9 kg m⁻³ (Kekkila® White 420 F6, Finland). Trays were kept in an unheated greenhouse during germination and emergence phases to avoid late spring frost damage. On 17 May, 2012, all trays were transferred to the School of Forestry at the Technological University of Madrid (40°27'N; 3°43'W, 664 m a.s.l.) where the plants remained outdoors for the rest of the experiment. On the same date, 10 seedlings per species were randomly harvested to assess seedling mass

for future relative growth rate (RGR) measurements (see RGR description below). Samples were then dried at 60 °C for 48 h and weighed to assess their mass. The initial mass of the seedlings for *P. halepensis*, *P. pinea*, *P. pinaster* and *P. nigra* was 0.37 ± 0.02, 1.49 ± 0.09, 0.73 ± 0.06 and 0.58 ± 0.06 g, respectively. Plants were then assigned to one of three fertilization treatments: (i) high and (ii) low fertilization, where each plant was supplied with 150 and 20 mg N, respectively, from 22 May to 19 September, 2012 (pre-hardening period), and (iii) fall fertilization, where each plant was supplied with 60 mg N during the pre-hardening period + 40 mg N plant⁻¹ during the fall, from 26 September to 8 November, 2012. Fertilizer was applied by hand at a weekly constant rate using a water-soluble fertilizer. The fertilizer was 20 N–20P₂O₅–20K₂O plus proportional amounts of other macro- and micronutrients (Peters Professional, Scotts Co., Marysville, OH, USA) with N sources being ammonium nitrate (10%) and urea (10%). The extra supply for fall fertilization was applied as ammonium nitrate. At each fertilization, all seedlings received 55 ml of the fertilization solution. After fertilization, seedlings were watered for 5 min to remove the fertilizer remaining on the needles. Supplemental irrigation was applied every day with a broadcast system for an average of 70 ml plant⁻¹ (excepting fertilization days), which kept the media at field capacity almost permanently, according to predetermined weight of trays at field capacity and periodical weight controls after irrigation. Each fertilization treatment had three trays, resulting in nine trays per species. Trays were completely randomized in space, and their position was rotated every 15 days to minimize edge effects. The experimental design was a two factorial, with species (four levels) and fertilization treatments (three levels) as main effects. Seedlings were grown under full sun except from 20 June to 15 September, where plants grew under shading with a 20% light transmission to reduce evapotranspiration.

Hydraulic conductance and morphology measurements

On 15 April, 2013, six seedlings per species and treatment (two per tray) were randomly selected for maximum root hydraulic conductance measurements. The shoot was excised 5 mm under the cotyledon insertion scar with the entire seedling, including the root plug, immersed in water to avoid entrance of air into the tracheids of the root system. The remaining stem of the root system was then connected to a high-pressure flow meter (HPFM, Dynamax Inc., Houston, TX, USA) after debarking 2 cm. The method for measuring root hydraulic conductance using the HPFM apparatus was described in detail by Tyree et al. (1995). Briefly, the HPFM perfuses degasified water into the base of the root system under an increasing pressure of 3–7 kPa s⁻¹ while measuring the corresponding flow every 3 s. The pressure was increased up to 0.5 MPa. The hydraulic conductance (K_h) was measured three times per plant and was calculated from the slope of the linear region of the

regression of water flow against pressure. Later, shoots and roots were frozen to -20°C until processing. Once defrosted, plants were washed with tap water and rinsed in distilled water for 3 min. Then, shoots were separated into needles and stem. The diameter of the stem without bark in contact with the HPFM was measured to calculate the xylem cross-section area, assuming the stem to be a cylinder. Leaves were scanned (Lide 120, Canon, Tokyo, Japan), and the surface area was calculated with ImageJ (version 1.46r, Madison, WI, USA). Roots were scanned with a scanner (EpsonScan v.304S 10000XL 3.4, Epson, Tokyo, Japan) and the images analyzed with the software WinRhizo Pro 2007.d[®] (Regent Instruments Inc., Québec, Canada) to obtain the total length, diameter and surface area of roots. Later, roots were differentiated into two categories: fine (≤ 1 mm in diameter) and coarse (> 1 mm in diameter) (King et al. 2002). Samples were then dried at 60°C for 48 h and weighed to assess their mass. The leaves, stem and roots of two seedlings were composited and ground in a ball mill (PM 100, Retsch, Haan, Germany) to make three composite samples per treatment (one per tray). Nitrogen concentration of these samples was done by the standard Kjeldahl method using an auto-analyzer (CFA SAN++, Skalar, Breda, The Netherlands). Nitrogen content of organs was calculated as the product of organ mass and its respective N concentration. Plant N content was calculated as the sum of the root, stem and foliage N content.

RGR was calculated as the difference between the natural logarithms of final mass and the mass of seedling of the same batch 43 weeks before divided by time between the two measurements. The root maximum K_h values were used to calculate leaf (K_l), xylem (K_s), root (K_r) and fine root (K_{fr}) specific hydraulic conductance by dividing K_h value by total leaf area, xylem cross-section area, root system and fine root surface, respectively.

Statistical analysis

We assessed the effect of plant species and fertilization treatment on plant morphology and hydraulic traits. For all analyses, P -values were computed using F -tests as well as a randomization protocol that generated null distributions of variables and interactions by randomly reshuffling these data across species 10,000 times (Monte Carlo method, Crowley 1992). For each of these subsamples, we obtained the F -value of a two-way ANOVA analysis with species and treatments as main factors including interactions. The resulting 1000 F -values were compared with the F -value (ANOVA) from the observed data. The P -value is the proportion of all data arrangements resulting in a test statistic at least as extreme in magnitude as the F -value from the observed data. P -values thus generated are expected to be more robust against potential biases in data (Crowley 1992). All analyses were performed in R software (R Foundation for Statistical Computing, Vienna, Austria).

Results

Seedling morphology and N content

Nitrogen supply significantly affected seedling growth, root-to-shoot ratio and N content; however, for most traits the magnitude of this effect depended on the species (species \times fertilization interaction, Table 1). Nitrogen fertilization consistently increased the N content, mass, RGR, total leaf area, root surface area and xylem cross-section area of seedlings (Table 2). Overall, across species, high fertilization increased the root, leaf and xylem cross-section area by 53, 148 and 123%, respectively, with respect to low-fertilized plants. *Pinus halepensis* showed the largest differences between high and low fertilization for all traits, while *P. pinea* showed the lowest difference. For instance, total leaf area of high-fertilized plants was 3.8 times greater than for low-fertilized plants in *P. halepensis*. This difference was 1.7, 1.9 and 2.3 times in *P. pinea*, *P. pinaster* and *P. nigra*, respectively. The relative differences in root surface area between the high and low fertilization treatments were smaller than for total leaf area and xylem cross-section area and seedling mass in all species except for *P. halepensis*. In contrast to previous traits, fertilization reduced the root-to-shoot ratio and the fraction of fine root area in all species (Table 2). Overall, across species, fall fertilization increased the root, leaf and xylem cross-section area by 22, 63 and 76%, respectively, with respect to low-fertilized plants. The effect of fall fertilization on growth, morphology and N content varied among species. While for *P. pinaster*, trait values of fall-fertilized plants were closer to low-fertilized plants, for other species such as *P. pinea*, values were closer to high-fertilized seedlings. For the latter species, traits such as root surface area were maximum with fall fertilization (Table 2).

Pinus pinea and *P. pinaster* had the highest values for all growth and morphological variables except for the root–shoot ratio and RGR, while *P. nigra* and *P. halepensis* showed the lowest morphological values and the highest root–shoot ratio. *Pinus halepensis* had the highest RGR of all species and had higher leaf and root surface area than *P. nigra*, but lower than *P. pinea* and *P. pinaster* (Table 2). *Pinus pinea* had higher N content compared with other species, which did not differ in their N content (Figure 1).

Hydraulic conductance

K_h significantly increased with N fertilization and N content in all species (Table 1, Figure 1). On average, across species, high fertilization and fall fertilization increased K_h by 79 and 57%, respectively, with respect to low-fertilized plants. Low-fertilized seedlings showed the lowest K_h values in all species, while, with the exception of *P. pinaster*, fall- and high-fertilized seedlings showed similar values (fertilization \times species interaction, Table 1, Figure 1). In *P. pinaster*, high-fertilized plants had the highest K_h , low-fertilized plants had the lowest value,

Table 1. Statistical results of the effect of species and fertilization treatments on plant variables.

	Species	Treatment	Species × Treatment
Seedling mass	39.4 (<0.001)	105.5 (<0.001)	2.8 (0.020)
N content	26.9 (<0.001)	90.9 (<0.001)	2.76 (0.036)
Root surface area	7.1 (<0.001)	21.1 (<0.001)	4.4 (<0.001)
Leaf surface area	25.4 (<0.001)	63.7 (<0.001)	3.2 (<0.001)
Xylem cross-section area	44.2 (<0.001)	79.0 (<0.001)	4.1 (0.002)
Relative growth rate (RGR)	28.2 (<0.001)	122.8 (<0.001)	3.0 (0.012)
Root-to-shoot-mass ratio	61.7 (<0.001)	40.5 (<0.001)	1.6 (0.163)
Fraction of fine root surface %	8.1 (<0.001)	21.2 (<0.001)	1.4 (0.226)
K_h	2.6 (0.060)	44.7 (<0.001)	2.4 (0.038)
K_l	22.7 (<0.001)	8.3 (<0.001)	2.0 (0.083)
K_s	30.8 (<0.001)	12.2 (<0.001)	1.4 (0.246)
K_r	7.3 (<0.001)	6.0 (<0.004)	2.1 (0.064)
K_{fr}	1.6 (0.197)	15.4 (<0.001)	3.3 (0.008)

Data are F -values (P -values in brackets). K_h , Root hydraulic conductance; K_l , root hydraulic conductance per leaf area; K_s , root hydraulic conductance per xylem cross-section area; K_r , root hydraulic conductance per root area; K_{fr} , root hydraulic conductance per fine root area. Bold values are statistically significant effects ($P < 0.05$)

and fall-fertilized plants had slightly higher K_h than low-fertilized plants (Table 2). Specifically, K_h of high-fertilized plants was 2.0, 1.6, 1.8 and 1.8 times greater than low-fertilized seedlings in *P. halepensis*, *P. pinea*, *P. pinaster* and *P. nigra*, respectively.

K_l and K_s significantly differed among species (Table 1), which overall were in the following order: *P. nigra* \geq *P. halepensis* \geq *P. pinaster* $>$ *P. pinea* (Figure 2a and c). Fertilization had the same effect on K_l and K_s . Specifically, low- and fall-fertilized seedlings had the highest K_l and K_s values, while high-fertilized seedlings consistently showed the lowest values (Table 1 and Figure 2a and c).

K_r also varied among species (Table 1). *Pinus nigra* had the highest K_r followed by *P. pinaster*, while *P. halepensis* and *P. pinea* showed the lowest K_r values (Figure 2b). In contrast to K_l and K_s , fertilization increased K_r . Fertilization had a similar effect on K_{fr} as K_r in all species, but the differences among fertilization treatments within species were higher for K_{fr} , resulting in a significant species \times fertilization interaction (Table 1). Specifically, fall-fertilized plants had the highest K_{fr} values in *P. halepensis*, while in *P. pinaster* fall- and low-fertilized seedlings had similar values. High- and fall-fertilized plants had significantly higher K_{fr} in *P. pinea* and *P. nigra* than low-fertilized plants.

Discussion

Root hydraulic efficiency in pine seedlings in response to N fertilization showed different results depending on the normalization criteria. Increasing N availability had a negative effect on K_l and K_s , but a positive effect on K_r and especially on K_{fr} . This indicates that the interpretation of the effects of N on root hydraulic efficiency depends on whether root or shoot traits are used to normalize K_h . Thus, if the purpose of the specific hydraulic

conductance (K_l , K_s , K_r , K_{fr}) is to compare the efficiency of the hydraulic system (i.e., the capacity of the system to transport or supply water to meet the water demand of the plant), it must be recognized that the criteria for normalizing variables results in different meanings and therefore different interpretations. We discuss the effects of N on the organs and tissues involved in hydraulic conductance and their consequence for interpreting the results of different normalization criteria below.

According to Ohm's law analogy for plant hydraulics, transpiration rate in unstressed plants and under steady-state conditions is directly related to the water potential gradient from the soil to leaf and especially to the plant hydraulic conductance (Cruziat et al. 2002, Brodribb 2009). Accordingly, plant gas exchange rate has been found to be positively linked to hydraulic conductance across species (Brodribb and Feild 2000, Brodribb et al. 2004, Santiago et al. 2004, Maherli et al. 2008, Brodribb 2009, Choat et al. 2011, Liu et al. 2019), which may explain in part RGR differences among species (Reich 2014). Because increase in N availability often enhances stomatal conductance, photosynthesis and transpiration rate (Evans 1989, Ripullone et al. 2003, Domec et al. 2009, Oliet et al. 2013, Villar-Salvador et al. 2013, Zhang et al. 2018), RGR and field survival (Kontunen-Soppela et al. 2000, Oliet et al. 2009, Villar-Salvador et al. 2012), it can be expected that normalized K_h will increase or keep constant with N availability to keep pace with the increasing water demand of the plant. In our study, N fertilization increased root K_h and RGR and modified the biomass allocation pattern to the main components of plant hydraulics: roots, stems and leaves (Table 2). However, root K_l and K_s were consistently reduced with increasing N availability in pine species.

Nitrogen fertilization increased total leaf area and xylem cross-sectional area proportionally more than root K_h , which explains the overall reduction of K_l and K_s with N availability.

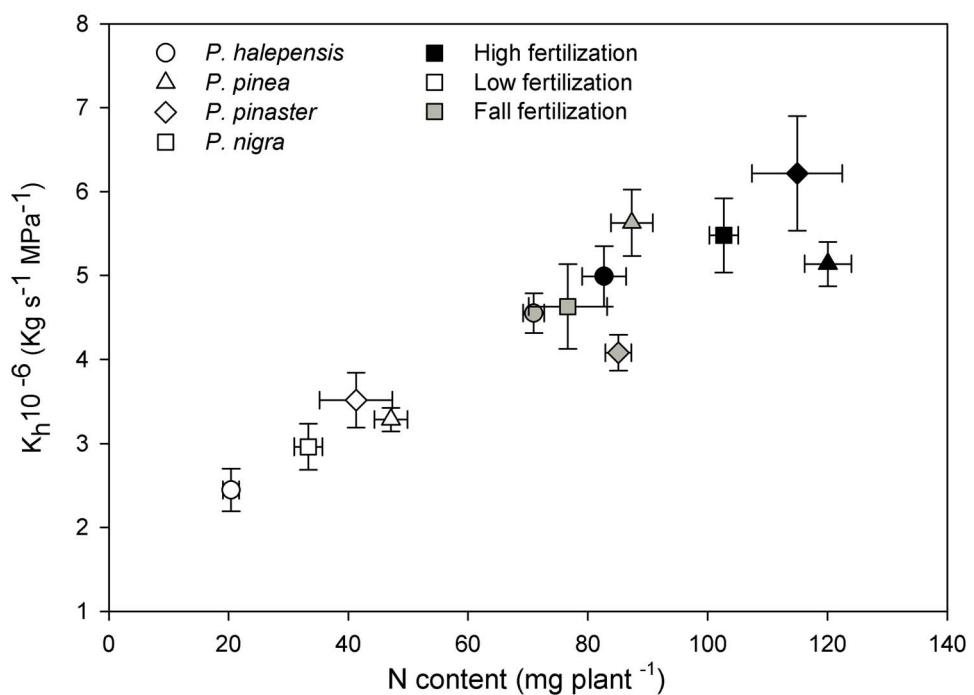


Figure 1. Relationship between seedling N content and root hydraulic conductance in four pine species. Seedlings were cultivated under three N fertilization regimes (low, high and fall fertilization). Data are means ± 1 SE.

Similar to our findings, other studies have shown a negative effect of N on root K_l (Mencuccini 2003, Hernández et al. 2009, Luis et al. 2010, Wang et al. 2016) and shoot K_l (Bucci et al. 2006). Nonetheless, a few studies have reported positive or no effects of N fertilization on shoot K_l (Clearwater and Meinzer 2001, Samuelson et al. 2007, Hacke et al. 2010). However, Hacke et al. (2010) and Samuelson et al. (2007) used different methods to measure K_h , which also might limit the comparability of these results. Fewer studies have analyzed the effect of N on K_s , and the results do not show clear trends (Lovelock et al. 2004, Samuelson et al. 2007, Hacke et al. 2010). It is also possible that the reduction of K_l and K_s in our study, and discordance among studies, occurs because normalization by leaf or xylem cross-section area (i.e., K_l and K_s) does not consider other leaf physiological processes and xylem anatomy features that are intimately linked to water transport and demand. These physiological processes and anatomical features also covary with leaf and xylem cross-section area in response to N availability. For instance, plants increase stomatal conductance and photosynthesis rate with N availability (Evans 1989, Ripullone et al. 2003, Oliet et al. 2013, Villar-Salvador et al. 2013), increasing water demand per leaf area. N fertilization also increases water-use efficiency (Hernández et al. 2009, Zhang et al. 2018) at an intraspecific level because stomatal conductance, and consequently transpiration rate, increases at a lower rate with N supply than does photosynthesis rate (Zhang et al. 2018). Therefore, at leaf level, maximum stomatal conductance or transpiration and

photosynthesis rate might be more important than leaf area *per se* for driving the coordination of plant hydraulic capacity with plant water demand during plant ontogeny. For example, Liu et al. (2019) found that stomatal conductance was positively correlated with the hydraulic conductance of leaf venation. However, according to a meta-analysis by Zhang et al. (2018), stomatal conductance and transpiration rate vary little with N availability, while the production of leaves is strongly increased. Consequently, the maximum plant transpiration, calculated as the product of maximum stomatal conductance and total leaf area, might increase at a similar or a lower rate than K_h and at a lower rate than leaf area in response to an increase in N availability. Hence the normalization of K_h by plant maximum transpiration, rather than by leaf area, might provide a more precise picture of plant hydraulic efficiency because it represents the plant's specific demand of water. At the xylem level, high N availability can increase the density of conduits per sapwood area (Borghetti et al. 2016) and the diameter of the conduits (Hacke et al. 2010, Zhang et al. 2018). The conducting potential of a conduit, according to the Hagen–Poiseuille law, is proportional to the fourth power of its radius (Zimmermann 1983, Castro-Díez et al. 1998). In addition, N can increase the expression of water transporters such as aquaporins (Hacke et al. 2010). Therefore, the relationship between the xylem cross-section area and hydraulic conductance can be variable (see Cruiziat et al. 2002); small changes in xylem anatomy and aquaporins with N addition could have a disproportionate high impact on its conductance, augmenting the capacity of shoot

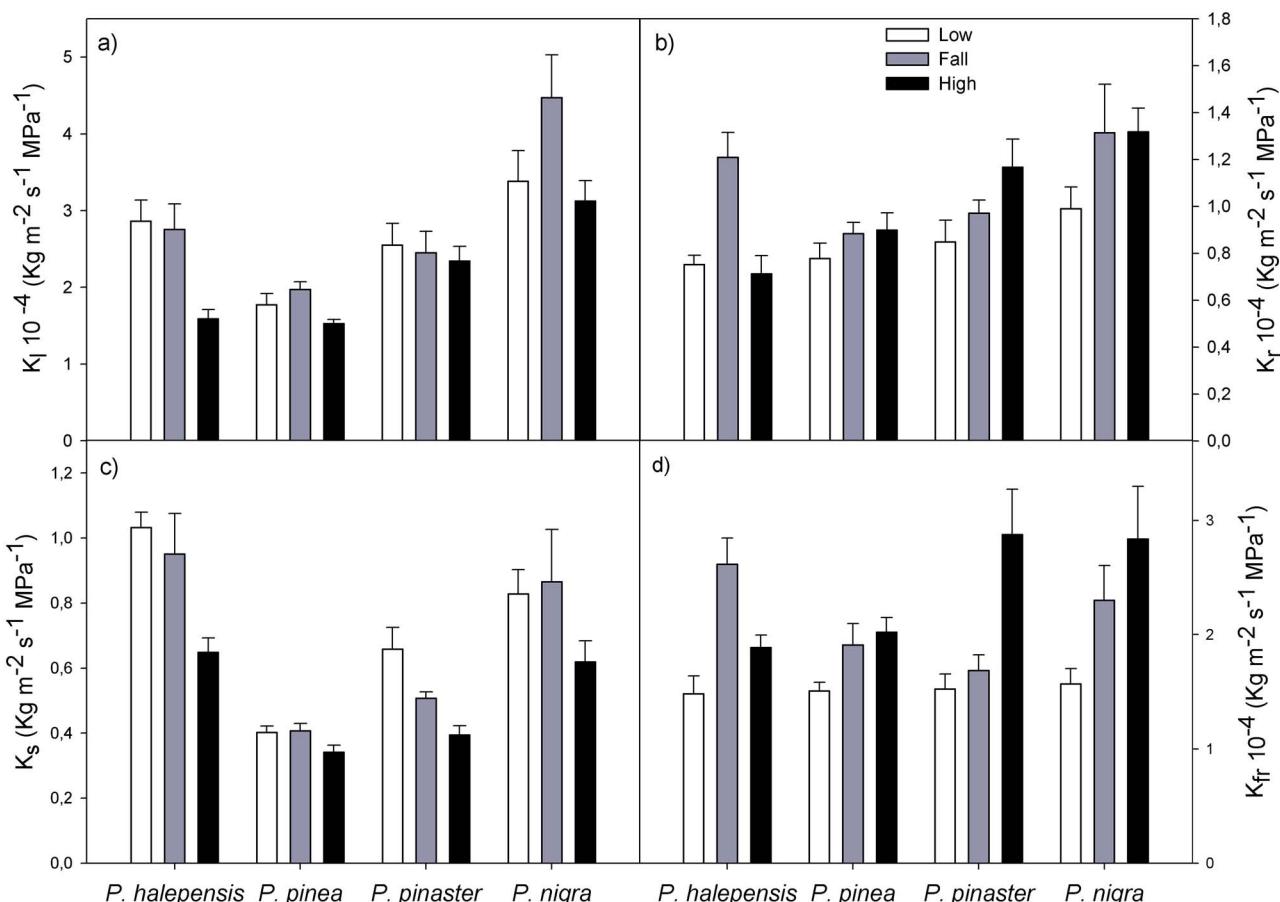


Figure 2. Root hydraulic conductance per leaf surface area (K_l) (a), root surface area (K_r) (b), xylem cross-section area (K_s) (c) and fine root surface area (K_{fr}) (d) in 1-year-old seedlings of four pine species that were cultivated with three nitrogen fertilization treatments (low, high and fall fertilization). Data are means ± 1 SE.

xylem to supply water to the high demanding leaves of high N fertilized seedlings.

Nitrogen fertilization increased the root surface in all species (Table 2) but contrary to results for leaf area, total and fine root surface increased at a lower rate than K_h . This explains the positive effect of N fertilization on K_r and K_{fr} and suggests an increase in the hydraulic efficiency of root system with N. The effect of N on root growth varies among studies; most studies report an increase in root growth in response to N fertilization (Hernández et al. 2009), while less frequently others have reported a decrease (Wang et al. 2017) or no effect (Trubat et al. 2006). Response of K_r to N supply also varies among studies, showing mostly a slightly positive or no effect in response to N (Steudle and Meshcheryakov 1996, Trubat et al. 2006, 2012, Wang et al. 2017) and a few negative reports (Hernández et al. 2009, Luis et al. 2010). Total root surface includes roots with different roles in plant hydraulics: fine roots, which determine water uptake, and coarse roots, which primarily serve as anchorage and water transport (Wells and Eissenstat 2002, Kallikoski et al. 2010, Rewald et al. 2011). Similar to K_l and K_s , K_r may also account for some

other root physiological and structural processes affected by N availability. On one hand, most published studies that measured K_r used plants that were grown in pots of small volume that might limit root growth (Poorter et al. 2012). However, for Iberian pine species, a reduction in container volume along a gradient from 7 to 0.2 l pots increased the relative biomass allocated to roots (Climent et al. 2011). On the other hand, N reduces the fine-to-coarse-root ratio (Table 2) (Li et al. 2015) but increases the genetic expression of aquaporins (Hacke et al. 2010), potentially increasing the water absorptive capacity and hydraulic conductance of the root system per unit of root area. Consequently, differences in the effect of N on K_r observed among most studies seem to stem from variation in how root morphology and physiology is affected by N availability.

We suggest that the normalization of root K_h by fine root surface (K_{fr}), which account for most of the water and nutrient absorption of the root system (Green and Clothier 1999, Wells and Eissenstat 2002, Rewald et al. 2011) instead of total root surface, gives a more precise picture of functional changes of root hydraulics in response to N fertilization. Similar to K_r , however, some of the effects of N on root anatomy and

Table 2. Plant morphological and nutrient traits of 1-year-old seedlings of four pine species that were cultivated with contrasting N fertilization regimes.

Species	Treatment	Seedling mass (g)	Leaf area (cm ²)	Xylem surface (mm ²)	Root surface (cm ²)	Root-to-shoot-mass ratio	Fraction of fine root surface (%)	RGR 10 ² (week ⁻¹)	Root hydraulic conductance K_h 10 ⁻⁶ (kg s ⁻¹ MPa ⁻¹)
<i>Pinus halepensis</i>	Low	2.53 ± 0.15	86 ± 8	2.4 ± 0.2	327 ± 32	0.73 ± 0.02	52.4 ± 3.4	4.44 ± 0.15	2.45 ± 0.25
	Fall	5.49 ± 0.52	173 ± 12	5.3 ± 0.8	385 ± 19	0.57 ± 0.03	46.4 ± 1.9	6.05 ± 0.16	4.55 ± 0.24
	High	9.25 ± 1.09	324 ± 37	8.0 ± 1.0	735 ± 91	0.48 ± 0.02	41.9 ± 3.6	7.41 ± 0.26	4.99 ± 0.36
	Low	6.62 ± 0.23	162 ± 18	8.2 ± 0.2	434 ± 36	0.42 ± 0.03	51.6 ± 3.1	3.46 ± 0.08	3.28 ± 0.14
<i>Pinus pinea</i>	Fall	11.89 ± 0.94	288 ± 24	14.1 ± 1.3	635 ± 23	0.35 ± 0.02	47.4 ± 2.7	4.80 ± 0.19	5.63 ± 0.40
	High	14.32 ± 0.64	337 ± 17	15.1 ± 0.4	585 ± 46	0.30 ± 0.02	44.8 ± 3.4	5.26 ± 0.10	5.14 ± 0.26
	Low	5.02 ± 0.43	142 ± 13	5.5 ± 0.5	422 ± 31	0.54 ± 0.02	55.2 ± 2.4	4.45 ± 0.19	3.52 ± 0.33
	Fall	6.53 ± 0.24	172 ± 12	8.2 ± 0.7	426 ± 31	0.47 ± 0.04	58.3 ± 2.1	5.09 ± 0.08	4.08 ± 0.21
<i>Pinus pinaster</i>	Fall	12.89 ± 1.16	268 ± 24	15.6 ± 1.4	542 ± 46	0.41 ± 0.02	6.63 ± 0.21	6.22 ± 0.68	4.63 ± 0.51
	High	5.22 ± 0.90	3.92 ± 0.25	9.2 ± 1.1	3.69 ± 28	0.75 ± 0.03	41.9 ± 2.0	2.96 ± 0.27	2.96 ± 0.22
	Low	8.43 ± 0.50	178 ± 19	8.6 ± 0.4	384 ± 64	0.69 ± 0.05	56.8 ± 3.2	4.92 ± 0.00	5.16 ± 0.14
	High	8							5.48 ± 0.44
<i>Pinus nigra</i>	Fall								
	High								
	Low								
	Fall								

Data are means ± 1 SE.

physiology, such as the increase in the expression of aquaporins (Hacke et al. 2010), persist if K_h is normalized by fine root surface. The positive effect of N on K_{fr} concurs with the higher RGR in our plants (Table 2) and photosynthesis rate of high-fertilized seedlings reported in the literature (see references above) in accordance with the root system role of plant water provider. This link between plant functional attributes and K_{fr} at the intraspecific level agree with those at the interspecific level, whereby hydraulic conductance is positively related to RGR (Reich 2014) and transpiration and photosynthesis rate (Brodrribb 2009). The increase in K_{fr} with N fertilization could compensate for the high potential vulnerability to water stress of high N fertilized plants due to low root-to-shoot ratio (Grossnickle 2012) and could also help explain the higher survival rate of high N fertilized plants over low N fertilized plants under outplanting conditions (Kontunen-Soppela et al. 2000, Oliet et al. 2009, Villar-Salvador et al. 2012).

The four pine species showed differences in root hydraulic efficiency in response to N (Figure 2). However, these differences in root hydraulic efficiency were not related to traits associated to species ecology (see Introduction). This contrasts with results on frost tolerance, growth dynamics and root architecture in response to N supply in these same species, which were related to species ecology (Toca et al. 2018, 2019). The normalization criteria used in this study to assess the effect of N supply on root hydraulics within species potentially may have the same limitations for comparing the hydraulic system across species. Species strongly differ in gas exchange rate (Maherali et al. 2006) and water-use efficiency (Ponton et al. 2006), xylem conduit diameter and density (Cruziat et al. 2002, Fernández-Pérez et al. 2018). However, at the interspecific scale, evidence shows that K_l is related to gas exchange and growth rates (Brodrribb and Feild 2000, Brodrribb et al. 2004, Santiago et al. 2004, Maherali et al. 2008, Choat et al. 2011, Reich 2014, Liu et al. 2019), likely because the differences among species in K_h override the differences in physiological attributes that covary with leaf area.

Conclusions

This study shows that N affects the root hydraulics of pine species, but the different normalization criteria of Root hydraulic conductance K_h provided radically different pictures of the efficiency of the plant hydraulic system: high N availability had a negative effect on leaf specific conductance K_l and xylem specific conductance K_s , yet a positive effect on root specific conductance K_r and especially on fine root specific conductance K_{fr} . The effect of N on plant hydraulics described by K_{fr} and K_r seems to be consistent with the evidence at intraspecific and interspecific levels, where plant hydraulics is linked to other physiological processes such as growth rate and photosynthesis. Discrepancies among the various normalization criteria

were associated with different biomass allocation patterns of plant fractions with N fertilization: while foliage and xylem transversal area increased faster than K_h , root area increased with N fertilization at a lower rate than that of K_h . Normalization of K_h by leaf or xylem transversal area (i.e., K_l and K_s) probably does not account for leaf physiological processes and xylem anatomy features that are intimately linked to water transport capacity, which also covaries with leaf and xylem cross-section area in response to N availability. Future research is needed to develop normalization methods that more accurately reflect the coordination between the water transport capacity of the hydraulic system and water demand of the plant.

Supplementary Data

Supplementary Data for this article are available at *Tree Physiology* Online.

Acknowledgments

We appreciate the help from the Centro Nacional de Mejora Genética Forestal 'El Serranillo' (MAGRAMA), which supported the study with seedling cultivation. We are grateful to Centro de Investigación Forestal (INIA-CIFOR) and especially Ismael Aranda for laboratory assistance. We are grateful to Instituto de Investigación y Tecnología Agroalimentarias (IRTA) and particularly Robert Savé and Felicidad de Herralde for the technical assistance. We also thank Andrea Nardini for his helpful review of the manuscript.

Funding

This research was supported by the projects AGL2011-24296 (ECOLPIN) and CGL2014-53308-P (SERAVI) and by the network REMEDINAL 3 (S2013/MAE-2719) of the Community of Madrid.

Conflict of interest

None declared.

References

Alía Miranda R, García del Barrio JM, Iglesias Sauce S, José Antonio MN, De Miguel y De Ángel J, Nicolás Peragón JL, Pérez Martín F, Sánchez De Ron D (2009) Regiones de procedencia de especies forestales en España. Organismo Autónomo Parques Nacionales, Madrid, Spain.

Barbero M, Loisel R, Quézel P, Romane F, Richardson DM (1998) Pines of the Mediterranean Basin. In: Richardson D (ed) *Ecology and biogeography of Pinus*. Cambridge University Press, Cambridge, UK, pp 153–170.

Birk EM, Vitousek PM (1986) Nitrogen availability and nitrogen use efficiency in loblolly pine stands. *Ecology* 67:69–79.

Borghetti M, Gentilesca T, Leonardi S, Van Noije T, Rita A (2016) Long-term temporal relationships between environmental conditions and xylem functional traits: a meta-analysis across a range of woody species along climatic and nitrogen deposition gradients. *Tree Physiol* 37:4–17.

Brissette JC, Chambers JL (1992) Leaf water status and root system water flux of shortleaf pine (*Pinus echinata* Mill.) seedlings in relation to new root growth after transplanting. *Tree Physiol* 11:289–303.

Brodrribb TJ (2009) Xylem hydraulic physiology: the functional backbone of terrestrial plant productivity. *Plant Sci* 177:245–251.

Brodrribb TJ, Feild TS (2000) Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. *Plant Cell Environ* 23:1381–1388.

Brodrribb TJ, Holbrook NM, Gutiérrez MV (2002) Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees. *Plant Cell Env* 25:1435–1444.

Brodrribb TJ, Holbrook NM, Zwieniecki MA, Palma B (2004) Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. *New Phytol* 165:839–846.

Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Franco AC, Campanello PI, Villalobos-Vega R, Bustamante M, Miralles-Wilhelm F (2006) Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. *Plant Cell Environ* 29:2153–2167.

Castro-Díez P, Puyravaud JP, Cornelissen JHC, Villar-Salvador P (1998) Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. *Oecologia* 116:57–66.

Choat B, Medek DE, Stuart SA, Pasquet-Kok J, Egerton JJJ, Salari H, Sack L, Ball MC (2011) Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens. *New Phytol* 191: 996–1005.

Clearwater MJ, Meinzer FC (2001) Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized *Eucalyptus grandis* trees. *Tree Physiol* 21:683–690.

Climent J, Chambel MR, Pardos M, Lario F, Villar-Salvador P (2011) Biomass allocation and foliage heteroblasty in hard pine species respond differentially to reduction in rooting volume. *Eur J For Res* 130:841–850.

Cochard H, Bréda N, Granier A (1996) Whole tree hydraulic conductance and water loss regulation in *Quercus* during drought: evidence for stomatal control of embolism? *Ann For Sci* 53:197–206.

Crowley PH (1992) Resampling methods for data analysis in ecology and evolution. *Annu Rev* 23:405–447.

Cruziat P, Cochard H, Améglio T (2002) Hydraulic architecture of trees: main concepts and results. *Ann For Sci* 59:723–752.

Domec J, Palmroth S, Ward E, Maier CA, Thérizien M, Oren RAM (2009) Acclimation of leaf hydraulic conductance and stomatal conductance of *Pinus taeda* (loblolly pine) to long-term growth in elevated CO₂ (free-air CO₂ enrichment) and N-fertilization. *Plant Cell Environ* 2:1500–1512.

Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. *Oecologia* 78:9–19.

Fennell A, Markhart AH (1998) Rapid acclimation of root hydraulic conductivity to low temperature. *J Exp Bot* 49:879–884.

Fernández-Pérez L, Villar-Salvador P, Martínez-Vilalta J, Toca A, Zavala MA (2018) Distribution of pines in the Iberian peninsula agrees with species differences in foliage frost tolerance, not with vulnerability to freezing-induced xylem embolism. *Tree Physiol* 38:507–516.

Fichot R, Chamaillard S, Depardieu C, Le Thiec D, Cochard H, Barigah TS, Brignolas F (2011) Hydraulic efficiency and coordination with xylem resistance to cavitation, leaf function, and growth performance among eight unrelated *Populus deltoides* × *Populus nigra* hybrids. *J Exp Bot* 62:2093–2106.

Gonzalo J (2008) *Diagnóstico fitoclimático de la España peninsular*. In: *Actualización y análisis geoestadístico aplicado*. Doctoral dissertation. Universidad Politécnica de Madrid, Madrid.

Green S, Clothier B (1999) The root zone dynamics of water uptake by a mature apple tree. *Plant Soil* 206:61–77.

Grossnickle SC (2012) Why seedlings survive: influence of plant attributes. *New For* 43:711–738.

Hacke UG, Plavcova L, Almeida-Rodriguez A, King-Jones S, Zhou W, Cooke JEK (2010) Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar. *Tree Physiol* 30:1016–1025.

Hajek P, Leuschner C, Hertel D, Delzon S, Schultdt B (2014) Trade-offs between xylem hydraulic properties, wood anatomy and yield in *Populus*. *Tree Physiol* 34:744–756.

Hernández EI, Vilagrosa A, Luis VC, Llorca M, Chirino E, Vallejo VR (2009) Root hydraulic conductance, gas exchange and leaf water potential in seedlings of *Pistacia lentiscus* L. and *Quercus suber* L. grown under different fertilization and light regimes. *Environ Exp Bot* 67:269–276.

Herrero A, Castro J, Zamora R, Delgado-Huertas A, Querejeta JI (2013) Growth and stable isotope signals associated with drought-related mortality in saplings of two coexisting pine species. *Oecologia* 173:1613–1624.

Kallikoski T, Sievänen R, Nygren P (2010) Tree roots as self-similar branching structures: axis differentiation and segment tapering in coarse roots of three boreal forest tree species. *Trees* 24:219–236.

King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty P (2002) Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. *New Phytol* 154:389–398.

Kontunen-Soppela S, Taulavuori K, Taulavuori E, La P, Laine K (2000) Soluble proteins and dehydrins in nitrogen-fertilized Scots pine seedlings during deacclimation and the onset of growth. *Physiol Plant* 109:404–409.

Lafuente D, Rodríguez-Núñez L, Majada J (2013) *Pinus pinaster* A. In: Pemán J, Navarro-Cerrillo RM, Nicolás JL, Prada MA, Serrada R (eds) *Producción y Manejo de Semillas y Plantas Forestales. Tomo II*. Organismo Autónomo Parques Nacionales, Madrid, Spain, pp 900–927.

Lambers H, Chapin III FS, Pons L (2008) *Plant Physiological Ecology*. 2nd Edition, Springer-Verlag, New York.

Li W, Jin C, Guan D, Wang Q, Wang A, Yuan F, Wu J (2015) The effects of simulated nitrogen deposition on plant root traits: a meta-analysis. *Soil Biol Biochem* 82:112–118.

Liu X, Liu H, Gleason SM, Goldstein G, Zhu S, He P, Hou H, Li R, Ye Q (2019) Water transport from stem to stomata: the coordination of hydraulic and gas exchange traits across 33 subtropical woody species. *Tree Physiol* 39:1665–1674.

Lovelock CE, Feller IC, McKee KL, Engelbrecht BMJ, Ball MC (2004) The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panamá: the effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panamá. *Funct Ecol* 18: 25–33.

Luis VC, Llorca M, Chirino E, Hernández EI, Vilagrosa A (2010) Differences in morphology, gas exchange and root hydraulic conductance before planting in *Pinus canariensis* seedlings growing under different fertilization and light regimes. *Trees* 24:1143–1150.

Maherali H, Moura CF, Caldeira MC, Willson CJ, Jackson RB (2006) Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. *Plant Cell Environ* 29:571–583.

Maherali H, Sherrard ME, Clifford MH, Latta RG (2008) Leaf hydraulic conductivity and photosynthesis are genetically correlated in an annual grass. *New Phytol* 180:240–247.

Mencuccini M (2003) The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. *Plant Cell Environ* 26:163–182.

Mencuccini M, Rosas T, Rowland L et al. (2019) Leaf economics and plant hydraulics drive leaf: wood area ratios. *New Phytol* 224: 1544–1556.

Mitrakos K (1980) A theory for Mediterranean plant life. *Acta Oecologica, Oecologia Plant* 1:245–252.

Nardini A, Tyree MT (1999) Root and shoot hydraulic conductance of seven *Quercus* species. *Ann For Sci* 56:371–377.

Navarro Cerrillo RM, Sánchez Lancha A, Arroyo Sauces M, Plaza Arregui L, Mallofret Carrera E, Lara Gómez M, Monge R (2013) *Pinus pinea* L. In: Pemán J, Navarro-Cerrillo RM, Nicolás JL, Prada MA, Serrada R (eds) *Producción y Manejo de Semillas y Plantas Forestales. Organismo Autónomo Parques Nacionales, Tomo II*, Madrid, Spain, pp 928–959.

Oliet JA, Planelles R, Artero F, Valverde R, Jacobs DF, Segura ML (2009) Field performance of *Pinus halepensis* planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. *New For* 37:313–331.

Oliet JA, Puértolas J, Planelles R, Jacobs DF (2013) Nutrient loading of forest tree seedlings to promote stress resistance and field performance: a Mediterranean perspective. *New For* 44: 649–669.

Peñuelas JL, Nicolás Peragón JL, Benito Matias LF (2013) *Pinus nigra* subsp. *salzmannii* (Dunal) Franco. In: Pemán J, Navarro-Cerrillo RM, Nicolás JL, Prada MA, Serrada R (eds) *Producción y Manejo de Semillas y Plantas Forestales. Organismo Autónomo Parques Nacionales, Tomo II*, Madrid, Spain, pp 881–927.

Ponton S, Flanagan LB, Alstad KP, Johnson BG, Morgenstern K, Kljun N, Black TA, Barr AG (2006) Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. *Glob Chang Biol* 12:294–310.

Poorter H, Böhler J, Van Dusschoten D, Climent J, Postma JA (2012) Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. *Funct Plant Biol* 39:839–850.

Puértolas J, Prada MA, Climent J, Oliet J, Del Campo García A (2013) *Pinus halepensis* Mill. In: Pemán J, Navarro-Cerrillo RM, Nicolás JL, Prada MA, Serrada R (eds) *Producción y Manejo de Semillas y Plantas Forestales. Organismo Autónomo Parques Nacionales, Tomo II*, Madrid, Spain, pp 855–880.

Reich PB (2014) The world-wide 'fast-slow' plant economics spectrum: a traits manifesto. *J Ecol* 102:275–301.

Rewald B, Ephrath JE, Rachmilevitch S (2011) A root is a root is a root? Water uptake rates of citrus root orders. *Plant Cell Environ* 34: 33–42.

Ripullone F, Grassi G, Lauteri M, Borghetti M (2003) Photosynthesis-nitrogen relationships: interpretation of different patterns between *Pseudotsuga menziesii* and *Populus x euroamericana* in a mini-stand experiment. *Tree Physiol* 23:137–144.

Ruiz-Benito P, Gómez-Aparicio L, Zavala MA (2012) Large-scale assessment of regeneration and diversity in Mediterranean planted pine forests along ecological gradients. *Divers Distrib* 18:1092–1106.

Samuelson LJ, Stokes TA, Coleman MD (2007) Influence of irrigation and fertilization on transpiration and hydraulic properties of *Populus deltoides*. *Tree Physiol* 27:765–774.

Sands R, Fiscus E, Reid C (1982) Hydraulic properties of pine and bean roots with varying degrees of suberization, vascular differentiation and mycorrhizal infection. *Aust J Plant Physiol* 9:559.

Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004) Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. *Oecologia* 140:543–550.

Steudle E, Meshcheryakov AB (1996) Hydraulic and osmotic properties of oak roots. *J Exp Bot* 47:387–401.

Toca A, Oliet JA, Villar-Salvador P, Maroto J, Jacobs DF (2018) Species ecology determines the role of nitrogen nutrition in the frost tolerance of pine seedlings. *Tree Physiol* 38:96–108.

Toca A, Oliet JA, Villar-Salvador P, Martínez Catalán RA, Jacobs DF (2019) Ecologically distinct pine species show differential root development after outplanting in response to nursery nutrient cultivation. *For Ecol Manage* 451:117562.

Trubat R, Cortina J, Vilagrosa A (2006) Plant morphology and root hydraulics are altered by nutrient deficiency in *Pistacia lentiscus* (L.). *Trees* 20:334–339.

Trubat R, Cortina J, Vilagrosa A (2012) Root architecture and hydraulic conductance in nutrient deprived *Pistacia lentiscus* L. seedlings. *Oecologia* 170:899–908.

Tyree MT, Patino S, Bennink J, Alexander J (1995) Dynamic measurements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field. *J Exp Bot* 46:83–94.

Villar-Salvador P, Puértolas J, Cuesta B, Peñuelas JL, Uscola M, Heredia-Guerrero N, Rey Benayas JM (2012) Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. *New For* 43:755–770.

Villar-Salvador P, Peñuelas JL, Jacobs DF (2013) Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of *Pinus pinea* L. seedlings. *Tree Physiol* 33: 221–232.

Wang A-Y, Wang M, Yang D, Song J, Zhang W-W, Han S-J, Hao G-Y (2016) Responses of hydraulics at the whole-plant level to simulated nitrogen deposition of different levels in *Fraxinus mandshurica*. *Tree Physiol* 36:1045–1055.

Wang G, Liu F, Xue S (2017) Nitrogen addition enhanced water uptake by affecting fine root morphology coarse root anatomy of Chinese pine seedlings. *Plant and Soil* 418:177–189.

Wells CE, Eissenstat DM (2002) Beyond the roots of young seedlings: the influence of age and order on fine root physiology. *J Plant Growth Regul* 21:324–334.

Wright IJ, Falster DS, Pickup M, Westoby M (2006) Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. *Physiol Plant* 127: 445–456.

Zhang H, Li W, Adams HD, Wang A, Wu J, Jin C, Guan D, Yuan F (2018) Responses of woody plant functional traits to nitrogen addition: a meta-analysis of leaf economics, gas exchange, and hydraulic traits. *Front Plant Sci* 9:1–10.

Zhang JL, Cao KF (2009) Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species. *Funct Ecol* 23:658–667.

Zimmermann MH (1983) Xylem structure and the ascent of sap. In: Springer series in wood science. Springer-Verlag, Berlin.