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In Brief

Lattice light-sheet microscopy multi-
dimensional analyses (LaMDA) is a
pipeline that combines high-
spatiotemporal resolution four-
dimensional lattice light-sheet
microscopy, machine learning, and
dimensionality reduction to analyze T-cell
receptor (TCR) dynamics and predict T-
cell signaling states without the need for
complex biochemical measurements. We
observe real-time global changes of
TCRs across the 3D cell surface,
differentiate stimulated cells from
unstimulated cells, predict attenuated T-
cell signaling after CD4 and CD28
receptor blockades, and discriminate
between structurally similar TCR ligands.
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SUMMARY

Lattice light-sheet microscopy provides large amounts of high-dimensional, high-spatiotemporal resolution
imaging data of cell surface receptors across the 3D surface of live cells, but user-friendly analysis pipelines
are lacking. Here, we introduce lattice light-sheet microscopy multi-dimensional analyses (LaMDA), an end-
to-end pipeline comprised of publicly available software packages that combines machine learning, dimen-
sionality reduction, and diffusion maps to analyze surface receptor dynamics and classify cellular signaling
states without the need for complex biochemical measurements or other prior information. We use LaMDA to
analyze images of T-cell receptor (TCR) microclusters on the surface of live primary T cells under resting and
stimulated conditions. We observe global spatial and temporal changes of TCRs across the 3D cell surface,
accurately differentiate stimulated cells from unstimulated cells, precisely predict attenuated T-cell signaling
after CD4 and CD28 receptor blockades, and reliably discriminate between structurally similar TCR ligands.

All instructions needed to implement LaMDA are included in this paper.

INTRODUCTION

Lattice light-sheet microscopy (LLSM) is a recently developed
microscopy technique that allows for four-dimensional (4D)
(X, y, z, and time) imaging with exceptionally high temporal reso-
lution (~100 frames/s, ~1 cell volume/s) and minimal photo-
bleaching (Chen et al., 2014). LLSM provides high-dimensional,
high spatiotemporal resolution imaging data of cell surface re-
ceptors or receptor microclusters (>1,000) over a long duration
of time (>4 min) on the entire 3D surface of live primary cells. As
a result of these capabilities, LLSM and other cutting-edge mi-
croscopy techniques generate larger and more complex high-
dimensional data. These data are often underutilized due to a
lack of comprehensive and efficient high-dimensional analysis
pipelines that are accessible to the general user. The lack of
such an analysis pipeline represents a key limitation in the use
of imaging systems, including LLSM, that generate big data
and are crucial to answering biological questions at the single-
molecule level.

Here, we introduce lattice light-sheet microscopy multi-
dimensional analyses (LaMDA), a pipeline to apply big data anal-
ysis techniques to high-dimensional LLSM data. LaMDA
provides a complete end-to-end pipeline from upstream data
collection and feature engineering to downstream machine
learning and dimensionality reduction analyses. We intentionally
constructed LaMDA using publicly available packages to enable
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easy adaptation and incorporation by general users to facilitate
broad application across all areas of cell biology. Moreover, it
was designed to motivate a paradigm shift wherein, rather than
focusing on the cell as the unit of study, we focus on a molecular
unit. The LaMDA pipeline supersedes the need for high-
throughput collection of single-cell time-lapse data, which is
difficult to capture using LLSM, by enabling extraction of suffi-
cient molecular content for the use of high-dimensional
analyses.

We applied LaMDA to image and analyze the dynamics of
T-cell receptors (TCR) microclusters on the primary T-cell sur-
face with high dimensionality to understand T-cell signaling
states. T cells play a central role in adaptive immunity by medi-
ating immune responses against cancer and infection (Janeway
et al., 2001; Kahan et al., 2015; Thommen and Schumacher,
2018). As the dominant receptor, TCRs govern the recognition,
activation, differentiation, and function of T cells in health and
disease (Janeway et al., 2001; Kumar et al., 2018). Our LaMDA
approach quantitatively revealed the global spatiotemporal dy-
namics of TCRs, reliably deciphered TCR microclusters from
T cells at different signaling states, precisely identified the roles
of co-stimulatory receptors, and accurately differentiated be-
tween T-cell stimulations triggered by structurally similar peptide
ligands of different affinities. In addition to uncovering new T-cell
biology, LaMDA can also be used to guide the pre-clinical
design, development, and improvement of immunotherapies
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Applications
1. Cell State Classification and Prediction

2. Multi-parameter Understanding of Dynamics
3. Ligand Discrimmination

Figure 1. LaMDA Pipeline
(A) 4D imaging is conducted with LLSM. Receptors (green) on a cell are fluorescently labeled and 4D images are collected. Scale bar represents 5 um.

(B) After deconvolution and debleaching, receptor microclusters are tracked with Imaris software. Scale bar represents 5 um.

(C) Microcluster features are extracted from tracked TCR microclusters.
(D) Machine learning is conducted on extracted features for prediction. (Left) To classify between different cell states, supervised XGboost decision tree en-

sembles are trained as a binary classifier then tested and validated. (Right) Unsupervised UMAP clustering is used to independently validate the XGboost binary
classifier. The XGboost binary classifier is used to predict the states of cells.

(legend continued on next page)
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and vaccines for cancer, infection, and autoimmunity. Further-
more, as a flexible and broadly applicable pipeline, LaMDA pro-
vides a framework for future studies of other surface receptors or
intracellular molecules on different cell types by directly linking
molecular dynamics to cell signaling and function.

RESULTS

LaMDA

LaMDA was designed to enable big data analysis of high-dimen-
sional LLSM data (Figure 1). To begin using LaMDA, LLSM is em-
ployed to capture single-cell images in four dimensions (x, y, z,
and time) with high spatiotemporal resolution (~1 s/cell volume,
x and y resolution ~200 nm, and z step 400 nm) (Figure 1A; Video
S1). Then, advanced imaging software, such as Imaris, is utilized
to track thousands of surface receptor microclusters (or other
structures) from individual cells (Figure 1B) and extract multiple
(36 in this study) statistical parameters for each tracked object
simultaneously (Figure 1C). Due to the large size of collected da-
tasets, machine learning and dimensionality reduction methods
can be incorporated for analysis (Figures 1D and 1E). For
example, a machine learning-based classifier (Chen and Guest-
rin, 2016) could be built to learn the inherently subtle yet very
complex differences between the tracked receptors of two or
more known cellular conditions. This classifier could then be
used to predict the state of the receptor microclusters in new or
less-understood cellular conditions (Figure 1F). Furthermore,
feature importance metrics from the classifier can inform on the
underlying biological differences in the system (Figure 1G).
Once the classifier metrics are used to select important features,
they can be studied individually by building statistical models. To
understand if multiple parameters are working together to drive
biological differences, dimensionality-reduction techniques,
such as uniform manifold approximation and projection (UMAP)
(Mclnnes et al., 2018) and diffusion maps (Coifman and Lafon,
2006; Ferguson et al., 2010), could be applied in parallel (Figures
1D and 1E) to graphically emphasize three important points: (1)
these techniques cluster objects into several groups representa-
tive of different physical states; (2) the relative locations of these
object states inform us on their relationships, indicating direction-
ality and identifying the properties that change with that direction
(Figure 1H); and (3) the local density at each coordinate on these
dimensionality-reduction maps can be further transformed into a
pseudo-energy surface to show relative stability of each object
(Figure 1l). Together, LaMDA uses high-dimensional imaging
and big data analyses to discover differentiating properties be-
tween cellular phenotypes and to reveal and predict underlying
cellular states (Figure 1J).
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LaMDA Discovers that TCR Microclusters Reflect T-Cell
Activation State (Resting versus Stimulated), Not the
Functional Phenotype (Naive versus Blasting)

As a proof of concept of the LaMDA pipeline, we investigated the
dynamics of TCRs, one of the most critical molecules in adaptive
immunity and their relationship to T-cell activation. TCRs specif-
ically recognize rare agonist peptide-major histocompatibility
complexes (pMHCs) among numerous self-pMHCs on the sur-
face of the cell being surveyed to trigger adaptive immune re-
sponses and therefore are essential molecules to combat
infection and cancer (Chakraborty and Weiss, 2014; van der
Merwe and Dushek, 2011). TCRs are known to form microclus-
ters on the surface of the T cell and represent a key mechanism
toward understanding T-cell signaling and function (Campi et al.,
2005; Crites et al., 2014; Gagnon et al., 2012; Hashimoto-Tane
et al., 2016, 2011; Hu et al.,, 2016; Huang et al., 2013;
Hui et al., 2017; Lewis et al., 2018; Lillemeier et al., 2010; Muru-
gesan et al., 2016; Roh et al., 2015; Sasmal et al., 2020;
Schamel et al., 2005; Smoligovets et al., 2012; Taylor et al.,
2017; Varma et al., 2006; Wang et al., 2019b; Yi et al., 2019; Yo-
kosuka et al., 2005).

To visualize the 4D TCR microcluster dynamics by LLSM, we
either fused a green fluorescent protein (GFP) to the C-terminus
of the CD3¢ chain of the TCRs or used an Alexa Fluor 488
(AF488)-conjugated anti-TCRB Fab to fluorescently label the
TCRs at the membrane of live primary 5C.C7 CD4* T cells. Cyto-
solic mCherry-transduced CH27 cells were used as the antigen-
presenting cells. After fluorescent labeling of TCRs on T cells and
loading agonist moth cytochrome C (MCC) peptide onto the an-
tigen-presenting cells, both the T cells and antigen-presenting
cells were added to the LLSM imaging chamber for 4D imaging
using 488- and 561-nm lasers. We recorded videos (4—6 min) of
TCR microclusters across the entire 3D cell surface (x and y res-
olution ~200 nm, z step 400 nm, ~1 s/cell volume; Figures 2A-
2D and S1A-S1G; Videos S1, S2, S3, S4, S5, S6 and S8) for
four T-cell states: resting naive, naive stimulated by antigen-pre-
senting cells, resting blasting, and blasting stimulated by anti-
gen-presenting cells (Figure 2E).

We then tracked ~10,000 individual TCR microclusters on
each T cell, measuring 36 parameters (including speed, direc-
tion, volume, intensity, area, location, and track duration; see
STAR Methods for details) for each microcluster across the
videos (Figures 2B, 2D, and S1K; Video S7). The data were
pre-processed and an extreme gradient boosted (XGboost) de-
cision tree ensemble (Chen and Guestrin, 2016) with logistic loss
was built on 19 of these parameters (Figures 2F and STH-S1K,
referred to henceforth as the XGboost classifier) to classify
TCR microclusters as microclusters from resting T cells or

(E) Diffusion maps are used as a dimensionality reduction technique to further quantify variations among cell states. The diffusion map is built from features

selected based on their importance.

(F) The XGboost classifier is utilized to provide cell state predictions based on TCR microcluster features.
(G) The importance of each feature in the XGboost classifier is evaluated using SHAP, and the top feature is individually analyzed using appropriate statistical

modeling.

(H) Diffusion map is colored by normalized features (e.g., track duration shown here). Dotted line indicates approximate divide between resting (R) and stimulated

(S) cells.

(I) The diffusion map is transformed into a 3D pseudo-energy map by estimating local density of datapoints on the diffusion map. The 3D pseudo-energy map is

used to analyze stability of tracked receptor microclusters across cell states.
(J) LaMDA pipeline applications, further detailed throughout paper.
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Figure 2. XGboost Binary Classifier Differentiates between T-Cell Signaling States

(A) 3D rendering of a blasting CD4* T cell stably transduced with CD3¢-GFP (green) as it encounters a CH27 cell stably transduced with cytosolic mCherry (red).
See also Video S1.

(B) Dragon tails showing particle positions over the previous eight frames overlaid onto (A). Color bar represents velocity angle X from 0° (purple) to 180° (red).
(C) 3D rendering of a blasting resting CD4* T cell stably transduced with CD3¢-GFP (green). See also Video S2.

(D) Dragon tails showing particle positions over the previous eight frames overlaid onto (C). Color bar represents velocity angle X from 0° (purple) to 180° (red).
(E) Diagram depicting the four cell states, resting naive, resting blasting, stimulated naive, and stimulated blasting, graphically.

(F) XGboost training results. Each bar represents an independent cell (resting naive cells n = 58,784 microclusters; stimulated blasting cells n = 97,237 micro-
clusters). Pred, prediction. See also Figure S1K for number of microclusters in each cell.

(G) XGboost testing results. Each bar represents an independent cell (stimulated naive cells, n = 38,809 microclusters; resting blasting cells, n = 60,116
microclusters). Pred, prediction. See also Figure S1K for number of microclusters in each cell.

(legend continued on next page)
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stimulated T cells. To avoid strong correlation within the same
cells, and to prevent the confounding effect of “past stimulation”
(i.e., naive versus blast), the XGboost classifier was first trained
on microclusters from stimulated blast cells and resting naive
cells (Figure 2F). The classifier was later tested on stimulated
naive cells and resting blast cells (Figure 2G). Within the training
set, a train-validate-test approach was utilized to avoid overfit-
ting (see STAR Methods; Figure S1l). The XGboost classifier
consists of 150 decision trees, each of which selects up to three
parameters to fit a logistic regression model. The weighted
values from all 150 trees are used to classify each microcluster
(Figure STH).

This classifier allows us to identify which observable features
of TCR dynamics can function as signatures of a cell’s state
and allows for classification. For example, we hypothesized
that because TCR microclusters behave differently in response
to a stimulation (e.g., TCR-pMHC interaction) (Campi et al.,
2005; Lillemeier et al., 2010; Varma et al., 2006; Yi et al., 2019),
TCR microclusters switch from a “resting state” into a “stimu-
lated state” and thus could be differentiated by machine
learning. Indeed, in the internal test, the XGboost classifier could
precisely differentiate between TCR microclusters on the resting
naive T cell from those on a stimulated blasting T cell with a vali-
dation accuracy of 100% and an internal test accuracy of
99.96% (Figure 2F). This suggests that our machine learning
model can reliably predict the cell state, that is resting naive
versus stimulated blasting, by TCR microcluster dynamics alone.
Accordingly, when a similar analysis was performed on two other
T-cell states, stimulated naive and resting blasting, we found
large differences between TCR microcluster dynamics on stimu-
lated and resting T cells, which allowed for accurate discrimina-
tion based on cell state by XGboost (Figure 2G). These results
demonstrate that TCR microcluster dynamics are sufficient to
predict cell state. Notably, however, the prediction of cell state
is irrespective of prior antigen experience; the XGboost classifier
could not distinguish between naive and blasting T cells (Figures
2F and 2G). These results demonstrate that machine learning
can precisely predict T cell signaling states (resting state versus
stimulated state) using surface TCR dynamics, but that from the
perspective of the TCR dynamics, naive and blasting T cells are
indistinguishable. This observation is not unique to the XGboost
classifier. TCR microclusters can also be segregated into two
groups, resting-state TCR microclusters and stimulated-state
TCR microclusters, using the dimensionality reduction method,
UMAP (Mclnnes et al., 2018) (Figures 2H and 2I, decision bound-
ary in dark blue and Figure S2A).

Since the dynamic features of TCR microclusters represent a
direct reflection of the T-cell signaling states, we next sought
to use big data analysis techniques to investigate which biolog-
ical features contributed to the observed differences. To further
understand the features predicted by the XGboost classifier, we

¢? CellPress

plotted the shapley additive explanations (SHAP) values (Lund-
berg and Lee, 2017a, 2017b) and found that track duration
(i.e., the length of time a microcluster could be detected on the
cell surface) was the most important feature (Figures 2J and
S2B). While large SHAP values only directly indicate the features
most informative to the decision trees, these features are often
biologically relevant. Thus, we plotted the distribution of track
duration for resting naive, stimulated naive, resting blasting,
and stimulated blasting T cells and fitted three-parameter Wei-
bull distribution models, a commonly used model for lifetime an-
alyses (Lawless, 2002) (Figures 2K and S2C-S2F). The mean
duration “T” was derived from the Weibull distributions (see
STAR Methods) and describes the average lifetime of TCR mi-
croclusters on the surface of a T cell. We determined that antigen
stimulation increased the mean duration of TCR microclusters
significantly when compared with resting state, for both naive
and blasting T cells (Figures 2L and S2F). This implies a signaling
pathway was initiated to alter global control of TCR microclus-
ters on the surface.

Next, we characterized TCR microcluster dynamics using
diffusion maps, a nonlinear dimensionality reduction technique
that focuses on identifying the underlying manifold of the data
and reveals diffusion-like behavior between different states
(Coifman and Lafon, 2006; Ferguson et al., 2010). We sampled
8,000 microclusters from each cell group and chose a subset
of 7 selected features (mean intensity, minimum intensity, inten-
sity sum over the surface, area, volume, speed, and track
duration) based on the XGboost classifier feature importance
(as previously shown in Figure 2J) and their mutual indepen-
dence (see STAR Methods). This diffusion map allowed us to
graphically compare resting-state TCRs with stimulated-state
TCRs (Figure 3A). We next estimated the local density of TCR mi-
croclusters on the diffusion map (Figure 3B) and derived the 3D
pseudo-free energy surface (see STAR Methods) by adapting a
method commonly used in molecular simulation research (Fig-
ure 3C) (Ferguson et al., 2010). For easy visualization and com-
parison, these 3D energy wells were projected along dimension
2 to become 2D energy wells (Figure 3D). Assuming all other
terms that contribute to energy are held constant, the depth of
the energy well directly revealed the stability of the TCR micro-
clusters on each cell (Figure 3D).

We found the stimulated-state TCR microclusters occupy a
much deeper energy well than the resting-state TCR microclus-
ters, on both blasting and naive T-cell surfaces (Figure 3D),
demonstrating that, assuming all other terms that contribute to
energy are held constant, TCR stimulation stabilizes TCR micro-
clusters on the cell surface. We also analyzed the diffusion maps
to compare individual dynamic features between resting and
stimulated TCR microclusters (Figures 3E-3H, middle panel).
For track duration, we found clear separation between resting-
state and stimulated-state TCR microclusters in the diffusion

(H) UMAP of data from (F-G) with color indicating cell group. Boundary line represented in dark blue.

(I) UMAP of data from (F-G) with color indicating probability of microcluster to be a stimulated blasting microcluster as predicted by XGboost binary classifier.
Probability was indicated by color scale (0.00-1.00). Boundary line represented in dark blue.

(J) SHAP values of each property of the microcluster in XGboost binary classifier.

(K) Weibull distribution fitting of microcluster track duration from stimulated blasting cells to obtain mean track duration. See also Figures S2C-S2F.

(L) Table of mean track duration for each cell group obtained by Weibull distribution fittings. Data are presented as mean + standard deviation (SD) and the

goodness of fit is indicated by R? values. Scale bars, 5 um.
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Figure 3. Diffusion Maps Differentiate between T-Cell Signaling States
(A) Diffusion map built from 7 selected features. Colors indicate cell group.

(B) Density map created by estimating local density on the diffusion map (A). Colors indicate cell group.
(C) Pseudo-energy map created from density map (B). Colors indicate cell group.

(D) Projection of pseudo-energy map (C) along dimension 2. Colors indicate cell group.
(E-H) Left: resting naive cell from Figure S1A overlaid with dragon tails showing particle positions over the previous eight frames are color coded to show particle
track duration from 0 s (purple) to 25 s (red) (E), particle speed from 0.0 um/s (purple) to 0.5 um/s (red) (F), particle intensity minimum from 0 AU (purple) to 500 AU
(red) (G), or particle volume from 0.0 um? (purple) to 0.2 um? (red) (H). Center: diffusion map from Figure 3A colored by normalized track duration (E), speed (F),
intensity minimum (G), or volume (H). Approximate boundary line between resting (R) and stimulated (S) cells (see also Figure 3A) represented in black. Right:
Stimulated blasting cell from Figure S1D overlaid with dragon tails showing particle positions over the previous eight frames are color coded to show particle track
duration from 0 s (purple) to 25 s (red) (E), particle speed from 0.0 um/s (purple) to 0.5 um/s (red) (F), particle intensity minimum from 0 AU (purple) to 500 AU (red)

(G), or particle volume from 0.0 pm? (purple) to 0.2 pm? (red) (H).
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Figure 4. TCR Ligand Discrimination by LaMDA

Mean Contribution to Score

(A) XGboost prediction results on microclusters from blasting cells stimulated with MCC (n = 97,237 microclusters), K5 (n = 24,786 microclusters), and 102S
(n = 46,218 microclusters), and unstimulated resting cells (n = 58,784 microclusters). Each bar represents an independent cell. See also Figure S1K.

(B) Table of peptide sequences for MCC, K5, and 102S.

(C-F) 3D renderings of blasting cells stimulated with MCC (C), K5 (D), and 102S (E) and unstimulated resting blasting cells (F). Allimages are overlaid with dragon
tails showing particle positions over the previous eight frames are color coded to show particle track duration (0-25 s). Scale bars, 5 pm.

(G and H) Weibull distribution fitting of microcluster track duration from blasting cells stimulated with K5 (G) or 102S (H). See also Figure S2F.

() Diffusion map built from the same selected features as Figure 3A, with colors indicating cell groups.

(J) Density map created from ().

(legend continued on next page)
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map (Figure 3E). Similar distinctions between resting-state and
stimulated-state TCR microclusters were found for speed (Fig-
ure 3F) and minimum intensity (Figure 3G), whereas the differ-
ences in volume (Figure 3H) were less obvious. These analyses
reinforced the reliability of our machine learning prediction.
Spatially, we observed that the longest lasting microclusters
(red) are not localized to the synapse as would be expected
due to the TCR-pMHC bonds, but rather are dispersed
throughout the whole cell (Figure 3E, right panel); similar global
distributions were found for speed, minimum intensity, and vol-
ume (Figures 3F-3H, right panels), indicating that T cell activation
is a global event.

Taken together, our data suggest that TCR microclusters
directly reveal different signaling states of a T cell and support
current biological understanding of TCR dynamics. It is known
that TCR microcluster dynamics are closely linked with the actin
network, which globally reorganizes with TCR-pMHC binding
and signaling (Ritter et al., 2015; Billadeau et al., 2007; Bunnell
et al., 2001; Fritzsche et al., 2017; Kumari et al., 2014; Roy and
Burkhardt, 2018; Tsopoulidis et al., 2019; Valitutti et al., 1995).
Accordingly, we observe that TCRs initially concentrated at the
distal pole, quickly dispersed into small TCR microclusters and
then continuously trafficked to the immunological synapse
across the 3D spherical surface of the T cell (Figures S3A-
S3D; Videos S5 and S6). Notably, after dividing the TCR
microclusters between inside and outside synapse (Figures
S3E-S3G), LaMDA was unable to identify differences between
microclusters inside and outside the synapse (Figures S3H-
S3J). This suggests that TCR triggering at the synapse propa-
gates rapid, global re-organization of TCRs for effective antigen
recognition and signaling. To our knowledge, such global, dy-
namic, and directional structural changes of TCR microclusters
on the 3D T-cell surface had not yet been observed using con-
ventional microscopy techniques or other biochemical or bio-
physical assays.

4D TCR Microcluster Dynamics Enable Ligand
Discrimination

TCR ligand discrimination is essential for adaptive immunity.
The dysfunction of TCR ligand discrimination can directly lead
to cancer, infection, or autoimmunity. Moreover, TCR ligand
discrimination displays two important characteristics: (1) high
sensitivity —TCRs can recognize even a single agonist pMHC
in the presence of abundant self-pMHCs (Huang et al., 2013;
Irvine et al., 2002); and (2) high specificity —TCRs can discrim-
inate between structurally similar peptides and elicit distinct im-
mune responses (Alam et al., 1996; Huang et al., 2010; Kersh
et al., 1998). Despite its critical importance, the molecular
mechanism of TCR ligand discrimination remains controversial
(van der Merwe and Dushek, 2011). A common problem is that
most existing mechanistic models were proposed based on
in vitro studies that often cannot reliably predict physiological
events in vivo. One example is that the high-affinity, slow off-
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rate, and high-potency (as defined by in vitro measurements)
K5 peptide triggers attenuated in vivo T-cell responses (Corse
et al., 2010), and such experimental data cannot be explained
by the prevailing kinetic models that were built based on
in vitro binding affinity and/or half-life (Chakraborty and Weiss,
2014; Corse et al., 2010; van der Merwe and Dushek, 2011). In
order to overcome the limitations imposed by in vitro studies,
we applied our LaMDA approach to study TCR ligand discrim-
ination to evaluate whether it can accurately predict physiolog-
ical in vivo T-cell responses.

First, we confirmed that our experimental setup accurately re-
flects well-understood TCR biology by recapitulating previous
observations of TCR'’s co-receptor CD4, a monomeric polypep-
tide that plays an important role in augmenting TCR signaling
through associated tyrosine kinase Lck (Rudd et al., 1988; van
der Merwe and Davis, 2003; Veillette et al., 1988; Chen and Flies,
2013; Janeway et al.,1988; Janeway 1992), and CD28, a co-
stimulatory receptor required to fully activate the T cells without
causing apoptosis (Boise et al., 1995; Esensten et al., 2016; Lins-
ley and Ledbetter, 1993; Jenkins et al., 1988; Mueller et al.,
1989). As expected, we observed that CD4 blockade (and Lck in-
hibition) and CD28 blockade impairs entry into the full stimulated
state and significantly reduces the stability of TCR microclusters
(Figures S4A-S4N and S2F). These observations support the
conclusion that using LaMDA for observations of TCR dynamics,
diverse signaling states can be identified without the need for
complex biochemical or functional assays. Next, we measured
the TCR microcluster dynamics stimulated by three structurally
similar peptides K5, MCC, and 102S using LLSM (Figure 4B)
(Corse et al., 2010). We then applied the same XGboost classifier
trained on MCC-stimulated versus unstimulated TCR microclus-
ters to this dataset. The XGboost classifier predicted that
~89.3% and ~76.1% of the microclusters stimulated by variants
K5 and 1028, respectively, are in the stimulated state (Figure 4A).
This indicates that both K5 and 102S stimulations resulted in par-
tial activation, consistent with previous in vivo studies, which
showed that both K5 and 102S peptides resulted in attenuated
immune responses compared with the MCC peptide (Corse
et al., 2010). Consistent with machine learning, we found that
the Weibull-derived average lifetimes of 102S- and K5-stimu-
lated microclusters were similar to those of MCC-stimulated
microclusters but significantly different from those of resting mi-
croclusters (Figures 4C-4H and S2F).

To systematically study TCR ligand discrimination, we plotted
a diffusion map of the TCR microclusters stimulated by the three
structurally similar peptides K5, MCC, and 102S (Figures 4l and
4J). After converting the diffusion map to 3D (Figure 4K) and 2D
(Figure 4L) energy wells, we were able to clearly visualize
different activation states of T cells. Compared with the
resting-state T cells without stimulation (blue), MCC-mediated
stimulation (dark blue) induced the formation of the most stable
TCR microclusters, while K5 (dark green) and 102S (green) re-
sulted in less stable TCR microclusters. Our findings are well

(K) 3D pseudo-energy map created from (J) of blasting cells stimulated with MCC, K5, and 102S peptides, and resting blasting cells, with colors indicating cell

groups.
(L) Projection of pseudo-energy map from (K) along dimension 2.

(M) Separate XGboost classifier built to differentiate microclusters from cells stimulated with MCC, K5, or 102S.

(N) SHAP values of each feature as used in XGboost binary classifier in (M).
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aligned with a previous in vivo study by Allison and colleagues
showing that the MCC peptide, rather than the K5 and 1028, trig-
gers the optimal intracellular signaling, cytokine production, and
cell proliferation (Corse et al., 2010).

Additionally, to fully test whether we can apply machine learning
to TCR ligand discrimination, we trained another XGboost softmax
classifier to distinguish between the TCR microclusters on T cells
stimulated by MCC, K5, and 102S. We found that this alternative
machine learning approach could be used to precisely differentiate
between the TCR microcluster organization following stimulation
by the three structurally similar peptides with ~96% accuracy
(for training, validation, and test datasets) (Figures 4M and 4N).
We expect our LaMDA pipeline can be extended to a wide range
of ligand discrimination systems and detect subtle yet important
dynamic differences between cell states, which provides a more
physiologically relevant approach to study immune molecules
and cells in cancer, infection, and autoimmunity.

DISCUSSION

We developed a modular pipeline, LaMDA, that combines high
resolution 4D LLSM data with machine learning and dimension-
ality reduction techniques to analyze TCR microcluster dy-
namics and predict T-cell signaling states. In contrast to many
studies that emphasize differences between naive and blasting
T cells, our LaMDA pipeline identified that the dynamics and dis-
tribution of TCR microclusters were primarily determined by the
T-cell activation state (resting versus stimulated), rather than by
prior antigen exposure (naive versus blasting) (Figures 2 and 3).
Using LaMDA, we also demonstrated that, assuming all other
terms that contribute to energy are held constant, TCR-pMHC
ligation stabilizes TCR microclusters globally across the entire
T-cell surface (Figure S3), which has largely been overlooked in
the past. Finally, we demonstrated that the same pipeline can
be extended to study ligand discrimination (Figure 4).

In this study, we found that both K5- and 102S-mediated stim-
ulation of T cells resulted in partial activation when compared
with MCC (Figure 4). Our observations complement in vivo
studies that have shown the K5 peptide results in attenuated im-
mune responses compared with the MCC peptide (Corse et al.,
2010) but stand in contrast to in vitro studies that have previously
shown that K5 is a super-agonist with the highest TCR affinity
and results in the strongest activation of T cells among three
peptides (Corse et al., 2010; Li et al., 2004; Rabinowitz et al.,
1996; Reay et al., 1994). This suggests that unlike common
in vitro approaches, our LaMDA pipeline may be able to predict
in vivo peptide potency in activating T cells and could be
extended toward the development of peptide vaccines to treat
infection, cancer, and autoimmunity (Hos et al., 2018; Li et al.,
2014) or be used to study thymic education and/or peripheral
tolerance, two very important topics in T-cell biology.

LLSM has been widely used across many biological fields to
address a variety of questions (Cai et al., 2017; Chen et al.,
2014; Condon et al., 2018; David et al., 2019; Ellefsen and
Parker, 2018; Fritz-Laylin et al., 2017; Gao et al., 2019; McArthur
etal., 2018; Miretal., 2018a, 2018b; O’Shaughnessy et al., 2019;
Phillips et al., 2019; Ritter et al., 2015). While LLSM has revealed
important insights, current analysis approaches are not capable
of considering all of the collected data to maximize the biological
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understanding or conclusions that could be drawn from the data.
Most analysis approaches employed for investigating cell
biology primarily focus on single features, such as intensity, co-
localization, autocorrelation, diffusion rates, resolution, or direc-
tional analyses (Thorn, 2016; van der Merwe and Davis, 2003).
The LaMDA pipeline is able to take full advantage of the 4D (x,
Yy, Z, and time) data intrinsically provided by LLSM and utilizes
it in a myriad of advanced high-dimensional analysis tools,
such as dimensionality reduction techniques and machine
learning. However, LLSM is a low-throughput method regarding
cell number, and if each cell is treated as a single data point, suf-
ficient numbers for high-dimensional analysis methods cannot
be reached. Thus, by considering individual molecules (e.g.,
TCRs) on the cell surface as opposed to single cells captured
by LLSM, we are able to provide sufficient data points in a
high-throughput manner to utilize these methods. By enacting
the paradigm shift from single cell to single molecule in LLSM,
the utility of data produced can be maximized.

In addition to surface molecules, this pipeline can still be used
to track intracellular or recycling molecules. The analysis pipeline
presented here could simply be used to address different ques-
tions. For example, LLSM has already been used to image and
track T-cell granzymes, which are cell-death-inducing molecules
packaged in intracellular vesicles and delivered to the surface of
a target cell (Ritter et al., 2015). Our analysis pipeline therefore
could analyze the tracks of these vesicles and address trafficking
rates or directions. While any molecular label can be easily im-
plemented, a large number of fluorescently detectable molecular
units must exist in the biological system, highlighting an impor-
tant consideration in implementing LaMDA for other studies.

Finally, LaMDA was intentionally designed to utilize existing
tools and algorithms to perform complex multi-dimensional anal-
ysis, thereby enabling easy accessibility for any biologist without
the need for familiarity with data science techniques. Moreover,
while we used Imaris for feature extraction and an XGboost clas-
sifier for machine learning, this pipeline is highly modular and can
be adapted for a variety of biological systems by incorporating
alternative algorithms. Other machine learning techniques with
different algorithms (e.g., XGboost or supportive vector ma-
chine), architectures (e.g., decision trees or neural network) or
tasks (e.g., classification, segmentation, or detection) can be
incorporated to substitute the XGboost classifier. In addition,
multiple dimensionality reduction techniques are applicable
(e.g., tSNE, PCA, etc.), and should be chosen based on desired
purpose. Similarly, features do not have to be pre-defined and
extracted from a software such as Imaris; rather, researchers
could engineer context-specific features useful to their own
research questions. Therefore, we anticipate broad usage of
LaMDA to maximize biological understanding from LLSM data.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

e KEY RESOURCES TABLE
e RESOURCE AVAILABILITY
O Lead Contact
O Materials Availability

Cell Systems 10, 433-444, May 20, 2020 441




¢? CellPress

OPEN ACCESS

O Data and Code Availability
o EXPERIMENTAL MODEL AND SUBJECT DETAILS
e METHOD DETAILS
O Cell Culture
O Cell Preparation
O CD3¢-GFP Transduction
O Fab Preparation
O Signaling Perturbation Assays
O Lattice Light-sheet Microscopy
o QUANTIFICATION AND STATISTICAL ANALYSIS
Image Processing
Data Preprocessing
XGboost Decision Trees Ensemble Binary Classifier
XGboost Decision Tree Ensemble Softmax Classifier
Weibull Distribution
UMAP
Diffusion Maps
Pseudo-Energy Plot

OO0OO0OO0OO0O0OO0O0

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.
cels.2020.04.006.

ACKNOWLEDGMENTS

We thank Dr. Vytas Bindokas and Dr. Christine Labno at the Integrated Light
Microscopy Core Facility at the University of Chicago for supporting and main-
taining the lattice light-sheet microscope and whose support to J.R. far ex-
ceeds scientific input. We thank the University of Chicago’s Research
Computing Center for providing the high-performance computing resources.
We thank Dr. Enfu Hui and Dr. Yunlong Zhao for their contribution of
mCherry-transduced CH27 cells. We thank Dr. Hans Schrieber and Dr. Yanran
He for their contribution of CD3¢-GFP cell transductions. We thank Ali Rahman
for his extensive work in making figures. We thank Dr. Nicholas Ankenbruck
and Dr. Enfu Hui for providing invaluable advice on our manuscript. We thank
Howard Hughes Medical Institute, Janelia Research Campus for access to lat-
tice light-sheet post-processing utility (LLSpy). This work was supported by
NIH New Innovator award 1DP2AI144245 and NSF Career award 1653782
(to J.H.). J.R. is supported by the NSF Graduate Research Fellowships Pro-
gram (DGE-1746045).

AUTHOR CONTRIBUTIONS

Conceptualization, J.R. and J.H. with input from G.C.; Methodology, J.R. and
F.B.-P. with input from J.H. and G.C.; Formal Analysis G.C. with input from J.R.
and J.H.; Writing, J.R., G.C., and J.H.; Supervision, J.H.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 18, 2019
Revised: February 29, 2020
Accepted: April 21, 2020
Published: May 20, 2020

REFERENCES

Alam, S.M., Travers, P.J., Wung, J.L., Nasholds, W., Redpath, S., Jameson,
S.C., and Gascoigne, N.R. (1996). T-cell-receptor affinity and thymocyte pos-
itive selection. Nature 387, 616-620.

Billadeau, D.D., Nolz, J.C., and Gomez, T.S. (2007). Regulation of T-cell acti-
vation by the cytoskeleton. Nat. Rev. Immunol. 7, 131-143.

442 Cell Systems 10, 433-444, May 20, 2020

Cell Systems

Boise, L.H., Minn, A.J., Noel, P.J., June, C.H., Accavitti, M.A., Lindsten, T., and
Thompson, C.B. (1995). CD28 costimulation can promote T cell survival by
enhancing the expression of Bel-XL. Immunity 3, 87-98.

Bunnell, S.C., Kapoor, V., Trible, R.P., Zhang, W., and Samelson, L.E. (2001).
Dynamic actin polymerization drives T cell receptor-induced spreading: a role
for the signal transduction adaptor LAT. Immunity 74, 315-329.

Cai, E., Marchuk, K., Beemiller, P., Beppler, C., Rubashkin, M.G., Weaver,
V.M., Gérard, A, Liu, T.L., Chen, B.C., Betzig, E., et al. (2017). Visualizing dy-
namic microvillar search and stabilization during ligand detection by T cells.
Science 356, eaal3118.

Campi, G., Varma, R., and Dustin, M.L. (2005). Actin and agonist MHC-peptide
complex-dependent T cell receptor microclusters as scaffolds for signaling.
J. Exp. Med. 202, 1031-1036.

Chakraborty, A.K., and Weiss, A. (2014). Insights into the initiation of TCR
signaling. Nat. Immunol. 715, 798-807.

Chen, B.C., Legant, W.R., Wang, K., Shao, L., Milkie, D.E., Davidson, M.W.,
Janetopoulos, C., Wu, X.S., Hammer, J.A., 3rd, Liu, Z., et al. (2014). Lattice
light-sheet microscopy: imaging molecules to embryos at high spatiotemporal
resolution. Science 346, 1257998.

Chen, L., and Flies, D.B. (2013). Molecular mechanisms of T cell co-stimulation
and co-inhibition. Nat. Rev. Immunol. 13, 227-242.

Chen, T., and Guestrin, C. (2016). XGBoost: a scalable tree boosting system.
arXiv, arXiv:1603.02754v3.

Coifman, R.R., and Lafon, S. (2006).
Computational Harmonic Analysis 271, 5-30.
Condon, N.D., Heddleston, J.M., Chew, T.L., Luo, L., McPherson, P.S.,
loannou, M.S., Hodgson, L., Stow, J.L., and Wall, AA. (2018).
Macropinosome formation by tent pole ruffling in macrophages. J. Cell Biol.
217, 3873-3885.

Corse, E., Gottschalk, R.A., Krogsgaard, M., and Allison, J.P. (2010).
Attenuated T cell responses to a high-potency ligand in vivo. PLoS Biol. 8,
e1000481.

Crites, T.J., Padhan, K., Muller, J., Krogsgaard, M., Gudla, P.R., Lockett, S.J.,
and Varma, R. (2014). TCR Microclusters pre-exist and contain molecules
necessary for TCR signal transduction. J. Immunol. 7193, 56-67.

David, A.F., Roudot, P., Legant, W.R., Betzig, E., Danuser, G., and Gerlich,
D.W. (2019). Augmin accumulation on long-lived microtubules drives amplifi-
cation and kinetochore-directed growth. J. Cell Biol. 218, 2150-2168.

Diffusion maps. Applied and

Ellefsen, K.L., and Parker, I. (2018). Dynamic Ca®* imaging with a simplified lat-
tice light-sheet microscope: a sideways view of subcellular Ca®* puffs. Cell
Calcium 71, 34-44.

Esensten, J.H., Helou, Y.A., Chopra, G., Weiss, A., and Bluestone, J.A. (2016).
CD28 costimulation: from mechanism to therapy. Immunity 44, 973-988.

Ferguson, A.L., Panagiotopoulos, A.Z., Debenedetti, P.G., and Kevrekidis, |.G.
(2010). Systematic determination of order parameters for chain dynamics us-
ing diffusion maps. Proc. Natl. Acad. Sci. USA 107, 13597-13602.

Fritz-Laylin, L.K., Riel-Mehan, M., Chen, B.C., Lord, S.J., Goddard, T.D.,
Ferrin, T.E., Nicholson-Dykstra, S.M., Higgs, H., Johnson, G.T., Betzig, E.,
and Mullins, R.D. (2017). Actin-based protrusions of migrating neutrophils
are intrinsically lamellar and facilitate direction changes. eLife 6, €26990.

Fritzsche, M., Fernandes, R.A., Chang, V.T., Colin-York, H., Clausen, M.P.,
Felce, J.H., Galiani, S., Erlenkamper, C., Santos, A.M., Heddleston, J.M.,
et al. (2017). Cytoskeletal actin dynamics shape a ramifying actin network un-
derpinning immunological synapse formation. Sci. Adv. 3, e1603032.

Gagnon, E., Schubert, D.A., Gordo, S., Chu, H.H., and Wucherpfennig, K.W.
(2012). Local changes in lipid environment of TCR microclusters regulate
membrane binding by the CD3epsilon cytoplasmic domain. J. Exp. Med.
209, 2423-2439.

Gao, R., Asano, S.M., Upadhyayula, S., Pisarev, |., Milkie, D.E., Liu, T.L., Singh,
V., Graves, A., Huynh, G.H., Zhao, Y., et al. (2019). Cortical column and whole-
brain imaging with molecular contrast and nanoscale resolution. Science 363,
eaau8302.


https://doi.org/10.1016/j.cels.2020.04.006
https://doi.org/10.1016/j.cels.2020.04.006
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref1
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref1
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref1
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref2
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref2
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref3
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref3
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref3
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref4
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref4
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref4
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref5
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref5
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref5
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref5
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref6
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref6
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref6
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref7
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref7
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref8
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref8
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref8
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref8
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref9
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref9
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref10
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref10
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref11
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref11
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref12
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref12
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref12
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref12
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref13
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref13
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref13
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref14
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref14
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref14
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref15
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref15
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref15
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref16
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref16
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref16
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref16
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref16
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref17
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref17
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref18
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref18
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref18
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref19
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref19
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref19
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref19
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref20
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref20
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref20
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref20
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref20
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref21
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref21
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref21
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref21
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref22
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref22
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref22
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref22

Cell Systems

Hashimoto-Tane, A., Sakuma, M., lke, H., Yokosuka, T., Kimura, Y., Ohara, O.,
and Saito, T. (2016). Micro-adhesion rings surrounding TCR microclusters are
essential for T cell activation. J. Exp. Med. 2713, 1609-1625.

Hashimoto-Tane, A., Yokosuka, T., Sakata-Sogawa, K., Sakuma, M., Ishihara,
C., Tokunaga, M., and Saito, T. (2011). Dynein-driven transport of T cell recep-
tor microclusters regulates immune synapse formation and T cell activation.
Immunity 34, 919-931.

Hos, B.J., Tondini, E., van Kasteren, S.l., and Ossendorp, F. (2018).
Approaches to improve chemically defined synthetic peptide vaccines.
Front. Immunol. 9, 884.

Hu, Y.S., Cang, H., and Lillemeier, B.F. (2016). Superresolution imaging reveals
nanometer- and micrometer-scale spatial distributions of T-cell receptors in
lymph nodes. Proc. Natl. Acad. Sci. USA 113, 7201-7206.

Huang, J., Brameshuber, M., Zeng, X., Xie, J., Li, Q.J., Chien, Y.H., Valitutti, S.,
and Davis, M.M. (2013). A single peptide-major histocompatibility complex
ligand triggers digital cytokine secretion in CD4(+) T cells. Immunity 39,
846-857.

Huang, J., Zarnitsyna, V.I., Liu, B., Edwards, L.J., Jiang, N., Evavold, B.D., and
Zhu, C. (2010). The kinetics of two-dimensional TCR and pMHC interactions
determine T-cell responsiveness. Nature 464, 932-936.

Hui, E., Cheung, J., Zhu, J., Su, X., Taylor, M.J., Wallweber, H.A., Sasmal, D.K.,
Huang, J., Kim, J.M., Mellman, ., and Vale, R.D. (2017). T cell costimulatory
receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355,
1428-1433.

Irvine, D.J., Purbhoo, M.A., Krogsgaard, M., and Davis, M.M. (2002). Direct
observation of ligand recognition by T cells. Nature 419, 845-849.

Janeway, C.A., Jr. (1992). The T cell receptor as a multicomponent signalling
machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu. Rev.
Immunol. 70, 645-674.

Janeway, C.A., Jr.,, Carding, S., Jones, B., Murray, J., Portoles, P.,
Rasmussen, R., Rojo, J., Saizawa, K., West, J., and Bottomly, K. (1988).
CD4+ T cells: specificity and function. Immunol. Rev. 107, 39-80.

Janeway, C.A., Travers, P., Walport, M., and Shlomchik, M.J. (2001).
Immunobiology: The Immune System in Health and Disease, Fifth Edition
(Garland Publishing).

Jenkins, M.K., Ashwell, J.D., and Schwartz, R.H. (1988). Allogeneic non-T
spleen cells restore the responsiveness of normal T cell clones stimulated
with antigen and chemically modified antigen-presenting cells. J. Immunol.
140, 3324-3330.

Kahan, S.M., Wherry, E.J., and Zajac, A.J. (2015). T cell exhaustion during
persistent viral infections. Virology 479-480, 180-193.

Kersh, G.J., Kersh, E.N., Fremont, D.H., and Allen, P.M. (1998). High- and low-
potency ligands with similar affinities for the TCR: the importance of kinetics in
TCR signaling. Immunity 9, 817-826.

Kumar, B.V., Connors, T.J., and Farber, D.L. (2018). Human T cell develop-
ment, localization, and function throughout life. Immunity 48, 202-213.

Kumari, S., Curado, S., Mayya, V., and Dustin, M.L. (2014). T cell antigen re-
ceptor activation and actin cytoskeleton remodeling. Biochim. Biophys. Acta
1838, 546-556.

Lawless, J.F. (2002). Statistical Models and Methods for Lifetime Data, Second
Edition (Wiley-Interscience).

Leisegang, M., Engels, B., Schreiber, K., Yew, P.Y., Kiyotani, K., Idel, C., Arina,
A., Duraiswamy, J., Weichselbaum, R.R., Uckert, W., et al. (2016). Eradication
of large solid tumors by gene therapy with a T-cell receptor targeting a single
cancer-specific point mutation. Clin. Cancer Res. 22, 2734-2743.

Lewis, J.B., Scangarello, F.A., Murphy, J.M., Eidell, K.P., Sodipo, M.O., Ophir,
M.J., Sargeant, R., Seminario, M.C., and Bunnell, S.C. (2018). ADAP is an up-
stream regulator that precedes SLP-76 at sites of TCR engagement and sta-
bilizes signaling microclusters. J. Cell Sci. 131, jcs215517.

Li, Q.J., Dinner, A.R., Qi, S., Irvine, D.J., Huppa, J.B., Davis, M.M., and
Chakraborty, A.K. (2004). CD4 enhances T cell sensitivity to antigen by coor-
dinating Lck accumulation at the immunological synapse. Nat. Immunol. 5,
791-799.

¢? CellPress

OPEN ACCESS

Li, W., Joshi, M.D., Singhania, S., Ramsey, K.H., and Murthy, A.K. (2014).
Peptide vaccine: progress and challenges. Vaccines (Basel) 2, 515-536.
Lillemeier, B.F., Mortelmaier, M.A., Forstner, M.B., Huppa, J.B., Groves, J.T.,
and Davis, M.M. (2010). TCR and Lat are expressed on separate protein
islands on T cell membranes and concatenate during activation. Nat.
Immunol. 77, 90-96.

Linsley, P.S., and Ledbetter, J.A. (1993). The role of the CD28 receptor during
T cell responses to antigen. Annu. Rev. Immunol. 77, 191-212.

Lundberg, S., and Lee, S. (2017a). A unified approach to interpreting model
predictions. arXiv, arXiv:1705.07874v2.

Lundberg, S.M., and Lee, S. (2017b). Consistent feature attribution for tree en-
sembles. arXiv, arXiv:1706.06060v6.

McArthur, K., Whitehead, L.W., Heddleston, J.M., Li, L., Padman, B.S.,
QOorschot, V., Geoghegan, N.D., Chappaz, S., Davidson, S., San Chin, H.,
et al. (2018). BAK/BAX macropores facilitate mitochondrial herniation and
mtDNA efflux during apoptosis. Science 359, eaao6047.

Mclnnes, L., Healy, H., and Melville, J. (2018). UMAP: uniform manifold
approximation and  projection for dimension reduction. arXiv,
arXiv:1802.03426v2.

Mir, M., Reimer, A., Stadler, M., Tangara, A., Hansen, A.S., Hockemeyer, D.,
Eisen, M.B., Garcia, H., and Darzacq, X. (2018a). Single molecule imaging in
live embryos using lattice light-sheet microscopy. Methods Mol. Biol. 71874,
541-559.

Mir, M., Stadler, M.R., Ortiz, S.A., Hannon, C.E., Harrison, M.M., Darzacq, X.,
and Eisen, M.B. (2018b). Dynamic multifactor hubs interact transiently with
sites of active transcription in Drosophila embryos. eLife 7, e40497.

Mueller, D.L., Jenkins, M.K., and Schwartz, R.H. (1989). An accessory cell-
derived costimulatory signal acts independently of protein kinase C activation
to allow T cell proliferation and prevent the induction of unresponsiveness.
J. Immunol. 742, 2617-2628.

Murugesan, S., Hong, J., Yi, J., Li, D., Beach, J.R., Shao, L., Meinhardt, J.,
Madison, G., Wu, X., Betzig, E., and Hammer, J.A. (2016). Formin-generated
actomyosin arcs propel T cell receptor microcluster movement at the immune
synapse. J. Cell Biol. 215, 383-399.

O’Shaughnessy, E.C., Stone, O.J., LaFosse, P.K., Azoitei, M.L., Tsygankov,
D., Heddleston, J.M., Legant, W.R., Wittchen, E.S., Burridge, K., Elston,
T.C., et al. (2019). Software for lattice light-sheet imaging of FRET biosensors,
illustrated with a new Rap1 biosensor. J. Cell Biol. 218, 3153-3160.

Phillips, J.K., Sherman, S.A., Cotton, K.Y., Heddleston, J.M., Taylor, A.B., and
Finan, J.D. (2019). Characterization of neurite dystrophy after trauma by high
speed structured illumination microscopy and lattice light sheet microscopy.
J. Neurosci. Methods 372, 154-161.

Rabinowitz, J.D., Beeson, C., Wilfing, C., Tate, K., Allen, P.M., Davis, M.M.,
and McConnell, H.M. (1996). Altered T cell receptor ligands trigger a subset
of early T cell signals. Immunity 5, 125-135.

Reay, P.A., Kantor, R.M., and Davis, M.M. (1994). Use of global amino acid re-
placements to define the requirements for MHC binding and T cell recognition
of moth cytochrome c (93-103). J. Immunol. 152, 3946-3957.

Ritter, A.T., Asano, Y., Stinchcombe, J.C., Dieckmann, N.M., Chen, B.C.,
Gawden-Bone, C., van Engelenburg, S., Legant, W., Gao, L., Davidson,
M.W., et al. (2015). Actin depletion initiates events leading to granule secretion
at the immunological synapse. Immunity 42, 864-876.

Roh, K.H., Lillemeier, B.F., Wang, F., and Davis, M.M. (2015). The coreceptor
CD4 is expressed in distinct nanoclusters and does not colocalize with T-cell
receptor and active protein tyrosine kinase p56ick. Proc. Natl. Acad. Sci. USA
112, E1604-E1613.

Rosenberg, J., and Huang, J. (2020). Visualizing surface T-cell receptor dy-
namics four-dimensionally using lattice light-sheet microscopy. J. Vis. Exp.
155, €59914.

Roy, N.H., and Burkhardt, J.K. (2018). The actin cytoskeleton: a mechanical in-
termediate for signal integration at the immunological synapse. Front. Cell
Dev. Biol. 6, 116.

Rudd, C.E., Trevillyan, J.M., Dasgupta, J.D., Wong, L.L., and Schlossman, S.F.
(1988). The CD4 receptor is complexed in detergent lysates to a protein-

Cell Systems 70, 433-444, May 20, 2020 443



http://refhub.elsevier.com/S2405-4712(20)30149-6/sref23
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref23
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref23
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref24
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref24
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref24
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref24
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref25
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref25
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref25
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref26
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref26
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref26
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref27
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref27
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref27
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref27
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref28
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref28
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref28
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref29
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref29
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref29
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref29
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref30
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref30
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref31
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref31
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref31
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref32
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref32
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref32
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref33
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref33
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref33
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref35
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref35
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref35
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref35
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref36
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref36
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref38
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref38
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref38
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref40
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref40
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref41
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref41
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref41
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref42
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref42
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref43
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref43
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref43
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref43
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref44
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref44
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref44
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref44
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref45
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref45
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref45
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref45
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref46
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref46
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref47
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref47
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref47
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref47
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref48
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref48
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref49
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref49
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref50
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref50
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref51
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref51
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref51
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref51
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref52
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref52
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref52
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref53
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref53
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref53
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref53
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref54
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref54
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref54
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref55
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref55
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref55
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref55
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref56
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref56
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref56
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref56
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref57
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref57
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref57
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref57
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref58
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref58
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref58
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref58
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref59
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref59
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref59
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref59
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref60
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref60
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref60
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref61
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref61
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref61
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref61
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref62
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref62
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref62
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref62
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref63
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref63
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref63
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref64
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref64
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref64
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref65
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref65

¢? CellPress

OPEN ACCESS

tyrosine kinase (pp58) from human T lymphocytes. Proc. Natl. Acad. Sci. USA
85, 5190-5194.

Sasmal, D.K., Feng, W., Roy, S., Leung, P., He, Y., Cai, C., Cao, G., Lian, H.,
Qin, J., Hui, E., et al. (2020). TCR-pMHC bond conformation controls TCR
ligand discrimination. Cell. Mol. Immunol. 77, 203-217.

Schamel, W.W., Arechaga, I., Risuefio, R.M., van Santen, H.M., Cabezas, P.,
Risco, C., Valpuesta, J.M., and Alarcén, B. (2005). Coexistence of multivalent
and monovalent TCRs explains high sensitivity and wide range of response.
J. Exp. Med. 202, 493-503.

Schindelin, J., Arganda-Carreras, |., Frise, E., et al. (2012). Fiji: an open-source
platform for biological-image analysis. Nat. Methods 9, 676-682.
Smoligovets, A.A., Smith, AW., Wu, H.J., Petit, R.S., and Groves, J.T. (2012).
Characterization of dynamic actin associations with T-cell receptor microclus-
ters in primary T cells. J. Cell Sci. 125, 735-742.

Taylor, M.J., Husain, K., Gartner, Z.J., Mayor, S., and Vale, R.D. (2017). ADNA-
based T cell receptor reveals a role for receptor clustering in ligand discrimina-
tion. Cell 169, 108-119.e20.

Thommen, D.S., and Schumacher, T.N. (2018). T cell dysfunction in cancer.
Cancer Cell 33, 547-562.

Thorn, K. (2016). A quick guide to light microscopy in cell biology. Mol. Biol.
Cell 27, 219-222.

Tsopoulidis, N., Kaw, S., Laketa, V., Kutscheidt, S., Baarlink, C., Stolp, B.,
Grosse, R., and Fackler, O.T. (2019). T cell receptor-triggered nuclear actin
network formation drives CD4(+) T cell effector functions. Sci. Immunol. 4,
eaav1987.

444 Cell Systems 10, 433-444, May 20, 2020

Cell Systems

Valitutti, S., Dessing, M., Aktories, K., Gallati, H., and Lanzavecchia, A. (1995).
Sustained signaling leading to T cell activation results from prolonged T cell re-
ceptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med. 187,
577-584.

van der Merwe, P.A., and Davis, S.J. (2003). Molecular interactions mediating
T cell antigen recognition. Annu. Rev. Immunol. 27, 659-684.

van der Merwe, P.A., and Dushek, O. (2011). Mechanisms for T cell receptor
triggering. Nat. Rev. Immunol. 77, 47-55.

Varma, R., Campi, G., Yokosuka, T., Saito, T., and Dustin, M.L. (2006). T cell
receptor-proximal signals are sustained in peripheral microclusters and termi-
nated in the central supramolecular activation cluster. Immunity 25, 117-127.

Veillette, A., Bookman, M.A., Horak, E.M., and Bolen, J.B. (1988). The CD4 and
CD8 T cell surface antigens are associated with the internal membrane tyro-
sine-protein kinase p56Ick. Cell 55, 301-308.

Wang, Q.L., Liang, J.Q., Gong, B.N., Xie, J.J., Yi, Y.T., Lan, X., and Li, Y.
(2019b). T cell receptor (TCR)-induced PLC- y 1 SUMOylation via PIASxbeta
and PIAS3 SUMO EB ligases regulates the microcluster assembly and physi-
ological function of PLC- v 1. Front. Immunol. 70, 314.

Yi, J., Balagopalan, L., Nguyen, T., Mclntire, K.M., and Samelson, L.E. (2019).
TCR microclusters form spatially segregated domains and sequentially
assembile in calcium-dependent kinetic steps. Nat. Commun. 70, 277.
Yokosuka, T., Sakata-Sogawa, K., Kobayashi, W., Hiroshima, M., Hashimoto-
Tane, A., Tokunaga, M., Dustin, M.L., and Saito, T. (2005). Newly generated
T cell receptor microclusters initiate and sustain T cell activation by recruit-
ment of Zap70 and SLP-76. Nat. Immunol. 6, 1253-1262.


http://refhub.elsevier.com/S2405-4712(20)30149-6/sref65
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref65
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref66
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref66
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref66
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref67
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref67
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref67
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref67
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref83
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref83
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref68
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref68
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref68
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref69
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref69
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref69
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref70
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref70
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref71
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref71
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref72
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref72
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref72
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref72
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref73
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref73
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref73
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref73
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref74
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref74
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref75
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref75
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref76
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref76
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref76
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref77
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref77
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref77
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref79
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref79
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref79
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref79
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref80
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref80
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref80
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref81
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref81
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref81
http://refhub.elsevier.com/S2405-4712(20)30149-6/sref81

Cell Systems

¢? CellPress

OPEN ACCESS

STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Alexa Fluor 488 anti-mouse TCR B BioLegend Cat# 109215; RRID: AB_493345
chain Antibody

Purified anti-mouse CD4 Antibody BioLegend Cat#: 100401; RRID: AB_312686
Purified anti-mouse CD28 Antibody BioLegend Cati#: 102101; RRID: AB_312866

Purified anti-mouse anti-CD3¢

University of Chicago Monoclonal
Antibody Facility

Clone 145-2C11; RRID: AB_312666

Chemicals, Peptides, and Recombinant Proteins

RBC Lysis Buffer eBioscience Cat#: 00-4300-54
Moth Cytochrome C (MCC), sequence Elimbio N/A
ANERADLIAYLKQATK
K5, sequence ANERADLIAYFKAATKF Elimbio N/A
102S, sequence ANERADLIAYLKQASK Elimbio N/A
Ficoll-Paque Plus GE Healthcare Cati#: 17-1440-02
Recombinant mouse IL-2 Sigma-Aldrich Cat#: 10523
Poly-L-Lysine Phenix Research Products Cat#: P8920-100ML
PP2 (4-Amino-5-(4-chlorophenyl)-7- Millipore Sigma Cati#: P0042
(t-butyl)pyrazolo[3,4-d]pyrimidine)
Retronectin Clontech Cat#: T100A
Recombinant human IL-2 Peprotech Cat#: AF-200-02
Critical Commercial Assays
MojoSort Mouse CD4 T Cell Isolation Kit BioLegend Cati#: 480033
Thermo Scientific Pierce Fab Micro Thermo Fisher Scientific Cat#: 44685
Preparation Kits
Experimental Models: Cell Lines
Mouse: CH27-mCherry Laboratory of Dr. Enfu Hui N/A
Experimental Models: Organisms/Strains
Mouse: B10.A-Rag2-/- H2-T18a Tg NIH N/A
(Tcra5CC7,Tcrb5CC7)
Recombinant DNA
MIG-CD3¢-GFP Laboratory of Dr. Hans Schrieber N/A
Software and Algorithms
Slidebook 3i https://www.intelligent-imaging.com/slidebook
Imaris Oxford Instruments https://imaris.oxinst.com/
LLSpy LLSpy was used under license https://llspy.readthedocs.io/en/latest/
from Howard Hughes Medical Institute,
Janelia Research Campus. Contact
innovation@janelia.hhmi.org for access.
R CRAN https://www.r-project.org/
Fiji Schindelin et al., 2012 https://imagej.net/Fiji

Deposited Data

Raw data This paper https://doi.org/10.5281/zenodo.3743835
Other
Lattice Light-Sheet Microscope 3i N/A

5mm round coverslips

World Precision Instruments

Cat#: 502040
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for reagents may be directed to, and will be fulfilled by, the corresponding author Jun Huang
(huangjun@uchicago.edu).

Materials Availability
This study did not generate unique reagents.

Data and Code Availability
All data that support the findings of this study are available at the following link: https://doi.org/10.5281/zenodo.3743835.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

5C.C7 TCR-transgenic RAG2 knockout mice in B10.A background aged 8-9 weeks were used in this study. Animals of both sexes
were used and the influence of sex was not considered in the analysis of the data. All experiments were conducted according to pro-
tocols approved by the Institutional Animal Care and Use Committee of the University of Chicago.

METHOD DETAILS

Cell Culture

Cytosolic mCherry-transduced CH27 cells were a gift generously donated by Dr. Enfu Hui. To obtain blasting T cells, 5C.C7 mouse
spleen was harvested and run through a 70 um cell strainer with warm complete RPMI. Splenocytes were resuspended in 5 mL of
RBC Lysis Buffer (Life Technologies) for 5 min, washed three times, and resuspended in 5 mL of complete RPMI. MCC peptide
(ANERADLIAYLKQATK; 10 uM) was added to stimulate T-cell proliferation, and recombinant mouse IL-2 (100 U/mL, Sigma-Aldrich)
was added the following day. Blasting T cells were used on days 6-10 after peptide pulsing. mCherry-CH27 cells and 5C.C7 blasting
T cells were both maintained in complete medium (RPMI 1640 supplemented with 10% [v/v] FBS, 1% [v/v] Pen/Strep, L-glutamine
[2 mM], 2-mercaptoethanol [50 pM]).

Cell Preparation

Cells were prepared as previously described (Rosenberg and Huang, 2020). Briefly, mCherry-CH27 cells were used as antigen pre-
senting cells for imaging experiments. Dead mCherry-CH27 cells were first removed by Ficoll-Paque Plus (GE Healthcare, cat:
17-1440-03) density gradient centrifugation (centrifuged at 930 x g for 10 min at 4 °C, acc/dec: SLOW/SLOW). Live mCherry-
CH27 cells were washed three times with complete medium, and then incubated with 10 uM K5 (ANERADLIAYFKAATKF), MCC
(ANERADLIAYLKQATK) or 102S (ANERADLIAYLKQASK) for 3 h at 37 °C and 5% CO,. Peptide-pulsed mCherry-CH27 cells were
then washed three times and resuspended in imaging media (phenol red-free Leibovitz's L-15 medium supplemented with 10%
[v/v] FBS, 1% [v/v] Pen/Strep, L-glutamine [2 mM]) for use.

Naive T cells were prepared by negative isolation using 5C.C7 transgenic mouse spleens. Mouse splenocytes were prepared by
Ficoll-Paque Plus (GE Healthcare, cat: 17-1440-03) density gradient centrifugation (centrifuged at 930 x g for 10 min at 4 °C,
acc/dec: SLOW/SLOW) to remove dead cells. Naive CD4™ T cells were then harvested by negative isolation (MojoSort Mouse
CD4 T Cell Isolation Kit, BioLegend, cat: 480033). Cells were washed three times with complete medium and incubated with
Alexa488-labeled anti-TCRp (2 ng; clone H-57, Biolegend) antibody Fab for 30 min at 37 °C and 5% CO,. After three washes, naive
T cells were resuspended in imaging media for use.

Day 6-10 blasting T cells were prepared by Ficoll-Paque Plus (GE Healthcare, cat: 17-1440-03) density gradient centrifugation
(centrifuged at 930 x g for 10 min at 4 °C, acc/dec: SLOW/SLOW) to remove dead cells. Live blasting T cells were washed three times
with complete medium and incubated with Alexa488-labeled anti-TCRp (2 ng; clone H-57, Biolegend) antibody Fab for 30 min at 37
°C and 5% CO,. After three washes, blasting T cells resuspended in imaging media for use.

CD3¢-GFP Transduction

Primary 5C.C7 T cells were retrovirally transduced with CD3¢-GFP according to a previously published method (Leisegang et al.,
2016). Briefly, calcium phosphate precipitation was used to transfect MIG-CD3¢-GFP vector into ecotropic platinum-E retroviral
packaging cells. Supernatant containing virus was harvested after 48 and 72 h and filtered through 0.2 um cellulose acetate mem-
brane. Splenocytes isolated from 5C.C7 mice cultured in complete RPMI were stimulated with anti-CD3e mAb (5 ng/mL; Clone 145-
2C11, University of Chicago Monoclonal Antibody Facility), anti-CD28 mAb (0.5 ng/mL; Clone 37.51, Biolegend), and recombinant
human IL-2 (40 U/mL; Peprotech). A 6-well plate was coated with Retronectin (12.5 pg/mL; Clontech) in PBS at 4 °C overnight,
then centrifuged for 90 min at 3,000 x g with 2 mL of viral supernatant. Day 1 activated splenocytes were transferred to plate with
viral supernatant, protamine sulfate (4 ng/mL) was added, and plate was centrifuged at 800 x g for 90 min. After 24 h, medium
was replaced with fresh viral supernatant containing protamine sulfate (4 pg/mL), and plate was centrifuged at 800 x g for
90 min. After 16 h, transduction efficiency was determined by examining GFP fluorescence using flow cytometry.
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Fab Preparation

All Fabs used in this study were prepared using a Micro Fab Preparation Kit (Thermo Fisher Scientific). Briefly, anti-TCRp, anti-CD4,
and anti-CD28 whole antibodies were prepared with desalting column, then digested with papain, a nonspecific thiol-endopeptidase,
for 6 h on tabletop shaker at 37 °C. Digested Fabs were purified according to kit instructions. Fab purification was confirmed with
SDS-PAGE gel electrophoresis.

Signaling Perturbation Assays
For PP2 assay, day 6-10 blasting T cells were pre-incubated with PP2 (10 uM; 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]
pyrimidine; Sigma-Aldrich) for 1 h at 37 °C and 5% CO.. Pre-treated cells were imaged at 37 °C and 5% CO, in the presence of
10 uM PP2.

For CD4 and CD28 blockade, an anti-CD4 (clone Gk1.5, BioLegend) or anti-CD28 (clone 37.51, BioLegend) Fab was prepared and
purified with Micro Fab Preparation Kit (Thermo Fisher Scientific). Day 6-10 T cells were pre-incubated for 1 h at 37 °C and 5% CO,
with anti-CD4 Fab (2 pg/mL) or anti-CD28 Fab (4 pg/mL) then imaged in the presence of 2 ung/mL Fab.

Lattice Light-sheet Microscopy

Version 2 of the Lattice Light Sheet Microscope (3i) was used for 4D imaging experiments. The LLSM was aligned daily according to
manufacturer’s instructions. LLSM bath was filled with imaging media and warmed to 37 °C. Round coverslips (5 mm) were prepared
prior to imaging by incubation with 0.1% [w/v] solution of Poly-L-Lysine for 30 min. Poly-L-Lysine was aspirated, and coverslips were
allowed to dry. To prepared coverslips were added 200,000 peptide-pulsed mCherry-CH27 cells. Cells were allowed to settle for
10 min before adhering to sample holder and placing in LLSM bath. T cells (200,000) were added dropwise to the LLSM bath above
the coverslip and imaged immediately. Imaging was conducted with dither set to 3 and 10 ms exposures. Z-steps (60) were collected
with a 0.4 um step size. Cells were imaged for no more than one hour before exchanging with fresh cells.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image Processing

Data were deskewed and deconvolved using LLSpy (cudaDeconv) software, used under license from Howard Hughes Medical
Institute, Janelia Research Campus; collected point spread functions (PSF, collected under imaging conditions) were used to decon-
volve, and 20 iterations were conducted. Bleach correction was conducted in ImagedJ using histogram matching. Deskewed, decon-
volved, and debleached videos were imported into Imaris (Bitplane) for rendering and tracking. Tracking TCR microclusters was con-
ducted with the “surfaces” module using the Autoregressive Motion Expert tracking method; any two consecutive surfaces were
allowed to move a maximum distance of 0.5 um and disappear for no more than 3 frames to be considered on one track; watershed
was not enabled. The surfaces module was also used to create a surface of the antigen presenting cell, and a distance map was made
extending outward from the antigen presenting cell surface. Surface module statistics were exported for every TCR surface. Thus, for
all following sections of the STAR Methods, “surfaces” or “surface modules” refer to the segmentation and tracking of TCR micro-
clusters conducted by Imaris.

Data Preprocessing

For each cell, the raw surface module statistics from the TCR microcluster tracks were imported and processed in R as follows. All
non-numerical or missing statistics values were removed. All statistical variables were then combined into a dataframe with rows as
unique surface modules and columns as the different statistical variables, including track-specific variables. For the initial parameter
extraction from Imaris, 36 variables out of 134 available parameters were collected (see Data Sharing and Availability for complete
list). These variables were selected by refraining from fitting a certain shape to the surface unit, thus removing all shape-specific fea-
tures such as “BoundingBoxAA Length” or “Ellipsoid axes”. Additionally, only first-order measurements were included where first
and second order are available, so as to minimize errors in tracking; for example, displacement XYZ was included, but not
displacement?, as any error in connecting the two surface units along the track would be propagated. As a separate example, all
acceleration measurements were also excluded, as they depend on velocity measurements, which depend on the displacement.
This would compound any “displacement error”. Redundant features were preserved (such as standard deviation vs. variation of
speed along track), as the XGboost classifier would only select one parameter to analyze at a time, thereby self-excluding the effect
of redundant parameters. To normalize the dynamic range, all intensity-related variables (e.g., Mean Intensity, Max Intensity, Min In-
tensity, etc.) and all size-related variables (e.g., Area, Volume, Number of Voxels, etc.) were then log transformed.

XGboost Decision Trees Ensemble Binary Classifier

To build the classifier and make predictions, all data were further processed as follows. For each cell, 19 out of the 36 variables were
selected as features of interest (see Data Sharing and Availability for complete list). In this subset, all track-specific (as opposed to
surface-specific) parameters were removed in order to focus the decision tree on each surface (or TCR microcluster), rather than
each track, as an individual unit. The only exception was Track Duration, which is important for lifetime distribution studies. For a
series of surface modules that were assigned to the same track by Imaris, the track duration feature values were defined as the tem-
poral length of that track (i.e., the same value for surface modules of the same track). In addition, position XYZ was removed, as the
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position of a surface is always relative to the orientation of the cell in that particular video, therefore irrelevant to compare across
videos. The chosen statistics from all microclusters on all cells were then pooled for each group to avoid bias on the biological vari-
ation from cell to cell. Surface modules with Mean Intensity (Imean) Values lower than mean(lmean)-1.5X1QR(Imean) Were removed as
they are likely to be noise rather than a true surface module. Then, all statistics were standardized:s’&i).

The processed data were then used to train a binary classifier to differentiate between microclusters from resting cells and micro-
clusters from stimulated cells as follows. Of the four groups of cell types, microclusters from stimulated blast T cells and resting naive
T cells were chosen to train the classifier, which was later tested on the stimulated naive cells and resting blast cells. This division of
cell types was chosen for two reasons: (1) to avoid any strong correlation within the same cells; and (2) to test against the confounding
effect of “past stimulation” (i.e., naive vs. blast). To build the classifier, a “train-test-validate” approach was used to avoid overfitting
(Figure S1I). Thus, the processed data of stimulated blast T cells and resting naive T cells were divided into a training set (75%;
117,066 surface modules), validation set (17.5%; 27,316 surface modules) and internal test set (7.5%; 11,705 surface modules).
The binary classifier was built as a XGBoost logistic regression decision tree ensemble, using the caret package (v.6.0) in R, with
5-fold cross-validation and the following parameters: nrounds = 150; max_depth = 3; eta = 0.4; gamma = 0; colsample_bytree =
0.8; min_child_weight = 1; and subsample = 1. Feature importance was then assessed using the SHAP values extracted from the
xgb.plot.shap function. All subsequent plots were constructed using the ggplot2 (v.3.2.0) and the ggpubr (v.0.2.1) package in R.
Finally, the model was tested on every surface module (i.e., TCR microclusters) from new data (stimulated naive and resting blast
categories) to predict whether these TCR microclusters were from stimulated blast T cells or from resting naive T cells. The final label
was assigned to be the one with greater predicted probability (i.e., either stimulated blasting T cells or resting naive T cells).

XGboost Decision Tree Ensemble Softmax Classifier

To differentiate multiple ligands, a separate multi-class XGboost classifier was constructed as follows. For each cell, the same 19 out
of 36 variables as used for the initial XGboost Decision Tree Ensemble Binary Classifier were selected; however, a 20" variable,
average distance to antigen presenting cell, was added. The last feature was not applicable to the binary classifier above because
the resting cells do not encounter antigen presenting cells, but it is applicable to all classes here. Surface modules with Mean Intensity
(Imean) values lower than mean(lmean)-1.5 X 1QR(Imean) Were removed since they are likely to be noise rather than a true surface module.
Then, all statistics were standardized:gf;(’ﬁ).

The processed data of microclusters from blasting T cells stimulated by MCC, 102S, and K5 were pooled and divided into a training
set (75%; 126,254 surface modules), validation set (17.5%; 29,460 surface modules) and test set (7.5%; 12,623 surface modules).
The softmax classifier was built as a XGBoost decision tree ensemble using softmax probabilities as the objective, using the caret
package (v.6.0) in R, with 5-fold cross-validation and the following parameters: nrounds = 500; max_depth = 6; eta = 0.3; gamma = 0;
colsample_bytree = 1; min_child_weight = 1; and subsample = 1. The final model was used to re-predict the probability of every sur-
face module from the blasting T cells stimulated by MCC, 102S, and K5. The final label was assigned to be the peptide (MCC, 1028, or
K5) with greatest predicted probability. Results were plotted using the ggplot2 (v.3.2.0) and the ggpubr (v.0.2.1) package in R.

Weibull Distribution
Weibull distribution (Lawless, 2002) is a commonly used statistical distribution that describes lifetime distribution. The three-param-

eter Weibull model we used is of the form:
_ -1 _ 8
f(T) = é <T TO) exp(—T TO)
n n n

T>0; n>0; >0

where:

A Weibull distribution was used to fit the raw track duration values for each group using the WeibulIR (v.1.0.10) package in R. The
location (Typ), shape (8), and scale (n) parameters were extracted directly from the model. The mean life-time values were calcu-
lated as:

= 1
T = TOH?'F(BJr 1).

UMAP

Pre-processed data were separately processed as an independent validation of the XGboost classifier. For each cell, the same 19 out
of the 37 variables as used for the XGboost classifier were selected as features of interest (see Data Sharing and Availability for com-
plete list). The chosen statistics from all cells of all groups were then pooled for each group to avoid bias on the biological variation
from cell to cell. Surface modules with Mean Intensity (Imean) Values lower than mean (Imean)-1.5XI1QR (Imean) Were removed since they

are likely to be noise rather than a true surface module. Then, all statistics were then standardized:sxlii). Then data of the groups of
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interest were then pooled and used to build a UMAP (Mclnnes et al., 2018) using the uwot (v.0.1.3) package in R with parameters:
min_dist = 0.1; n_neighbors = 25; all others set to default. All subsequent plots were constructed using the ggplot2 (v.3.2.0) and
the ggpubr (v.0.2.1) package in R.

Diffusion Maps

To construct the diffusion maps (Coifman and Lafon, 2006), pre-processed data were further processed similarly to the above UMAP,
except that only seven variables were selected (see link in Data and Software Availability for complete list). These seven variables
were selected from the distinguishing features identified by both the supervised XGboost classifier and the unsupervised UMAP.
First, the six features from the SHAP value analysis were chosen. However, “Time since Track Start” and “Track Duration” are
partially redundant. While “Track Duration” indicates the stability of the microcluster on the surface of the T cell, “Time since Track
Start” simply indicates the order the microclusters appear along this track, and therefore has less physical meaning. Thus, “Track
Duration”, was selected and “Time since Track Start” was excluded. In addition, “Mean Intensity” was selected over “Median In-
tensity”, since the former is a more common analysis metric. Finally, “Area” and “Speed” were also selected, as they encode inde-
pendent information that have not been captured by the initial 5 features; for instance, surface units with the same volume can have
different shapes, thereby lending to different surface area.

To conserve computational resources, a subset of 8,000 surface modules were randomly sampled from every group. Data from
four core groups, including stimulated blast T cells, stimulated naive T cells, resting naive T cells, and resting blast T cells, were
pooled and used to build the diffusion maps using the diffusionMap (v.1.1.0.1) package in R with default parameters. Nystorm
out-of-sample extension was then used to estimate the diffusion coordinates of surface modules of other groups. All subsequent
plots were constructed using the ggplot2 (v.3.2.0) and the ggpubr (v.0.2.1) package in R.

Pseudo-Energy Plot

For each group, the diffusion coordinates of the 8,000 sampled surface modules were used to build its pseudo-energy plot. The local
probability density, p(X’), at each data point on the diffusion map was estimated using the ks-package (1.11.5) in R. The density
values from the diffusion map embedding coordinates can be used to derive Free Energy Surface as follows:

BG(X) = —Inp(X) +const
Where ¢ = k;—T; G is the Gibbs free energy, and p(X') is the estimated local probabilistic density on the diffusion map. Here, we used —
Inp (7) as a pseudo-energy since we cannot experimentally determine the constant term, but this pseudo-energy should be linearly

related to the Gibbs free energy and thus gives a good representation of the free energy surface (Ferguson et al., 2010).
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