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Abstract

Exoplanet catalogs produced by surveys suffer from a lack of completeness (not every planet is detected) and less
than perfect reliability (not every planet in the catalog is a true planet), particularly near the survey’s detection
limit. Exoplanet occurrence rate studies based on such a catalog must be corrected for completeness and reliability.
The final Kepler data release, DR25, features a uniformly vetted planet candidate catalog and data products that
facilitate corrections. We present a new probabilistic approach to the characterization of Kepler completeness and
reliability, making full use of the Kepler DR25 products. We illustrate the impact of completeness and reliability
corrections with a Poisson-likelihood occurrence rate method, using a recent stellar properties catalog that
incorporates Gaia stellar radii and essentially uniform treatment of the stellar population. Correcting for reliability
has a significant impact: the exoplanet occurrence rate for orbital period and radius within 20% of Earth’s around
GK dwarf stars, corrected for reliability, is -

+0.015 0.007
0.011, whereas not correcting results in -

+0.034 0.012
0.018—correcting for

reliability reduces this occurrence rate by more than a factor of two. We further show that using Gaia-based versus
DR25 stellar properties impacts the same occurrence rate by a factor of two. We critically examine the the DR25
catalog and the assumptions behind our occurrence rate method. We propose several ways in which confidence in
both the Kepler catalog and occurrence rate calculations can be improved. This work provides an example of how
the community can use the DR25 completeness and reliability products.

Unified Astronomy Thesaurus concepts: Exoplanet catalogs (488); Exoplanets (498); Exoplanet detection
methods (489)

1. Introduction

The Kepler space telescope (Borucki et al. 2010; Koch et al.
2010) has delivered unique data that enable the characterization
of exoplanet population statistics, from hot Jupiters in short-
period orbits to terrestrial-size rocky planets in orbits with
periods up to one year.7 By observing >150,000 stars nearly
continuously for four years looking for transiting exoplanets,
Kepler detected several thousand planet candidates (PCs)
(Thompson et al. 2018), leading to the confirmation or
statistical validation of over 2300 exoplanets. This rich trove
of exoplanet data has delivered many insights into exoplanet
structure and formation, and promises deeper insights with
further analysis. One of the most exciting insights to be gained
from Kepler data is the occurrence rate of temperate, terrestrial-
size planets orbiting Sun-like stars (often referred to as η⊕).
This occurrence rate is also a critical input to the design of
future space telescopes designed to discover and characterize
habitable exoplanets, such as HabEx and LUVOIR.

Fully exploiting Kepler data requires a thorough under-
standing of how well it reflects the underlying exoplanet

population. There are several ways in which the Kepler PC
catalog does not directly measure the real planet population:

1. the catalog is incomplete, missing real planets;
2. it may be unreliable, with the PC catalog being polluted

with false positives;
3. it may be inaccurate due to observational errors leading

to incorrect planet properties.

Lack of completeness and reliability are particularly acute at
the Kepler detection limit, which happens to coincide with the
period and radius of Earth–Sun analog exoplanets. We
therefore focus our attention on a period and radius range
spanning the Kepler detection limit.
In this paper we address vetting incompleteness, a significant

component of incompleteness caused by incorrectly classifying
detected true planets as false positives, and vetting reliability,
caused by incorrectly classifying detections as PCs when they
are in fact not true planets. We address accuracy by using new,
uniformly determined stellar properties based in part on Gaia
observations, described in Section 3.1.
We focus our analysis on the final Kepler data release DR25

(Thompson et al. 2018) and its associated PC catalog.8 DR25
contains several products designed to support the characteriza-
tion of the completeness and reliability of the DR25 PC
catalog. The primary contribution of this paper is a new
probabilistic approach to using the DR25 completeness and
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reliability products to characterize vetting completeness
and reliability. We illustrate the impact of completeness and
reliability with standard occurrence rate computations, and
examine the impact on occurrence rates due to changes in
various assumptions. This is the first occurrence rate computa-
tion that fully uses the DR25 completeness and reliability
products to characterize vetting reliability.

1.1. Previous Work

Kepler’s survey of the Cygnus field involved four years of
data collection and another four years of pipeline development,
data processing, and survey characterization, culminating in the
final deliveries referred to as DR25. Incremental data deliveries
enabled preliminary science investigations, and several occur-
rence rate studies were executed as the survey progressed. The
simplest, first-look estimates used Gaussian cumulative dis-
tribution functions (CDFs) as proxies for pipeline completeness
(Borucki et al. 2011), restricted samples where completeness
was assumed to be near unity (Howard et al. 2012), and linear
approximations to a Gaussian CDF (Fressin et al. 2013).
Lacking a full characterization of the Kepler pipeline, others
employed independent detection pipelines, including injection
and recovery experiments operating on flux light curves to
quantify the detection completeness (Petigura et al. 2013;
Foreman-Mackey et al. 2014; Dressing & Charbonneau 2015).
Hsu et al. (2018) performed an occurrence rate calculation
using approximate Bayesian computation and Zink & Hansen
(2019) computed a habitable zone occurrence rate taking into
account the effect of planet multiplicity on completeness.

The performance of the Kepler pipeline was characterized
incrementally as more data were collected using transit injection
and recovery operating on raw pixel fluxes as described
in Section 2.1 (Christiansen et al. 2013, 2015, 2016;
Christiansen 2017). These early studies provided positive feed-
back to the Kepler pipeline whereby deficiencies were identified
and improved upon (Twicken et al. 2016). Occurrence rate
calculations using 16 out of 17 quarters of data and the associated
pipeline completeness offered a benchmark computation for
testing methodologies and comparing independent pipelines
(Burke et al. 2015). Systematic errors were explored and the
tallest tent poles were identified. Among these tall tent poles were
two standouts: stellar property uncertainties and catalog reliability.

The first studies to include a treatment of catalog reliability
focused on identifying astrophysical false positives either
deterministically through follow-up observations (Santerne
et al. 2012) or probabilistically via population synthesis
(Morton & Johnson 2011; Morton & Swift 2014; Morton
et al. 2016). And while most treatments culled or weighted the
planet population, others sought to model both the planet and
astrophysical sources as part of the planet occurrence
estimation (Fressin et al. 2013), with Farr et al. (2014)
applying a mixture model approach. These efforts used
idealized models of the false positive and false alarm
populations. An extremely useful astrophysical false positive
probability statistic was developed by Morton et al. (2016).

The most significant effort to characterize the reliability of
the Kepler PC catalog to date is the final DR25 catalog paper
(Thompson et al. 2018). The DR25 catalog includes a
Robovetter score which estimates the confidence with which
the Robovetter vetted a threshold-crossing event (TCE).
Thompson et al. suggest that restricting occurrence rate studies
to high-Robovetter-score PCs avoids the problem of low-

reliability candidates (we test this approach in Section 6.4.2).
Hsu et al. (2018) and Mulders et al. (2018) apply this high-
score approach in their occurrence rate studies.
Burke et al. (2019) analyze DR25 reliability using the

inverted and scrambled data, approaching reliability character-
ization via kernel density estimation. The focus of Burke et al.
is how reliability impacts statistical exoplanet validation.

1.2. This Paper

The primary purpose of this paper is to present a
probabilistic characterization of Kepler vetting completeness
(Section 4.2) and reliability against false alarms (Section 5.1),
and to show the impact on standard occurrence rate computa-
tions. This probabilistic analysis is robust against sparse data
and resolves detailed structure of the dependence of vetting
completeness and reliability on orbital period and transit signal
strength. We explore the impact of using this characterization
to correct occurrence rates based on Kepler data by performing
a standard Poisson-likelihood-based occurrence rate, following
Burke et al. (2015). Our characterization depends on the
exoplanet population, which in turn depends on the parent
stellar sample that is searched for planets. We restrict our
analysis to GK dwarf stars.
Our method of accounting for completeness and reliability

proceeds by executing the following steps.

1. Select a subset of the target star population, which will be
our parent population of stars that are searched for
planets. We apply various cuts intended to select well-
behaved and well-observed stars, and we restrict our
analysis to GK dwarfs, as described in Section 3.1.

2. Use the injected data to characterize vetting complete-
ness, described in Section 4.2.

3. Compute the summed detection completeness, incorpor-
ating vetting completeness, described in Section 4.1.

4. Use observed, inverted, and scrambled data to character-
ize false alarm reliability, described in Section 5.1.

5. Assemble the collection of PCs, including computing the
reliability of each candidate from the false alarm
reliability and false positive probability (FPP).

6. Compute the desired occurrence rates, presented in
Section 6.

We perform our completeness and reliability analysis on the
planet radius range 0.5�radius�15 R⊕. We perform our
completeness analysis on the period range 50�period�500
days and reliability analysis on the period range 50�
period�600 days. Our occurrence rates are focused on
illustrating the impact of vetting completeness and reliability
where both are low, so our occurrence rates are analyzed for
50�period�400 days and 0.75�radius�2.5 R⊕.
Following an introduction to the details of completeness,

reliability, and the data products that support their computation
in Section 2, this paper has four major parts: Section 3 assembles
the stellar and planet catalogs we use in our analysis. We choose
a stellar catalog that incorporates Gaia stellar radii and features
an essentially uniform treatment of the parent stellar sample.
Section 4 describes catalog completeness and describes our
characterization of vetting completeness. Section 5 describes our
characterization of catalog reliability. In Section 6 we perform
our baseline occurrence rate computations corrected for vetting
completeness, emphasizing the difference between correcting
and not correcting for reliability. We then explore alternative
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occurrence rate calculations, including using an alternative
stellar properties catalog, demonstrating the impact of not
correcting for vetting completeness and restricting our analysis
to PCs with Robovetter score > 0.9.

Throughout this paper we present results with confidence
intervals that are the 14th and 86th percentiles of posterior
distributions resulting from Markov chain Monte Carlo
(MCMC) analysis using fixed inputs. These confidence
intervals do not account for uncertainties in the inputs. We
address the issue of uncertainties in the inputs in Section 6.3.

All results reported in this paper were produced with Python
code, mostly in the form of Python Jupyter notebooks, found at
the paper GitHub site.9

2. Completeness, Reliability, and Occurrence Rates

As described above, completeness has two components.
Detection completeness is the fraction of true planets that are
detected by the Kepler pipeline. Vetting completeness is the
fraction of detected true planets that are correctly vetted as PCs.
Vetting reliability is the fraction of vetted PCs that are true
planets.

During catalog creation, the reliability of the PC catalog is
increased by detecting and removing false positives using a
variety of tests. When the transit signal is weak it can be
difficult for these tests to distinguish false positives from true
planets, so maximizing reliability via stringent tests can cause
true planets to be classified as false alarms, reducing vetting
completeness. The DR25 catalog addressed this problem with
uniform automated vetting via the Robovetter, using tests that
were tuned to strike a balance between vetting completeness
and reliability. This uniform automated vetting made it possible
to vet synthetic and modified data sets designed to statistically
mimic true planets and false positives, described in Section 2.1,
in exactly the same way that the observed data were vetted. In
this way the completeness and reliability of the PC catalog can
be measured and corrected in occurrence rates.

We distinguish two broad classes of phenomena that pollute
the PC catalog.

1. Astrophysical false positives, such as grazing or eclipsing
binaries, which produce a planet-transit-like signal with a
regular ephemeris in observed light curves that are not
due to planetary transits. There has been extensive effort
to identify and remove such false positives from Kepler
catalogs (e.g., Morton & Johnson 2011; Bryson et al.
2013; Fressin et al. 2013; Coughlin et al. 2014; Morton
et al. 2016; Thompson et al. 2018), and for high signal-to-
noise ratio (S/N) transits the resulting removal of
astrophysical false positives is very effective. For low
S/N, however, it is more difficult to distinguish
astrophysical false positives from true planetary transits.
In this paper we address astrophysical false positives via
the probabilistic evaluation of Morton et al. (2016).

2. False alarms, which trigger a transit detection with a
regular ephemeris, but are not due to regularly repeating
astrophysical phenomena. The dominant source of false
alarms in Kepler data is instrumental artifacts. There are
two important classes of instrumental artifacts that have
been identified as responsible for the overwhelming

majority of false alarms at long periods: rolling bands
and statistical and pixel fluctuations.
(a) Rolling bands (Van Cleve & Caldwell 2009; Caldwell

et al. 2010) are thermally dependent quasi-sinusoidal
electrical signals in the output of the Kepler CCDs. As
the Kepler telescope slowly changes its attitude
relative to the Sun, different parts of the photometer
are illuminated. While the thermal insulation of the
telescope and electronics is very good, it is not perfect
and the resulting thermal variations cause the rolling
bands to slowly move across the CCDs, often
introducing signals that look very much like transits.
Because Kepler’s attitude is determined by its 372 day
orbit, rolling bands often induce transit-like signals
that repeat with a nearly regular ephemeris with an
approximately 372 day period. This is the cause of the
sharp peak of TCEs in the left panel of Figure 1.
Rolling bands are highly focal plane position
dependent: some Kepler CCD channels have much
more severe rolling bands than others.

(b) Statistical and pixel fluctuations are independent,
unrelated dips in light curves due to cosmic ray hits,
single transits, and statistical fluctuations that trigger
transit detections when they accidentally fall into a
regular ephemeris. This class of false alarms becomes
much more common for long-period ephemerides
because they only require three or four events to fall
on a regular ephemeris, and explains the broader
“shoulders” of the tall peak in the left panel of
Figure 1.

In addition, stellar variability triggers false alarm transit
detections on a regular ephemeris, typically at short periods.
False positives and false alarms are treated differently in our
analysis, as described in Section 5.
In an ideal world, measuring planet occurrence rates from

Kepler data would be simple—divide the number of detected
planets by the number of observed stars, correcting for the
geometrical probability of a planet transit. To get an accurate
occurrence rate, however, this approach must be corrected for
completeness and reliability. This correction can be large for
Earth–Sun analog systems, which are at the Kepler detection
limit where both completeness and reliability are very low.
Specifically, instrumental false alarms are a significant source
of false transit detections in the long-period, low-S/N region of
most interest for habitable zone occurrence rate studies for G
and K dwarf stars. In this regime, as shown in Figure 1, the
number of instrumental false alarms is very large compared to
the expected population of true exoplanet detections.

2.1. DR25 Vetting and Reliability Products

The DR25 PC catalog (Thompson et al. 2018) contains 4034
identified PCs out of 8054 Kepler Objects of Interest (KOIs).
The KOIs were extracted from a catalog of 34,032 transit
detections (TCEs), which are periodic transit-like events (as
identified by a matched filter; Jenkins 2002) that have a
combined signal strength above a threshold (typically 7.1σ).
Identification of the PCs from the KOIs was performed by a
fully automated Robovetter. The Robovetter applies a variety
of tests to each TCE, many of which are based on the synthetic
test data sets described below, and PCs are TCEs that pass all
tests while following a logic tree. Such automated vetting9 https://github.com/stevepur/DR25-occurrence-public
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(along with transit detection) is critical for the production of a
statistically uniform catalog that is amenable to statistical
correction for completeness and reliability.

The DR25 completeness products are based on injected data
—a ground truth of transiting planets is obtained by injecting
transit signals with specific characteristics on all observed stars
at the pixel level (Christiansen 2017). These data are then
analyzed by the Kepler detection pipeline to produce a catalog
of detections at the injected ephemerides called injected and
recovered TCEs, which are then sent through the same
Robovetter used to identify PCs. The fraction of injected
transits that are recovered as TCEs measures detection
completeness, while the fraction of recovered TCEs that are
vetted as PCs measures vetting completeness. A large number
of transits were also injected on a small number of target stars
to measure the dependence of completeness on transit
parameters and stellar properties. These data are used to create
high-resolution, per-target-star detection contours described in
Section 4.1, providing completeness for each target star as a
function of planet orbital period and radius (Burke &
Catanzarite 2017).

The rate of false alarms, measured for the first time in DR25,
is characterized by manipulating observed data so that they
contain no true astrophysical transiting exoplanet signals,
creating a ground truth in which any TCE or vetted PC is an
instrumental false alarm. There are two basic manipulations
that create the data used to characterize the rate of false alarms.

1. Data inversion flips the light curves “upside down” so
that true transiting signals increase in brightness and are
therefore not identified as transits. This is believed to
preserve the quasi-sinusoidal rolling bands described
above. The distribution of TCEs detected in the inverted
data reproduces well the sharp peak at a period of 372
days that is seen in the distribution of observed TCEs in
the left panel of Figure 1.

2. Data scrambling shuffles the Kepler observational
quarters in a way that destroys the regular ephemeris of
astrophysical transit signals, preventing their detection by
the Kepler pipeline. While this also prevents the detection
of the same false alarms that are detected in the original
observed data, it is believed to preserve the statistics of
detections due to statistical and pixel fluctuations. The
distribution of TCEs detected in the scrambled data is
very similar to the broad shoulder near periods of one
year in the distribution of observed TCEs seen in the left
panel of Figure 1. Three different shuffles of the Kepler
data are available.

The DR25 Robovetter uses a number of metrics to identify
instrumental false alarms, and the inverted and scrambled data
sets were used to tune their pass/fail thresholds. For an
extensive discussion, see Thompson et al. (2018).
For many Robovetter metrics, the distribution of values from

the inverted/scrambled data overlaps the distribution of values
in the observed data, making it difficult to distinguish false
alarms from true planets, particularly at long period and low S/
N. This results in low reliability in some parameter spaces of
the Kepler PC catalog, especially near the detection limit. An
effort to characterize this catalog reliability is described in
Section 4 of Thompson et al. (2018). The work presented in
this paper is an attempt to improve on this characterization.

3. Input Catalogs

3.1. The Stellar Catalog

Our occurrence rate starts with a parent stellar population of
GK dwarf stars that is searched for planetary transits. The
properties of each star determine the likelihood that a transiting
planet of a given size will be observed. The radius of the planet
is derived from the fitted radius ratio and stellar radius. While
the most accurate stellar properties for each star are desirable

Figure 1. Left: distribution of transit signal detections in S/N-period space from the final Kepler data release (DR25; Thompson et al. 2018), showing a dramatic
excess near the Kepler orbital period of 372 days and S/N between 7 and 15. Right: the distribution of DR25 planet candidates (PCs) over the same space. Note the
scale change on the vertical axis. While the vast majority of detections have been identified as false alarms and removed from the PC population, there remains a
possible small excess of PCs near the Kepler orbital period and with S/N between 7 and 15.
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for understanding the properties of the transiting planet, a
statistical occurrence rate requires the most uniform stellar
properties possible. This is an issue for Kepler data because
target stars with actual transit detections are much better
characterized than most targets stars without transit detections.
This can potentially lead to unknown biases in the estimated
detection completeness of Section 4.2.

The stellar catalog associated with the DR25 exoplanet
catalog, Q1–Q17 DR25 (with supplement),10 is based on
heterogeneous observations, with some stars having properties
derived from asteroseismic data, others from spectral data, and
most from photometric data, all fitted to Dartmouth isochrones
(Mathur & Huber 2016; Mathur et al. 2017). Berger et al.
(2018) combined the DR25 stellar catalog with Gaia parallaxes
(Lindegren et al. 2018) to improve stellar radii, yielding an
average radius precision of less than 10% for most Kepler stars.
However, the adopted effective temperatures were still
heterogeneous, and no revisions of other stellar properties
such as mass and surface gravities were performed.

For our parent stellar population we use the stellar catalog of
Berger et al. (2020), which extends Berger et al. (2018) by
deriving a full set of stellar properties from isochrone fitting
using broadband photometry, Gaia parallaxes, and spectro-
scopic metallicities where available. This catalog is based on
the homogeneous derivation of temperatures and luminosities,
which previously have been the dominant sources of systematic
errors in stellar (and thus planet) radii. These consistently fitted
stellar properties provide more uniformly derived stellar radii
over the entire parent population than the DR25 stellar
properties. We recompute the four-parameter stellar limb-
darkening model coefficients using these stellar properties via
the table tableeq5.dat in Claret & Bloemen (2011), assuming a
microturbulent velocity of 2 km s−1. In Section 6.4.1 we
compare the resulting baseline occurrence rates with those
using the DR25 stellar properties. We address the issue of
possible bias against small planets in the Berger et al. (2020)
catalog in Section 6.4.1 and Appendix C.

Because we require information such as observational
completeness from the DR25 catalog and the binary flag from
Berger et al. (2018) for each target star, we merge Berger et al.
(2020), the DR25 stellar catalog (with supplement), and Berger
et al. (2018), keeping only the 177,798 stars that are in all three
catalogs. We remove possibly poorly characterized, binary, and
evolved stars using the following cuts.

1. Remove stars with Berger et al. (2020) goodness of fit
(iso_gof ) < 0.99 and Gaia Renormalized Unit Weight
Error (RUWE, provided by Berger et al. 2020)
(Lindegren 2018) >1.2, leaving 162,219 stars. iso_gof
measures the quality of the Berger et al. (2020) isochrone
fitting, and RUWE combines several Gaia goodness-of-fit
metrics. RUWE is expected to have a Gaussian distribu-
tion (Lindegren 2018) for single stars. Figure 2 shows the
distribution of RUWE for the Berger et al. (2020) catalog,
with a Gaussian fit to those stars with RUWE < 1.15.
Above RUWE > 1.15 there is an apparent excess in
RUWE, with that excess becoming dominant (>75% of
stars) at RUWE≈1.2. An excess of RUWE over a
Gaussian distribution is believed to be a strong indicator
of stellar multiplicity. For example, A. Kraus et al. (2020,
in preparation) finds that few Kepler target stars with

RUWE > 1.2 are single stars. We find that the RUWE
Gaussian distribution has a slight magnitude dependence:
for g�13 the fitted Gaussian has the mode at 0.98, while
for g>13 we find the mode at 1.01. We balance the loss
of “good” stars against removing “bad” stars by choosing
an RUWE cutoff of 1.2, in contrast to the cutoff of 1.4
discussed in the Gaia literature, e.g., Lindegren (2018).

2. Remove stars that, according to Berger et al. (2018), are
likely binaries (Bin flag=1 or 3; we allow Bin=2
because that indicates a nearby companion star found via
high-resolution imaging, which was only performed on a
subset of the target stars). This leaves 160,633 stars.

3. Remove stars that have evolved off the main sequence,
recomputing the Evol flag described in Berger et al.
(2018) using the Berger et al. (2020) stellar properties.
We use the evolstate package11 to determine the
evolution state of each star using the isochrone-fitted
Teff, radius and log g as inputs. We remove those stars
with Evol > 0, indicating that they are likely not main-
sequence dwarfs. After removing these stars, 105,118
stars remain.

We then remove stars whose observations were not well
suited for long-period transit searches (Burke et al. 2015; Burke
& Catanzarite 2017).

1. Remove noisy targets identified in the KeplerPorts
package,12 leaving 103,626 stars.

2. Remove stars with NaN limb darkening coefficients,
leaving 103,371 stars.

3. Remove stars with NaN observation duty cycle, leaving
102,909 stars.

Figure 2. Distribution of Gaia Renormalized Unit Weight Error (RUWE) for
the Berger et al. (2018) catalog. Top panel: the distribution in gray, with the
black line showing the Gaussian fit to that distribution for stars with
RUWE<1.15. The gray distribution above the black line indicates the
number of stars with an excessively high RUWE, which can indicate stellar
multiplicity. Bottom panel: the fraction of stars with excess RUWE. The
vertical dashed line indicates our chosen cutoff rejecting stars with
RUWE > 1.2.

10 https://exoplanetarchive.ipac.caltech.edu/docs/Kepler_stellar_docs.html

11 http://ascl.net/1905.003
12 https://github.com/nasa/KeplerPORTs/blob/master/DR25_DEModel_
NoisyTargetList.txt
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4. Remove stars with a decrease in observation duty cycle
>30% due to data removal from other transits detected on
this star, leaving 98,672 stars.

5. Remove stars with observation duty cycle <60%, leaving
95,335 stars.

6. Remove stars with data span <1000 days, leaving 87,765
stars.

7. Remove stars with the DR25 stellar properties table
timeoutsumry flag¹1, leaving 82,371 stars. This flag=1
indicates that the Kepler pipeline completed its transit
search on this star before timing out.

Finally we select our GK population using the isochrone-
fitted effective temperature as 3900 K�Teff<6000 K, using
the temperature limits of Pecaut & Mamajek (2013), leaving
57,015 stars in our parent GK dwarf population. The
distribution of luminosities of these stars, computed as R*

2Teff
4

in solar units, is shown in Figure 3.
The largest remaining GK star has a stellar radius of

R1.536 . Burke & Catanzarite (2017) state that the per-star
detection completeness described in Section 4.1 is invalid for
stars of radius > 1.25 Re because completeness is characterized
only for transit duration below the maximum 15 hr searched by
the Kepler pipeline. We extend this to R*>1.35 Re because
we are restricting our orbital period to 400 days, which keeps
transit duration under 15 hr for our GK stellar population. We
do not impose the stellar radius criterion in our baseline,
instead opting for the physically motivated selection based on
the Evol flag (though we use the R*>1.35 Re radius cut when
using the DR25 stellar properties catalog in Section 6.4.1). Our
baseline stellar population has 1043 stars, or 1.83%, with
R*>1.35 Re. The maximum transit duration across our
baseline population for a 400 day period and eccentricity=0
is 14.85 hr. The distribution of transit durations for our baseline
stellar population assuming a 400 day period and eccentri-
city=0 is shown in Figure 4, which shows that our population
gets close to, but does not exceed, the 15 hr duration limit.

3.2. The Planetary Catalog

Our planetary catalog is the Q1–Q17 DR25 KOI table at the
exoplanet archive (see footnote 8) (Thompson et al. 2018),
restricted to PCs (KOIs with koi_pdisposition=CANDI-
DATE) on stars in the catalog from Berger et al. (2020). We

accept the CANDIDATE and FALSE POSITIVE dispositions
resulting from the uniform robovetter run on the TCEs.
For our baseline case, we recompute the planet radii Rp (in

Earth radii) from the stellar radii R* (in solar radii) in Berger
et al. (2020) and the ratio of the planet radius to the stellar
radius, A=Rp/R* from the koi_ror column of the KOI table,
as Rp=A R* Re/R⊕ where Re (R⊕) is the solar (Earth) radius.
We compute the planet radius uncertainties sRp from the stellar
radius uncertainties sR*

and planet radius to the stellar radius
ratio uncertainties σA via standard propagation of uncertainties:
s s s= + ÅR A R RR A R

2 2 2 2
p * *

 , where the upper and lower
uncertainties are computed independently.

4. The Completeness Model

As described in Section 1, the set of PCs in the DR25 KOI
catalog is not expected to be complete: particularly near the
Kepler detection limit we expect that some transiting planets
will be detected while others will be missed, and some of those
detected will be misclassified as false positives. Detection
completeness is a measure of the fraction of true transiting
planets that are detected. Vetting completeness is a measure of
the fraction of detected true transiting planets that are correctly
classified as PCs. We expect detection and vetting complete-
ness to be functions of the orbital period and the S/N, which in
the Kepler data processing pipeline is measured as the multiple
event statistic (MES) (Jenkins 2002). MES measures the
combined significance of all observed transits in the de-trended,
whitened light curve.
Detection and vetting completeness are both measured using

the DR25 transit injection data products13 (Christiansen 2017).
Christiansen et al. (2013, 2015, 2016) used these injection
products to produce average detection curves as a function of
MES for various stellar populations, marginalized over period.
While these marginalized occurrence rate curves are conve-
nient, the Poisson likelihood method we use for our occurrence
rate, described in Section 6, works best with completeness
provided as a function of both MES and period. We will use the
star-by-star detection completeness model of Burke &
Catanzarite (2017), provided for each star as a two-dimensional
function of MES and period that accounts for each star’s

Figure 3. Distribution of stellar luminosities for our final GK parent stellar
population. Figure 4. Distribution of transit durations for our baseline GK parent stellar

population, assuming a 400 day orbit and zero eccentricity.

13 https://exoplanetarchive.ipac.caltech.edu/docs/KeplerSimulated.html
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detailed observational coverage. These completeness models
are derived from a comprehensive database of 1.2×108 transit
injection and recovery trials, which we summarize in
Section 4.1. In Section 4.2 we introduce a new probabilistic
approach to modeling vetting completeness.

4.1. Combined Detection and Vetting Completeness

We use the characterization of Kepler detection complete-
ness computed by a modified version of the KeplerPorts code
base (see footnote 9). This software computes a completeness
function h p r,s ( ) (not to be confused with η⊕) as a function of
period p and planet radius r for each star s. The completeness
function is described in detail in Burke & Catanzarite (2017).
We briefly summarize the main steps for calculating the
completeness function and describe the augmentations that
incorporate vetting completeness.

The detection completeness calculation begins with estimat-
ing the MES expected for a given planet period and radius
based on the stellar properties of the host. For each period and
radius, a central crossing transit depth is estimated based on the
stellar properties and limb darkening provided by the stellar
catalog. The central crossing transit depth is converted into an
expected MES by interpolating in the tabulated values of the 1σ
depth functions for each target (Burke & Catanzarite 2017).
The 1σ depth function corresponds to the signal depth that
results in a 1σ value for MES, and is a function of the planet
period and the expected transit duration. The resulting expected
MES is mapped to detection completeness based on analysis of
the injected data. We treat this pipeline detection completeness
estimate and the vetting completeness as independent. Thus the
detection completeness is multiplied by the vetting complete-
ness function qr p, expectedMES,( ) described in Section 4.2.

This produces the combined detection and vetting complete-
ness for a central transit. The impact of non-central transits are
accounted for through MES smearing, which convolves
completeness with a distribution derived from analysis of the
injected data. Completeness is then multiplied by the tabulated
window function, which accounts for observational gaps for
this star and the requirement of the Kepler pipeline of having at
least three transit events for a detection, and the geometric
transit probability assuming a uniform distribution of the cosine
of orbital inclination angles.

The output is a collection of completeness functions h p r,s ( ),
one for each star s which includes detection completeness,
vetting completeness, and geometric transit probability. We
sum these functions to create h h= å =p r p r, ,s

N
s1*( ) ( ) where

N* is the number of searched stars. The summed completeness
h p r,( ) is used in the occurrence rate calculations in Section 6.

4.2. Vetting Completeness

Vetting completeness is the fraction of detected TCEs
that were correctly vetted as PCs. This vetting is uniformly
performed on both the observed TCEs and on the injected data
TCEs, both resulting from the Kepler data analysis pipeline,
with the DR25 Robovetter (Coughlin 2017; Thompson et al.
2018) using the same thresholds in both cases. Because in the
injected data every TCE is by definition a PC, vetting
completeness is simply the fraction of injected on-target TCEs
that were identified as PCs by the Robovetter. We study the
dependence of the injected vetting completeness on TCE period

and expected MES by binning the detected injected TCEs on a
regular grid. Our approach treats vetting completeness as a
statistical property of a stellar population, analyzed separately
for each choice of stellar population or stellar properties or
other choices that may change the stellar or planet population.
We present our vetting completeness analysis of the baseline
GK star population in detail. Other cases described in
Section 6.4 require independent analysis, which can be found
in the htmlArchive folders on the paper GitHub site (see
footnote 9).
Previous treatments of vetting completeness, e.g., Thompson

et al. (2018), partition the expected MES–orbital period plane
into cells and divides the number of injected TCEs vetted as
PCs by the total number of injected TCEs in each cell, which is
an estimate of the vetting completeness in that cell. Mulders
et al. (2018) does the same on a radius–orbital period plane,
and Coughlin (2017) does the same with multiple parameter
combinations (MES, period, planet radius, stellar radius, stellar
temperature, and insolation flux). Using these data, one can
estimate the dependence of the vetting completeness as a
function of expected MES or planet radius and orbital period
based on the measured fraction in each cell via, for example, χ2

fitting to a parametric model assuming a Gaussian likelihood,
as done in Mulders et al. (2018). When there are many TCEs
and many detections, this method can be expected to work
well. Near the Kepler detection limit, however, there will be
few TCEs and fewer correct PC dispositions, leading to strong
gridding dependence and the possibility of adjacent cells
having very different values. For example, if adjacent cells
have only one TCE each and one is vetted as PC while the
other is vetted as false positive, then these adjacent cells will
have completeness 0 and 1. Cells with no TCEs require special
treatment. Addressing these problems by requiring cells large
enough to contain many TCEs can result in large cells
smoothing out details of the vetting completeness’ functional
dependence.
Rather than fitting a parametric model of a particular

functional form using χ2 methodology, we take a probabilistic
approach using a binomial likelihood that readily handles
sparsely populated regions of parameter space. Specifically, we
treat the injected TCEs as a collection, with a rate ρ of
(correctly) vetted PCs and a rate (1−ρ) of (incorrectly) vetted
false positives, and vetting by the Robovetter as draws from
this collection. This is a classic binomial problem, in which the
probability distribution of correctly vetting a PC depends on ρ
and the number of TCEs in the underlying collection. For
example, if there is only one TCE in a cell with a ρ=50%
probability of being vetted as a PC, the probability distribution
of (correctly) vetting that TCE as a PC is extremely broad, with
equal probability of PC or false positive. Thus it is expected
that such adjacent cells with single TCEs will have vetting
completeness 0 and 1, with equal likelihood. Cells with no
TCEs are gracefully handled because they have zero prob-
ability of a vetted PC. This allows the use of fine grids that can
detect details of the functional dependence of vetting
completeness.
By partitioning the expected MES–period space with a grid

and computing ρ in each grid cell, we can measure the
dependence of ρ on expected MES and period, inferring the
function ρ(p, m). This is what we do in the next section.
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4.2.1. Vetting Completeness for the GK Baseline

Figure 5 shows the number of TCEs in each grid cell
detected by the Kepler pipeline in the injected data at the
correct ephemeris in the GK baseline stellar population. The
injections were with expected MES between about 8 and 15,
and period less than 500 days (see Christiansen 2017 for
details). Figure 6 shows the percentage of TCEs in each cell

that were vetted as PC by the Robovetter. Perfect completeness
is 100%. We see that for high expected MES and period >200
days the completeness in each cell is typically near 100%,
while for period >300 days and expected MES >15 the
completeness drops off. We will characterize this behavior
using a function qr p m, ,( ) of planet period p and expected
MES m, where the exact form of ρ is specified below and q is

Figure 5. Number of TCEs per cell found in the injected data.

Figure 6. Measured rate of correctly vetted injected PCs, measuring vetting completeness, displaying the functional dependence of the rate on period and expected
MES. Cells with no detected injected TCEs are marked “–.”
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the vector of function parameters. Given a specific form for ρ,
we infer q from the number of PCs that are correctly vetted as
PC in each cell.

We conceptualize the determination of qr p m, ,( ) as a
binomial problem, thinking of each TCE as a draw from a
population of PCs (=injected TCEs), which will be correctly
vetted as PC by the Robovetter with probability qr p m, ,( ). If the
number of TCEs in cell (i, j) is ni,j, then the probability of vetting
ci j, TCEs correctly as PCs, given q qr rºp m, ,i j i j i j, , ,( ) ( ), is
given by the binomial distribution

q q qr r= - -P c n
n

c
, 1 . 1i j i j

i j

i j
i j

c
i j

n c
, ,

,

,
, ,

i j i j i j, , ,

⎛
⎝⎜

⎞
⎠⎟( ∣ ) ( ) ( ( )) ( )

For a particular choice of the functional form of ρ, Equation (1)
will be used to find the q that is most consistent with the
number of PCs in each cell.

We will infer our rate function qr p m, ,( ) via an MCMC
Bayesian inference. We treat each grid cell as independent
identically distributed binomial realizations, which leads to the
likelihood

q q qr r= - -c nL
n

c
, , 1 2

i j

i j

i j
i j

c
i j

n c

,

,

,
, ,

i j i j i j, , ,

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ( )) ( )

where =n ni j,{ } is the set of the number of injected TCEs in
each cell, and =c ci j,{ } is the set of the number of injected
TCEs vetted as PC in cell (i, j).

We perform the MCMC inference using the emcee
package,14 which requires the log likelihood

å q

q

r

r

= +

+ - -

L
n

c
c

n c

log log log

log 1 . 3
i j

i j

i j
i j i j

i j i j i j

,

,

,
, ,

, , ,

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟( ) ( ( ))

( ) ( ( ))] ( )

We considered several functional forms for qr p m, ,( ),
described in Appendix A. Figure 6 suggests a product of
functions that are approximately, but not exactly, coordinate
aligned. Qualitatively, Figure 6 also suggests that a generalized
logistic function

n = + - - -nY x x k k x x, , , 1 exp 40 0
1( ) [ ( ( ))] ( )

may be a good fit. We construct many, though not all, of the
functional forms considered in this paper from this generalized
logistic function.

Appendix A describes our use of the Akiake Information
Criterion (AIC) and other considerations to select the form of ρ
that best fits the data. In all cases, before applying the function
we transform from (period, expected MES) coordinates to
homogeneous coordinates on the unit square [0, 1]×[0, 1],
which allows rotation. Of the functions we considered, we
found that a product of a non-rotated simplified logistic
function in period p times a rotated logistic in p and expected

MES m best fits the data: for q f= x y k k A, , , , ,x y0 0[ ],

f f
r

=
-
-

=
-
-

= - * - - *
= - ´ +

x
p p

p p

y
m m

m m
y y x

A Y x x k Y y y k

0.5 cos 0.5 sin

, , , 1 0.5, , , 1 . 5x y

min

max min

min

max min

rot

0 rot 0

( )
( )

( )
( )
( ) ( ) ( ) ( )

( ) ( ) ( )

We used the uniform priors −1�x0, y0�2, < <- k k10 ,x y
4

104, −180<f<180, 0<A<1, and initialized q by
minimizing - Llog( ) using the Python optimize package. Our
MCMC computation used 100 walkers, and ran for 5000 steps
after 5000 steps of burn-in. Figure 7 shows the resulting
posteriors, giving q f= x y k k A, , , , ,x y0 0[ ] as

f

= =

= =

= =

-
+

-
+

-
+

-
+

-
+

-
+

x y

k k

A

1.257 , 0.136

4.311 , 15.259

5.566 , 0.980

x y

0 0.044
0.056

0 0.010
0.009

0.503
0.523

1.305
1.399

0.998
1.106

0.005
0.006

where the central values are the posterior median and the + and
− errors are for the 84th and 16th percentiles. We denote the
median parameter vector by q̄. The correlations between
parameters apparent in Figure 7 reflect the fact that the
parameters of the logistic function are not fully independent.
Figure 8 shows the resulting rate function qr p m, ,i j( ¯ )

evaluated at the median of the posteriors q̄, along with the
underlying rates for each grid cell. Figure 9 shows two example
positions on the expected MES–orbital period plane, illustrating
both the dependence of vetting completeness on these
parameters as well as the spread of vetting completeness due
to the posterior q distribution. We find that the approach
described in this section is robust against changes in the grid.
Changing the grid resolution does not significantly change the

Figure 7. Posterior distributions for the components of the vetting
completeness rate function parameters q. The straight lines indicate the median
values.

14 https://emcee.readthedocs.io
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results, so long as the resolution is sufficient to resolve features
in the underlying data.

Figure 10 shows the mean and standard deviation of 1000
realizations, drawn from the posterior q distribution, of the
fraction of correctly vetted PCs for each cell. This figure should
be compared with Figures 5 and 6. As expected, where the
number of TCEs per cell is low in Figure 5, the standard

deviation is high. Figure 11 shows the residual of observed data
in Figure 6 from the mean rate in Figure 10 in units of the
standard deviation shown in Figure 10. We see that while there
are isolated large outliers, as well as larger residual values
where the standard deviation is high, there is no indication of a
bias in qr p m, ,i j( ). Additional details, including further
characterization of the quality of our fit of qr p m, ,i j( ), are
found in the htmlArchive folders on the paper GitHub site (see
footnote 9).

5. The Reliability Model

In this section we characterize the reliability of PCs in the
Q1–Q17 DR25 KOI catalog. We apply the probabilistic
approach of Section 4.2 to the problem of characterizing the
probability that a DR25 PC is in fact a false alarm due to
instrumental systematics, or some types of stellar variability.
We rely on the Q1–Q17 DR25 FPP table at the NASA
Exoplanet Archive (see footnote 8) (Morton et al. 2016) to
provide the probability that the PC is a false positive due to
astrophysical signals that imitate transits. The final reliability
for each PC is the product of the false alarm reliability and
the FPP.

5.1. Vetting Reliability

Thompson et al. (2018) defined reliability as the ratio of the
number of PCs which are true exoplanets, TPC, to the number

Figure 8. Contours of the vetting completeness rate function qr p m, ,i j( ¯ ) for the median of the posteriors. The colored shapes show the measured data in each grid
cell, with the color indicating the measured rate, and the size indicating the number of TCEs in the cell.

Figure 9. Vetting completeness rate function qr p m, ,i j( ¯ ) evaluated with the
posterior distribution. Right distribution: period=50 days and expected
MES=25. Left distribution: period=365 days and expected MES=10.
The dashed lines show the rates for the median q̄.
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of observed PCs, NPC:

º = -
-

R
T

N

N

N

E

E
1

1
, 6PC

PC

FP

PC

⎜ ⎟⎛
⎝

⎞
⎠ ( )

where NFP is the number of observed false positives and
ºE N

T
FP

FP
is the false positive effectiveness, defined as the number

of identified false positives, NFP, divided by the number of true
false positives, TFP. The second equality in Equation (6) is exact
when all quantities are from the same population, such as the
observed data analyzed by the DR25 catalog. Unfortunately, the
true PCs and false positives, TPC and TFP, are unknown for the
observed data. As explained in Thompson et al. (2018),

Figure 10. Mean and standard deviation of 1000 realizations of the binomial completeness model qr p m, ,i j( ) in Equation (5), where each realization q is drawn
uniformly from the posterior distribution of qr p m, ,i j( ). We expect the observed completeness in Figure 6 to be a realization of this model. Top: mean completeness,
showing an overall pattern similar to Figure 6. Bottom: standard deviation of the 1000 realizations, showing a similar variation to Figure 6. The large cell-to-cell
variation at low expected MES is due to the strong dependence of the binomial standard deviation on the number of TCEs in each cell (n in Equation (1)), which is
small at low expected MES (see Figure 5).
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however, we can use the inverted and scrambled data sets (see
footnote 13) described in Section 1, which are designed so that
every detection is, by definition, a false alarm.

Astrophysical transit-like events such as KOIs or eclipsing
binaries can trigger detections in the inverted and scrambled
data, compromising the use of these data to measure false
alarms. This happens in two ways: (1) the transits and eclipses
add signals unlike the false alarms we are trying to measure, and
(2) the Robovetter is not tuned to detect and remove these kinds
of signals. Thompson et al. (2018) describe how the lists of
inverted and scrambled detections were cleaned of signals from
known transiting systems in Section 2.3.3. Essentially, targets
that are known binaries (Kirk et al. 2016) and known KOIs
(Thompson et al. 2018) are removed from the list of detections,
so they do not count as either a false positive or a PC. For the
inverted set, because self-lensing and heartbeat star binary-type
events can produce signals that look like inverted transits, 54
targets with significant periodic signals were also removed from
the list. The detections dropped from the inverted and scrambled
data used in this study, as well as in Thompson et al. (2018), are
collected in the files kplr_droplist_inv.txt and kplr_droplist_scr*.
txt (one for each scrambled data set) on the paper GitHub site
(see footnote 9). These stars are removed from the inverted/
scrambled data before the analysis described in this section.

The inverted and scrambled data are designed to measure
false alarms, not all false positives. Thus, we must take care to
restrict the formula for reliability in Equation (6) to the
population of false alarms. This implies that Equation (6)
becomes

= -
-

R
N

N

E

E
1

1
, 7FA

FA

notFA

FA

FA

⎛
⎝⎜

⎞
⎠⎟ ( )

where FA indicates “false alarm.” NFA is the number of
identified false alarms in the observed data (determined via the

not-transit-like (NTL) flag in the KOI table) and NnotFA is the
number of transit detections that are not vetted as false alarms.

=E N

TFA
FA

FA
is the false alarm effectiveness, the fraction of true

false alarms TFA (assumed to be all detections in the inverted/
scrambled data) that are vetted as false positives in the
scrambled and inverted data. Equation (7) describes only false
alarms measured by the inverted and scrambled data. As
described in 5.3, we will multiply this reliability against
instrumental false alarms with the reliability against astro-
physical false alarms (constructed using the Q1–Q17 FPPs).
In order to apply the probabilistic approach developed in

Section 4.2, we rephrase the reliability formula in terms of rates
rather than numbers by defining the fractions FFA=NFA/NTCE

and FnotFA=NnotFA/NTCE, where NTCE is the number of TCEs
in the observed data. We call FFA the observed false positive
rate. We can substitute NFA/NnotFA=FFA/FnotFA in
Equation (7). We further assume that notFA and FA are a
complete partition of all TCEs in the observed data, so

+ =  + =N N N F F 1FA notFA TCE FA notFA and we can elim-
inate NnotFA from Equation (7):

= -
-

-
R

F

F

E

E
1

1

1
. 8FA
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FA
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⎛
⎝⎜

⎞
⎠⎟ ( )

We can now treat FFA and EFA as rates that determine the
probability of drawing a TCE that will be vetted as a false
alarm. As in Section 4.2 we will treat FFA and EFA as rates in
two separate binomial problems, with functional forms that
depend on period and observed MES and whose coefficients
are determined via an MCMC inference. Additional details,
including further characterization of the quality of our rate fits,
are found in the htmlArchive folders on the paper GitHub site
(see footnote 9).

Figure 11. Residuals of the measured completeness rate in Figure 6 from the mean shown in Figure 10, normalized to the standard deviation in Figure 10, showing no
significant bias. The values are rounded for the nearest integer for clarity.
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5.1.1. Characterization of False Alarm Effectiveness EFA

To determine the false alarm effectiveness, EFA, we combine
the inverted data with each of the three scrambled data sets (see
Coughlin 2017 for details on the properties of each set) to
create three data sets, called “inverted/scrambled,” where
every TCE should be considered a false alarm. We proceed as
in Section 4.2, covering the period–(observed) MES plane with
a regular grid, and measure the ratio of the number of false
alarms to the number of TCEs in each cell. This problem is
more challenging than the analysis of vetting completeness in
Section 4.2 because the Robovetter has been tuned to do a very
good job correctly identifying false alarms, resulting in
relatively few cells with TCEs incorrectly vetted as PCs. We
therefore combine the three inverted/scrambled data sets
through concatenation in order to produce a somewhat stronger
signal. This amounts to averaging the three data sets at the
input level, avoiding small number statistics issues that would

arise if we fit the three data sets separately and averaging the
resulting posteriors. We refer to this concatenated data set as
the combined inverted/scrambled data.
Figure 12 shows the number of TCEs detected in the

combined inverted/scrambled data. We see that most detected
TCEs in these data are for MES<15 and period�250days.
Figure 13 shows the fraction of correctly vetted false alarms, a
measure of EFA, in each cell. The signal we are measuring is
small, and is dominated by smaller fractions at low MES and
period �200 days.
We use the same likelihood as in Section 4.2, Equation (6),

where in this case EFA plays the role of ρ, ni j, is the number of
TCEs detected in the combined inverted/scrambled data in cell
(i, j), and ci j, is the number of false positives identified in cell (i,
j). We perform the MCMC inference as described in
Section 4.2. We considered several functions, described in
Appendix A.2, and determined that a simple rotated logistic
function best describes this data set. For q f= x k A, , ,x0[ ],

Figure 12. Number of TCEs per cell found in the combined inverted/scrambled data. The large number of TCEs at period≈370 days is the excess of detections due
to instrumental false alarms shown in Figure 1, discussed in Section 2.

Figure 13.Measured rate of correctly vetted inverted/scrambled false positives, which is a direct measurement of false alarm effectiveness EFA. Cells with no detected
TCEs are marked “–.”
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qE p m, ,FA ( ) is given by

f f
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where p is the orbital period, m is the observed MES, and Y is
the logistic function from Equation (4). We used the uniform
priors −1�x0�2, 10−4<kx<100, −180<f<180,
0<A<1. The MCMC run used a hand-tuned initial condition
because Python’s optimize maximum likelihood solution was
physically unreasonable (A?1, for example) and violated the
prior. Our MCMC computation used 100 walkers, and ran for
5000 steps after 5000 steps of burn-in. Figure 14 shows the
resulting posteriors, giving q f= x k A, , ,x0[ ] as

f

= =

= =
-
+

-
+

-
+

-
+

x k

A

1.159 , 22.587 ,

98.551 , 0.998 .

x0 0.044
0.062

6.291
8.811

2.778
3.834

0.002
0.001

The rate function qE p m, ,i jFA ( ¯ ) for the posterior median q̄ is
shown in Figure 15. As in Section 4.2, 1000 realizations of the
false positive rate function were created, drawing from the
posterior q distribution. The residuals of the observed false
alarm fraction in Figure 13 from the mean of these realizations
in units of standard deviation are shown in Figure 16,
demonstrating an overall good fit to the data.

5.1.2. Characterization of Observed False Positive Rate FFA

For FFA we count the number of false positives found in the
observed data, but we must be careful to consider only NTL
false alarms in order to be consistent with our characterization
of effectiveness. We identify such false alarms by selecting on
the NTL flag=0, indicating that the Robovetter identified this

false positive as transit like, which identifies 21 candidate
astrophysical false positives in our GK population inside
50�period�600 days and 0.5�radius�15 R⊕. We
manually examined these false positives and identified those
that show a consistent astrophysical signal in all transits as
astrophysical false positives. Two TCEs with NTL=0 did not
show such a consistent astrophysical signal and were deemed
likely false alarms: 004371172-01 and 009394762-01. The
other 19 false positives with NTL=0 were identified as
astrophysical and removed from the set of false positives used
in the analysis of FFA.
Figure 17 shows the number of TCEs detected in the

combined inverted/scrambled data. We see that most detected
TCEs in these data are for MES<15 and period�250 days.
The close correspondence with Figure 12 shows that most
TCEs are false alarms. Figure 18 shows the fraction of
identified false alarms (identified via the NTL flag as described
above), a measure of FFA, in each cell.
We proceed in a very similar manner to inferring EFA in

Section 5.1.1. We use Equation (6) as the likelihood, with FFA

playing the role of ρ, ni,j is the number of TCEs detected in the
observed data in cell (i, j), and ci j, is the number of false alarms
identified in cell (i, j). We perform the MCMC inference as
described in Section 4.2. We considered several functions,
described in Appendix A.3, and determined that the same
simple rotated logistic function as that used in Section 5.1.1
best describes this data set. In Equation (9), FFA replaces EFA,
providing qF p m, ,FA ( ) for q f= x k A, , ,x0[ ].
We used the uniform priors −1�x0�2, 10−4<kx<

100, −180<f<180, 0<A<1, and initialized q by
minimizing - Llog( ) using the Python optimize package. Our
MCMC computation used 100 walkers, and ran for 5000 steps
after 5000 steps of burn-in. Figure 19 shows the resulting
posteriors, giving q f= x k A, , ,x0[ ] as

f

= =

=- =
-
+

-
+

-
+

-
+

x k

A

0.682 , 14.120 ,

157.967 , 0.982 .

x0 0.029
0.028

1.335
1.469

3.539
3.608

0.004
0.004

The rate function qF p m, ,i jFA ( ¯ ) for the posterior median is
shown in Figure 20. As in Section 4.2, 1000 realizations of the
false positive rate function were created, drawing from the
posterior q distribution. The residuals of the observed false
alarm fraction in Figure 18 from the mean of these realizations
in units of standard deviation is shown in Figure 21,
demonstrating an overall reasonable fit to the data.

5.1.3. Computing the False Alarm Reliability RFA

Once we have the rate functions FFA and EFA, we can
compute the false alarm reliability R p m,FA ( ) from
Equation (8). In practice we evaluate FFA and EFA at a desired
period and observed MES, either on a regular grid or for
specific PCs.
Figure 22 shows the resulting reliability function in the

period–MES plane. We see that for low MES there is decreased
reliability around period 250–450 days, corresponding to the
high number of TCEs in that range found in the inverted/
scrambled data (see Figure 12), consistent with the excess of
detections in Figure 1. Figure 23 shows the reliability function
evaluated over the full posteriors of FFA and EFA for three
example periods and observed MES. We see that for low MES
near 1 yr orbital periods the reliability drops to about 0.6 and
has a large spread.

Figure 14. Posterior distributions for the false alarm effectiveness EFA rate
function parameters q. The straight lines indicate the median values.
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5.2. Astrophysical Reliability

The reliability function determined in Section 5.1 only
provides the probability that a PC is not a false alarm. To
determine the probability that a candidate is not an astro-
physical false alarm such as a grazing or eclipsing binary, we
use the Q1–Q17 DR25 FPPs (see footnote 8) created using the

technique developed in Morton et al. (2016). These probabil-
ities were computed for all KOIs based largely on photometric
data including transit light curves and measured magnitudes.
We therefore assume that these are still valid even though we
are using different stellar properties. We define the astro-
physical reliability of a PC as 1—the FPP of that candidate.

Figure 15. Contours of the false alarm efficiency rate function qE p m, ,i jFA ( ¯ ) for the median of the posteriors. The colored shapes show the measured data in each grid
cell, with the color indicating the measured rate, and the size indicating the number of TCEs in the cell.

Figure 16. Residuals of the measured EFA rate in Figure 13 from the mean normalized to the standard deviation showing no significant bias.
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5.3. Computing the Reliability for Each PC

We compute the reliability for each PC by first evaluating
R p m,FA ( ) as described in Section 5.1.3, where p is the
observed orbital period and m is the observed MES of the PC
from the KOI catalog. Then we define the reliability

= -R R p m, 1 FPPFA ( ) · ( ) where FPP is for that PC from
the Q1–Q17 FPP table.

6. Illustrative Occurrence Rates

We present several illustrative occurrence rates, focusing on
long-period, small planets where vetting completeness and
reliability have the greatest impact. We compute our occur-
rence rates using the method of Burke et al. (2015), modeling
occurrence rates as a Poisson point process with a rate given by
a product of power laws in orbital period and planet radius. We
perform our occurrence rate analysis over the period and radius
range of 50�period�400 days and 0.75�radius�2.5 R⊕,

and integrate the resulting rate over two ranges considered by
Burke et al. (2015):

1. F1: 50�period�200 days and 1�radius�2 R⊕, and
2. zÅ: within 20% of Earth’s orbital period and radius.

Figure 24 shows our baseline PC population, with the planet
markers sized and colored by that planet’s reliability and the
background and contours showing the completeness function η
(p, r), including geometric transit probability. The F1 and ζ⊕
regions are indicated by boxes. We see that while the F1 region
is reasonably well populated, it has a large completeness
correction of ∼500. ζ⊕, however, has only one low-reliability
planet and a completeness correction >104, leading to large
uncertainties in the estimate of ζ⊕.

6.1. Methodology

Following Youdin (2011) and Burke et al. (2015), we study
the number of planets per star as a function of orbital period p

Figure 17. Number of TCEs per cell found in the observed data. The large number of TCEs at period≈370 days is the excess of detections due to instrumental false
alarms shown in Figure 1, discussed in Section 2.

Figure 18. Measured rate of identified false alarms in the observed data. Cells with no detected TCEs are marked “–.”
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and planet radius r, f (p, r), by inferring the population rate
function l ºp r d f dp dr, 2( ) from a collection of planet
detections at (pi, ri) with a known completeness function η(p, r)
and reliability RFA. If ql p r, ,( ) is a specific function
parameterized by the parameter vector q, then our problem is
to determine q. We proceed by Bayesian inference: given a set
of PCs with orbital period and radius {pi, ri}, i=1K Np where
Np is the number of PCs, by Bayes’ theorem the probability of
q is

q
q qp

= ¼
µ = ¼

P p r i N

P p r i N

, , 1

, , 1 . 10
i i p

i i p

( ∣{ } )
({ } ∣ ) ( ) ( )

where qp ( ) is a prior on q. Fixing qp ( ), finding the highest
probability q amounts to maximizing the likelihood

q= ¼P p r i N, , 1i i p({ } ∣ ).
In Appendix B we show that maximizing the likelihood



q
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= ¼

= -L

=

P p r i N

e p r

, , 1
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i i p

D

s

N

i i
1

p

({ } ∣ )

( ) ( )( )

is equivalent to treating planet occurrence as a Poisson point
process with rate ql p r, ,( ) that depends on period, planet radius,
and parameters q. Here ò qh lL =D p r p r dp dr, , ,

D
( ) ( ) ( ) is

the integral over the whole period–radius space D, where η(p, r) is
the summed completeness function from Section 4. However, we
point out that Equation (11) is not itself a Poisson probability, as is
sometimes implied in the literature.

The likelihood in Equation (11) accounts for completeness but
not reliability. Because this likelihood is derived from a Poisson
distribution, which is defined only for discrete integer counts, we
cannot account for reliability by weighting a planet’s contrib-
ution by its reliability. We address reliability by performing
multiple Bayesian inferences of q using Equation (10), drawing
from the PCs according to their reliability. For example, a PC

with reliability 0.9 would be included in 90% of these
inferences, while another PC with reliability 0.2 would be
included in 20% of these inferences. Then the q posteriors of
these inferences are concatenated to produce the posterior
distribution of q accounting for reliability.
Following Youdin (2011) and Burke et al. (2015), we model

the PC population rate ql p r, ,( ) as a product of power laws in
period and radius. Inspired by Foreman-Mackey’s implementa-
tion of Burke et al. (2015),15 we adapt the form resulting from
solving explicitly for the normalization Cn from Burke’s
Equation (8) and using it in his unbroken power law Equation
(7) (Burke et al. 2015): for q a b= F , ,0( ),

ql
a b

=
+
-

+
-

a

a a

b

b b+ + + +p r F
r

r r

p

p p
, ,

1 1
. 120

max
1

min
1

max
1

min
1

( ) ( ) ( ) ( )

This form ensures that ò ql =p r dp dr F, ,
D 0( ) so F0 can be

interpreted as the integrated planetary occurrence rate over the
period–radius range used in the analysis.

6.2. Baseline Results

To perform our Bayesian MCMC inference, we use the
emcee package. To measure the impact of correcting for
reliability, we run inferences both without and with reliability
correction. For our inference without reliability correction, we
use 16 walkers and run for 5000 steps after 1000 steps of burn-
in. For our inference with reliability correction, we run 100
inferences as described in Section 6.1, probabilistically
sampling from the PCs according to their reliability, with each
inference using 16 walkers and running for 2000 steps after 400
steps of burn-in. In both cases the walkers of each MCMC run
are initialized in a small Gaussian distribution centered on the
maximum-likelihood solution for that inference’s planet
population. The posteriors from each of the 100 inferences
with reliability correction were concatenated to produce the q
posteriors. Figure 25 shows the posterior distributions when
correcting for reliability. Table 1 shows the median and 16th
and 84th percentiles of these posterior distributions both with
and without reliability correction. We see that reliability has an
overall impact of about 30% in F0, the integrated rate over our
period and radius range of 50�period�400 days and
0.75�radius�2.5 R⊕.
Figure 26 shows the marginalized population rate function

ql p r, ,( ) for the posterior q distribution, accounting for
uncertainty. This figure also compares the predicted number of
planet detections with the binned PCs.
Figure 27 and Table 1 show F1 and ζ⊕, as well as

qlG º =Å Å Å Å Åd f d p d r p r p rlog log , ,2 ( ), with and with-
out accounting for reliability, evaluated over all posterior
values of q. We see that, even though there is significant
overlap in the distributions with and without reliability,
accounting for reliability has a strong impact: Γ⊕ and ζ⊕ are
are reduced by more than 50%, which can be understood from
the very small number of low-reliability planets in the ζ⊕
region in Figure 24. F1 is the integrated rate over a region of
higher reliability, but reliability still has a strong effect. F0 is
the integrated rate over our entire period–radius analysis range,
but it is dominated by the fact that there are more high-
reliability PCs, so reliability has an impact similar to F1.
Table 1 also shows the impact of accounting only for false

Figure 19. Posterior distributions for the observed false alarm rate FFA

parameters q. The straight lines indicate the median values.

15 https://dfm.io/posts/exopop/
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alarm reliability, ignoring astrophysical false positive relia-
bility, indicating that false alarm reliability accounts for about
half the impact of the reliability correction.

We also computed occurrence for the SAG13 definition of
η⊕,

16 237�period�860 days and 0.5�radius�1.5 R⊕.
Without accounting for reliability, we find h =Å -

+0.302 0.113
0.181,

consistent with the results of Zink & Hansen (2019), while
accounting for reliability yields h =Å -

+0.126 0.055
0.095. This result

should be treated with caution because it involves extrapolation
beyond the domain of both reliability and detection complete-
ness characterization.

We find that the impact of accounting for reliability is
significant for small planets in long-period orbits. While one
can note that the median values of occurrence rates in this
regime are not much more than “one σ” apart, the observed
shifts in the distributions on the order of 40% are systematic,
and clearly not due to statistical fluctuations.

6.3. Simple Estimates of the Impact of Input Uncertainty

A full treatment of uncertainties in occurrence rates is
beyond the scope of this paper. Uncertainties in stellar
properties would need to be accounted for in the selection of
the parent stellar population, the modeling behind the detection
completeness, and impact on the Robovetter. In this work we
do, however, produce uncertainties in the false alarm reliability

in Section 5.1 through the MCMC posteriors of the fit
functions, as well as planet radius uncertainties that follow
from stellar radius transit fit uncertainties as described in
Section 3.2. In this section we present simple experiments that
examine the impact on our occurrence rates of the reliability
and planet radius uncertainties. We study the impact of planet
radius uncertainties separately from the impact of reliability
uncertainty.

6.3.1. Impact of Planet Radius Uncertainty

We study the impact of planet radius uncertainties without
accounting for reliability. We proceed in the same way that we
study the impact of reliability, by performing several inference
runs with a planet population in each run selected after
applying the planet radius uncertainties. Specifically, for each
run, prior to the restriction of the PC population to the radius
range 0.75�radius�2.5 R⊕, we add to each planet’s radius
an error given by a draw from a Gaussian distribution with
width equal to that planet’s radius uncertainty. Each planet is
randomly assigned an upper or lower errorbar with 50%
probability. The PC population is then restricted to the range
0.75�radius�2.5 R⊕, and the inference is run.
The impact of planet radius uncertainties resulting from 1000

inference runs is shown in Table 2 and the top row of
Figure 28. We see a small, consistent broadening of the width
of the distributions and resulting error bars, and possibly a
small systematic shift toward higher occurrence rates, but the

Figure 20. Contours of the observed false alarm rate qF p m, ,i jFA ( ¯ ) for the median of the posteriors. The colored shapes show the measured data in each grid cell, with
the color indicating the measured rate, and the size indicating the number of TCEs in the cell.

16 https://exoplanets.nasa.gov/exep/exopag/sag/#sag13
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overall impact is minor. We believe this is due to the smaller
uncertainties resulting from using Gaia stellar properties, and
from the fact that near the boundary of our planet size range
there are many planets, so planets are equally likely to exit and
enter our range due to uncertainty.

6.3.2. Impact of Reliability Uncertainty

We study the impact of uncertainties in reliability by
modifying the method of computing occurrence rates with
uncertainty described in Section 6.2. Prior to each inference
run, we draw from the posteriors of the parameter vectors for
false alarm efficiency (Section 5.1.1) and the observed false
alarm rate (Section 5.1.2). We use these draws to evaluate the
false alarm efficiency and observed rate functions at each PC’s
period and observed MES, from which the false alarm

reliability is computed. The reliability is then computed as
described in Section 5.3, and each planet is included in that run
with probability given by this computed reliability. In other
words, the reliability rate function is realized for each run and
applied to the PC population.
Table 3 and the bottom row of Figure 28 compare

occurrence rates with reliability correction but no reliability
uncertainty, computed with the median q̄ of Sections 5.1.1 and
5.1.2, with the reliability distribution that results from using the
respective full q posterior distributions. We see that there is no
significant impact due to reliability uncertainty apparent in
1000 inference runs. This is in spite of the broad distributions
of the low-reliability PCs shown in Figure 29, which shows the
false alarm reliability values RRA resulting from the q posterior
distributions. We believe this lack of impact on occurrence
rates is due to the very small uncertainties for high-reliability
targets (see Figure 23) combined with the facts that the low-

Figure 21. Residuals of the measured FFA rate in Figure 18 from the mean normalized to the standard deviation. We see a small region with about a 1σ bias, indicating
an imperfect fit to the slope in the measured FFA rate for period between 100 and 300 days.

Figure 22. Contours of RFA from the inferred FFA from Section 5.1.1 and EFA

from Section 5.1.2.

Figure 23. False alarm reliability RFA evaluated with the posterior distributions
of FFA and EFA for three example periods and observed MES. Right
distribution (very narrow and nearly coincident with the line RFA=1):
period=200 days and MES=25, with median reliability 1.0. Middle
distribution: period=365 days and MES=10, with median reliability 0.81.
Left distribution: period=365 days and MES=8, with median reliability
0.64. The vertical lines show the rates for the median of the posteriors.
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reliability targets occur with less frequency in each inference
and that most distributions in Figure 29 are close to symmetric,
so are well-represented by their medians.

6.4. Variations

In this section we explore the impact of changing some of the
inputs and assumptions in the baseline occurrence rate computed in
Section 6.2. Our motivation is to understand the dependencies of
the occurrence rate on these inputs and assumptions. In all cases
except Section 6.4.2 the same models were found to be the best fit

Figure 24. Baseline PC population, colored and sized by reliability with planet radius error bars. The background color map and contours indicate the summed
completeness function η(p, r). The box on the left indicates the region integrated to obtain F1, while the box on the right indicates the integration region for ζ⊕. The ζ⊕
box extends out to 438 days.

Figure 25. Posterior distributions for the occurrence rate parameters when
correcting for reliability.

Table 1
Baseline Occurrence Rate Results

Parameter No Reliability With Reliability FA-only Reliability

F0 -
+0.608 0.090

0.110
-
+0.432 0.072

0.089
-
+0.514 0.083

0.102

α -
+0.304 0.496

0.519
-
+0.796 0.598

0.635
-
+0.500 0.524

0.558

β - -
+0.557 0.169

0.174 - -
+0.823 0.209

0.202 - -
+0.742 0.196

0.192

GÅ -
+0.212 0.075

0.111
-
+0.094 0.041

0.066
-
+0.139 0.055

0.086

F1 -
+0.190 0.030

0.035
-
+0.144 0.027

0.032
-
+0.171 0.029

0.034

zÅ -
+0.034 0.012

0.018
-
+0.015 0.007

0.011
-
+0.023 0.009

0.014

Note. Baseline occurrence rate results comparing not accounting for reliability
with accounting for reliability against both false positives and false alarms
(middle column) and accounting for false alarm reliability only. Central values
and error bars are the median and 16th and 84th percentiles of the q posteriors
of the Bayesian inference. qlG º =Å Å Å Å Åd f d p d r p r p rlog log , ,2 ( ),
evaluated at Earth’s period and radius, F1 is the integrated planet rate over
50�period�200 days and 1�radius�2 R⊕, and zÅ is the integrated rate
within 20% of Earth’s orbital period and size.
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to vetting completeness, false alarm effectiveness, and observed
false alarm rate as in the baseline case, though the parameters of
these models had different values for the different variations.

We present the resulting variation in occurrence rates in
Table 4, which includes results from Table 1 for comparison.
This comparison is shown graphically for F1 and ζ⊕ at the end
of this section in Figure 30.

6.4.1. Using the Q1–Q17 DR25 Stellar Properties

Our baseline occurrence rates are substantially lower than
several occurrence rates based on pre-Gaia stellar properties. In
this section we repeat our analysis, replacing the Gaia-based
catalog of Berger et al. (2020) with the pre-Gaia Q1–Q17
DR25 stellar properties from the NASA Exoplanet Archive
(see footnote 10). We perform the same cuts as described in
Section 3.1, with the exception that there is no cut on binary or
evolved flags (these do not exist in the Q1–Q17 DR25 stellar
properties) and we remove all stars with radius > 1.35 Re. The
final catalog contains 75,541 GK stars.

We perform the same analysis as in the baseline case,
starting from computing the vetting completeness for this
stellar catalog, computing the summed completeness function

η, the reliability, and occurrence rates specified in Section 6.2.
Figure 31 shows the resulting planet population, summed
completeness, and reliability. Comparison with Figure 24
shows that this catalog has more PCs in our period–radius
range than when using Berger et al. (2020). This results in the
higher occurrence rates shown in the “DR25” case in Table 4.
The choice of catalog has a stronger impact on ζ⊕ than on

F1: when not correcting for reliability, F1 based on the DR25
stellar properties is about 15% higher than our baseline using
Berger et al. (2020), while the DR25-based ζ⊕ is about 60%
higher. When correcting for reliability, F1 based on the DR25
stellar properties is about 20% higher, while the DR25-based
ζ⊕ is 80% higher. Computing the SAG13 definition of η⊕ (see
footnote 16) using the DR25 stellar properties without
correcting for reliability yields h =Å -

+0.499 0.164
0.245, while correct-

ing for reliability gives h =Å -
+0.223 0.087

0.136.
The Berger et al. (2020) stellar catalog used in our baseline

occurrence rates differs from the DR25 stellar catalog used in
this section in both the values of the stellar properties
themselves and in the cuts used to define the stellar parent
population. In Appendix C we study the relative impact of the
difference in stellar properties versus the impact of the different

Figure 26. Marginal projections of the occurrence rate function ql p r, ,( ), accounting for reliability. Left: predicted number of planets compared with binned PCs.
Right: marginalized rate function ql p r, ,( ).
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population cuts on the difference in occurrence rates. We find
that the difference in occurrence rates is primarily due to the
different stellar properties, primarily stellar radius and effective
temperature (leading to different GK selections), and that the
differing population cuts have a minor impact.

6.4.2. Baseline with a Score Cut of 0.9

The Robovetter outputs a score for each TCE, indicating the
confidence with which the Robovetter vetted that TCE
(Thompson et al. 2018). This score is not equivalent to
reliability: for example the Robovetter confidently vetted
several TCEs in the inverted/scrambled data incorrectly as
PC with scores as high as 0.923. But score is roughly correlated
with reliability, and Thompson et al. (2018) suggest computing
high-reliability occurrence rates by considering only PCs with
Robovetter score above some threshold. This will result in a
smaller PC population with lower completeness, but the
resulting larger completeness correction will, in principle,
correct the occurrence rate.
In this variation we impose an aggressive score cut,

rejecting any PC with score < 0.9. We use the Berger et al.
(2020) catalog, and compute the completeness and reliability
as in the baseline case, treating any TCE with score < 0.9
as a false positive/alarm. Mulders et al. (2018) use this

score cut in their analysis, but their analysis is on a very
different period–radius range so is not directly comparable to
our results.

Figure 27. Comparison of various occurrence rates with and without reliability. In all panels, the right (blue) distribution is without accounting for reliability while the
left (black) distribution is accounting for reliability. Upper left: F0, the distribution of occurrence rates integrated over 50�period�400 days and
0.75�radius�2. 5R⊕. Upper right: F1, the distribution of occurrence rates integrated over 50�period�200 days and 1�radius�2 R⊕ using all posterior
values from the Bayesian inference. Right dashed line: Burke et al. (2015) baseline F1. Left dashed line: Burke et al. (2015) “high reliability” F1. Lower left: ζ⊕, the
distribution of occurrence rates integrated over 20% of Earth’s orbital period and size using all posterior values from the Bayesian inference. Right dashed line: Burke
et al. (2015) baseline ζ⊕. Left dashed line: Burke et al. (2015) “high reliability” ζ⊕. Lower right: qlG º =Å Å Å Å Åd f d p d r p r p rlog log , ,2 ( ), evaluated at Earth’s
period and radius.

Table 2
Impact of Planet Radius Uncertainties (No Reliability)

Parameter No Uncertainty Planet Radius Uncertainty

F0 -
+0.608 0.090

0.110
-
+0.663 0.112

0.143

α -
+0.304 0.496

0.519 - -
+0.172 0.530

0.553

β - -
+0.557 0.169

0.174 - -
+0.593 0.193

0.189

GÅ -
+0.212 0.075

0.111
-
+0.276 0.104

0.157

F1 -
+0.190 0.030

0.035
-
+0.216 0.036

0.041

zÅ -
+0.034 0.012

0.018
-
+0.045 0.017

0.026

Note. A study of the impact of planet radius uncertainties, not accounting for
reliability. The values without uncertainty are from Table 1. See Table 1 for an
explanation of the rows.
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The result is a smaller, higher-reliability PC population, as
shown in Figure 32, with noticeably lower completeness (compare
the contours in Figure 24). In this case the false alarm vetting
efficiency was best fit with the constant=0.999, resulting in a
false alarm reliability very close to 1 for the entire period–radius
range. The few PCs with lower reliability in Figure 32 are due to
their astrophysical false positive probability, which results in F1
and ζ⊕ being slightly suppressed as shown in the “Score>0.9”

case in Table 4. This is an illustration of the fact that score cuts
cannot be relied on to provide a population that is high reliability
with respect to astrophysical false positives.
The agreement in ζ⊕ when using this score cut and the

baseline given in Table 1 is remarkable given the lack of PCs
smaller than 2R⊕ and orbital period>220 days shown in
Figure 32 (compare Figure 24). We interpret this agreement as

Figure 28. Top: impact of planet radius uncertainties (without including reliability) on F1 (left) and ζ⊕ (right). Leftmost (black) distribution: no uncertainty. Rightmost
(blue) distribution: including planet radius uncertainties. This indicates that planet radius uncertainties have only a minor impact. Bottom: impact of planet reliability
uncertainties on F1 (left) and ζ⊕ (right), indicating that planet reliability uncertainties have essentially no impact. Black distribution: no uncertainty. Blue distribution:
including planet radius uncertainties.

Table 3
Impact of Reliability Uncertainty (with Reliability)

Parameter No Uncertainty Reliability Uncertainty

F0 -
+0.432 0.072

0.089
-
+0.428 0.072

0.090

α -
+0.796 0.598

0.635
-
+0.807 0.592

0.631

β - -
+0.823 0.209

0.202 - -
+0.832 0.214

0.207

GÅ -
+0.094 0.041

0.066
-
+0.092 0.040

0.066

F1 -
+0.144 0.027

0.032
-
+0.143 0.027

0.032

zÅ -
+0.015 0.007

0.011
-
+0.015 0.006

0.011

Note. A study of the impact of false alarm reliability uncertainties. The values
without uncertainty are from Table 1. See Table 1 for an explanation of
the rows.

Figure 29. Distribution of reliabilities assigned to PCs with median reliability
<0.9 in the reliability uncertainty study. As expected, the low-reliability
candidates have broad distributions.
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an indication that the baseline ζ⊕ is dominated by extrapolation
because, in the baseline population, long-period, small planets
have low reliability, as discussed in Section 6.2. Because the
baseline results and those using requiring score>0.9 are
essentially unconstrained extrapolations from radius>2R⊕
and orbital period < 220 days to smaller planets and longer
periods, we believe it is premature to conclude that using this
score cut provides accurate occurrence rates for radius < 2R⊕

and orbital period>220 days. In Section 7 we propose a
strategy to explore this question.

6.4.3. Baseline without Vetting Completeness

This variation measures the impact of not including vetting
completeness. This will result in a smaller completeness
correction where vetting completeness is low, so we expect
somewhat lower long-period, small-planet occurrence rates.
The “No Vetting Efficiency” case in Table 4 shows a small
suppression in Γ⊕, F1 and ζ⊕ when not accounting for vetting
completeness.

6.4.4. Baseline without MES Smearing

This variation measures the impact of not smearing the MES
in the calculation of detection completeness, described in
Section 4.1. The “No MES Smear” case in Table 4 indicates an
increase in small-planet, long-period occurrence rates measured
by increases in Γ⊕ and ζ⊕, but not smearing the MES has
essentially no impact on F1.
The results of this section are summarized graphically for F1

and ζ⊕ in Figure 31.

Table 4
Comparison of Occurrence Rate Variations

F0 α β

Case No Reliability With Reliability No Reliability With Reliability No Reliability With Reliability

Baseline (from Table 1) -
+0.608 0.090

0.110
-
+0.432 0.072

0.089
-
+0.304 0.496

0.519
-
+0.796 0.598

0.635 - -
+0.557 0.169

0.174 - -
+0.823 0.209

0.202

DR25 -
+0.675 0.097

0.115
-
+0.474 0.076

0.090 - -
+0.517 0.389

0.402 - -
+0.339 0.444

0.465 - -
+0.552 0.155

0.153 - -
+0.888 0.194

0.188

Score>0.9 -
+0.418 0.084

0.112
-
+0.382 0.079

0.105
-
+0.616 0.677

0.708
-
+0.780 0.724

0.775 - -
+0.774 0.253

0.244 - -
+0.768 0.263

0.253

No Vetting Efficiency -
+0.554 0.084

0.101
-
+0.389 0.062

0.079
-
+0.388 0.502

0.502
-
+0.889 0.603

0.637 - -
+0.609 0.175

0.177 - -
+0.889 0.206

0.203

No MES Smear -
+0.632 0.101

0.125
-
+0.434 0.073

0.093
-
+0.104 0.485

0.508
-
+0.666 0.593

0.632 - -
+0.527 0.178

0.171 - -
+0.802 0.209

0.202

GÅ F1 ζ⊕

Case No Reliability With Reliability No Reliability With Reliability No Reliability With Reliability

Baseline (from Table 1) -
+0.212 0.075

0.111
-
+0.094 0.041

0.066
-
+0.190 0.030

0.035
-
+0.144 0.027

0.032
-
+0.034 0.012

0.018
-
+0.015 0.007

0.011

DR25 -
+0.334 0.098

0.134
-
+0.164 0.059

0.084
-
+0.218 0.029

0.032
-
+0.174 0.026

0.028
-
+0.054 0.016

0.022
-
+0.027 0.010

0.014

Score>0.9 -
+0.103 0.049

0.089
-
+0.087 0.044

0.081
-
+0.139 0.030

0.038
-
+0.124 0.029

0.036
-
+0.017 0.008

0.014
-
+0.014 0.007

0.013

No Vetting Efficiency -
+0.178 0.064

0.097
-
+0.076 0.033

0.054
-
+0.176 0.028

0.031
-
+0.132 0.025

0.030
-
+0.029 0.010

0.016
-
+0.012 0.005

0.009

No MES Smear -
+0.246 0.089

0.132
-
+0.103 0.044

0.072
-
+0.198 0.033

0.036
-
+0.146 0.028

0.033
-
+0.040 0.014

0.021
-
+0.017 0.007

0.012

Figure 30. Impact of the variations considered in this section on F1 (top) and
ζ⊕ (bottom) accounting for reliability. The GK baseline from Section 6.2 is
shown with a light red rectangle, with the horizontal line being the central value
and the rectangle top and bottom showing the error bars. The variations are
shown at different x locations: (1) using the Q1–Q17 DR25 stellar properties
(Section 6.4.1); (2) including only PCs with Robovetter score > 0.9
(Section 6.4.2); (3) without vetting completeness (Section 6.4.3); (4) without
MES smearing (Section 6.4.4).

Figure 31. PC population when using the Q1–Q17 DR25 stellar properties,
colored and sized by reliability. Compared with the baseline population in
Figure 24 there are substantially more planets in both the F1 box (on the right)
and at period > 300 days, leading to higher occurrence rates. See Figure 24 for
a description of the elements of this figure.
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7. Discussion

In this paper we show that a proper characterization of vetting
completeness and reliability is important, particularly near the
detection limit. In particular, in Section 6.2 we find that
characterizing Kepler reliability and completeness can impact
occurrence rates by more than a factor of two near Kepler’s
detection limit (see Table 1). We introduce a new approach to
characterizing vetting completeness and reliability for the Kepler

DR25 PC population. This approach casts the problem as one of
binomial probabilities via parameterized rate functions fitted to
the DR25 injection, inverted and scrambled data. We develop
parameterized models of completeness (described in Section 4),
false alarm effectiveness (Section 5.1.1), and the observed false
alarm rate (Section 5.1.2). The particular parametric models we
choose are selected via the AIC, which chooses the parametric
model that maximizes the likelihood corrected for the number of
model parameters (see Appendix A). We do not claim that our
parametric models are the best or in any sense “true,” just that
they are the best of the parametric models we considered,
described in Table 5. But our best models do a good job of
accounting for the data, and are robust against choices such as
grid resolution.
We caution, however, that vetting completeness and false

alarm reliability as defined in this paper are properties of the
specific Robovetter metrics and vetting thresholds behind the
DR25 PC catalog, as well as our analysis method, rather than
properties of the detections themselves. For example, a
different choice of Robovetter metrics may increase complete-
ness while decreasing reliability or vice versa. While a low
reliability for a transit detection from the analysis in this paper
is reason to be cautious about asserting that detection is due to a
true planet, further analysis of Kepler data can potentially result
in higher confidence that a transit signal is due to a true planet.
For example, as described in Section 2, at least one major
source of false alarms, rolling bands, is highly dependent on
focal plane position (Van Cleve & Caldwell 2009; Van Cleve
et al. 2009). Though some of the DR25 vetting metrics, such as
skye (Thompson et al. 2018) are focal plane dependent, the
reliability analysis in this paper largely ignores focal plane
dependence by averaging over the focal plane, and potentially

Figure 32. PC population when using the baseline Berger et al. (2020) stellar
properties but only including PCs with a Robovetter score�0.9, colored and
sized by reliability. Compared with the baseline population in Figure 24 there
are substantially fewer planets in both the F1 box (on the right) and at
period>300 days, but also lower completeness leading to larger completeness
corrections. Note the complete absence of small planets with orbital
period > 220 days. See Figure 24 for a description of the elements of this
figure.

Table 5
Model Definitions

Model Name q Model Definition Description

constant c[ ] c Constant function
Gaussian s sx y b, , , ,x y0 0[ ] s s +A G x x y y b, , , , ,x y0 0( ) Gaussian + background

dualBrokenPowerLaw a b a bb b A, , , , , ,x y x x y y[ ] a b a b´A B x b B y b, , , , , ,x x x y y y( ) ( ) Broken power law in x and y

logisticY0 y k A, ,0[ ] A Y y y k, , , 10( ) y Logistic

logisticY y k A b, , ,0[ ] +A Y y y k b, , , 10( ) y Logistic + constant

rotatedLogisticY fy k A b, , , ,0[ ] + +A Y y y k b0.5, , , 1rot 0( ) Rotated y logistic + constant

rotatedLogisticX0 fx k A, , ,0[ ] + -A Y x x k0.5, , , 1rot 0( ) Rotated x logistic
rotatedLogisticX02 f nx k A, , , ,0[ ] n+ -A Y x x k0.5, , ,rot 0( ) Rotated x logistic w/shape

parameter
rotatedLogisticX0+Gaussian f s s gx k a b A, , , , , , , ,x y0 0 0[ ] g s s+ - +A Y x x k G x a y b0.5, , , 1 , , , , ,x yrot 0 0 0( ) ( ) Rotated x logistic + Gaussian

logisticX0xlogisticY0 x y k k A, , , ,x y0 0[ ] - ´A Y x x k Y y y k, , , 1 , , , 10 0( ) ( ) x logistic times y logistic

logisticX0xlogisticY02 n nx y k k A, , , , , ,x y x y0 0[ ] n n- ´A Y x x k Y y y k, , , , , ,x y0 0( ) ( ) x logistic times y logistic w/
shape parameters

logisticX0xRotatedLogisticY0 fx y k k A, , , , ,x y0 0[ ] - ´ +A Y x x k Y y y k, , , 1 0.5, , , 10 rot 0( ) ( ) x logistic times rotated y logistic

logisticX0xRotatedLogisticY02 n fx y k k A, , , , , ,x y0 0[ ] n- ´ +A Y x x k Y y y k, , , 1 0.5, , ,0 rot 0( ) ( ) x logistic times rotated y logistic
w/shape parameter

rotatedLogisticYXLogisticY fy y k k A b, , , , , ,0 1 0 1[ ] + ´ +A Y y y k Y y y k b0.5, , , 1 , , , 1rot 0 0 1 1( ) ( ) y logistic times rotated y logistic
+ constant

rotatedLogisticX0xlogisticY0 f fx y k k A, , , , , ,x y x y0 0[ ] + - ´ +A Y x x k Y y y k0.5, , , 1 0.5, , , 1rot 0 rot 0( ) ( ) Rotated x logistic times rotated y
logistic

rotatedLogisticX0xlogisticY02 n n f fx y k k A, , , , , , , ,x y x y x y0 0[ ] n n+ - ´ +A Y x x k Y y y k0.5, , , 0.5, , ,x yrot 0 rot 0( ) ( ) Rotated x logistic times rotated y
logistic w/shape parameters

rotatedLogisticYXFixedLogisticY fy k A b, , , ,0[ ] + ´ +A Y y y k Y y b0.5, , , 1 , 0.25, 33.331, 1rot 0 0( ) ( ) fixed y logistic times rotated y
logistic + constant

Note. The function Y is defined in Equation (4), and the functions G and B are defined in Equation (A2).
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underestimates the reliability of a detection in a focal plane
position known to have a low occurrence of, for example,
rolling bands. Pixel-level analysis of transit events beyond that
used in DR25 may be useful in distinguishing false alarms due
to statistical fluctuations and cosmic-ray events. These
observations can potentially be implemented as new Robovet-
ter metrics, which could result in a higher-reliability, more
complete PC catalog.

The four years of Kepler’s observation of its primary field
provides a data set unlikely to be excelled in the near future.
Full exploitation of this data for understanding exoplanet
populations is only partially complete. This paper is an attempt
to fill in a significant step in that exploitation. We deliberately
chose to limit the innovations in this paper to the characteriza-
tion of and correction for completeness and reliability, and the
use of the uniform Gaia-based stellar properties catalog of
Berger et al. (2020). We show the impact of these innovations
by computing occurrence rates using standard methods from
Burke et al. (2015) in order to facilitate comparison with
previous occurrence rates based on similar methods. The
following discussion critically examines the assumptions
underlying these occurrence rates, revealing weaknesses in
both the DR25 catalog and the occurrence rate calculation
method, and outlines some of the directions that we believe will
prove fruitful in addressing these weaknesses.

7.1. Assumptions Underlying the Baseline Occurrence Rate

We illustrate the impact of reliability by computing a variety
of occurrence rates near the Kepler detection limit (see
Section 6). We chose our specific occurrence rate method,
Bayesian inference using a dual power-law population model in
period and radius, because it is standard and well-understood.
We believe that our occurrence rates provide high-confidence
insight into what the DR25 PC catalog tells us about the
exoplanet population for the period and radius range of
50�period�400 days and 0.75�radius�2.5 R⊕ under
the following assumptions.

1. The parent stellar population is statistically well-
described by Berger et al. (2020).

2. Detection and vetting completeness in the injected data,
along with the analysis described in Section 4, capture the
statistical behavior of detection and vetting completeness
in the observed data.

3. The false alarms in the inverted and scrambled data
capture the statistical behavior of the false alarms in the
observed data.

4. The astrophysical FPP statistically captures the prob-
ability of astrophysical false positives in the PCs.

5. Exoplanets are distributed according to a Poisson point
process.

6. Dependence of planet occurrence on period and radius is
modeled by a product of power laws in period and radius.

We discuss each of these assumptions in turn.
The parent stellar population. As stated in Section 3.1, we

choose the Berger et al. (2020) stellar properties because they
are informed by Gaia radii and uniformly treat the stellar
properties across the parent population. While detailed
observations of individual stars may provide more accurate
stellar properties for individual stars, our method requires
statistically uniform analysis. This is provided by the isochrone
fitting approach of Berger et al. (2020). Therefore we believe

that this stellar catalog is very well suited to our analysis. We
showed in Section 6.4.1, however, that the occurrence rate
depends critically on the stellar properties in the parent
population. Inaccuracies, in particular biases in stellar radius
estimates, can have a strong impact on occurrence rates.
Detection and vetting completeness. The injected data and

analysis from Section 4 makes many assumptions. The
detection completeness analysis makes several empirical
approximations (described in Burke & Catanzarite 2017) that
may not apply well to individual PC host stars. As described in
Section 3, some of our stellar and PC population approaches
the restrictions stated in Burke & Catanzarite (2017) with
respect to transit duration. Because our occurrence rates include
regions with very few PCs, it is possible that the detection
completeness for long-period planets is not as well modeled as
that for short-period planets. Regarding vetting completeness,
we are assuming that the Robovetter vets the injected
detections with the same statistical accuracy as real transiting
planets in the observed data. While we have confidence in this
assumption, it is possible that some true planet transit signals
have properties not captured by injection which confound the
Robovetter, such as asymmetric transit shapes due to non-zero
eccentricity, transit timing variations, and out-of-transit flux
variations.
False alarm characterization. As we discussed in Section 5,

inverted and scrambled data are believed to statistically model
three identified classes of false alarms: rolling bands, statistical
fluctuations combined with cosmic ray-induced pixel events
that conspire to imitate long-period small transiting planets, and
stellar variability. The evidence for this belief is that the
distribution of detected TCEs in the inverted and scrambled
data closely matches the clearly anomalous distribution of
detections in the observed data centered on the Kepler orbital
period (see Thompson et al. 2018), and tuning the Robovetter
to eliminate this distribution from the PC population in the
inverted and scrambled data also eliminates the anomalous
distribution in the observed data. While using the inverted and
scrambled data to model the false alarm population is clearly
effective, there are likely other types of false alarms not
represented by the inverted/scrambled data, though these seem
to be a minor component. Such unmeasured false alarms would
cause an overestimate of false alarm reliability.
Astrophysical false positive characterization. The FPPs

(Morton et al. 2016) are computed making strong assumptions
about the lack of evidence for stellar multiplicity associated
with the transit host star. While these FPPs model stellar
multiplicity as candidate hypotheses, the prior used in this
model strongly assumes a lack of evidence for stellar multi-
plicity. As described in Hirsch et al. (2017) and Ciardi et al.
(2015), there is evidence that a non-trivial fraction, possibly
20%, of Kepler target stars have unknown stellar companions.
Such companions could cause an overestimate of the reliability
of a subset of the PC population.
Poisson likelihood. The use of the Poisson likelihood

(Equation (11)) for the distribution of exoplanets is a standard
choice, but may not be correct. For example, the assumption
that the probability of different planets on the same star
are independent of one another (an assumption behind
Equation (11)) is almost certainly not correct, as indicated by
existence of many packed exoplanet systems. There is also
evidence that the detection of one planet on a star can prevent the
detection of other planets on the same star (Zink et al. 2019).
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Likelihood-free methods, such as approximate Bayesian com-
putation as applied to occurrence rates in Hsu et al. (2018) or the
population sampling method used in Zink & Hansen (2019) may
yield more accurate occurrence rates.

The power-law population model. Evidence is mounting
against the use of a simple product of power laws in period and
radius when modeling exoplanet population statistics. This is
already apparent in the top-left panel of Figure 27, where the
power law is a poor fit to the observed planet population as a
function of radius. This is likely due to the Fulton gap (Fulton
et al. 2017), though the orbital periods in our analysis are
somewhat longer than in Fulton et al.’s analysis. Further,
Petigura et al. (2018) presents evidence that host star
metallicity is an important parameter in exoplanet population
statistics. As pointed out by Hsu et al. (2018), model mis-
specification is unlikely to lead to accurate results. Several
authors have avoided the use of parameterized models in
occurrence rate computations (for examples, see Howard et al.
2012; Foreman-Mackey et al. 2014; Hsu et al. 2018), which is
likely to lead to more accurate occurrence rates.

We believe that, whatever method of statistical analysis is
applied to the PC catalog, characterizing and correcting for
vetting completeness and reliability is critical. In the long-
period, small-planet regime we have shown that reliability can
reduce occurrence rates by a factor of two. We expect that this
will be the case regardless of the statistical method and model,
because reliability is a property of the PC catalog. The effect of
vetting completeness is less dramatic in the DR25 PC catalog
(as opposed to detection completeness, which is very
important), but should not be neglected. Other planet catalogs
may increase vetting reliability at the expense of vetting
completeness, in which case the latter can be more significant.

For habitability studies, the common practice of grouping
together a wide class of stars and computing occurrence rates as
functions of period and radius is potentially misleading. For
example, the large range of stellar luminosities in our GK
population shown in Figure 3 means that not all stars share the
same habitable zones expressed as orbital periods. But
grouping such a wide class of stars is necessary to provide
the required statistics due to the small number of long-period,
small-planet detections and the sparseness of false alarms
described in Section 5.1.1. Occurrence rates computed as
functions of insolation flux and planet radius for the same class
of stars would provide the needed statistics, and are likely more
informative for habitable exoplanet population studies. Recent
improvements in stellar characterization of the parent stellar
sample, represented by Berger et al. (2020), make insolation-
flux-based occurrence rates a viable alternative.

7.2. Improving the PC Catalog

The discussion in Section 7.1 outlines the assumptions
behind extracting our occurrence rate from the DR25 PC
catalog, and how those assumptions may fail. The DR25
catalog itself can likely be improved upon, particularly in the
long-period, small-planet regime. There is evidence that several
long-period, small-radius detections were incorrectly classified
as false positives: the Kepler False Positive Working Group
(Bryson et al. 2015) has identified several TCEs vetted as false
positives in DR25 that are viable PCs, identified with
fpwg_disp_status=POSSIBLE PLANET in the Kepler Certi-
fied False Positive Table at the NASA Exoplanet archive (see
footnote 8). This is expected because the DR25 vetting process

deliberately balanced statistical uniformity and accuracy for
individual objects, which was required for the study in this
paper but compromised accurate vetting for some objects. In
principle, the lowered completeness resulting from mis-
classifying true planets as false positives is corrected for by
characterizing vetting completeness. But in the long-period,
small-planet regime there are very few low-reliability detec-
tions and very large completeness corrections (see Figure 24),
which are vulnerable to large errors due to small statistics.
Accurate characterization of completeness and reliability as

developed in this paper opens an intriguing approach to
addressing the problem of few detections at long period and
short radius: PC catalogs that have lower reliability and higher
completeness. This would mitigate the small-statistics problem
by providing more detections with a smaller completeness
correction resulting in better statistical constraints on the
extrapolations discussed in Section 6.4.2. We recommend an
exploration of Robovetter thresholds that increase the number
of detections, lowering reliability and increasing completeness.
The methods to measure reliability described in this paper are a
crucial step toward being able to extract more accurate
occurrence rates from such a catalog.
We believe that the reliability of the PC catalog can be

improved by the development of metrics beyond those
described in Thompson et al. (2018). We provide two examples
that may prove fruitful.

1. As described above, different regions of the Kepler focal
plane have different different false alarm characteristics,
which can be leveraged to more accurately evaluate the
likelihood that a transit signal is due to a false alarm.

2. Pixel-level analysis can be developed beyond the DR25
vetting metrics, based on the expectation that false alarms
are likely to be significantly different from star-like transit
signals at the pixel level, particularly in difference images
(Bryson et al. 2013).

We expect that such improved vetting metrics will address the
small-statistics problem by increasing the reliability of PCs
near the detection limit, so they have stronger statistical weight
in occurrence rate calculations.
Followup observation can potentially play a role in

validating the reliability characterization developed in this
paper. Ground- or space-based observations of a significant
number of DR25 PCs, confirming them as planets or
determining them to be false positives, could provide a ground
truth of the number of PCs that are true planets. This ground
truth can be used to independently compute the reliability of
the DR25 PC population. We caution against using such
follow-up observations to modify the PC catalog, however, as
that is likely to violate the uniformity assumptions behind the
completeness correction.

8. Conclusion

This paper presents a new, probabilistic approach to
statistically characterizing the vetting completeness and
reliability of the Kepler DR25 exoplanet catalog. Using a
standard occurrence rate calculation, we demonstrated that
correcting for reliability can have a significant impact on
occurrence rates, particularly near the Kepler detection limit at
orbital periods longer than 200 days and planet radius <
1.5R⊕. We also showed that the choice of stellar properties for
the searched stellar sample has a significant effect on
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occurrence rates. The results in this paper were made possible
by the uniform detection and vetting methods behind DR25
that lend themselves to statistical characterization. We believe
that the results presented in this paper are directly applicable to
other exoplanet surveys such as K2, TESS, and PLATO so
long as they create their catalogs in a similarly uniform way
and expend the effort to create test data sets that measure
completeness and false positives.
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Appendix A
Vetting Completeness and Reliability Model Selection

We investigated a variety of models for vetting completeness
(Section 4.2), false alarm efficiency (Section 5.1.1), and
observed false alarm rate (Section 5.1.2). We selected the
models based largely on the lowest AIC=2d−2ln(L), where
d is the number of degrees of freedom in the model and L is the
likelihood of the model. When comparing two models with
likelihoods L1 and L2, the relatively likelihood of model 1
relative to model 2 is given by exp((AIC2−AIC1)/2. The AIC
is not always successful, however, particularly when the model
contains parameters that do not converge. In addition, the
lowest AIC sometimes results in models that are obviously not
physical. In such cases we made judgement calls when making
the selections, as described below.

Details of each model’s analysis is found on the GitHub
website (see footnote 9) in the directory GKbaseline/htmlArchive.

The models we considered are defined in Table 5. All
models have as input orbital period p, MES (either expected for
vetting completeness, or observed for reliability) m, orbital
period range [pmin, pmax], MES range [mmin, mmax] and a
parameter vector q. q has different elements for different
models. The function evaluations start by scaling the period
and MES input to (x, y) ä [0, 1]×[0, 1] in order to facilitate
rotations. This scaling is done for consistency even if there are

no rotations in the model. In some models, rotations are applied
using angles fx and fy from q. If there is only one rotation
angle f in q, then fx=fy=f.
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A.1. Vetting Completeness Model Selection

The functions considered for fitting the observed vetting
completeness rate in Section 4.2 are given in Table A1, along
with AIC values and relative likelihoods. We chose logis-
ticX0xRotatedLogisticY0 because it had the highest relative
likelihood, best convergence behavior, and appears to be a
good fit to the data.

A.2. False Alarm Effectiveness Model Selection

The functions considered for fitting the observed false alarm
effectiveness rate in Section 5.1.1 are given in Table A2, along
with AIC values and relative likelihoods. We chose rotatedLo-
gisticX0 because it has a high relative likelihood, had the
fewest parameters, and gave the most reasonable convergence
results compared with other high-likelihood models.

Table A1
Candidate Vetting Completeness Rate Functions

Model Name Median AIC Minimum AIC Relative Likelihood

logisticY0 2819.03 2819.03 2.68e−137
dualBrokenPowerLaw 2246.87 2245.45 4.70e−13
logisticX0xlogisticY0 2223.80 2223.79 4.82e−08
logisticX0xlogisticY02 2227.20 2226.76 8.78e−09
logisticX0xRotatedLogisticY0 2190.10 2190.11 1.00
logisticX0xRotatedLogisticY02 2190.06 2189.83 1.02
rotatedLogisticX0xlogisticY0 2192.08 2192.11 0.372
rotatedLogisticX0xlogisticY02 2193.69 2193.19 0.166

Note. Candidate vetting completeness rate functions considered for the analysis in Section 4.2, with their AIC values and relative likelihoods based on the median AIC
values. The relative likelihoods are with respect to the selected model logisticX0xRotatedLogisticY0.
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A.3. Observed False Alarm Rate Model Selection

The functions considered for fitting the observed false alarm
rate in Section 5.1.2 are given in Table A3, along with AIC
values and relative likelihoods. We chose rotatedLogisticX0
because it gave the most reasonable results compared with
other high-relative-likelihood models. We rejected rotatedLo-
gisticX02 because one of its parameters did not converge.

Appendix B
Derivation of the Likelihood from the Poisson Probability

We briefly summarize Bayesian inference using a Poisson
likelihood. We will work in the period–radius parameter space.

If our planet population is described by a point process with
a period- and radius-dependent rate λ(p, r), then the probability
that ni planets occur around an individual star in some region Bi

(say a grid cell) of period–radius space is
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We now ask: what is the probability of a specific number ni of
planets in each cell i? We assume that the probability of a
planet in different cells are independent, so
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because the Bi cover D and are disjoint. Here K is the number
of grid cells and K1 is the number of grid cells that contain a
planet=the number of PCs. So the grid has disappeared, and
we only need to evaluate λ(p, r) at the planet locations (pi, ri)
and integrate the rate function λ over the entire domain.
We do not observe all the planets, however. We account for

incompleteness, including geometric transit probability, by
replacing λ(p, r) with ηs (p, r) λ(p, r) in Equation (B1), where
ηs (p, r) is the completeness function for this star s measured in

Table A3
Candidate Observed False Alarm Rate Functions

Model Name Median AIC Minimum AIC Relative Likelihood

rotatedLogisticX0 307.20 307.19 1.00
rotatedLogisticX0xlogisticY0 313.20 310.49 4.98e−02
dualBrokenPowerLaw 396.48 394.01 4.10e−20
rotatedLogisticX02 302.87 301.10 8.71
rotatedLogisticX0xlogisticY02 310.98 303.80 0.151
rotatedLogisticX0+Gaussian 307.02 305.55 1.10

Note. Candidate observed false alarm rate functions considered for the analysis in Section 5.1.2, with their AIC values and their relative probabilities based on the
median AIC values. The relative likelihoods are with respect to the selected model rotatedLogisticX0.

Table A2
Candidate False Alarm Effectiveness Rate Functions

Model Name Median AIC Minimum AIC Relative Likelihood

rotatedLogisticX0 214.39 214.06 1
rotatedLogisticX02 212.49 210.93 1.70
constant 270.55 270.55 6.35e−13
dualBrokenPowerLaw 250.08 244.08 1.77e−08
Gaussian 247.10 243.48 7.87e−08
rotatedLogisticX0xlogisticY0 220.44 220.08 4.84e−02
rotatedLogisticX0+Gaussian 228.03 216.74 1.09e−03
rotatedLogisticY 215.80 212.36 2.35e−02
rotatedLogisticYXLogisticY 220.60 216.53 4.47e−02
logisticY 238.92 238.45 4.69e−06
rotatedLogisticYXFixedLogisticY 215.95 212.58 0.458

Note. Candidate false alarm effectiveness rate functions considered for the analysis in Section 5.1.1, with their AIC values and their relative probabilities based on the
median AIC values. The relative likelihoods are with respect to the selected model rotatedLogisticX0.

29

The Astronomical Journal, 159:279 (33pp), 2020 June Bryson et al.



Section 4. The result is the probability
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We now consider the probability of detecting planets around
a set of N* stars. Assuming that the planet detections on
different stars are independent of each other, then the joint
probability of a specific set of detections specified by the set
{ni, i=1, K, N*} in cell i on on all stars indexed by s is given
by
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where = D DV p r K N1 *( )( ) and h h= å =p r p r, ,s
N

s1*( ) ( ) is the
sum of the completeness functions over all stars.

We now let the rate function ql p r, ,( ) depend on a
parameter vector q, and consider the problem of finding the q
that maximizes the likelihood
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Because we are maximizing with respect to q, we can ignore all
terms that do not depend on q. Therefore maximizing
Equation (B4) is equivalent to maximizing
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Appendix C
Comparison of Catalog Cuts

In Section 6.4.1 we found that using the DR25 stellar properties
catalog results in larger occurrence rates than the baseline of
Section 6.2, which uses the stellar properties from Berger et al.
(2020). This difference can result from both the difference in the
stellar properties themselves, and the fact that different stellar
population cuts were used. In particular, as described in Section 3.1,
the Berger et al. (2020) catalog contains only stars with good Gaia
noise characteristics, and we impose further Gaia fit quality
requirements by removing stars with qualityFlag=highRUWE.

In this Appendix we explore the relative impact of the
difference in stellar properties between the two catalogs
compared with the impact of the different cuts. We consider

the Berger et al. (2020) catalog with and without the cuts
specific to this catalog. We then consider the same stars as
Berger et al. (2020), but using the DR25 stellar properties and
cuts. Finally we consider the DR25 stellar catalog and its
restriction to those stars contained in the supplemental catalog
of Mathur & Huber (2016). In all cases all steps of the
occurrence rate computation are recomputed, including detec-
tion/vetting completeness and reliability.
We compute the occurrence rates F1 and ζ⊕, defined in

Section 6, for two cases using the stellar properties of Berger
et al. (2020) which differ in the population cuts.

1. Case 1: the baseline of Section 6.2, starting with the
Berger et al. (2020) catalog, with all the cuts described in
Section 3.1, and planet radii corrected for Gaia stellar
radii as described in Section 3.2. Starts with 186,548 stars
and ends up with 58,974 GK stars after cuts.

2. Case 2: same as case 1, starting with the Berger et al. (2020)
catalog, except without the highRUWE, Bin, or Evol cuts
described in Section 3.1, replacing these cuts with the cut on
stellar radius removing stars with R*>1.35Re described in
Section 6.4.1. Starts with 186,548 stars, and ends up with
66,956 GK stars after cuts.
We examine three cases using the DR25 stellar properties,
which differ in the population cuts.

3. Case 3: the same cuts as case 2, starting with the Berger
et al. (2020) catalog, except using DR25 stellar properties
and original DR25 planet radii. Starts with 186,548 stars
and ends up with 71,168 GK stars after cuts.

4. Case 4: the DR25 stellar catalog as described in Section 4.1
using original DR25 planet radii. Starts with 200,038 stars
and ends up with 75,541 GK stars after cuts.

5. Case 5: the DR25 stellar catalog as in case 4, restricted to
those stars in Mathur & Huber (2016) and using original
DR25 planet radii. Starts with 197,096 stars and ends up
with 74,989 GK stars after cuts.

Cases 1 through 3 start with the same stars, and differ in the
cuts and the use of Gaia-based versus DR25 stellar properties.
The occurrence rates F1 and ζ⊕ for the various cases are

given in Table C1 and shown in Figure C1. We see that using
the same stellar properties gives similar occurrence rates, with a
noticeable difference in occurrence rates computed using
different stellar properties. Differing cuts using the same stellar
properties apparently have a much smaller impact. We
therefore conclude that stellar properties (including differences
in GK classification due to differences in effective temperature)
are the dominant cause of the different occurrence rates, and the
population cuts play a minor role. In all cases correcting for
reliability has a significant impact on ζ⊕.
We can get some insight into the change in occurrence rates by

examining the impact of stellar properties on the PC population in
the parameter space 50�period�400 days and 0.75�
radius�2.5R⊕. We examine the difference between case 2
and case 3 because these cases start with the same parent stellar
population and apply the same cuts. In case 2 these cuts are
applied using the Berger et al. (2020) stellar properties, while in
case 3 they are applied using the DR25 stellar properties. In case 2
there are 107 PCs in the period and radius range out of 67,306
stars in the parent GK population, which yields 0.666 per star after
dividing by the average completeness of 0.00239. In case 3 there
are 116 PCs out of 71,168 stars in the parent GK population,
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Figure C1. Impact of the different catalog cases considered in this Appendix on F1 (left) and ζ⊕ (right). Results without correcting for reliability are shown with black
dots, and corrected for reliability with red squares. Cases 1 and 2 use the stellar properties of Berger et al. (2020) with differing catalog cuts, while cases 3, 4, and 5 use
DR25 stellar properties with differing catalog cuts.

Table C1
Comparison of Occurrence Rates Using Different Catalogs and Cuts

F0 F1 zÅ
Case No Reliability With Reliability No Reliability With Reliability No Reliability With Reliability

1 -
+0.608 0.090

0.110
-
+0.432 0.072

0.089
-
+0.190 0.030

0.035
-
+0.144 0.027

0.032
-
+0.034 0.012

0.018
-
+0.015 0.007

0.011

2 -
+0.609 0.091

0.112
-
+0.393 0.065

0.083
-
+0.186 0.028

0.031
-
+0.133 0.024

0.029
-
+0.040 0.013

0.019
-
+0.016 0.007

0.011

3 -
+0.680 0.099

0.121
-
+0.470 0.079

0.098
-
+0.216 0.029

0.032
-
+0.170 0.026

0.030
-
+0.056 0.017

0.024
-
+0.027 0.010

0.015

4 -
+0.675 0.097

0.115
-
+0.474 0.076

0.090
-
+0.218 0.029

0.032
-
+0.174 0.026

0.028
-
+0.054 0.016

0.022
-
+0.027 0.010

0.014

5 -
+0.678 0.096

0.117
-
+0.476 0.077

0.094
-
+0.219 0.028

0.031
-
+0.175 0.026

0.029
-
+0.055 0.016

0.022
-
+0.027 0.010

0.014

Note. Case 1 values are from Table 1, and case 4 values are from Table 4.

Figure C2. Planet radii in case 3, using DR25 stellar properties, with the arrows indicating the change in radius when using the Berger et al. (2020) in case 2 for those
PCs with 0.75�radius�2.5 R⊕ in both cases. The solid horizontal lines show the average change in radius in three period bins when changing from case 3 to case
2, averaged over three bins, with values indicated by the right-hand y-axis. The shaded rectangles show the 1σ uncertainty.

31

The Astronomical Journal, 159:279 (33pp), 2020 June Bryson et al.



which yields 0.64 planets per star after dividing by the average
completeness of 0.00255. These simple estimates are consistent
with the values of F0 found in Table C1. To understand the
changes in F1 and ζ⊕, we need to examine in more detail how the
stellar properties effect the PC population.

There are three ways that a difference in stellar properties
can change the occurrence rate.

1. A change in stellar radius causes a change in planet
radius, which will impact the period–radius dependence
of the population rate function and may cause the planet
to move into or out of the 0.75�radius�2.5 R⊕ range.

2. A change in stellar radius causes the star to be added to or
removed from the parent population depending on whether
the star becomes smaller or larger than the 1.35Re cut.

Figure C3. PCs that are not common to case 2 and 3, plotted using the DR25 (case 3) stellar properties, with the arrows indicating the change in radius when using the
Berger et al. (2020) stellar properties in case 2. The markers indicate reasons why the PCs present in one case were dropped from the other. Top: PCs in case 3 that are
not present in case 2. For most of these PCs, the arrows indicate that their radii using Berger et al. (2020) stellar properties exceeded 2.5 R⊕, removing them from the
case 3 population. Other PCs were removed because in case 3 their stellar host radii exceeded 1.35 Re or were not GK stars. Bottom: PCs in case 2 that are not present
in case 3. For most of these PCs, they are too large in case 3 using the DR25 stellar properties, and the arrows indicate that these PCs became smaller than 2.5 R⊕ using
the Berger et al. (2020) stellar properties in case 2. Other PCs appeared because their stellar hosts were either larger than 1.35 Re or not GK in case 3 using the DR25
stellar properties, but are smaller and GK in case 2.
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3. A change in stellar effective temperature causes the star
to be added to or removed from the parent population
because it is reclassified as GK or not GK.

Figure C2 shows the change in planet radius when changing
from case 3 (DR25 stellar properties) to case 2, for those PCs
that are common to both case 2 and case 3. We see that for
periods between 50 and 200 days PCs both increase and
decrease in size. For periods greater than 200 days, however,
there is clear bias toward larger sizes. This effect is quantified
by computing the average relative change in size in three period
bins. The shortest period bin shows a near-zero average change
in size, while the longest-period bin shows an average increase
in size of about 8%, which is about a 2σ change.

Figure C3 shows PCs that either exited or entered the radius
range considered in our occurrence rate in the change from case 3
to case 2. As in Figure C2, we see that at low period several PCs
entered our planet radius domain of 0.75�radius�2.5 R⊕
while other PCs left that domain. But for longer period,
particularly >250 days, planets left our domain by becoming
too large while no planets entered our domain. Thus there is a loss
of small exoplanets due to their being larger using Berger et al.
(2020) stellar properties. In addition, several stars exited or entered
our parent population through reclassification due to change in
effective temperature.

These figures suggest that the change in planet size when
using the Berger et al. (2020) stellar properties (case 2) is a
significant contributing factor in the reduced occurrence rates.
But it would not be correct to conclude that this change in
planet size is the “cause” of the lower occurrence rate; changes
in the parent stellar population also impact occurrence rates
through changes in detection completeness and changes in
population due to stellar reclassification and which stars pass
the stellar size cut. It is only through computing the full
occurrence rate that we can measure the impact of the stellar
properties.
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