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Abstract— We consider decentralized scheduling of Dis-
tributed Energy Resources (DERs) in a day-ahead market
that clears energy and reserves offered by both centralized
generators and DERs. Recognizing the difficulty of schedul-
ing transmission network connected generators together with
distribution feeder connected DERs that have complex inter-
temporal preferences and dynamics, we propose a tractable
distributed algorithm where DERs self-schedule based on gran-
ular Distribution Locational Marginal Prices (DLMPs) derived
from LMPs augmented by distribution network costs. For the
resulting iterative DER self-scheduling process, we examine the
opportunity of DERSs to engage in strategic behavior depending
on whether DERs do or do not have access to detailed distri-
bution feeder information. Although the proposed distributed
algorithm is tractable on detailed real-life network models, we
utilize a simplified T&D network model to derive instructive
analytical and numerical results on the impact of strategic DER
behavior on social welfare loss, and the distribution of costs and
benefits to various market participants.

I. INTRODUCTION

Increasing penetration of environmentally sustainable, al-
beit intermittent and volatile, renewable generation can
benefit from significantly positive synergies with flexible
Distributed Energy Resource (DER) loads. DERs, such as
electric vehicles (EVs), can schedule their hourly charg-
ing rate and provide secondary reserves. EVs self-schedule
based on hourly day-ahead distribution location marginal-
cost-based prices (DLMPs) determined by coordinating In-
dependent System Operator (ISO) and Distribution System
Operators (DSOs) who clear the market. DLMPs are equal
to transmission locational marginal prices (LMPs) adjusted
for distribution line marginal losses [1].

Unfortunately, familiar centralized market-clearing algo-
rithms are computationally intractable due to large number
of DERs connected to distribution networks, and their com-
plex inter-temporal dynamics. Load aggregation and direct
centralized utility control methods proposed in the literature
in order to address these difficulties [2]-[4] as well as open-
loop optimal EV charging approaches [5], [6] are not scalable
for DER market integration. Distributed algorithm methods
based on self-scheduling DERs adapting to system operator
determined DLMPs appears the only tractable approach due
to complex DER dynamics as well as associated information
communication constraints [1], [7].

Two important questions arise from the need to rely on
distributed DER self-dispatch: (i) Is there a unique equilib-
rium that can be obtained for the market to clear, and (ii)
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can DERs increase their individual benefits at the expense
of social welfare by engaging in strategic behavior? Given
the hierarchical structure of distributed algorithms, there is a
vast literature on game theory approaches to market-clearing
with DERs. An extensive review of game theoretical methods
applied to power systems can be found in [8]. The existence
and uniqueness of Nash equilibrium in daily distributed
DER scheduling is shown in [9]. In [18], the equilibrium
for price taking and price anticipating DERs is studied;
however, salient network characteristics, such as line losses,
are omitted. Single time period Nash Equilibrium in energy
storage is studied in [10] and [11].

In our multi-product model where DERs trade both energy
and reserves, it is the second question that constitutes this
paper’s contribution. The readers can refer to [12]-[17]
for convergence and strategic behavior issues. This paper
extends past work by investigating strategic behavior under
cases of local network feeder characteristics information
available to self-scheduling DERs, enabling them to impute
competitor behavior. Furthermore, it discusses the feasibility
of obtaining such local information and the magnitude of the
associated loss of social welfare.

We are able to obtain analytical as well as extensive nu-
merical results by (i) focusing on EVs and their salient day-
ahead hourly preferences/dynamics including mobility across
distribution feeders, and (ii) accurately modeling generator
costs while simplifying, without loss of generality of our
analytical results, the transmission and distribution (T&D)
networks. Although a centralized market-clearing model with
massive DERs is not tractable for real-sized problems, we
formulate and solve it for small problems and use it as a
benchmark for the distributed algorithm solutions. We refer
to the centralized model as the global information problem.
More importantly, analytical expressions of equilibrium op-
timality conditions of the global model are compared to the
ones associated with the distributed algorithm decisions with
or without local feeder network information.

More specifically, two information cases are considered:
(i) DERs have no information about the distribution network
characteristics that influence their local DLMP, hence they
are pure price takers, and (ii) DERs do have access to local
distribution feeder characteristics enabling them to translate
marginal line loss information to an estimate of the most
recent aggregate local participant consumption decision, and
from it construct a functional relation of how their own
decision is likely to affect their local DLMP. The main con-
clusion of the paper is that it is possible for self-scheduling
DERs to behave strategically at the expense of social welfare,
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when they have access to network information. Moreover, the
impact of DER behavior on social welfare increases with
DER penetration.

The remainder of this paper is organized as follows.
Section II presents a simplified model of a radial distribution
network, with DERs and fixed demand connected to the end
of a single line feeder, and provides a detailed formulation
of the global information model. Section III introduces
the centralized and distributed market clearing models with
local distribution network information. Section IV compares
the models, and Section V lists numerical results for a
simple example. Lastly, Section VI concludes and provides
directions for further research.

II. T&D NETWORK APPROXIMATION AND GLOBAL
INFORMATION MODEL

In this section, we present a T&D network approximation
in subsection II-A, and a global information model (in
subsection II-B) in which the ISO has global information
on the network and all market participants.

A. T&D Network Approximation

We assume a radial distribution network with N feeders,
which are connected to a single transmission bus, denoted by
oo. Each feeder n = 1,..., N is represented by a single line
connecting the T&D interface node (substation) to a single
node where DERs and conventional loads are connected. We
use subscript P for real power and R for reserves. Index n
is used for each line (co —n) as well as the end-node of this
line, interchangeably (see Fig. 1). This abstraction greatly
simplifies the notation, but does not affect the validity of
our results.
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Fig. 1. T&D Network approximation.

Each line n incurs losses [,, ; that are related to the total
demand dff_’t at node n using a loss factor (LF},), as follows:

o = LEL(d])? = 24(d7,)?, M

where we introduce +, for notational simplicity.! Losses
ln, are referred to as “quadratic” losses, as opposed to
“marginal” losses, denoted by m,, ;, which are given by

aln,t
adr

Mp,t = = ’Vndit- (2)

Note that Yn is defined at each node, and hence the single node
approximation for each line is easily generalizable.

Conventional generators, indexed by 7, are connected at
the transmission bus co. Generator ¢ provides at each hour ¢
real power Qf +» and reserve th, incurring an (as-bid) cost
CF(Qf,), and CF(QF,), which are respectively given by

CiP< 5t) :%P( 5t)2+61'})( ft)za 3)
Cz'R( ft) :O‘zR( ft)Q"_BiR( zl'?t)Q- 4

EVs, indexed by j, are connected at the distribution nodes,
with z; , + = 1if EV j is connected at node n, at time period
(hour) ¢, and z;, + = 0, otherwise (note that »_  z; . <1,
Vj,t). Let J be the set of EVs, then subset J, ; includes
EVs connected at node n, hour ¢ (z;,; = 1). Also, let T}
denote the set of hours that EV j is connected at some node
(Zn Zjn,¢ = 1). Assuming EV j visits node n once a day
(daily pattern), we denote by t4°P the departure hour from
node n. While connected, EV j consumes qf , during hour
t, and by the time it departs from a certain node, it must
be charged by a certain minimum amount (s, ,,) that should
be sufficient for traveling. While traveling, EV j consumes
d;¢. While connected, EV j can provide reserve qft. The
provision of reserve at node n translates to a higher amount
at the transmission bus co, due to the line losses.? The total
demand at each node n, hour ¢, d% ,, is the sum of inelastic

n,t>
(fixed) demand di’tf , and the total EV consumption, i.e.,
b =dif+ Y af Q)
JE€EIn ¢t

Given that the total EV reserve provision is much smaller
compared to inelastic demand, we assume that incremental
losses at full reserve deployment are adequately represented
by marginal losses. In this case, as illustrated in Fig. 1, EV
reserve offer at the distribution node n, qft is translated to
(jﬁ at the transmission bus, as follows:

Q=L+ mu)dly, j€ Jus (6)

B. Global Information Model (TDSP*)

Assuming that the ISO has global information on the
T&D network characteristics as well as on the EV prefer-
ences/costs, we obtain the following optimization problem
referred to as TDgP*, where TD refers to simultaneously
optimizing the T&D network/resources, and subscript F
implies feeder information (in particular with respect to the
functional form of the losses):

minimize » {C]"(Q) + CF@QF)} + D _e(al)*, (D
Lt it
q;’t’qﬁt
subject to:

QL =D (ny+dl,) V=N, (8)

2More precisely, the first Watt of reserves deployed at node n, provides
a relief at the T&D interface bus that equals 1 + my, ¢. Given that reserve
deployment is generally small compared to dff +» we use the conservative
approximation of incremental losses by the maréinal losses My, ¢ of the first
Watt of reserves offered.
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b+ qf <78 Vit ), (12)
oF < qby Wit Y, (13)
si0 <TG Vit ;e 285, Vin,  (14)
sjo=5", Vi, (15)

where CF(QF,). CE(QF,) are given by (3) and (4), de-
pendent varlables lp+ and m,, ; are defined in (1) and (2),
sj¢ => 0 is a variable indicating the State of Charge (SoC)
of EV j at hour ¢, and also Q;, Lt7qjt7qjt >0, Vi, j,t

The objective function (7) minimizes the total generatron
and reserve provision cost plus the EV battery degradation
cost, where ¢ is a degradation coefficient that penalizes fast
charging due to battery health concerns [19]. The energy
balance constraint (8) states that at the transmission bus, total
generation must meet the demand plus line losses. Constraint
(9) states the reserves provided from both generators and
EVs should meet the requirements D[F. The dual prices
of these constraints (/\OO & foﬂ:) represent the energy and
reserve prices at the transmission bus, namely the LMPs.
Constraints (10) represent the technical maximum (Q,) and
minimum (Qi) generation constraints. Constraints (11)—(15)
are EV-related: (11) represents the SoC (s; ;) dynamics (dj ¢
is a parameter); (12) refers to the charger capacity (qj ); (13)
ensures that the battery never provides net energy to the grid,
i.e., there is no instance of Vehicle to Grid power flow; (14)
imposes a minimum amount of charging at the departure
of an EV from a certain node and ensures that the battery
capacity (q7 ) is not exceeded, and (15) initializes the SoC.

Arguably, the ISO does not have, nor is it practical to
obtain detailed distribution network information. As a result,
it practically has no information on the actual functional form
of the losses in (1) and (2). Such information is provided and
calculated (for a given load and EV consumption profile)
by the DSOs that do have local knowledge of the network
characteristics.

EVs provide services to the transmission market, and they
may opt to communicate their preferences to the ISO while
relying on their local DSO to estimate and provide line
loss information to the ISO. Alternatively, in a distributed
implementation, EVs do not communicate their preferences;
instead they self-dispatch conditional upon tentative energy
and reserve prices. More specifically, EVs are charged the
energy DLMP at node n, hour ¢, /\5 . for their energy
consumption qj ¢+ and rewarded the reserve DLMP \F  for
their reserve provision qj .. These spatiotemporal prices for
node n, hour ¢ are obtained by adjusting the transmission
bus LMPs for the marginal losses, as follows:

)"r}ft =(1+ mn,t))‘oRo,t-

Particularly for the reserves, we may think that reserves are
paid at the reserve LMP A\ , but for a quantity qj =1+
My, t)qJ +» which is equlvalent to (17).

As we mentioned, the ISO cannot in practice have dis-
tribution network information —this is local information—
and hence the global information model mainly serves as
a benchmark. In the next section, we consider models with
relying only on local information of the distribution network,
under both a centralized and a distributed implementation.

a7

III. LocAL INFORMATION MODELS

In this section, the DSOs (and not the ISO) have the local
information, which includes the detailed feeder models. We
present two types of models: a centralized implementation
(in Subsection III-A) in which EVs communicate their pref-
erences/cost to the ISO, and a distributed implementation
(in Subsection III-B), in which EVs self-dispatch conditional
upon tentative energy and reserve prices. In the distributed
model, we further explore the cases in which EVs may or
may not have local knowledge of feeder model details.

A. Centralized Model with Summarized Local Information
(TDe°Pt)

In this case, EVs communicate their preferences and costs
to the ISO, who does not have knowledge of the detailed
feeder model needed to calculate /,, ; and m,, ;. These values
are calculated and provided by the DSO. An outline of the
procedure is provided below:

Step 1: EVs initially communicate their costs and pref-
erences to the ISO. The DSO provides an estimate for the
inelastic demand, and the values of line losses.

Step 2: ISO minimizes the total system cost by dispatch-
ing generators and EVs, conditional upon the information
provided by the DSO, and communicates the EV schedules
to the DSO.

Step 3: The DSO calculates the network losses for the
new EV schedules, and provides these updated values to the
ISO.

Steps 2 and 3 are repeated until convergence. Specifically,
at iteration k + 1, the ISO solves an optimization problem
— referred to as TD°Pt, ie., without feeder information
— to obtain optimal schedules for generators and EVs,
assuming fixed milkz, as they have been provided from the
previous iteration k, and a first order Taylor expansion for
the quadratic losses around di’gk) in constraint (8). The
following constraints replace (8) and (9):

ZQ”:Z 1) —mP )+ (1+m)al , v, (18)

SR+ Y a+miek >

n,je ]n'f

DE wt, (19)

where the total demand df:t(k) is updated based on EV
P, (k) (k)

, and this demand is used to calculate m,, ;,

schedules g; }

and zﬁh . Hence, the optimization problem (TD°P!) is a
Ao =1+ mu )AL, (16)  Quadratic Problem (QP) defined as follows:
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TDCPt: (7), s.t. (18), (19), (10) — (15).

B. Distributed Models with Full/Summarized Local Informa-
tion (EVPt EVPY)

We now consider EVs that do not communicate their
preferences/costs to the ISO. Instead, they self-dispatch
conditional upon tentative DLMPs. More specifically, EV
j solves the following optimization problem — referred
to as EV-problem— to minimize its cost, i.e., the energy
cost (energy charged at the DLMP) minus the benefit from
reserve provision (remunerated at the reserve DLMP) plus
the battery degradation cost. The EV objective function is
provided below:

minimize Y ~ 20 (\r . — Mafh) + D elafy)?, 20)
t

P
thth n,t

where, we denote by )\ + and )\ '+ the DLMPs that the EV's
use to self-schedule (we will elaborate on how these values
are defined and related to (16) and (17) shortly). Hence, the
EV problem is as follows:

EV-problem: (20), s.t. (11) — (15).

The distributed implementation is as follows:

Step 1: The ISO broadcasts initial values of LMPs and
the DSO provides initial values for the marginal losses.

Step 2: EVs obtain the ISO LMPs and DSO calculated
marginal losses, synthesize DLMPs, and solve their cost min-
imization problem (EV-problem). They communicate their
schedules to the ISO/DSO.

Step 3: The DSO updates the losses, and provides them
to the ISO and the EVs.

Step 4: The ISO then clears the market with fixed EV
schedules, and line losses (we refer to this problem as Topt
since it basically optimizes the transmission network). The
ISO “filters” the LMPs of the T°P* solution, and announces
tentative LMPs to the EVs. Steps 2-4 are repeated until
convergence of the EV schedules.

In Step 4, the ISO optimization problem T°P* for iteration
k differs from TD°P? as follows:

ng)igimi}geZ{Cf( ﬁ)‘f‘ciR( ft)}

LSt gt

2n

subject to:

Zta:Zl(kt+dft(k))
SR+ Y (14+m®)g

n,J€JIn t

vt AL, (22)

B0 > DEve AR, (23)

where d,, ’( ) is calculated using (5), for given qf;(k). Hence,
ToPt s also a QP problem listed below for clarity:

TOPt: (21), s.t. (22), (23), (10).

Following the solution of T°Pt, the ISO filters the dual

R,(k)

where p; is a direction-dependent stepsize defined by

pp,(k)_{ min{pl, up” * V1 i ANPP ANPED
P.(k) _

min{p?’, ﬂpf’(k_l)} otherwise,
N (26)
where A)\P k) = ()\f;;ff*l) - /\opgff)), and u < 1, uw > 1

are constants, and ,05 is the nominal stepsize value, which
is also its upper bound. Therefore, the value of the stepsize
is decreased if there is a sign change in A)\f (k) compared
to A/\ (k=1) , otherwise it is increased.

In what follows, we elaborate on the EV problem of Step
2, and consider two cases.

1) EVs without Feeder Information (EV°P?): In this case,
EVs do not have information on the functional form of m,, ;
that affect the DLMPs. Hence, EVs are price takers and
their optimal strategy is dependent on [A}, AZ ]. These
are parameters in the EV-problem, obtained by ‘the ISO-
broadcasted tentative LMPs, AL , and )\OO +» and the DSO
calculated marginal losses m.,, ;. At iteration &, the objective
function of the EV problem becomes:

mlnlmlzesznt)\P(k 1)(1—|— (k U)q?

Jt
qf.al, it

— Z Zjm, t)\

For clarity, we denote this problem as EV°Pt ie.,

EV°Pt: (27), s.t. (11) — (15).

2) EVs with Feeder Information ( EV;pt ): In this case,
EVs have local network knowledge, hence they have in-
formation on the functional form of m,,; of their feeder.
Therefore, given the value of m,, EV j, j € J,4, can
infer the value of residual load at node n, hour ¢, where
the residual load is the sum of inelastic demand dftf and
a0 = Xjjizjiresn, 4 At iteration k, EV j using
the value mﬁf; Y and assuming that other EVs will remain
fixed to their previous schedules, has information on how
his schedule can affect the marginal losses, and hence the
DLMPs. The DLMPs )\5 4» and )\fft are no longer parameters
in the optimization problem, but a function of the marginal
losses, which has the following form:

Pa+ml) q]t+2 (a7 @D

Mae(ahy) = el + a5 +d) @8

Hence, the objective function of EV j in this case becomes

minimize Z Zjn, t/\P (k=1) [1 + mn}t(qft)]qft

quth n,t

- Z Zjmn t>\R (k1) [1 + Mt (qj}?t)]QJRt + Z e(qft)Q (29)
t

For clarity, we denote this problem as EVSP®, i.e.,

S opt, _
prices (LMPs) )\fo(f),)\fo(tk), and broadcasts )\iftk) and EVE™: 29), st D = {3).
Afo’ff) as follows: IV. MODEL COMPARISON
Xfé(f) :Xf;(f*l) +p! P, (k )()\oo(t) _X(I;,(écfl))7 24) In.t.his section, we compare the first order opFimal?ty
7 7 conditions for each of the above models, and we identify
)\fo’ftk) )\R (k Y +p (k)()\i’ftk) - )\f;”(f_l)), (25)  the differences which we call “mismatch terms.”
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The derivative of the Lagrangian with respect to EV
consumption qf ., for the global model TDP® is

ootzzjnt1+m"t ootzzjnt’Yn qut

JE€In t

+A=0, (30)

where A = 2eqF, — ¢V + (@ — ¢®). Similarly, for the

TD°Pt model, we have:

)‘fo,t Z Zjmt(1+m,) +A=0.

n

3D

Not surprisingly, the optimality conditions for TD®°Pt and
the distributed EV°P* model without feeder information, are
identical. The reason is that the latter is a decomposition of
the former, yielding the same optimal solution.

Lastly, for the EV;pt model, we have:

)‘opo,t Z Zjmt(1 4+ mng) + Afo,t Z ij,t'anft
n

n

—AR, Z ZintTndly + A= 0. (32)

n

We observe that (30)—(32) contain different terms, imply-
ing different optimal solutions. We clarify that even in the
same terms, i.e., the first and last term, their optimal values
will most likely differ in the above models. Nevertheless, the
“mismatch terms” imply potential causes of the differences.
By inspection, we observe that (31) is missing the second
term of (30) that contains the coupling of energy and reserve.
The coupling appears in (32), however it includes only
the individual EV reserve provision q  and not the sum
o, jedn. 4, R). Lastly, we note that the ‘mismatch terms”
contain ,, and that the lower this value the weaker the
impact of these terms.

V. NUMERICAL RESULTS

For illustration purposes, we employ a simple network,
with N = 2 distribution nodes. We list the input data
(Subsection V-A), and present the results (Subsection V-B).

A. Input Data

The inelastic demand daily load profile is shown in Figure
2. Reserve requirements are set to 7% of total inelastic
demand. Conventional generator data (total capacity 700
MW) are listed in Table 1. EVs are classified in 7 groups
based on their characteristics and preferences. For all groups,
traveling plans are assumed to be known a priori, which is a
reasonable assumption for a day-ahead scheduling problem.
The battery capacity for all groups is 24 kWh. The charger
capacity is 9 kW for EV groups 4-6 and 12 kW for groups
1-3, and 7. The degradation coefficient is € = 4 x 10—6
$/(kWh)2.

We consider two EV penetration Cases. In Case 1 the
aggregate EV minimum consumption is 21 MWh (10.8 at
Node 1, 10.2 at Node 2); it is doubled in Case 2. Al-
though EV consumption is low compared to inelastic demand
(0.36% in Case 1, and 0.72% in Case 2), EV share in reserve
provision is substantial. We list in Table II the EV groups, the

number of EVs for each Case, the hours they are connected
at each node (subset 7} ,), and the demand d; ,, (in kWh)
by the time of departure, which accounts for the estimated
consumption, i.e., d; ,, refers to the sum of d;; for the hours
of travel following the departure from node n. Assuming a
low enough SoC upon arrival, d;,, is the amount of energy
EV j should be charged while connected at node n. Initial
SoC is appropriately estimated considering the daily pattern.

Node 2 (Commercial) \
|

MW
400 { = Node 1 (Residential)
350 -

300 EE R R T
2% oL 0D -
2004 FHO0RH 00D UL —
I e R RN R R R EEs
100 HHHH- :

p I
o HHHHHH 1§k}

12345678 9101112131415161718192021222324 Hours

Fig. 2. Inelastic demand load profile

TABLE I
CONVENTIONAL GENERATOR DATA

i Q. Q' of gF ol BP

1 35 5 32 0.038 30 0. 084

2 35 5 3466 0095 3294  0.066

3 35 5 41.31 0.03 3525  0.077

4 35 10 43.41 0.05 37945 0.076

5 35 10 46.91 0.084  40.605 0.076

6 35 10 52779  0.065 43265 0.083

7 35 15 5734  0.115  46.17  0.065

8 35 15 6539  0.069 48445 0.071

9 35 15 7022 0.071 50.93 0.08

10 35 20 75.19  0.046 5373  0.078

11 35 20 78.41 0.051 56.46  0.081

12 35 20 81.98 0.072 59295 0.073

13 35 25 87.02 0.03 61.85  0.069

14 35 25 89.12  0.046 64.265 0.079

15 35 25 9234  0.027 67.03  0.066

16 35 30 9423  0.068 6934  0.074

17 35 30 98.9 0.031 7193  0.068

18 35 35 101.07  0.06 74.31 0.068

19 35 35 105.27 0.068  76.69  0.082

20 35 35 110.03  0.02 79.56 0.06

TABLE I
EV DATA
EV #EVs  #EVs
Group Case 1l Case 2 151 dj1 T2 dj2

1 310 620 7pm-7am 12 9am-5pm 12
2 160 320 9am-5pm 12 7pm-7am 12
3 80 160 8pm-7am 6 9am-6pm 6
4 80 160 8pm-7am 12 9am-6pm 9
5 160 320 9pm-7am 12 9am-7pm 9
6 400 800 9pm-7am 0 9am-7pm 6
7 300 600 8pm-lam 6 N/A N/A
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B. Results

The computational experiments were run using AIMMS
4.0, and the distributed model run times were less than 3
minutes, with stepsize parameters set at w = 0.4 and w = 1.2.
TD°Pt, EV°Pt and EV;pt converged in 30, 800, and 1200
iterations, respectively.

In Table III, we summarize the aggregate EV cost (energy
cost minus reserve revenues plus degradation cost) for the
two Cases. Since the TD°P* and EV°P* models produce
the same results, we mention only the latter.

TABLE 111
AGGREGATE EV CoST

Case 1: Low Penetration TD;’,pt EVveopt EVI(;pt
Aggregate EV cost 348.82 348.67 348.63
Energy cost 1456.27 145639  1456.56
Reserve Revenue 1107.88 1108.13 1108.35

Degradation 0.43 0.42 0.41

Case 2: High Penetration TD;"pt EVept EV;pt
Aggregate EV cost 718.08 714.75 714.56
Energy cost 2933.62  2935.78  2936.09
Reserve Revenue 2216.35  2221.72  2222.22
Degradation 0.80 0.69 0.69

Energy LMPs are always higher than reserve LMPs, due to
generators’ higher marginal cost for energy (Table I). Hence,
EVs charge at hours with lower LMPs (at most 9 hours),
and at the minimum required amount. EVs are generally
connected long enough and flexible in providing reserves;
the optimal solution is to provide the maximum amount
possible, i.e., qft is equal to qf .. Therefore, contrary to
their low energy consumption share, EV reserve provision
reaches up to 96% of the reserve requirements in some
hours (Figure 3). We also observe that EVs reduce their
total cost when they self-schedule (in the EVOPt and EVEP*
models), by increasing their reserve revenue at the expense
of energy cost; in fact, they do slightly better when they
have local feeder information, by reallocating their charging
across hours. As expected, the global model TD;\pt achieves
the lowest social cost.

In the following figures, we examine the hourly differences
in total EV consumption and reserve provision, as well as
prices across the TDOFpt, EVert and EV;pt models, for
Case 2. For simplicity, we show the hours with nonzero EV
consumption. Figure 3 shows the total reserve provision of
EVs and generators at the substation level, whereas Figure 4
shows the total EV consumption, energy and reserve LMPs.
Since the price differences between the distributed models
are small, we only show prices for TDP* and EVP*.

When EVs provide more reserves in the TD$P* model,
reserve LMPs expectedly become lower in these hours,
since generators need to provide less to meet the system
requirements (e.g., hours 2, 3, 4, and 18). The opposite
is generally true for energy consumption; when all EVs
consume more in the TD°Fpt model, energy LMPs are also
higher. However, energy LMPs in hours 2 and 4 seem to
be unaffected from higher EV consumption in the TDJP*

model (Figure 4). This is because hourly energy balance
and required generation depends on the losses. For instance,
Figure 5 shows that in hour 2, EV consumption in the TDP*
model is higher in Node 1, but lower in Node 2; this has
opposing effects on the total losses in that hour.
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Fig. 5. EV consumption and marginal losses (Nodes 1 and 2).

The general trend of increasing EV charging costs (net of
reserve sales revenue) as EVs are scheduled respectively by
the EVOPt, EVSP® and TDPP® models is explored further
by considering EV group spemﬁc results. Table IV shows that
EV groups 2, 6 and 7 which are connected during hours when
marginal losses are low, cannot compete effectively with the

4880

Authorized licensed use limited to: Michael Caramanis. Downloaded on December 30,2020 at 19:43:17 UTC from IEEE Xplore. Restrictions apply.



rest of the groups (1, 3, 4, 5) that are connected during high
marginal loss hours. Indeed, the value of feeder information
to compete and reduce their costs under EVgP* scheduling
relative to EV°Pt scheduling is smaller for groups 2, 6, and
7. In addition, Group 7 stands out to the extent that the
global information schedule TDCIQPt increases its charging
cost disproportionately relative to other groups, while EV
Group 2 is relatively unaffected.

TABLE IV
EV GROUP RESULTS

Group TDYP* EVeprt EVP*
@ (2) 3 @=2-3) )=3)-1)
1 260.65 259.23 259.16 0.029 -0.576
2 129.22 129.23 129.22 0.005 0.002
3 33.36 33.19 33.17 0.049 -0.576
4 54.38 54.15 54.13 0.044 -0.464
5 84.28 83.79 83.75 0.041 -0.632
6 123.06 122.48 122.44 0.031 -0.507
7 33.14 32.69 32.69 -0.013 -1.353

VI. CONCLUSIONS

We propose a tractable day-ahead energy and reserve
scheduling algorithm with centralized generators connected
to the Transmission network as well as DERs and price
inelastic consumption connected to Distribution network
feeders. Tractability requires decomposition to multiple indi-
vidual DER scheduling problems that solve for given nodal
marginal cost based prices and iterate with a T&D Network
model updating prices till convergence. Focusing on the
existence and severity of strategic behavior, we consider the
significance of access by the self-scheduling DERs to local
feeder information enabling them to anticipate the impact of
their scheduling decisions on distribution network prices that
determine their net costs. Our analysis shows that strategic
behavior is enabled by DER local feeder information access.
Although DER schedules are only slightly modified, the
distribution of costs and benefits among market participant
groups and among competing DERs is affected.

The numerical results that we provide demonstrate the
trends anticipated by the analytically documented differ-
ences between the distributed scheduling algorithms with
and without DER access to local feeder information. The
relatively small impact of DER information access on social
welfare and the distribution of benefits amongst participants
supports the idea of proceeding with future T&D market
designs that discourage local feeder information access. This
implies that there is a potential advantage to discourage the
role of distribution network operators as DER aggregators
and investigate information platforms that enable individual
DERs to participate in distributed decision making as price
takers at their respective nodes.

Notably, requisite distributed algorithms with accurate AC
OPF capability have been proposed and tested on real size
systems. Our reliance on and use of a simplified network
flow model in this paper, was simply a choice made to
facilitate the analysis of strategic behavior. We have also

shown on a separate and ongoing work the existence and
uniqueness of the Nash equilibrium in the non-cooperative
game EVs engage in when they have access to the local
feeder information.
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