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Abstract

TPX2 proteins were first identified in vertebrates as a key mitotic spindle assembly factor.
Subsequent studies demonstrated that TPX2 is an intricate protein, with functionally and
structurally distinct domains and motifs including Aurora kinase binding, importin-binding,
central microtubule binding, C-terminal TPX2 conserved domain, among others. The first plant
TPX2-like protein, WAVE-DAMPENED2, was identified in Arabidopsis as a dominant mutation
responsible for reducing the waviness of roots grown on slanted agar plates. Each plant
genome encodes at least one “canonical” protein with all TPX2 domains and a family of proteins
(20 in Arabidopsis) that diversified to contain only some of the domains. Although, all plant
TPX2-family proteins to date bind microtubules, they function in distinct processes such as cell
division, regulation of hypocotyl cell elongation by hormones and light signals, vascular
development, or abiotic stress tolerance. Consequently, their expression patterns, regulation,
and functions have diverged considerably. Here we summarize the current body of knowledge

surrounding plant TPX2-family proteins.

Summary statement
TPX2 protein family consists of WAVE-DAMPENED2-like (WDL) and TPX2-like (TPXL) groups.
WDLs govern cell expansion in response to ethylene, light, brassinosteroids, and abiotic

stresses. TPXLs function in mitotic spindle assembly and activating Aurora kinase.

Introduction
Microtubules in plants direct intracellular trafficking and govern spatial distribution of

organelles. Organization of microtubules changes to suit any developmental or physiological
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situation that a plant could encounter throughout its life cycle. Of the most spectacular examples
is assembly of structurally and functionally distinct microtubule arrays during mitosis: the pre-
prophase band, mitotic spindle, anaphase spindle, the phragmoplast, and cortical microtubule
array. The pre-prophase band forms during transition from G2 to prophase and marks the
position of the division plane; the metaphase spindle ensures equal inheritance of information
between daughter cells; the anaphase spindle separates daughter chromatids; and the
phragmoplast constructs partition between daughter cells (reviewed in [1]). The cortical
microtubule array forms during interphase and amongst many roles determines the direction of
cell expansion. Typically, cells expand perpendicular to the orientation of cellulose microfibrils in
the cell wall, which in turn mimics orientation of cortical microtubules [2-4]. Ability to direct
orientation of cellulose microfibrils makes microtubules a key effector of signalling pathways that
regulate plant morphogenesis [5,6].

Organization of microtubules is governed by an ensemble of microtubule-associated
proteins (MAPs) that facilitate formation of new microtubules; stabilize, destabilize, or sever
microtubules; link microtubules together or to other structures; and facilitate trafficking along
microtubules (reviewed in [7]). Some MAPs are conserved across all eukaryotes, e.g.
microtubule nucleating gamma-tubulin ring complex [8], microtubule severing protein katanin [9],
or microtubule polymerization factor MOR1/GEM1 [10,11]. Other MAPs are plant-specific e.g.
microtubule-stabilizing proteins MAP70 [12,13]. Several groups of MAPs are partially
conserved. One of them are TPX2-like (TPXL) and WAVE-DAMPENED2-like proteins that
combine evolutionarily conserved and plant-specific domains [14,15]. Here we overview the

current body of knowledge about this family of proteins and highlight the key knowledge gaps.

Discovery of plant TPX2 proteins

TPX2 was originally identified in vertebrates as a Targeting Protein for Xenopus laevis
kinesin-like protein 2 [TPX2; 16,17]. Depletion of TPX2 from Xenopus egg total protein extracts
using TPX2 antibody abrogated targeting of Xenopus laevis kinesin-like protein 2 (Xklp2) to the
spindle poles and resulted in mitotic failure. Subsequent studies revealed that TPX2 is an
evolutionarily conserved microtubule-binding protein in vertebrates and invertebrates [18-21].
The list of TPX2 functions during mitosis in vertebrates encompasses targeting Aurora A protein
kinase to the spindle poles; activating Aurora A [18,22]; and promoting branching microtubule
nucleation by increasing the efficiency of microtubule nucleation in concert with the y-tubulin
ring complex (y-TuRC) [23,24]. TPX2 can also promote microtubule nucleation by stabilizing

early nucleation intermediates [25-27].
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Each of the above TPX2 functions is undertaken by specialized domains (Figure 1). The
N-terminus contains an Aurora-binding and activation domain [28]. The centrally positioned
importin-binding domain, called the TPX2/Importin domain, mediates the localization of XkIp2 to
the mitotic spindle [29-31]. A nuclear localization signal (NLS) keeps TPX2 in the nucleus during
interphase [32]. During mitosis activity of TPX2 is inhibited through associates with o/ Importin
complex TPX2 [19,33]. A high concentration of RanGTP, produced by the chromatin component
Ran-GEF RCCA1, sequesters importin 8 causing dissociation of importin oo from TPX2. Then
TPX2 can contribute to microtubule nucleation, and Aurora A targeting and activation [17,34]. y-
TuRC activation is facilitated by a motif near the C-terminus of the protein [24]. The kinesin-
interacting domain and a highly conserved, but poorly characterized, TPX2-C domain (PF6886)
are located on the very C-terminus (Figure 1).

The first TPX2-family protein in plants, WAVE-DAMPENED 2 (WVD2) was identified in
Arabidopsis thaliana activation tag screen for altered root growth on slanted agar plates [35].
Over-expression of WVD2 resulted in altered anisotropic cell expansion and, consequently,
shorter and thicker roots and etiolated hypocotyls, with shorter and wider leaves [35]. Analysis
of the A. thaliana reference genome revealed one TPX2-family protein, AfTPX2, showing ca.
40% amino acid sequence similarity with human TPX2 and containing all conserved domains
(Figure 1) [36,37]. In addition, a TPX2 signature motif composed of 26-28 amino acids was
identified within the TPX2/Importin binding domain of this protein (PF12214) of AfTPX2 [36].

All angiosperm genomes sequenced to date contain at least one TPX2 protein with all
conserved domains and a family of proteins lacking certain domains [14,15,38-40]. For
example, A. thaliana genome has 20 TPX2-family genes (Table 1; Figure 2; Table S1) with
highly diverse sequences and functions. The functions of TPX2-family proteins extend beyond
cell division into facilitating anisotropic cell expansion in response to developmental and

environmental cues. Below we summarize the current knowledge on plant TPX2-family proteins.

Diversity of TPX2 proteins in plants

TPX2-family proteins were first classified according to the TPX2-C sequence of WVD2
[35,38,39,41]. TPX2-C of A. thaliana WVD2 has been noted to have a second haplotype
containing a plant-specific “‘KLEEK” motif [35], hereinafter referred to as TPX2-C*-55¥_ Four
major clades of WAVE-DAMPENED?2-like (WDL) proteins were identified in Arabidopsis, aspen,
Eucalyptus, cotton, moss and others (Figure 3) [14,15,38-40,42]. Proteins with TPX2-CX-EEX
form two clades, WDLA and WDLB (Figure 2, Figure 3), whereas proteins lacking the TPX2-
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CH-EEK constitute the MAP20 clade [39,40]. Currently, no information is available on what protein
sequence features contribute to segregation of proteins into WDLA and WDLB clades.

Although analysis of 574 TPX2-like plant protein sequences in the Gene Bank identified
TPX2-CK*EE€in representatives of WDLC clade, Arabidopsis members of this clade, with
exception of AWDLY7, lack the KLEEK motif (Figure 2). Most likely, these sequences group for
the conserved N-terminal WAVE-DAMPENED2-like New Domain (WAND) with yet unknown
functions (Figure 2, Figure 3). One member of this clade, MDP40, lacks any TPX2-domains
meaning MDP40 de-facto is not a TPX2-family protein.

Several TPX2-family proteins contain the N-terminal Aurora binding and central
TPX2/Importin binding domains, but lack the TPX2-C [43-45]. These proteins were named
TPX2-like proteins (TPXL). The latest phylogenetic study in A. thaliana with the sequences of
the N-terminal Aurora binding domain and central TPX2-signature domain identifies a novel
clade consisting of TPXL proteins TPXL2/3/4/8 (Figure 2, Figure 3; Table S1) [44].

TPX2-family genes have a complex non-overlapping transcription pattern. The most
ubiquitous is WDLB clade followed by WDLA and TPX2 [39,40]. The TPX2 clade exhibits the
highest expression in roots of Eucalyptus [39], whereas expression of WDLA and WDLB is the
highest in developing cotton fibres [40]. Members of WDLA clade in cotton are strongly
upregulated 20 days post anthesis [40]. MAP20 expresses mostly during late differentiation
stages of phloem and xylem in poplar and Brachypodium distachyon [38,46].

In summary, the hodgepodge of domain architecture within members of TPX2-family
proteins taken together with the transcriptomics data indicates that functions of these proteins
were evolved to fine-tune microtubule dynamics in the context of distinct, but highly specialized

cellular processes (Supplemental Table 2).

Functions of TPX2-family proteins during cell division

Activation of Aurora kinase and targeting of Aurora kinase to microtubules is an essential
activity of animal TPX2. Animal Aurora kinase regulates mitotic spindle assembly and
karyokinesis [18,22]. A. thaliana Aurora kinase in addition to the above functions also
contributes to establishing new tissues by orienting formative cell divisions [47]. Animal Aurora
kinase requires activation and one mechanism is autophosphorylation of the activation loop
[Reviewed in 48]. Using ancestor sequence reconstruction, it was shown that TPX2 is the
second mechanism to evolve for allosteric activation of Aurora A in human [49].

Activation of Aurora kinase by TPX2 family proteins in plants is supported by several
observations in A. thaliana. First, TPXL2 and TPXL3 interact with Aurora 1 and 2 under high-
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stringency tandem affinity tag purification and yeast two-hybrid analyses, and TPX2 interacts
with both kinases only under the least stringent wash conditions [45]. Fluorescent lifetime
microscopy confirms stronger interaction of Aurora 1-RFP with GFP fusions of TPXL2 or TPXL3
than with TPX2-GFP [45]. Second, either full-length A. thaliana TPX2 or its first 100 amino acids
fragment which includes the Aurora-binding domain enhance both Aurora 1 auto-
phosphorylation activity and the downstream histone 3 phosphorylation activity [43]. N-terminal
domains of TPXL2 and TPXL3 also activate Aurora 1 kinase [45].

Notably, Aurora 1 phosphorylates both full-length TPX2 and TPX2 lacking the Aurora-
binding domain [43]. Candidate Aurora phosphorylation sites were also identified in TPXL2 and
TPXL3 [45]. Currently, the role of TPXL phosphorylation by Aurora remains unknown. Thus,
plant TPXL can bind and activate Aurora 1 through the conserved Aurora-binding domain on the
N-terminus and Aurora 1 can phosphorylate TPX2 independently of the binding domain.

TPXLs exhibit localization that is typical for microtubule-binding proteins. Antibody
against human TPX2 labelled nuclei prior to nuclear envelope breakdown (NEB), mitotic spindle
and spindle poles, but not the phragmoplast in Nicotiana tabacum BY-2 cells [36]. Similar
localization during mitosis was reported in Arabidopsis root cells stably expressing GFP-TPX2
[45,50,51]. TPXL2 and TPXL3 localise to the nuclear envelope during prophase, associate with
mitotic spindle microtubules, and concentrate around daughter nuclei after anaphase. In
addition, TPXL3 localizes to the phragmoplast distal zone [45].

TPXL proteins play an essential role in mitosis. Microinjecting the anti-human TPX2 into
Tradescantia stamen hair cells prevented the onset of mitosis and NEB [36]. Knockout of
TPXL3 in Arabidopsis resulted in embryo-lethality [45]. On the contrary, TPXL2 loss-of-function
allele tpx/2 and two TPX2 loss-of-function alleles tpx2-3 and tpx2-4 exhibited no discernible
phenotype [45]. These observations suggest functional redundancy between TPX2 and TPXL
proteins, but a unique role for TPXL3 (Figure 4).

The role of TPXLs in Aurora targeting was thus far addressed only in the interphase
cells. These experiments were facilitated by the discovery that ectopic expression of GFP-TPX2
or GFP-TPXL3 in Nicotiana benthamiana leaf pavement cells results in labelling of the intra-
nuclear microtubules, whereas TPXL2 and Aurora 1 localize in the nucleoplasm [37,45]. Co-
expression of TPXL3 with Aurora 1 was sufficient for targeting Aurora 1 to the intranuclear
microtubules; co-expression of TPXL2 and Aurora 1 resulted in both proteins associated with
microtubules; and somewhat surprisingly, Aurora 1 caused dissociation of TPX2 from
intranuclear microtubules [45]. Transient over-expression experiments in the interphase cells
showed microtubule and nuclear localization of TPXL1, TPXL2, TPXL3, TPX4 and TPX8;
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microtubule only localization of TPXL5 and TPXL6; and nuclear envelope only localization of
TPXL7 [44]. Co-expression of these proteins with Aurora kinase relocated TPXL7 into nucleus
and caused stronger nuclear labelling of other proteins with exception of TPXL1 [44]. This
outcome suggests involvement of many TPXLs in Aurora localization and activation (Figure 4;
Supplemental Table 2).

The origin of intranuclear microtubules and their function remain unclear. Although plant
nuclei reportedly contain tubulin [52], microtubules were not reported using conventional live-cell
imaging probes. Plausibly, ectopic TPXL expression stimulates microtubule assembly from the
nuclear tubulin pool. The next crucial step will be determining how the above findings in vitro
and in interphase cells relate to Aurora activation and targeting during mitosis.

TPX2 binds microtubules in aur1/aur2 demonstrating that TPX2 can associate to spindle
microtubules independently of Aurora (corroborating findings of studies in animal systems).
Aurora 1 localizes to spindle MTs in {px2-3 mutant cells further supporting functional
redundancy of canonical TPX2 in plants [45].

In conclusion, of many known TPX2 functions in animals, only activation of Aurora
kinase has been examined in plants thus far. Furthermore, at least three plant TPXL proteins
appear to be responsible for the mitotic activities of single animal TPX2. Considering profound
differences of spindle construction between plants and animals, one of which is lacking

structurally-defined spindle poles, TPXL proteins might play many unique roles in plant mitosis.

Functions of WDLs in anisotropic cell expansion and signalling

Orientation of cortical microtubules governs the direction of cell expansion by influencing
orientation of cellulose microfibril deposition in the cell wall [53,54]. In expanding cells, the
expansion axis is generally perpendicular to the overall orientation of microtubules, and
consequentially the cellulose microfibrils [55]. Cortical microtubules influence orientation of
cellulose microfibrils by serving as tracks for movement of cellulose synthase complexes
[56,57]. As cell expansion drives plant morphogenesis, microtubule organization appears to be
a key effector in many hormonal pathways [5,58,59], though mechanistic understanding of this
phenomenon remains limited. Several A. thaliana WDLs, WDL3, WDL5, MDP60, and MDP40,
contribute to regulation of microtubule orientation, cell expansion, and hypocotyl elongation in
response to ethylene, brassinosteroids, and light (Figure 5; Supplemental Table 2).

The idea that WDLs govern cell expansion was originally proposed by Yuen and co-
authors based on reduction of cell length in roots of A. thaliana plants overexpressing A.

thaliana WVD2 or WDL1 [35]. Roots in these plants were shorter and leaves, siliques, and



204 etiolated hypocotyls were smaller. Furthermore, the epidermal cells of etiolated hypocotyls

205  exhibited right-handed circumferential rotation and rosette leaves exhibited left-handed

206  circumferential rotation. The knockout phenotype of WVD2 and WDL 1 was not reported thus far,
207  but analysis of mutants in other WDL genes in A. thaliana support importance of these proteins
208  in cell expansion.

209

210  Biochemical properties of WDLs.

211 All A. thaliana WDLs studied thus far bind microtubules in vivo or in vitro. Eucalyptus
212  WDL3-YFP and WDL3L-GFP localize to cortical microtubules in tobacco leaf pavement cells
213  [39,40]. Cotton WDLA2 and WDLAT7 also bind cortical microtubules in tobacco leaf pavement
214  cells and interact with a-tubulin TUAZ2 in yeast two-hybrid assay, whereas WDLA4 and WDLA9
215  show diffused localization in the cytoplasm and nucleus [40].

216 A. thaliana WVD2, WDL3 and WDL5 stabilize microtubules. For example, WDL3 and
217  WDL5 reduce dilution-induced depolymerization of microtubules in vitro and cortical

218  microtubules in WDL5 knockout or WDL3 knockdown are more sensitive to the inhibitor of

219  microtubule polymerization oryzalin [60,61]. Over-expression of WDL3 in A. thaliana increases
220  microtubule tolerance to oryzalin [61]. Furthermore, these proteins can also bundle

221  microtubules. Structural illumination microscopy reveals reduced microtubule bundling in cells of
222  A. thaliana wdl5-1 etiolated hypocotyls relative to the wild-type control [62]. All three proteins
223  produce microtubule bundles in vitro, but electron microscopy shows microtubules in bundles
224  induced by WDL3 and WVD2 are "glued" together without an apparent linker [41,60,61]. Over-
225  expression of WVD2 in A. thaliana seedlings increases bundling of microtubules (zippering) and
226  reduces frequency of catastrophe events compared with controls [41].

227 On the contrary, A. thaliana MDP60 and MDP40 destabilize microtubules [63,64].

228  MDP60 binds microtubules in vitro and in vivo [64]. Incubation of microtubules with MDP60 in
229  vitro generates somewhat shorter microtubules and over-expression of MDP60 increases

230  microtubule sensitivity to oryzalin. MDP60 knockout makes microtubules more tolerant to

231  oryzalin treatment implying MDP60 acts through direct interaction with the microtubule lattice.
232 Knockdown of MDP40 in A. thaliana also makes microtubules more tolerant to oryzalin
233  treatment [63]. Although MDP40-GFP binds microtubules in vivo, direct interaction between
234  MDP40 and microtubules has not yet been examined [63]. This indicates MDP40 could

235  destabilize microtubules by affecting activity of known microtubule-severing factors or through
236 interaction with other proteins. If the WAND domain functions as a protein interface, MDP40
237  could localize to microtubules through interaction with this domain of WDL7, WDLS8, or WDLO9.
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The smallest family member, MAP20, was reported in aspen as a target of the cell-wall
synthesis herbicide 2,6-dichlorobenzonitrile [38]. GFP fusions of MAP20 from aspen,
Eucalyptus, and B. distachyon were shown to bind microtubules in the interphase cells
[38,39,46]. Furthermore, aspen and B. distachyon MAP20 can directly bind and stabilize
microtubules in vitro [38,46]. B. distachyon MAP20 suppresses microtubule depolymerization by
reducing tubulin loss from microtubule ends [46]. Over-expression of aspen or Eucalyptus
MAP20 in Arabidopsis perturbs normal cell expansion and causes deformation and twisting of
cotyledon and hypocotyl similarly to the wvd2 phenotype [35,39]. Comparison of B. distachyon
MAP20 activity with that of Xenopus TPX2 in the Xenopus egg total protein extract
demonstrated that MAP20 does not facilitate microtubule nucleation by y-TuRC, but promotes
microtubule elongation [46]. Collectively, MAP20, WVD2, WDL3 and WDL5 act as microtubule

stabilization factors in vitro and in vivo.

Ethylene and light signalling

Hypocotyl length is controlled by light and phytohormone signals, which modulate cell
length and microtubule orientation [65,66]. Dark-induced hypocotyl cell elongation is
accompanied by transverse orientation of microtubules, whereas suppression of cell elongation
by light results in oblique and longitudinal microtubules [67]. Ethylene plays an important role in
this process; exposure to ethylene promotes formation of longitudinal microtubules and inhibits
cell elongation resulting in a short, thick, curled plant phenotype [68]. Ethylene signalling occurs
through a well-studied pathway consisting of endoplasmic-reticulum membrane bound protein
EIN2 (Ethylene Insensitive 2). The C-terminal region of EIN2 is cleaved and localizes to the
nucleus where it activates transcription factors EIN3 and EIL1 that drive the expression of
ethylene-responsive genes [reviewed in 69]. Out of these two transcription factors, EIN3 plays
an essential role in regulating expression of several TPX2-family proteins.

One of EIN3 targets in A. thaliana is WDL5 (Figure 5B). EIN3 binds to WDL5 promoter
through three conserved motifs and promotes WDL5 transcription in response to ethylene [60].
Several observations demonstrate that ethylene promotes microtubule stability through WDL5.
First, pre-treatment of seedlings with the ethylene precursor 1-aminocyclopropane-1-carboxylic
acid (ACC) makes microtubules more stable resulting in lower susceptibility to oryzalin in control
but not in wdl5-1 plants [60]. Second, Sun et al. showed that microtubules are less stable in
ethylene unresponsive mutants ein2-5 and ein3eil1 [70,71] and more stable in constitutively

activated ethylene pathway mutant ctr7-7 [62].



271 Impaired microtubule stability in A. thaliana wdl5-1 knockout allele correlates with

272  abrogation of microtubule response to ethylene. Microtubules in hypocotyl epidermal cells of
273  both ein2-5 and wdl5-1 alleles stay predominantly transverse even after ACC treatment [62],
274  whereas microtubules in ctr1-1 are mostly longitudinal, oblique, or random even without ACC
275  treatment [62]. Epidermis cells of etiolated hypocotyls of wdl5-7 were longer than control plants
276  either with or without ACC treatment [62]. Consequently, etiolated hypocotyls of wdl5-1 were
277  longer indicating WDL5 functions in ethylene-dependent inhibition of cell elongation.

278 Another target of ethylene is phytochrome-interacting factor 3 (PIF3) [72]. Light

279  suppresses hypocotyl elongation by inducing degradation of PIF3 whereas ethylene promotes
280  hypocotyl elongation by up-regulating PIF3 expression. PIF3, in turn, binds the MDP60

281  promoter [64]. Consequently, both ethylene and PIF3 upregulate MDP60 transcription (Figure
282  5B). MDP60 promotes assembly of transverse microtubules [64]. Consequently, the frequency
283  of transverse microtubules in response to light or ACC depends on the MDP60 gene-dosage.
284  Hypocotyl epidermal cells and hypocotyls of light-grown mdp60 knockout allele are shorter than
285 in control seedlings, whereas over-expression of MDPG60 in wild-type background causes longer
286  hypocotyl epidermal cells and longer hypocotyls [64]. Furthermore, MDP60 over-expression can
287  rescue shorter hypocotyl phenotype in the pif3 or ethylene-insensitive ein2 mutant backgrounds.
288  Thus, MDP60 mediates ethylene-induced transverse orientation of microtubules and hypocotyl
289  elongation in response to light (Figure 5A).

290

291 COP1-dependent signaling

292 Another important regulator of light signaling is an ubiquitin E3 ligase CONSTITUTIVE
293 PHOTOMORPHOGENESIS 1 (COP1)[73,74]. COP1 represses photomorphogenic responses,
294  such as hypocotyl elongation, by conjugating ubiquitin with positive regulators of

295  photomorphogenesis for degradation by the 26S proteasome [75,76]. In dark-grown plants,
296  COP1 primarily localizes to the nucleus, however some is also present in the cytoplasm

297  [reviewed in 74]. Cytoplasmic COP1 was shown to interact with A. thaliana WDL3 in pull-down,
298  yeast-two-hybrid, firefly luciferase complementation imaging, and co-immunoprecipitation

299  assays [77]. Bimolecular fluorescence complementation and in vitro fluorescent microtubule
300 assays showed interaction between WDL3 and COP1 at the cortical microtubules [77].

301 WDL3 transcript was detected in both light and dark-grown A. thaliana seedlings,

302  however WDL3-GFP was only observed in light-grown seedlings. Treatment with 26S

303  proteasome inhibitor restored WDL3-GFP in dark-grown seedlings suggesting that 26S
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proteasome is responsible for WDL3 degradation [61,77]. COP1 is responsible for ubiquitination
of WDL3 prior the degradation (Figure 5B).

WDL3 promotes formation of longitudinal microtubule arrays in the cells of light-grown
seedlings (Figure 5A). Consequently, transverse to longitudinal switch of microtubules in
hypocotyl cells during light response was partially abrogated in WDL3 RNA. plants. The light-
grown WDL3 RNAI seedlings had longer hypocotyl epidermal cells and longer hypocotyls, while
over-expression of WDL3 resulted in shorter cells and shorter hypocotyls. Furthermore, WDL3
knockdown can partially rescue reduced dark-induced hypocotyl elongation in cop7-6 mutants
[77]. Thus, WDL3 is a downstream factor of COP1-mediated hypocotyl cell elongation (Figure
5A,B).

Brassinosteroids signaling

Brassinosteroids regulate almost all aspects of plant life including cell elongation and
hypocotyl growth through transcription factor BRASSINAZOLE-RESISTANT1 (BZR1)[reviewed
in 78]. Although several upstream components of brassinosteroid-signaling have been linked to
regulation of hypocotyl growth through BZR1 phosphorylation, the downstream effectors remain
less understood [reviewed in 78].

BZR1 binds to the MDP40 promoter and up-regulates MDP40 transcription in A. thaliana
(Figure 5B)[63]. Treatment of seedlings with the brassinosteroid, brassinolide, induces
formation of transverse cortical microtubule arrays in cotyledon epidermal cells of the wild-type
but not in the MDP40 knockdown seedlings grown in the dark. Etiolated hypocotyls of MDP40
RNAIi knockdown lines were shorter than in wild-type seedlings [63]. Overexpression of MDP40
rescues the short cell phenotype in the hypocotyl of brassinosteroid synthesis-deficient mutant,
det2 [79]. This indicates that MDP40 contributes to brassinosteroids-induced hypocotyl

elongation in the dark.

Stress adaptation

WDLs play an essential role in response and adaptation to environmental stresses. Salt
stress was found to activate WDLS5 transcription through the ethylene pathway in A. thaliana
seedlings [80]. One of the salt stress phenotypes is depolymerization of microtubules and plant
survival depends on the ability of cells to re-polymerize microtubules [reviewed in 81]. Several
observations highlight importance of ethylene in this process. First, microtubules in ein2-5
hypocotyl and cotyledon epidermal cells are hypersensitive to depolymerization under NaCl

treatment [80]. Second, ein3eil1 double knockouts failed to reassemble microtubules in

10
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cotyledon pavement cells under salt stress. WDL5 appears to be the ethylene effector
responsible for re-polymerization of microtubules. wdl5-1 cells frequently failed to reassemble
microtubules after 30-48 hours of salt stress, whereas over-expression of WDL5 resulted in
faster regeneration of microtubule network and nearly doubled plant survival in medium with 200
mM NaCl. Furthermore, WDL5 overexpression rescues microtubule reassembly defects and
salt-susceptibility phenotype of ein3eil1 double knockouts [80].

MDP60 contributes to hypocotyl elongation in response to submergence stress in A.
thaliana. Submergence causes microtubule orientation switch from longitudinal to transverse
[82]. Two facts suggest MDPG60 is essential for this response: MDP60 transcription increases
after 2 hours of seedling submergence, and MDP60 knockout partially abrogates this
microtubule reorientation. Upregulation of MDP60 transcription and microtubule re-orientation is
suppressed in the ethylene-insensitive mutant ein2, suggesting similarities between regulation
of microtubule orientation in response to light and stress [82].

MAP20 appears to be essential for adaptation to drought in B. distachyon. MAP20
localizes to the edges of vascular pits in developing xylem cells [46]. Pits play a dual role in
facilitating transport of solutions through the xylem during the rainy season and preventing the
spread of air pockets (embolisms) under drought [83-85]. Knockdown of MAP20 in B.
distachyon resulted in larger pits with thinner pit membranes and greater drought susceptibility
[46]. However, the cell wall thickness and cellulose content in the mutant was reduced only
slightly, suggesting non-linear relationship between MAP20 expression level and cell wall
synthesis [46]. Determining pit architecture in xylem cells is likely to be one of many MAP20

functions.

Concluding remarks
TPX2-family proteins deserve attention for their exciting evolutionarily history and

functional diversity. Gaining insight into the activity of these proteins will advance our knowledge
about regulation of microtubules in the context of different processes while enabling the
development of predictive models of plant responses to environmental and developmental cues.
Sustaining progress in analysis of these proteins requires addressing the following challenges:

e Characterize functions of all members of TPX2-family proteins (Supplemental Table 2).

e Determine how TPX2-family proteins promote microtubule polymerization and organization

both in vivo and in vitro; how MDP60 and MDP40 destabilize microtubules.
e Advance understanding in the relationships between Aurora kinase and TPXL proteins;

determine why some TPXL have lost TPX2-C; what is special about functions of TPXL3;

11
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what are the functions of TPXL phosphorylation by Aurora. In addition, understanding the
role of plant TPX2 protein if it is not the main targeting factors of Aurora to spindle
microtubules.
o Determine whether TPXL are regulated by importins, can interact with kinesins, activate y-
TuRC, and can nucleate microtubules.
e Characterize WAND domain and find out why MDP40 contains WAND domain but lost all
TPX2 domains.
Another intriguing question is whether WDL proteins have activities beyond regulation of
microtubule stability during interphase; for instance activation and targeting to microtubules of

proteins kinases or signalling factors.
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Figure legends

Figure 1. Conserved domains in human and Arabidopsis TPX2.

Figure 2. Domain organization of Arabidopsis TPX2-family proteins.

A. TPX2 has all conserved domains whereas other members of TPX2-family keep only some
domains. In addition, several members have a plant-specific WAND domain. Position of the
domains is listed in Table S1.

B. Alignment of the N-terminal region of TPX2-family proteins containing WAND domain with
the corresponding region of TPX2. The WAND domain is highlighted in red.

Figure 3. The grouping of TPX2-family proteins.

Phylodendrogram of Arabidopsis (blue font) and Eucalyptus (red font) TPX2-family proteins.
The bootstrap values were calculated from 1000 repeats. Branches with the bootstrap values
below 60% were collapsed. TPX2, TPX2-like, MAP20, WDLA, WDLB and WDLC clades
constitute TPX2-like and WDL2-like groups.

Figure 4. Role of TPXL proteins in cell division.

TPX2, TPXL2, and TPXL3 localize to the nuclear envelope, but not to the microtubules of the
pre-prophase band during prophase. Aurora kinase also localizes to the nuclear envelope
membrane. It is currently not known whether TPXLs and Aurora interact on the nuclear
envelope and require each other for this localization. TPXL function redundantly in promoting
nuclear envelope breakdown and mitotic spindle assembly. In the mitotic spindle, TPXLs target

Aurora kinase to microtubules and activate it.

Figure 5. Antagonistic interactions between WDLs modulate hypocotyl elongation.

A. WDL3 and WDL5 stabilize microtubules, facilitate longitudinal orientation of microtubules and
reduce cells elongation whereas MDP40 and MDP60 destabilize microtubules, promote
transverse microtubule arrays, and stimulate cell elongation. The balance between activity of
these proteins could fine-tune hypocotyl length under either light or dark conditions.

B. Regulation of WDL3, WDL5, MDP40 and MDP60 by light and hormones. Ethylene binding to
ETR1 in the endoplasmic reticulum (ER) causes inactivation of kinase CTR1. This leads to

cleavage of EIN2 and release of peptide CEND that moves to the nucleus, where it activates
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transcription factor EIN3. Under light conditions EIN3 promotes transcription of PIF3; PIF3
promotes transcription of MDP60; MDP60 destabilizes microtubules. WDL3 expression under
light promotes microtubule stability. It remains unknown which pathway regulates
transcription of WDL3. WDL3 could counteract MDPGO. In the dark, the cytoplasmic COP1
ubiquitinates WDL3 and triggers its degradation. In parallel, EIN3 promotes transcription of
WDL5 and WDL5 stabilizes microtubules. Brassinosteroids bind BRI1-BAK1 receptor
complex that through several cytoplasmic proteins including BSU1 activates BZR1. BZR1
promotes transcription of MDP40. Destabilization of microtubules by MDP40 could counteract
WDLS5.

Activating interactions are shown in red and inhibiting interactions are shown in red.
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Table 1. Accession numbers, properties, and published nomenclature of
Arabidopsis TPX2-family proteins.

Accession
Number

©
9
O o
=
E= N
©n _
E ©
S %

Yuen et al.,
Perrin et al.,
Rajangam et
Wang et al.,
2012
Unpublished

At3g04630 287 321 101 WDL1
At5g28646 202 233 9.1 WVD2

Atlg54460 338 374 103 WDL2

At3g23090 338 37.8 9.6 WDL3

At2g35880 432 46.7 10.5 WDL4

At4g32330 437 47.5 9.0 WDL5

At2g25480 404 44.3 9.3 WDL6

Atl1g70950 478 53.2 7.8 WDL7

At3g01710 391 439 10.3 WDLS8
At3g26050 533 589 10.8 WDL9
At5g44270 309 359 11.0 TPXL7

At1g03780 758 86.5 10.2 TPX2

At3g01015 488 56.2 9.9 TPXL1 MDP60
At5g15510 497 56.5 10.0 TPXL5

At5g37478 178 204 992 MAP20 TPXL6

Atd4g22860 509 58.1 10.1 TPXL3

At4g11990 501 57.2 9.5 TPXL2

At5g07170 397 45.1 9.7 TPXL4

At5g62240 377 43.2 10.2 TPXL8

Atl1g23060 361 41.0 10.6 MDP40
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Figure 1. Conserved domains in human and Arabidopsis TPX2.
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Figure 2. Domain organization of Arabidopsis TPX2-family proteins.

A. TPX2 has all conserved domains whereas other members of TPX2-family keep only some domains.
In addition, several members have a plant-specific WAND domain. Position of the domains is listed
in Table S1.

B. Alignment of the N-terminal region of TPX2-family proteins containing WAND domain with the
corresponding region of TPX2. The WAND domain is highlighted in red.
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Figure 4. Role of TPXL proteins in cell division.

TPX2, TPXL2, and TPXL3 localize to the nuclear envelope, but not to the microtubules of the pre-
prophase band during prophase. Aurora kinase also localizes to the nuclear envelope membrane. It is
currently not known whether TPXLs and Aurora interact on the nuclear envelope and require each
other for this localization. TPXL function redundantly in promoting nuclear envelope breakdown and
mitotic spindle assembly. In the mitotic spindle, TPXLs target Aurora kinase to microtubules and
activate it.
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Figure 5. Antagonistic interactions between WDLs modulate hypocotyl elongation.

A. WDL3 and WDL5 stabilize microtubules, facilitate longitudinal orientation of microtubules and reduce cells
elongation whereas MDP40 and MDP60 destabilize microtubules, promote transverse microtubule arrays, and
stimulate cell elongation. The balance between activity of these proteins could fine-tune hypocotyl length under
either light or dark conditions.

B. Regulation of WDL3, WDL5, MDP40 and MDP60 by light and hormones. Ethylene binding to ETR1 in the
endoplasmic reticulum (ER) causes inactivation of kinase CTR1. This leads to cleavage of EIN2 and release of
peptide CEND that moves to the nucleus, where it activates transcription factor EIN3. Under light conditions EIN3
promotes transcription of PIF3; PIF3 promotes transcription of MDP60; MDP60 destabilizes microtubules. WDL3
expression under light promotes microtubule stability. It remains unknown which pathway regulates transcription of
WDL3. WDL3 could counteract MDPG60. In the dark, the cytoplasmic COP1 ubiquitinates WDL3 and triggers its
degradation. In parallel, EIN3 promotes transcription of WDL5 and WDL5 stabilizes microtubules. Brassinosteroids
bind BRI1-BAK1 receptor complex that through several cytoplasmic proteins including BSU1 activates BZR1. BZR1
promotes transcription of MDP40. Destabilization of microtubules by MDP40 could counteract WDLS5.

Activating interactions are shown in red and inhibiting interactions are shown in red.



