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International large-scale assessments (ILSAs) transitioned from paper-based
assessments to computer-based assessments (CBAs) facilitating the use of
new item types and more effective data collection tools. This allows imple-
mentation of more complex test designs and to collect process and response time
(RT) data. These new data types can be used to improve data quality and the
accuracy of test scores obtained through latent regression (population) models.
However, the move to a CBA also poses challenges for comparability and trend
measurement, one of the major goals in ISLAs. We provide an overview of
current methods used in ILSAs to examine and assure the comparability of data
across different assessment modes and methods that improve the accuracy of
test scores by making use of new data types provided by a CBA.
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Introduction: New Developments

The use of new technologies in work, education, and everyday life changes the
way people think, learn, solve problems, and collaborate. It is important to reflect
these new proficiencies and strategies in the assessment frameworks and con-
structs measured in international large-scale assessments (ILSAs). Consequently,
international large-scale studies—such as the Program for the International
Assessment of Adult Competencies (PIAAC) and the Program for International
Student Assessment (PISA)—moved from a paper-based assessment (PBA) to a
computer-based assessment (CBA). This offers new and exciting opportunities
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for improvements in data collection, scoring, and analysis but also presents new
challenges for analysts and users of the data. CBAs allow for various new
interactive item types and the measurement of new constructs or existing con-
structs with extended frameworks. They also allow for greater efficiency through
improved data collection, automated scoring of constructed responses, and the
introduction of more complex test designs such as adaptive testing. Moreover,
CBA allows the collection of additional information such as response time (RT)
and other process-related data (e.g., number of actions, action sequence), which
are assumed to be useful for improving the proficiency estimation in item
response theory (IRT) scaling and reducing measurement error in latent regres-
sions used in large-scale assessments.

However, changing the mode of administration may affect properties of the
tasks and threatens the comparability of data across populations and assessment
cycles over time when measuring trends. Both the comparability of data and test
scores and the measurement of trends (which is only possible when based on
comparable scores) are central to ILSAs. Therefore, possible mode effects need
to be evaluated and treated to ensure comparable test scores before any further
innovations are introduced. Once comparability and a successful transition from
PBA to CBA are established, new information and data provided by the CBA can
be used to make further improvements to data analyses and the generation of test
scores. Including RT and process data, however, is not straightforward and
requires research to evaluate the relation between these new variables and the
proficiencies of interest. The interaction of these new variables and their validity
has to be investigated before they can be introduced in operational analyses of
large-scale assessments. Moreover, there is the need to reduce the large number
of distinct variables provided by the CBA into fewer, more meaningful units
before including them in further analysis or the population model.

The Latent Regression (Population) Model

In ILSA such as PISA, a latent regression (or population) model is being used
to estimate posterior proficiency distributions based on the likelihood function of
an IRT model and a linear regression of background data on the proficiency of
interest (von Davier, Gonzalez, & Mislevy, 2009; von Davier, Sinharay, Oranje,
& Beaton, 2006). It can be viewed as an imputation model for the unobserved
proficiency variable that aims to obtain unbiased (or at least less biased) group-
level proficiency distributions. This requires the estimation of an IRT measure-
ment model, which provides information about how test performance depends on
proficiency, and the latent regression, which provides information about the
extent to which background information is related to proficiency. The population
model is usually estimated separately for each population of interest (in PISA and
PIAAC, this would be the different countries), and a predefined number of
plausible values (PVs), which are multiple imputations, are drawn from the
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resulting posterior distribution for each respondent (e.g., 10 PV in PISA) in each
cognitive domain. It is important to note that PVs are no individual test scores
and should only be used for analyses at the group level.

These types of models tend to utilize many variables in the latent regression to
avoid missing any useful information collected either from the background ques-
tionnaires or from the process data (von Davier et al., 2009). Because of this
considerable number of background variables, a principal component analysis
(PCA) is used in the latent regression model to reduce the number of variables to
a smaller number of meaningful predictors that are accounting for a large pro-
portion of the variation in the background questionnaire variables. For PISA, it
was decided to use the components for each country that accounted for 80% of
the variance in order to avoid numerical instability due to potential overparame-
terization of the model (Organization for Economic Cooperation and Develop-
ment [OECD], 2017). The problem of overparameterization is important with
regard to including additional variables in the latent regression model such as
process data. This issue will be discussed in our article.

Aim of the Current Article

This article presents an overview of innovations targeting psychometric
approaches and methodologies that deal with the comparability of data between
modes of administration as well as the new data provided by CBAs and their
potential use for improving estimation in ILSAs. The order in which the different
sections are presented in the article follows the priority and sequence of the
operational implementation in large-scale surveys: (1) The first section deals
with using IRT to control mode effects when PBA items are transferred to a
CBA in order to establish comparable item parameters and test scores across
modes and for the measurement of trends. Only when comparability is estab-
lished, a population model—which is based on the item parameters obtained in
the IRT scaling—can yield comparable test scores across groups, modes, and
over time. (2) Once comparability is established, the use of process and timing
data provided by the CBA for improving the population model can be explored.
Hence, the second section addresses approaches and challenges to incorporating
RT data to enhance the validity and comparability of the assessment as well as to
improve the item parameter and proficiency estimation. (3) The third section
exemplifies the use of process/sequence data models to generate meaningful
indicators and predictive features from process data collected in simulation-
based tasks. It is discussed how both RT and features generated from process
data can potentially be useful in improving the accuracy of population models.
(4) As the availability of timing and process data substantially increases the
number of covariates in population models used in large-scale assessments, it
is imperative to study data reduction strategies. Therefore, the fourth section
surveys variable selection approaches to manage the large amount of process
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and timing and background data and to support the selection of variables in latent
variable regression models to group-level proficiency distributions. This section
is presented as the last one because the population model is the final step in
analyzing large-scale assessment data by combining results from the IRT model
with background information and possibly with new variables and features gen-
erated from RT and process data through a population model.

Comparing Data From Different Modalities of Assessment:
Modeling Mode Effects

Despite the advantages of computer-based tests, the move from a PBA to a
CBA mode poses challenges for the measurement of trend over time because the
results of the same test administered in different modes might not be directly
comparable. In addition, it has to be established whether comparability of coun-
tries’ results in large-scale assessments can be maintained if some use different
assessment modes (some countries might not be prepared to utilize computers in
the assessment, while others had moved to CBA already). Certain items might
not function the same across modes and may differ with regard to their difficulty,
discrimination, or the composition of skills they tap into. Mode effects may
manifest in the form of differential item functioning (DIF) observable on (at
least) some of the items when comparing equivalent groups across different
assessment modes. This, in turn, can threaten measurement invariance and can
cause undesirable changes in comparability of test scores obtained through the
population model and the measurement of trend. Extensions of IRT models can
be used to test for mode effects and to deal with violations of measurement
invariance if effects are present in the data. This section presents an approach
to test and control for possible mode effects using the PISA 2015 data.

We argue that as a first step, the types of mode effects that may change the
measurement properties have to be established. Second, items with identified
mode effects have to be treated in the modeling to provide valid trend measures
as well as comparable scores across samples and groups within an assessment
cycle. After such an item-level treatment, different subsets of items might present
different levels of invariance. The following provides an overview of types of
measurement invariance and illustrates approaches and models that can be used
to examine mode effects. The models presented here can be used to select an
appropriate treatment of items or scores in the final scaling.

Comparability and Measurement Invariance

There are different levels of measurement invariance (Millsap, 2010) that
have to be considered before comparing different groups or assessments over
time. For valid interpretations of change over time (trend measure), the assess-
ment should ideally exhibit scalar or strong invariance for all items (the same
slope and intercept parameters fit the items independent of the mode of
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administration) or at least for a large enough subset of trend items while showing
weaker forms of invariance for the remaining items (metric invariance where
slope parameters are invariant across modes, while intercepts are allowed to be
different). The rationale behind this requirement is that trends measured across
modalities are expected to be comparable in order to assess change, and trend
measures should provide consistent statistical associations across modes, par-
ticularly with external variables central to establishing validity. It should be
noted that mode effects are just one possible source of measurement invar-
iance. Other sources such as translation errors, technical issues, and language
differences have to and are routinely examined and treated as well (e.g.,
OECD, 2017; Oliveri & von Davier, 2011; von Davier et al., 2006; von Davier
& Sinharay, 2014).

Test Design Requirements for Studying Mode Effects

To evaluate the extent to which measurement invariance can be assumed
when moving from a PBA to CBA, an appropriate data collection design is
needed where the same items have been administered in both modes either to
the same students in a counterbalanced design or to randomly equivalent groups
of students. Quality is ensured by following best practices such as randomization
for the study design so that the different modes of delivery can be understood as
treatment assignments in an experiment. In order to be able to generalize from
such a study, a sufficiently large and representative sample at the level at which
inferences are planned is needed. More specifically, if the level of inference is the
functioning of tasks in two modes on the international level, the sample must
cover the range of abilities that are assessed across countries. If the level of
inference is the detection and potential treatment of country-level mode effects,
the sample for each country that plans these types of analyses has to be suffi-
ciently large to enable stable estimates of item parameters for country-level
inferences. In country-level mode effect studies, this would require that sample
sizes to allow stable estimation of item functions for each item in each mode.
Typically, this translates into samples that provide thousands of responses per
item, depending on the number and type of parameters of the IRT model used, the
targeting of the sample relative to the item difficulty, and so on. If the goal is to
evaluate items at the international level, across all samples (i.e., at the interna-
tional level), 100 to 200 responses per item per country may be sufficient, while
this would be insufficient for inferences at the country level. In surveys such as
PISA where a field trial is used to evaluate mode effects, this would be typically
the case (sample sizes in field trials are usually smaller than in main surveys for
reasons of cost efficiency).

Once data are available from such an appropriate mode comparison with
equivalent groups of randomly assigned respondents, a second step is to com-
pare paper- and computer-based items with respect to their item parameter
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FIGURE 1. Graphical model check for comparison of slope parameter estimates across
paper- (horizontal axis) and computer (vertical axis)-based assessment modes.

estimates from separate IRT calibrations. In the following, we show how this
can be done using graphical model checks and IRT models with different mode
effect parameters.

Analysis of Mode Effects Using Graphical Model Checks

As an initial comparison prior to more rigorous modeling approaches, gra-
phical model checks, an approach that goes back to Rasch (1960), can be used to
spot systematic differences between modes of administration. More information
about graphical model checks and their use can be found in Khorramdel and von
Davier (2016). Graphical model checks show whether the rank order of item
parameters, as well as the relations between item parameters, agrees for all
subsamples and thus tests the invariance assumption across subpopulations.
Graphical model checks can be used based on data collected in an equivalent
groups design. Item parameters are estimated separately for items in paper- and
computer-based form while constrained to be equal across country or language
groups in order to focus on mode comparisons only and to ensure sufficient
sample sizes for calibrations by aggregation over countries.

Figures 1 and 2 show an example of parameter comparisons between modes
using the PISA 2015 Field Trial data. The figures contain scatter plots of IRT
parameter estimates for different modes.
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FIGURE 2. Graphical model check for comparison of difficulty parameter estimates
across paper- (horizontal axis) and computer (vertical axis)-based assessment modes.

Figures 1 and 2 show that item difficulties are highly correlated across modes.
The same holds for the freely estimated slope parameters. These results suggest
there is good agreement between paper- and computer-based items in terms of
retention of difficulty and discrimination across modes. The presence of some
outliers, however, suggests that some items differ between modes. These might
need treatment to resolve the differences (e.g., splitting the item and estimating
separate parameters) in IRT scaling across assessment modes. Note that there is
always estimation error in item parameter estimates, especially in the case of
aggregate samples using several small field trial samples. Therefore, parameter
estimates are not perfectly correlated, and correlations can be particularly low in
small within-country samples, mainly due to the sample size but also due to
effects of deviations from random assignment and representativeness of small
within-country samples. However, correlations at the international level, esti-
mated in the example between item parameters of paper- and computer-based
items, are very high, for item difficulty parameters with r = .94 and for item
slope parameters with » = .91. These correlations suggest a statistical link is
likely to be established so computer- and paper-based results across countries can
be reported on the same scale.

However, before such a link can be established, the extent to which some
items may expose mode effects must be examined during IRT scaling. The next
section provides an overview of IRT model extensions for examining mode
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effects and for linking across assessment modes by testing for, and if present,
utilizing the invariance of item parameters across modes.

Mode Effect Models—Accounting for Measurement
Invariance and Mode Differences

While graphical model checks can be helpful to examine the overall agree-
ment of item parameters from different samples—for example, tested in different
assessment modes—and to explore potential drivers of these differences, they do
not provide the most rigorous way to account for mode effects in proficiency
estimation (von Davier & von Davier, 2007). In this section, we illustrate how
IRT models can be used to analyze mode differences with a higher level of
statistical rigor and to achieve unbiased proficiency estimates by treating poten-
tial item level effects.

IRT models have been extended to include different types of mode effect
parameters in order to provide information about whether the mode effect is best
described by an overall difference between assessment modes (i.e., the difference
between modes is just adding or subtracting a constant to all assessment tasks),
whether it is a person- or group-specific effect that may have an impact differ-
entially on different groups (i.e., some test takers are more affected by mode
differences than others), or whether it is a task-specific effect that is only impact-
ing a subset of tasks. These questions can be answered empirically by formaliz-
ing these assumptions in a general latent variable model (von Davier, 2008; von
Davier, Xu, & Carstensen, 2011) and applying these models to data collected ina
randomized mode effect study.

Considering the two-parameter logistic model (Birnbaum, 1968) as the basic
model, additional model parameters can be introduced to formalize different
assumptions of how mode effects may impact item functioning. Let

exp(a;0 + B;)

P(x =1|0,0;,B;) = 1+exp(a0+B,)’

(1)
denote the probability of a correct response by a respondent with proficiency 6
for an item with parameters a;, B;. The notation in Equation 1 can be transformed
to the customary notation by letting a = /1.7 and b = — B/«

Mode Effects on the Item Level

A common (but maybe overly simple) mode effect assumption is that all items
are “shifted” by a certain amount with respect to their difficulty when comparing
one mode of administration with another. The reason could be that reading or,
more generally, processing the item stem or stimulus is generally harder or easier
(by the same amount for all items) on the computer or entering a response is more
tedious or simpler than bubbling in a response on an answer sheet. A mode effect
that homogeneously applies to all items on a test, when changing the mode for all
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items, can be modeled by adding the same constant to all difficulty parameters in
the case of the affected mode: a general mode effect parameter —9,, that repre-
sents how much more difficult (or easy) solving any item is when presented in a
different mode relative to the Reference Model 1. For items in the “new” model,
we assume that

P(X: 1|9, af:Bi:Sm) e

(2)

This can be thought of as a model for twice the number of items. The indicator
function 15, . 273 (i) equals 1 if the item index is in the second half, that is,
the range 7+ 1, ...,2[. The first 1, ..., [ items are the paper-based items
without mode effect, and the items in the new mode are indexed by
I+ 1,...,2I In this notation, it is assumed that item i and item i + I are the
same but administered in different modes. This leads to a model with 27 items
(instead of I items for each delivery mode separately) in which the difficulty
parameters for items presented in one mode (say, paper) are assumed to be B, for
i=1,...,I and the item parameters for the other mode (say, computer) are
appended as parameters [3; for j = 1+ 1, ..., 2] and arranged in the same order
and constrained to follow B, ; = B; — 8. In the equivalent groups design, each
test taker receives half of the items, either paper items, indexedbyi=1,... .1,
or the computer-based items indexed by i =7+ 1, ...,2[.

In contrast to the assumptions of a general mode effect parameter (—3,,), one
could argue that not all items change difficulty when moving from a PBA to
CBA: Some could be more difficult, some could be at the same difficulty level,
and some could get easier. This leads to a model that adds an item-specific effect
—0,,; to the difficulty parameter. This can be written as a DIF parameter, quan-
tifying item-specific changes from PBA presentation, namely

P(X = 1|0, 04, B;, 8m) = 3)

The difference in comparison to the model of metric (or “weak™) factorial
invariance (Meredith, 1993) is that the computer-based difficulties that are writ-
ten in reference to the paper mode are decomposed into two components, that is,
Biir = B; — dmi, while we continue to assume that o = o; for the slope para-
meters. This decomposition indicates that the difficulties are shifted by some
(item or item feature)-dependent amount, the shift being applied to one mode on
an item-by-item basis—one that is being considered the reference mode with no
shift. For items that are not significantly affected by mode, we may further
impose a model constraint assuming that 8,,; = 0.
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The model in Equation 3 with constraints across both modes on slope para-
meters, as well as potential constraints on the DIF parameters, establishes a
measurement invariance (e.g., Meredith, 1993) IRT model. This model can be
viewed as representing weak factorial invariance. The larger the number of
constraints of the type 8, = 0 can be assumed, the more we approach a model
with strong factorial invariance. Note that we already assume the equality of
means and variances of the latent variable in both modes because it is assumed
that respondents receiving the test in computer or paper mode are randomly
selected from a single population.

Mode Effects on the Respondent or Proficiency Level

If it cannot be assumed that the mode effect is a constant (even if item
dependent) shift in difficulty for all respondents, one may assume that an addi-
tional proficiency (3) is required to accurately model response probabilities for
the new mode. This leads to a multidimensional model with a second latent
variable that is added to the item function for items administered in the new
mode. The expression o,,;3 in the model below indicates that there is a second
slope parameter o,,; for items (i = I + 1, . .., 2I) administered in the new mode
and that the effect of the mode is person dependent and quantified through a
second latent variable 3. We obtain

exp(o;0 + B; — o)

P(X =10 l'sm.l'!is‘g: "
( 19, i, By, 9) 14 exp(ot0 + B; — owid)

(4)

Note that slope parameters (o;) and item difficulties (B;) are, as before in
Models 2 and 3, equal across modes. However, an additional “mode-slope”
parameter (o), for i =1+ 1, ...,2], needs to be estimated, with constant
oy = 0 for i < I. For the joint distribution f(6, 3), assume uncorrelated latent
variables, cov(6,9) = 0, to ensure identifiability.

In Equation 4, it is assumed that the effect of the person “mode” variable
varies across items, maybe the more plausible variant, but a model with item-
invariant effects o,,3 (a Rasch variant of a random mode effect) is feasible.
However, an item-specific model is more likely to provide better model data fit.
As in Model 3, the link between modes can be viewed as increasingly more
invariant the more that slope parameters can be assumed to be a,,; = 0 for items
in the new mode. Each constraint (a,,; = 0) makes the respective item response
functions for items i and i + [ identical across modes.

Applied to empirical data, the models defined above can be compared based
on overall model selection tools such as the well-known information criteria:
Akaike information criterion (AIC), Bayesian information criterion, and
“Consistent” AIC (Akaike, 1974; Bozdogan, 1987; Schwarz, 1978, respectively).
To provide additional evidence beyond this overall model selection approach, the
IRT-based (marginal) reliability of proficiency estimates (Sireci, Thissen, &
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Wainer, 1991; Wainer, Bradlow, & Wang, 2007, p. 76) under each model should
be examined. The best fitting model should provide a sufficiently high reliability
of proficiency estimates. Moreover, it is of interest whether models that show
similar model fit also provide similar proficiency estimates. If they do, the more
parsimonious model should be preferred. Once a mode effect model that provides
the optimal choice in terms of parsimony and fit has been determined, the linkage
between modes can be evaluated in terms of the percentage of strictly invariant
items showing scalar invariance and the percentage of items that show metric or
weak invariance. Moreover, the mode effect parameter can be utilized in subse-
quent operational IRT scaling and linking calibrations.

Applications of Mode Effect Models

The models presented above were developed to test for mode effects and item
invariance across assessment modes. They were used for analysis of the PISA
Field Trial data collected in 2014 in preparation of the change from PBA to CBA
in the subsequent PISA 2015 Main Survey.

The Mode Effect Models 2 and 3 can be estimated with software that allows
multiple group IRT model estimation with parameter constraints on item para-
meters, and Model 4 can be estimated with software that allows multigroup
multidimensional IRT models with parameter constraints. For the PISA 2015
analyses, the software mdltm (von Davier, 2005) was used for estimation of the
Mode Effect Models 2, 3, and 4 described above.

The application of these models is described in the PISA 2015 technical
report (OECD, 2017). All models presented above were vetted by the PISA
2015 Technical Advisory Group for operational use after thorough review
and applied to the PISA 2015 Field Trial analysis. These models can be
categorized as DIF IRT and bifactor IRT models with parameter constraints.
Model identification is easily established as all assume invariance with
respect to the main dimension for all parameters, only add additional para-
meters for mode-related DIF effects (or the second mode-specific dimen-
sion), and are estimated using randomly equivalent groups with appropriate
equality constraints across populations. In the PISA 2015 Field Trial, ran-
domly equivalent groups were used, and consequently, the proficiency dis-
tributions, allowed to be different across countries, could be assumed equal
across modes. It was found that Model 3 provides appropriate fit to the data,
and mode effect parameters are needed only for some items, while most
items showed scalar invariance.

After establishing the type of mode effect, items with mode effects were
treated in the final scaling using corresponding model constraints. Items with
no mode effects received the same slope and intercept or difficulty parameter
across modes (scalar invariance). Items with mode effects received different
intercepts across modes (metric invariance). There were no items for which both
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difficulty and slope have to be made mode-specific. In summary, this section
illustrated that modeling mode effects with IRT models allows:

(1) Identifying the type of mode effect
(2) Identifying items that show a mode effect
(3) Treating items with mode effects in the final IRT scaling

Once the assessment has been successfully transferred from a PBA toa CBA
and comparability of item parameters across modes of administration is estab-
lished, the item parameters can be used in the population model to generate PVs
for estimation of group-level results and to examine the relation between the
construct of interest and additional variables. The next two sections provide a
description of the use of RT and features generated from process data as addi-
tional sources of information.

Incorporating RTs as Collateral Information

One additional source of information available through CBA is RT, col-
lected together with item responses. RT typically refers to the time a respon-
dent spends on each item (or certain aspects within the time interval) in an
assessment. Interest in RT as representing information about response pro-
cesses has a long history in psychology, in particular in experimental
research of reaction times (e.g., speed-accuracy trade-offs). The literature
on RT is extensive and reviewing it is beyond the scope of this papcr.1 Here,
we focus on studies where RT are relevant to or have been studied in the
context of ILSAs. With the wide availability of technology-based testing, RT
data have become much more accessible, and research on RT is getting more
attention in the ILSA context. For example, the PISA 2015 public use data
provide RT data in milliseconds for each cognitive item and at the scale level
for the background questionnaire.

In this section, we describe how RT information can be used to improve item
parameter estimation and how RT can be included in the population model
directly as additional covariates to possibly improve the modeling of group-
level proficiency distributions. Aspects of how comparability across countries
can be maintained in ILSAs are also addressed. Moreover, we address practical
and theoretical issues that should be considered when RT is used as a source of
information in conjunction with item responses.

Improving Item Parameter Estimation by Using RT in Data Quality Analysis

For improving the item parameter estimates, RT can be used in data quality
analyses and the scaling process to detect data fabrication and suspicious or
unexpected response patterns and to model nonresponse behavior. The use of
RT has been investigated in various areas in order to improve validity of the

682



von Davier et al.

assessment, including item selection in test design and test assembly, diagnosis
on aberrant responding behaviors—such as cheating, rapid guessing, and detec-
tion of random responses—and analyses of pacing strategies or differential
speededness (e.g., Guo et al., 2016; van der Linden, 2007; van der Linden,
Breithaupt, Chuah, & Zang, 2007; van der Linden & Guo, 2008; Wise & Kong,
2005). These applications have shown that RTs are potentially useful variables
for statistical analyses of international CBAs.

In particular, for low-stakes assessments such as PISA and PIAAC, RT
can be used to monitor respondents’ effort and motivation with the goal to
identify unmotivated responses that bias the data. For example, previous
studies (e.g., Wise & Kong, 2005) have suggested using an RT solution
behavior (SB) index for each respondent-item combination or an RT effort
index for individual respondents based on predetermined thresholds. Meyer
(2010) presented a mixture Rasch model with RT components to account for
differences in respondents’ test-taking behavior. Wise and DeMars (2006)
proposed the effort-moderated IRT model by incorporating the SB index,
which is similar to the extended HYBRID model for test speededness
(Yamamoto & Everson, 1997) except that the classification of behaviors is
determined by RT rather than the distribution of responses alone. The authors
showed their approach can substantially improve proficiency estimation and
item parameter estimation when used in the data cleaning process to exclude
problematic responses. For example, when rapid guessing was present,
advanced psychometric models that incorporated RT information showed
better model fit than the traditional IRT models and yielded more accurate
item parameter estimates and proficiency estimates with higher convergent
validity through simulation studies (Meyer, 2010; Wise & DeMars, 2006).
Moreover, RT can be used to identify data fabrication (i.e., faked responses)
in ILSAs by examining cases where RT for items may be too short or
inconsistent with expected times across different groups or countries (Yama-
moto & Lennon, 2018).

In relation to identifying unmotivated or fabricated responses, RT can provide
valuable information about item-level nonresponse behavior. Particularly, in
low-stakes testing, omitted responses may not be missing at random and may
need treatment by adding structures such as additional latent variables to the IRT
model (e.g., Glas, Pimentel, & Lamers, 2015; Rose, von Davier, & Nagengast,
2016). As mentioned above, establishing thresholds based on RT information can
be useful if there is a systematic difference between respondent groups identified
on the basis of their RT distribution. As an example, Lee and Jia (2014) found
that in the National Assessment of Educational Progress (NAEP), rapid responses
are uncorrelated to the underlying latent trait, while responses given after taking
some time to process the stimulus show positive correlations with proficiency. In
PIAAC, RT thresholds are used to differentiate between omitted responses unre-
lated to the latent trait (rapid responses) and omitted responses that are related to
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the trait and can be treated as incorrect responses in the IRT scaling (Weeks, von
Davier, & Yamamoto, 2016).

Comparability of RT Across Countries and the Use of RT in Population Models

Before estimating and applying any statistical model that incorporates RT
data in ILSAs, a number of matters should be investigated. First, we examined
whether RT data are comparable across countries. Once this is established, we
discuss how RT can be incorporated in the population model. For demonstration
purposes, we are using the example of PISA 2015. There are two reasons for
including RT in the latent regression model on top of the numerous variables
included already. First, if RT is available in the public use database (as it is the
case in PISA) but not used in the population model, this will result in biased
estimates of correlations between proficiency estimates and RT in secondary
analyses. Second, RT is informative about how test takers manage their time
and help evaluating the validity of responses. Additionally, RT may help classi-
fying respondents into groups that may relate to test-taking strategies and moti-
vation in ILSAs (e.g., Lee & Chen, 2011; Lee & Jia, 2014; Weeks et al., 2016).
Therefore, RT can be considered an important covariate of proficiency and task
performance that is not only part of the public use database but can potentially
contribute to better describe group differences.

When we look at RT data across PISA 2015 countries that took the CBA,
distributions of the item-level RT in each domain appeared similar across coun-
tries regardless of country’s performance (OECD, 2017). Furthermore, examin-
ing the distribution of RTs at the item and cluster level, a consistent pattern was
observed across countries. However, it was noted that the proportion of fast
respondents (who spent less than 5 minutes per cluster or less than 10 minutes
on two item clusters) and slow respondents (who used up the maximum allow-
ance of assessment time, i.e., 30 minutes per cluster) vary considerably across
countries. This suggests that data cleaning (e.g., censoring or standardization if
applicable) and data quality analyses should be conducted at the country level
rather than aggregating all countries.

Furthermore, this confirms that country-specific conditional distributions
should be used, an approach taken in PISA and PIAAC already for population
models. Introducing RT into the population model appears feasible as this pre-
requisite is already in place. RTs (or functions/aggregates of RTs) can be con-
sidered as covariates of proficiency and directly included in the set of predictors
used in the population model. Writing the likelihood for a respondent given
covariates and responses yields

L, T, E;ypg:xpg) — J (H P(ypgim;g)) ¢(9|ng T, )do, (5)
. =1
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with [T P(75:/6: ) denoting the likelihood function of an IRT model and yg

denoting response (y) to item i by student p in country g. RT variables can be
included as a part of covariates x,, along with other background characteristics in
the estimation of the latent regression ¢(6|x,,I", Z), 6 denotes the latent profi-
ciency assuming 6,, ~ N(x,,I", X).

In operational analysis, item parameters ({) associated with the likelihood
function are determined in the item calibration stage, prior to estimation of the
population model (von Davier et al., 2006). Alternatively, as proposed by van der
Linden, Klein Entink, and Fox (2010), RTs can be used as collateral information
at the IRT scaling stage, separately from other student background characteristics
but along with the item responses (y). Their approach serves the same goal of
improvement in estimation accuracy and reduction of bias.

Necessarily, these population models would be assumed to be country-
specific, indicated in Equation 5 by adding an index variable denoting that the
conditional distribution of the proficiency given RTs and student background
data may vary by country g. This country-specific conditional distribution may
have important implications, given that countries may vary in time use and
pacing patterns and, hence, in the distribution of RTs and in how RTs may relate
to performance. If there was a substantial relationship between RTs and profi-
ciencies, the posterior variances would be reduced, as would be the standard
errors associated with overall and subgroup estimates. In addition to this
expected gain in estimation, some countries might be interested in analyzing and
reporting the results by groups defined in terms of RTs, particularly if RTs can be
viewed as proxy for motivation.

Regarding the relationship between RTs and proficiencies, findings from
PISA 2015 suggest a substantial relationship between RTs and proficiency: The
least proficient students took several minutes less on average to complete item
clusters, while more proficient students use more time on each cluster (OECD,
2017). A positive relationship between item difficulty and the correlation
between RT and proficiency estimates was consistently observed across coun-
tries. An example is given in Figure 3. It was found that for easier items, there is
no substantial correlation between item-specific RT and proficiency, but for
difficult items, there is a positive correlation between RT and proficiency.
High-performing students take more time to respond, while low proficiency is
associated with shorter RT. This is in line with recent studies that described the
relation between RTs and proficiency as being moderated by item difficulty or
task complexity (e.g., Becker, Schmitz, Goritz, & Spinath, 2016; Dodonova &
Dodonov, 2013; Goldhammer, Naumann, & Greiff, 2015). Results presented
here are based on a mixed format test (the figure shows empty dots for binary
items and solid dots for polytomous items) of the PISA 2015 Science domain and
might be specific to tests with a wider range of item formats and item difficulties,
while tests with fewer item types and more similar difficulties may show more
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FIGURE 3. Relationship between item difficulty and correlation between proficiency and
response times (one example country); empty dots represent binary items and solid dots
represent polytomous items.

homogeneous associations between the correlation of RTs and proficiency and
item difficulty. Also, further investigation is needed with respect to working
speed because this relationship is based on the assumption that students work
with constant speed. Fox and Marianti (2016) found a similar pattern and partly
explained this relationship by allowing differential working speed across
the items.

While these preliminary findings support incorporating RTs in the population
modeling, more research is needed on how to best include RT information in the
conditioning model and whether it can ultimately contribute to improving the
estimation of proficiency distributions. More specifically, there are various ways
to handle and preprocess the RT data, such as application of PCA to the RTs
similarly for student background predictors, using aggregate or summary statis-
tics such as means or medians of the RTs, or generating a typology of students
based on their RTs (e.g., students who used the maximum time allowed, students
who quit the test quickly, or assigning latent class membership based on respon-
dents’ time use patterns). Further investigations are needed whether RTs on
individual items can be directly included in the set of predictors for a PCA or
should be preprocessed separately from other background characteristics. Also,
there is some indication that RTs are multidimensional from our preliminary
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findings, which calls for a more thorough investigation of the nature of RTs
collected in ILSAs. A recent pilot study using the PISA 2015 data incorporated
RT of cognitive items in the population model as an aggregated variable that can
be viewed as a proxy of working speed (Shin, Khorramdel, von Davier, Robin, &
Yamamoto, 2018). To reduce item-by-person interactions and to include RT as a
person covariate, RT was included as a categorized variable and standardized at
the country level (i.e., within each country), the item level and the item cluster
level. It was found that the inclusion of RT, in contrast to a model without RT,
increased the measurement accuracy at extreme proficiency levels (decreased
residual variance) without impacting the posterior mean and standard deviation
at the country level. However, further research is needed as results varied across
countries, and only a subset of countries was examined.

Issues in RT Modeling and Future Research

In order to use RT in ILSAs as additional background data in population
modeling, more research is needed, and practical issues raised in the data clean-
ing process should be carefully considered and explicitly evaluated. For instance,
the way RT is preprocessed should be improved with respect to detection and
treatment of outliers as well as the transformation and standardization of the RT.
As an example, outliers that are censored may still have an impact on estimation,
while removing outliers case-wise or replacing outliers by missing values (or
expected values or more sophisticated methods of imputations) will pose a dif-
ferent type of issue. Moreover, standardization of RT by item, item types, or
cluster positions may impact the results as well. In fact, when the respondents in
PISA 2015 were grouped based on a Gaussian finite mixture models via expecta-
tion—maximization algorithm (Fraley & Raftery, 2002), the level of standardiza-
tion (i.e., standardization by item at the country level vs. standardization by item
at the test-form level within a country) led to different numbers of clusters in the
optimal solution (Shin & von Davier, 2017). As the application of different data
cleaning rules can bring about differential impacts in secondary analyses, it is
important to examine the possible practices before incorporating the timing data
in population modeling in order to improve the accuracy of the proficiency
estimation.

In terms of theoretical issues, there are several topics that need more thorough
investigation and research in the context of ILSAs. First, we have limited under-
standing of the nature of RT, in particular, the dimensionality and the distribution
of RT collected in low-stakes ILSAs. As noted above, most of the literature has
treated RT as a unidimensional entity, while RTs could be multidimensional,
implying that RT for an item confounds problem-solving speed with the
construct-irrelevant factors such as tendency to guess, motivation, or time man-
agement skills (e.g., a choice of how much time to persist on the item or when to
stop attempting to solve an item). In addition, the distribution of RT is quite data
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dependent. One of the popular choices for the distribution of RT is a lognormal
distribution (e.g., van der Linden, 2007). However, the Weibull distribution (e.g.,
Rouder, Sun, Speckman, Lu, & Zhou, 2003) or y distribution (e.g., Maris, 1993)
appears to be more successful in terms of model-data fit in other cases.

Second, in most of the widely used psychometric RT models, RT and corre-
sponding responses are assumed to be conditionally independent (e.g., van der
Linden, 2007). However, the dependency between proficiency and RT may not
be as simple or uniform as shown in Figure 3 (i.e., moderated by task difficulty).
Respondents are likely to answer items with varying speed over the assessment
(e.g., differential working speed such as students work faster at the end of
assessment when the time pressure is increased), and individual respondents may
take different test-taking strategies and utilize time accordingly. Several recent
studies investigated such possibilities by focusing on the interaction between
proficiency and RT beyond the linear relation (e.g., Molenaar, Tuerlinckx, &
van der Maas, 2015; Partchev & De Boeck, 2012) or by modeling varying speed
with respect to the relationship with proficiency (e.g., Fox & Marianti, 2016;
Molenaar, Oberski, Vermunt, & De Boeck, 2016). For methods that model
responses and RT jointly, model parameter estimation relies on the relationship
between speed and accuracy, and RT becomes part of the respondent’s scores.
Thus, it is important to understand the nature of RT collected in ILSA context to
establish the comparability across cycles and countries and the validity of the
scores and model parameters before they are of practical use.

Using Process and Sequence Data in Population Modeling

Computer-based testing in ILSAs has made greater data collection flexibility
possible, including the capability to administer dynamic and interactive problems,
engage students more fully, and capture more information about the problem-
solving process (OECD, 2014). Next to RT, a variety of process data such as
action sequences can be recorded in log files accompanying test performance data
when students respond to items. These data not only help disclose how students
solve tasks but also provide collateral information about the response process in
addition to the traditional pattern of responses. The availability of process data
holds the promise for advancing the science of large-scale assessment by enabling
researchers to explore potential reasons for students’ success and failure on certain
item types and by potentially improving the reliability of the measurement, for
example, by providing evidence that may help decide how to treat item-level
nonresponse. This can be helpful as part of the data quality evaluation and for the
data cleaning process in the operational part of ILSAs when data files are prepared
for the public use. Generating and selecting fewer meaningful variables from the
large amount of available log-file data facilitates the use of process data in research
and enables the potential inclusion of log-file data in the population modeling of
ILSAs for improving accuracy and validity.
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Validity and Comparability

The extraction of meaningful variables or features from sequence data
(Kudenko & Hirsh, 1998) is an essential task in log-file data analyses across
items and groups of respondents. Evidence for the validity of process data, that is,
the relation of features extracted to one another and to proficiency estimates,
must be examined thoroughly before process data can be included in any opera-
tional ILSA analysis. Moreover, the comparability of the features and their
relation to other variables across different groups and countries has to be
investigated.

Unlike features defined in natural language processing (NLP), features of
sequences in general process data are not explicit and need to be defined
either by experts or extracted using machine learning techniques (Dong &
Jian, 2007; Xing, Pei, & Keogh, 2010). In large-scale surveys such as PISA
and PIAAC, studies on process data have been conducted in which features
were found to be predictive of success and failure. These studies were carried
out using data from selected countries and were limited to items that were
released by OECD for examination (e.g., He & von Davier, 2015, 2016;
Goldhammer et al., 2014; Greiff, Wiistenberg, & Avvisati, 2015). He and von
Davier (2016) used process data from PIAAC studying how action sequences
from problem-solving tasks are related to task performance. They extracted
features from action sequences and found that actions related to using soft-
ware tools such as sorting and searching occurred significantly more often in
the group of respondents that produced a correct response, while actions
suggesting hesitation such as repeatedly clicking the cancel button were found
more often in respondents giving incorrect responses. In comparisons across
countries, it was found that action sequences significantly differed by perfor-
mance groups but were consistent across countries. The consistently most
predictive (“robust”) features extracted from a combined sample that distin-
guished success and failure groups were consistent with those extracted sep-
arately within each country.

Studies regarding student strategies in a simulation-based environment pro-
vide evidence on the comparability of process data across items in similar
settings. Greiff, Wiistenberg, and Avvisati (2015) investigated students’
problem-solving strategies in an interactive item from PISA 2012. Experts in
scientific inquiry suggested that students who use a strategy of varying one
thing at a time (VOTAT) are more likely to succeed. It turned out that this
feature has the highest correlation with success on the task. A similar result was
found by Han, He, and von Davier (2016), where VOTAT ranked as one of the
top predictors of students’ success along with features generated using
machine-learning techniques. However, since all described studies were done
on a single or a few selected items only, more studies are needed on a broader
set of tasks.
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Feature Generation and Selection From Process Data

Feature generation is defined here as a process to create variables based on
timing and process data either by aggregating sequence data or by detecting
patterns in sequences captures in log files. An example of a simple aggregate
would be the frequency of a specific action in an action sequence (e.g., “how
often did the test taker press the cancel button”). The generated features can be
roughly categorized into three groups: (1) behaviors that represent respondents’
problem-solving strategies manifested as interactions with the computer, as in the
strategy indicator VOTAT; (2) actions and mini-action sequences (e.g., n-grams
that disassemble the long action sequences into small action sections that con-
tains one-, two-, or three-adjacent actions) that are directly extracted from test
takers’ process data; and (3) timing data, such as time spent on the test, time spent
in the simulation environment, and time to the first action when solving a task.
The input of content experts and item developers is valuable when developing
sequence features that are believed to be associated with the problem-solving
process. More specifically, experts might be able to formalize what they expect
to see in a proficient respondent with regard to how they approach a complex
interactive problem.

Feature selection models are helpful to identify consistently the most predic-
tive (“robust”) indicators that distinguish different performance groups. A variety
of models have been developed in fields now often described as “big data”
applications for feature selection. For large-scale assessment sequence data,
He and von Davier (2016) used the chi-square (x?) selection model (CHI; Oakes,
Gaizauskas, Fowkes, Jonsson, & Beaulieu, 2001) to extract predictive actions
and action sequences from process data in a pilot study using data from PIAAC.
CHI is recommended for use in textual analysis due to its high effectiveness in
finding robust key words and for testing similarities between different text cor-
pora (e.g., He, Glas, Kosinski, Stillwell, & Veldkamp, 2014; He, Veldkamp, & de
Vries, 2012; He, Veldkamp, Glas, & de Vries, 2017, Manning & Schiitze, 1999,
for more feature selection models, refer to Forman, 2003). Because of the struc-
tural similarity between text and process data, it appears appropriate to apply this
approach to detect actions or action vectors that are highly informative for
distinguishing performance groups.

The % feature selection takes the basic premise of the traditional > test by
comparing the frequencies of events in a 2 x 2 contingency table as shown in
Table 1. The (weighted) number of action occurrences in two groups, C; (i.e.,
correct group) and C; (i.e., incorrect group), is indicated by n; and m;, respec-
tively. The sum of the weighted action occurrences in each group is defined as
the group length len(C). The idea behind this method is to test whether occur-
rence and nonoccurrence of actions and correctness of the item response are
independent. Thus, the method compares two groups to determine how far C,
deviates from G, in terms of action frequencies.
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TABLE 1.
2 x 2 Contingency Table for Action i in y° Score Calculation
Ci G
action i n; m;
—action i len(Cy) — n; len(Cy) — my;

Note. C; and C, represent the two study groups (e.g., correct and incorrect), n; and mi; indicate the
weighted frequency of the action i occurs in C; and Cs, respectively, and len(C) is the sum of the
weighted action occurrences in each group.

Note that term weights are taken into account when calculating the ¥ score for
each action sequence. Analogous to the weighting scheme in NLP, the weighting
scheme could consist of two parts: (1) inverse sequence frequency (ISF) of an
action i as ISF; = log(N /sf;) > 0, where N indicates the total number of
sequences in the collection, namely, the total number of test takers and sf; is the
number of sequences where the action i appears. This weight helps eliminating
low-informative (ubiquitous) actions and favors highly informative (rare) actions.
(2) Another concern about term frequency is regarding clustering at the individual
level. The importance of an action that is taken multiple times by one individual
should be different from that when the action is taken once each by multiple
individuals. We dampen the term frequency by a function f(tf) = 1 + log(tf),
tf > 0 because more occurrences of a word indicate higher importance, but not as
much relative importance as the undampened count would suggest.

These two parts could be further combined into a single weight as follows:

1+ log(tf;;)|log(N /sf;) iftf; > 1
g = { I+ om0 loa¥/ )8 L -

where N is the total number of sequences. The first clause applies to actions
occurring in the same sequence, whereas for not observed actions (tf;; = 0), we
use weight(i,j) = 0.

Under the null hypothesis, the two collections of action sequences are ran-
domly equivalent, so the distribution of actions should not differ between correct
and incorrect groups. A % value is computed to evaluate the departure from this
null hypothesis. For a 2 x 2 contingency table, the % value is computed as

5 M (01102 — 012021)*

L= (011 4 012) (011 + 021)(012 + 00)(021 + 02)’ @

where M is the total number of actions in the collection and Oj; represents the
weighted counts in each cell in the matrix (Agresti, 1990; Bishop, Fienberg, &
Holland, 1975). Actions with higher y? scores are more discriminative in classifi-
cation (Manning & Schiitze, 1999). Therefore, we ranked the % score of each action
in descending order. The actions ranked at the top were defined as robust classifiers.
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He and von Davier (2016) selected the action features by different perfor-
mance groups (correct/incorrect) on an aggregate level and a country level.
Consistency of action sequence patterns was found across countries. The features
extracted by the 3 model in a selected problem-solving item were compared
with those selected by the weighted log likelihood ratio (WLLR) test in He and
von Davier (2015). The WLLR is defined as the product of the probability of
each action sequence and the logarithm of the ratio between the conditional
probabilities of the sequence in different performance groups. Analogous to the
WLLR being applied in feature selection for text categorization (Nigam, McCal-
lum, Thurn, & Mitchell, 2000), the WLLR of each action sequence for the
purpose of binary classification (i.e., correct group and incorrect group at the
item level) can be defined as follows:

p@lG)

p(dCi)’
where p(a|C;) is the conditional probability of action a given in group C; and
p(a|C;) is the conditional probability of action a in the complement (respondents
not in group ;). This comparison study not only validated the previously iden-
tified actions but also showed that the mini sequences (e.g., bigrams and tri-
grams) were more useful than single actions (i.e., unigrams) in describing test
takers’ behaviors in the process data analysis.

Han et al. (2016) applied random forests (RF; e.g., Breiman, 2001; Dietterich,
2000) to extract 15 predictors from 77 features generated from process data that
were collected on a problem-solving item (climate control) in PISA 2012. The
extracted 15 predictors yielded 85.7% accuracy in classifying the correct and
incorrect response group, which is only marginally lower than using the total of
77 features (which yields 89.2% accuracy). The 77 features consist of action
sequences at the aggregate level (e.g., the order of using simulation settings) and
action level (n-grams or mini-sequences of respondent actions), strategy indica-
tors (e.g., VOTAT), and timing features (e.g., problem-solving total time). The
15 selected features appear to be sufficient to describe student strategies in that
they allow a prediction of task performance at a level of accuracy that is very
close to the level reached when using all features. One advantage of using RF for
feature selection is that it can deal with highly correlated features and multiple
interactions without resorting to simple aggregates of actions that may not have a
clear interpretation. Another advantage is that RF allows utilizing best practices
that can be viewed as RF-specific versions of well-known statistical tools such as
cross-validation and resampling.

WLLR(a, C;) = p(a|Ci)log

(3)

Integration of Process Data Into Population Models

Process data play an important role in validating response data and supporting
the interpretation of test takers’ performance. Moreover, they have the potential
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to play a key role in the population modeling of computer-based large-scale
assessments, assuming the model can be extended to include these variables,
that is, selected features from log file data including behavioral indicators,
actions and mini-sequences, and timing data. However, some challenges in using
process data for population modeling need to be confronted. In particular, pro-
cess data indicators are typically collected only at the level of the tasks in which
they occur; higher level aggregation into variables that cut across tasks are the
exception. There are at least two challenges for incorporating process data into
large-scale population models: (1) the sparseness and large proportion of missing
data and (2) the large total numbers of predictors:

(1) Incomplete block designs are used in all major survey assessments. As a conse-
quence, cognitive indicators as well as process indicators are available only for the
tasks a student has taken, while the observations on these variables are missing for
all other tasks for this student in the incomplete block design. Such an incomplete
design is not favorable for population modeling (von Davier, 2013) as it makes
strong conditional independence assumptions (Little & Rubin, 2002).

(2) The sheer number of potential process data variables is very large. Due to the fact
that only a subset may be observed per person, there needs to be some level of
aggregation across items or clusters. However, even with aggregated variables
such as those described in the feature generation and selection processes above,
the number of additional indicators to be included in the population model is
potentially very large and may effectively make the application of standard
regression techniques impossible, as the number of variables relative to the
number of cases in the sample may be too large.

The next section provides a somewhat selective overview of models and
approaches that may help overcome these challenges.

Variable Selection Methods for Using Timing and Process
Data in Population Models

Like any regression-based model, the population model potentially suffers
from an issue that too many predictor variables may be used in the model, leading
to over parameterization. The sections above discussed how this already large
pool of variables used in operational analyses may be further extended by the
availability of timing and process data in CBAs. This section provides an over-
view of selected models and approaches that may help overcome these chal-
lenges. In particular, approaches that can help select variables in prediction
models as well as approaches that allow dealing with missingness by design will
be discussed. There are certainly more methods available than can be described
here due to length constraints.

In current operational use of the population model in assessments such as
NAEP, PISA, Trends in International Mathematics and Science Study, and Prog-
ress in International Reading Literacy Study, a PCA is used to preprocess the
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predictors. This is done with the goal of reducing the number of variables and to
remove collinearity, so that the latent regression can be estimated more stably.
Usually, principal components (PCs) are used that accounted for 80% or 90% of
the variance to avoid numerical instability due to potential overparameterization
of the model. Using PCs serves to retain information for students with missing
responses to one or more background variables. However, if the main aim is to
include background variables that correlate with the proficiency variable, it
appears likely that not all background variables are needed as predictors, as most
of the predictive power likely comes from a small number of variables (Thomas,
2002). While prior assessments may provide some insight into which background
variables are relevant, it remains unclear whether new types of variables obtained
from CBAs such as timing and process indicators can add predictive power to the
latent regression. The sheer amount of process data collected in CBAs makes it
necessary to utilize methods that help selecting a relevant set of variables to come
up with a set of predictors that is optimal for the purpose of generating public use
files with PVs.

Several methods have been developed to find an optimal set of predictor
variables in regression models. However, not all methods may be directly appli-
cable in the case of latent regression models. In this section, we describe a
number of these approaches and compare their benefits and shortcomings, espe-
cially for a population model that may contain timing and process data along with
more traditional covariates collected in background questionnaires.

First Studies on Variable Selection in Population Models

The first studies on variable selection in population models are based on data
from NAEP as this was the first large-scale assessment program to use the latent
regression population model (Mislevy, 1991) as well as PCs extracted from the
background questionnaire data for the estimation of the latent regression para-
meters. Mazzeo, Johnson, Bowker, and Fong (1992) first hint at the need to select
variables in the population model based on an R? criterion in order to reduce the
number of parameters in the latent regression. An analysis by Kaplan and Nelson
(see Mislevy, 1991) using the 1988 NAEP reading data suggested that a small
number of the PCs will capture most of the proficiency variance and produce
almost identical proficiency distributions while reducing the chance of overfit-
ting the model. Thomas (2002) presents similar results and provides evidence
that the use of a large number of PCs that explain 90% of the variance of the
background questionnaire variables adds little over the use of a small number of
major reporting variables (gender, ethnicity, limited English proficiency, indivi-
dualized educational plan) only.

Moreover, Thomas (2002) examined whether the accuracy of the latent
regression model (with regard to the recovery of the proficiency distribution)
can be maintained by using only a small number of primary reporting variables
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mentioned above or whether the accuracy of a model that uses secondary (aux-
iliary) variables as predictors in addition to primary reporting variables is super-
ior. The results of this study indicate that improvement in precision depends on
the matrix sampling design used for the cognitive assessment. The improvement
in precision observed when including more (secondary/auxiliary) variables range
from essentially none for a balanced design (different respondents may receive
different sets of items, which are linked, but each respondent is asked to answer
items in all domains) to moderate for a split design where not all respondents
receive items for all constructs of interest. Based on his findings, Thomas
suggests to reduce the collection of covariates and increase the number of
cognitive items administered to each respondent (in each domain) and to elim-
inate the use of (secondary) covariates from the creation of PVs. These findings
suggest that the selection of variables and covariates in latent regression models
is complex and need thorough investigation. An alternative approach to
increasing the number of cognitive items and potentially loosing information
by reducing the use of secondary variables could be the additional use of RT
and process data. Process variables are closely related to the cognitive items
and can provide additional information about the latent trait of interest. How-
ever, this would lead to an increase in predictor variables, which makes the
need for variable selection methods and tools more obvious. A few possible
methods are described in the following.

Model-Building Algorithms for Variable Selection

An interesting area to learn from is regression modeling that is aimed at
machine leaming applications. These models are based on vast amounts of data
with a (very) large number p of predictors Xj, ...,X,. For linear regression
models, there are several model-building algorithms used for variable selection
such as forward selection, backward elimination, all subsets regression, and
various combinations (Efron, Hastie, Johnstone, & Tibshrani, 2004). The aim
is to produce “good” linear models for predicting a response y on the basis of
some selected covariates x1, xa, ..., x,. Parsimonious or simpler models hav-
ing only a small number of nonzero parameters are preferred over models with
many parameters for the sake of numerical stability and ease of interpretation
(Hastie, Tibshirani, & Wainwright, 2015). Goodness of fit for model selection is
often defined and evaluated in terms of prediction accuracy. In the following, we
provide a short overview of a few selected approaches.

Forward Selection

Given a collection of possible predictors, forward selection (or forward step-
wise selection) is used to select the one predictor that has the largest absolute
correlation with the response y, say, x;;; then, a simple linear regression of y on
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x;; is performed (Weisberg, 1980). This leaves a residual vector orthogonal to x;,,
which is now considered to be the response. This selection process is repeated
with other predictors. After k steps, this results in a set of predictors
Xj1, X2, - - -, X that are then used in the usual way to construct a k-parameter
linear model. The problem of this method is that it is overly greedy, perhaps
eliminating some useful predictors at the second step that happen to be correlated
with Xj1-

Forward Stagewise and Least Absolute Shrinkage and
Selection Operator (LASSO)

The forward stagewise approach (e.g., Efron et al., 2004) is an iterative
process that begins with the regression parameters of B as 0 and builds up the
regression function in successive small steps. If B is the current stagewise esti-
mate, let c(p) be the vector of current correlations

¢(B) =X"(y —XB). 9)

Then, we take a very small step in the direction of the forward (stepwise)
selection, based on the direction and size of the correlations. Since the size of the
step is very small, it takes many more steps to get the final result compared with
forward (stepwise) selection.

Tibshirani (1996) developed the LASSO approach, which is very similar to
the forward stagewise algorithm. Let x1, x2, ..., x, be vectors representing the
covariates, and let y be the vector of responses for the n cases with the assump-
tions that the covariates have been standardized to have mean = 0 and unit length
and that the response has mean = (0. The LASSO can be viewed as a penalized
regression approach where

Buasso = argmn {1y~ XBI b with [, <1, (10

is the estimator that minimizes the mean squared error subject to a constraint,
which is predetermined by the user. The larger the #, the bigger size of the B. If
one chooses f to be co, then the forward stagewise becomes the forward (step-
wise) selection. The constraint produces a regression in which several regression
parameters differ from 0 (as the contribution of each parameter to the penalty
term is positive whenever B; # 0). More information about LASSO and other
methods that exploit sparsity to help recover the underlying signal in a set of data
can be found in Hastie, Tibshirani, and Wainwright (2015).

In a simulation study, Hastie, Taylor, Tibshirani, and Watlher (2007) com-
pared the forward stagewise algorithm with the LASSO. Despite their findings
that LASSO is less constrained and allows sudden changes of direction where
forward stagewise (which behaves like a monotone version of LASSO) tends to
slow down the search, they conclude that forward stagewise might be preferable
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for models with a large number of predictors. The reason is that in their study, the
coefficient paths for forward stagewise showed to be smoother while those for
LASSO fluctuated widely (due to strong correlations of subsets of variables).
Moreover, in later stages, forward stagewise takes longer to overfit, likely due to
the smoother paths.

Least Angle Regression (LARS)

LARS is similar to the stagewise procedure using a mathematical formula to
accelerate computations. The LARS procedure starts with all coefficients equal
to zero and finds the predictor most correlated with the response, say, x;1. The
largest step possible in the direction of this predictor is taken until some other
predictor, say, x>, has as much correlation with the current residual. LARS
proceeds in a direction equiangular between the two predictors until a third
variable x;; earns its way into the “most correlated” set. LARS then proceeds
in a direction equiangular between x;;, x;, and x;3, that is, along the “least angle
direction,” until a fourth variable enters, and so on. Therefore, LARS will only
need m steps to find a solution; here, m is the number of all predictors. Under
certain conditions or modifications, the LARS algorithm can yield all forward
stagewise or LASSO solutions. Selecting rather conservative criteria within
LARS (or other approaches) might be useful to avoid the problem of missing
important predictors.

Background Data Reduction Using Latent Class Analysis (LCA)

LCA-based methods are another possible approach for reducing the number of
predictors in population models. LCAs can identify one or more latent nominal
variables that can be used to classify respondents with respect to their back-
ground characteristics. These classifications can then be introduced as predictors
in the population model. Wetzel, Xu, and von Davier (2015) compared different
LCAs to the more traditional PCA approach and showed a reduction in predictor
variables in the population model when using dummy-coded maximum a poster-
iori LCA-based class membership indicators as predictors. The recovery of the
group means and standard deviations of the operational approach (PCA) was
quite satisfactory for all examined LCA models. Furthermore, the posterior
means and standard deviations used to generate PVs derived from the PCA and
the LCA approaches were very similar.

The advantages of the LCA methods are a more meaningful explanation from
the group background classes than the PCs of the PCA can offer and the use of
cases with missing data in background variables. Moreover, the LCA approach
does not require all the background variables to be contrast-coded, and in gen-
eral, fewer coefficients need to be estimated compared with the PC approach.
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Conclusion and Outlook

Most major ILSAs have transitioned or are in the process of transitioning from
a PBA to a CBA. PIAAC introduced a CBA in addition to a PBA in 2012, PISA
moved to a CBA for most participating countries in 2015, and in 2016, NAEP
was piloting the administration of the assessment on tablets. This new computer-
ized digital form of testing offers new opportunities but also poses new chal-
lenges. On one hand, CBAs allow for the collection of RT and process or log-file
data that can be used to improve data quality and subsequent data cleaning
processes and could be included as additional predictor variables in latent regres-
sion population models to improve the accuracy of group-level proficiency mea-
sures. On the other hand, the transition from PBA to CBA poses a potential
problem for comparability and the measurement of trends, which are both impor-
tant goals in ILSAs. Possible changes in item characteristics may occur (some
items might be easier in one mode than in the other, for example), which threa-
tens measurement invariance and need to be accounted for in data analysis.
Therefore, the first step in analyzing data from an ILSA which just moved to a
CBA is to examine and treat possible mode effects for providing comparable
item parameters and stable trend measures, even before new types of data can be
introduced in data analysis procedures and population modeling. Not only the
comparability of test scores obtained from population models is challenged, even
numerous data quality analyses rely on the comparability of item parameters and
trend comparisons (checking whether a country performs differently on trend
items in two different assessment cycles is one example). Once measurement
invariance and comparability of item parameters across modes of administration
are established, new statistical methods to include RT and process data can be
examined in a next step to possibly improve operational ILSA analyses.

This article describes modeling approaches needed for the challenges of the
transition from a PBA to a CBA and for the use of RT and process data with a
special focus on improving population models in ILSAs. First, the models
required for a transition to CBA, aimed at controlling for mode effects, are
discussed. We, thereby, focus on IRT-based modeling approaches as used for
operational analyses in ILSAs (an alternative Bayesian approach to examine
violations of measurement invariance is presented by Verhagen and Fox, 2012,
which enables multiple marginal invariance hypotheses to be tested simultane-
ously; this seems to be a promising development but has, so far, not been imple-
mented in operational ILSA analyses, to our knowledge). Second, once a
successful transition is achieved, modeling approaches are described that allow
us to better utilize and select the additional information gained by the new
assessment mode. The collection of RT and process data in addition to the test
takers’ responses on items—simply put, all actions taken by a test taker are stored
and saved in log files—can potentially be useful for test developers, psychome-
tricians, and researchers but leaves us with an enormous amount of data and with
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databases with very large number of variables. One of the challenges is how to
use these augmented databases in meaningful ways for research and how to
include the information contained in process data in population models for pro-
viding more accurate and fair test scores. How can timing and process data be
analyzed and related to proficiency? How can large numbers of variables, not all of
which are available for all respondents due to incomplete designs, be transformed
into fewer meaningful aggregates and how can variables be selected for further
analyses? The current article addresses these questions and gives an overview of
some relevant approaches that may guide the way and show us how to use this
information in scaling and population modeling. Finally, reporting in large-scale
assessments relies on collateral and background data, which are used in population
models to add information to the cognitive items for more accurate group-level
proficiency measures. Since population models must handle a very large number of
background variables already, additional information from timing and process data
add to the challenge of possible overparameterization of a modeling approach that
is central to reporting and database generation. Therefore, the process of variable
selection in population modeling has to be improved, and new approaches have to
be examined and compared to find an optimal balance. In this article, we give an
overview of selected approaches for illustration purposes without the aim to cover
the wide range of available methods and algorithms.

The current article does not only illustrate and introduce recent approaches to
deal with new information from CBAs and big data but seeks to stress the
importance of using them carefully and the need for further research. What is
needed are validity studies for log-file data and improvements of the single
statistical approaches before they can be used to generate official group-level
assessment results (proficiency scores and PVs) or for secondary analyses.
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