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Abstract

We compare radii based on Gaia parallaxes to radii based on asteroseismic scaling relations for ∼300 dwarfs and
subgiants and ∼3600 first-ascent giants from the Kepler mission. Systematics due to temperature, bolometric
correction, extinction, asteroseismic radius, and the spatially correlated Gaia parallax zero-point contribute to a 2%
systematic uncertainty on the agreement in Gaia–asteroseismic radius. We find that dwarf and giant scaling radii are
on a parallactic scale at the level of −2.1%±0.5% (rand.)±2.0% (syst.) (dwarfs) and +1.7%±0.3%
(rand.)±2.0% (syst.) (giants), supporting the accuracy and precision of scaling relations. In total, the 2% agreement
that we find holds for stars spanning radii between 0.8 R and 30 R . We do, however, see evidence for relative
errors in scaling radii between dwarfs and giants at the level of 4%±0.6%, and find evidence of departures from
simple scaling relations for radii above 30 R . Asteroseismic masses for very metal-poor stars are still overestimated
relative to astrophysical priors, but at a reduced level. We see no trend with metallicity in radius agreement for stars
with −0.5<[Fe/H]<+0.5. We quantify the spatially correlated parallax errors in the Kepler field, which globally
agree with the Gaia team’s published covariance model. We provide Gaia radii, corrected for extinction and the Gaia
parallax zero-point, for our full sample of ∼3900 stars, including dwarfs, subgiants, and first-ascent giants.
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1. Introduction

Stellar astrophysics is in the midst of a radical transforma-
tion. Massive surveys using a variety of tools—time domain,
astrometric, photometric, and spectroscopic—are yielding a
wealth of information about stars. This treasure trove is not
merely far larger than prior data sets; it also contains
fundamentally new information. This is particularly true for
fields studied by the Kepler (Borucki et al. 2008) satellite,
where we have detected stellar oscillations in hundreds of stars
near the main sequence turnoff (e.g., Chaplin et al. 2011) and
tens of thousands of evolved giant stars (e.g., Yu et al. 2018).
The focus of this paper is to test the accuracy and precision of
radii that have been derived from Kepler asteroseismology.

Virtually all cool stars excite solar-like oscillations. Most stellar
population studies distill the information in the oscillation
spectrum down to two characteristic fRequencies: the frequency
of maximum power, nmax, and the large frequency spacing, nD .
These can be related to stellar mass and radius through scaling
relations. The frequency of maximum power is related to the
acoustic cutoff frequency, and by extension the surface gravity
and effective temperature (Brown et al. 1991; Kjeldsen &
Bedding 1995). The large frequency spacing is related to the mean
density, which can be demonstrated with asymptotic pulsation
theory (Tassoul 1980; Christensen-Dalsgaard 1993). In simple
scaling relations one therefore solves for two equations in two
unknowns, yielding asteroseismic masses and radii as a function
of Teff and the asteroseismic parameters. With the addition of

abundances from high-resolution spectra, stellar ages can also be
derived. The APOGEE–Kepler, or APOKASC, collaboration was
set up to take advantage of this exciting prospect.
APOGEE uses an infrared spectrograph with R=22,500 in

combination with the 2.5 m telescope of the Sloan Digital Sky
Survey (SDSS) (Gunn et al. 2006). The temperature scale of
APOGEE (Majewski et al. 2010) has been calibrated to agree
with that of the infrared flux method (IRFM) (Holtzman et al.
2015), and the temperatures have recently been recalibrated to
correct for evolutionary state– and metallicity-dependent trends
in the most recent data release, DR14 (Holtzman et al. 2018).
Pinsonneault et al. (2014) combined APOGEE spectroscopic

temperatures and metallicities with asteroseismic information for
nearly 2000 giants in a forward-modeling exercise that reported
typical precisions in mass and radius of 12% and 5%. This work
represented the largest application of asteroseismology to
determine fundamental stellar quantities, and clearly demon-
strated the use of asteroseismology in work on stellar populations:
the mass, radius, and surface gravity of thousands of stars could
be shown to be reasonable and nominally extremely precise.
Nevertheless, there was room for improvements. For instance,
it seemed evident that there were evolutionary state-dependent
systematics that could not be precisely characterized because the
sample did not have asteroseismic classifications of evolutionary
state. More fundamentally, the stellar parameters were not tested
against a fundamental scale (interferometric radii, for example).
Theoretically motivated corrections to nD were not applied to the
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catalog, meaning that there were systematic offsets at the ≈10%
level in the mass and radius scales for the red giant branch
(RGB). Indeed, Epstein et al. (2014) would discover that
APOKASC-I asteroseismic radii and masses were systematically
offset compared to the old stellar population in the halo.

The APOKASC-2 catalog (Pinsonneault et al. 2018) improved
upon its predecessor in these and other ways. The new catalog was
calibrated to the dynamical mass scale from two clusters, NGC
6791 and NGC 6819. The catalog also contained evolutionary
state information, theoretical nD corrections were applied, and a
self-consistent asteroseismic scale and error budget were derived
using asteroseismic parameters from five independent pipelines.

The current work capitalizes on this catalog to perform a test of
the scaling relations themselves. With the stellar parameters
calibrated to a fundamental scale, we can compare the calibrated
radii from the catalog to radii from Gaia, effectively using each
Gaia radius as its own fundamental calibrator. This allows us,
ultimately, to have not two calibrators (the masses of the giant
branches of NGC 6791 and NGC 6819), but thousands—testing
the scaling relations at every radius, temperature, and metallicity
in the sample; the fact that Gaia provides a distance to each star
means that every star, in effect, is like an open cluster member.
Knowing the distance, in combination with flux, means that
one knows the luminosity, and thus, in combination with a
temperature and the Stefan–Boltzmann law, the radius. This
exercise therefore requires accurate and precise luminosities and
temperatures that are not subject to systematic biases. In what
follows, we take care to ensure that our luminosities and
temperatures are well characterized.

In previous work, Huber et al. (2017) applied this technique
using Gaia Data Release (DR) 1, and demonstrated that the
Tycho–Gaia astrometric solution (TGAS) (Michalik et al. 2015;
Gaia Collaboration et al. 2016) and asteroseismic radii agreed to
within 5% for stars with radii of ≈0.8–8 R . A similar exercise
was also performed with Hipparcos (van Leeuwen 2007)
parallaxes (Silva Aguirre et al. 2012), indicating agreement at
the 5% level. Sahlholdt & Silva Aguirre (2018) used Gaia DR2
parallaxes to test the dwarf asteroseismic radius scale, finding that
it is concordant with Gaia radii at the 2%–3% level. The red
clump radius scale has also been shown to agree with the Gaia
radius scale at the 2% level (Hall et al. 2019). Most recently, a
determination of the Gaia parallax zero-point by Khan et al.
(2019) suggests good agreement between asteroseismic paral-
laxes and Gaia DR2 parallaxes among both first-ascent red giant
branch and red clump stars.

The scaling relation radius scale has been tested in other
work against other fundamental scales, which have all indicated
that the asteroseismic radius scale is good to at least the 10%
level. Asteroseismic radii have been tested against interfero-
metric values (Huber et al. 2012a), for instance, demonstrating
good agreement. There are a handful of studies comparing the
asteroseismic scale to a dynamical scale using eclipsing
binaries. Following studies of individual binary systems
hosting a giant star by Frandsen et al. (2013) and Rawls
et al. (2016), Gaulme et al. (2016) contributed the largest such
analysis. All of the red giants from Gaulme et al. (2016) have
dynamical and asteroseismic radii less than 15 R , and exhibit
an offset at the 5% level in the sense that the asteroseismic radii
are larger than the dynamical radii. Brogaard et al. (2018),
however, using a subset of the sample of Gaulme et al. (2016),
argued that a reanalysis of the stellar parameters brought the
asteroseismic radii into agreement with the dynamical radii.

This paper models itself after Huber et al. (2017), improving
upon those constraints thanks to the increased precision of
Gaia DR2 (Gaia Collaboration et al. 2016, 2018) parallaxes
over those from DR1. We also expand the analysis to include
stars with a radius of up to ∼50 R . Here, we look at 4128 stars
with asteroseismic radii and parallaxes from Gaia DR2,
comprising 372 dwarfs and 3755 giants. Note that we are
analyzing first-ascent RGB stars only; thus our giant sample is
a subset of the nearly 7000 stars of APOKASC-2. Given that
there are known red clump versus RGB systematics, we
analyze red clump stars separately (M. H. Pinsonneault et al.
2019, in preparation).
A comparison of the Gaia DR2 radius scale and the

asteroseismic radius scale will be sensitive to all of the scales
involved: the luminosity scale (which depends on the Gaia
parallax scale and the bolometric correction scale), the
temperature scale, and the asteroseismic radius scale. In this
work, we use Gaia parallaxes corrected according to Zinn
et al. (2019) as a benchmark against which to compare the
asteroseismic radius scale. We also quantify the systematic
errors in the bolometric correction scale and the temperature
scale by comparing to other scales established in the literature.
We also quantify the spatial correlations in Gaia DR2
parallaxes for the Kepler field, following the example of Zinn
et al. (2017). Such correlations are directly relevant to other
population-level studies, which compute some sky-averaged
statistic that combines quantities that depend on parallax (e.g.,
calculations of open cluster distance).

2. Data

Zinn et al. (2019) presented the basic Gaia–asteroseismic
data set we use in this paper, and we review its properties here.

2.1. The Asteroseismic Comparison Samples

As mentioned in Section 1, asteroseismology offers so-called
scaling relations, which are means of deriving stellar masses
and radii based on the characteristic frequencies of solar-like
oscillations, nD and nmax. The radius scaling relation is the
subject of study in this work, and takes the form
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This relation bears the qualification “scaling” because it
rescales the solar values of R , nmax, , nD , and Teff, based
on relations between (1) nD and the density of a star
(Tassoul 1980; Christensen-Dalsgaard 1993), and (2) nmax
and the surface gravity and temperature of a star (Brown et al.
1991; Kjeldsen & Bedding 1995), formalized in their own
scaling relations as follows:
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We use the same solar values for these quantities as used in
constructing the APOKASC-2 catalog (Pinsonneault et al.
2018): n m= 3076 Hzmax, , n mD = 135.146 Hz, and  =Teff,
5772 K.

2

The Astrophysical Journal, 885:166 (18pp), 2019 November 10 Zinn et al.



Theoretically motivated corrections to observed nD , denoted
in the above equations as fΔν, are required to bring the observed
nD into agreement with the theoretical nD assumed in

asymptotic pulsation theory. These corrections depend on the
evolutionary state of the star, as well as the mass, temperature,
surface gravity, and metallicity (e.g., Sharma et al. 2016).
Similar corrections may be required of nmax (denoted nf max

in the
above equations), and, if present and not accounted for, would
be a potential source of problems in the asteroseismic radius
scale. Throughout the work, we assume =nf 1

max
. We discuss

the possibility that nf max
departs from unity in a way that

depends on metallicity in Section 4.3.1.
Using the asteroseismic radius scaling relation (Equation (1)),

we derive radii, which we compare to Gaia radii. For the purposes
of this work, we correct the asteroseismic radii using fΔν given
their solid theoretical and empirical basis (e.g., White et al. 2011;
Guggenberger et al. 2016; Sharma et al. 2016), and attempt to
interpret remaining discrepancies in the asteroseismic radius scale
in terms of proposed nmax corrections, nf max

. We test the radius
scaling relation in four radius regimes: for the three largest radius
regimes, we use a sample consisting of first-ascent RGB stars, and
for the smallest radius regime, we use a sample consisting of
dwarfs and subgiants. We describe these samples next.

2.1.1. Giants

The primary asteroseismic comparison sample in our study is
one of ≈3800 RGB stars from the APOKASC-2 catalog
(Pinsonneault et al. 2018), which have nmax and nD values that
are averaged across five independent asteroseismology pipelines.
Asteroseismic classifications of evolutionary state are derived
from asteroseismology for all but ≈200 of these stars, with the
remainder categorized as RGB stars based on spectroscopy (see
Holtzman et al. 2018 for a description of the spectroscopic
method). The value for nmax, from Pinsonneault et al. (2018),
which we also use in this work, was chosen to bring the mean
asteroseismic mass into agreement with the dynamical masses
of NGC 6791 and NGC 6819. A systematic error on the
APOKASC-2 radii of 0.7% is thus inherited from the uncertainty
on the open cluster dynamical masses. Temperatures for the
radius scaling relation are taken from APOGEE DR14 (Holtzman
et al. 2018), as are metallicities for the purposes of computing
theoretical fΔν values. We have adopted theoretical fΔν from
Pinsonneault et al. (2018), which are computed using a revised
version of the Bellaterra Stellar Parameters Pipeline (BeSPP,
Serenelli et al. 2013, 2017). Where noted, we have validated our
results using an alternative fΔν prescription from Sharma et al.
(2016). Our giants have asteroseismic radii greater than 3.5 R .

2.1.2. Dwarfs and Subgiants

The other asteroseismic comparison sample consists of ≈400
dwarfs and subgiants with asteroseismic parameters taken from
Huber et al. (2017), which includes stars from a reanalysis of
the sample of Chaplin et al. (2014) by Serenelli et al. (2017), as
well as stars from Huber et al. (2013). As for the giants,
effective temperatures and metallicities are taken from
APOGEE DR14, and BeSPP fΔν are used. We only consider
stars with radii less than 3.5 R from this sample.12

The giant nmax and nD values in the APOKASC-2 catalog
are on the mean asteroseismic scale, whereas those for our

dwarfs and subgiants are natively on the SYD pipeline scale
(Huber et al. 2009). We correct the asteroseismic parameters to
bring them into alignment with the APOKASC-2 mean scale,
which amounts to a negligible rescaling of nmax and nD by
0.06% and 0.05%. Considering we use BeSPP theoretical fΔν

for both the giant and the dwarf/subgiant samples, the end
result is that the nmax and nD values in our full sample spanning
dwarfs and giants are on a consistent system.

2.2. The Gaia Data Release 2 Sample

Stellar parallax, vGaia, constitutes the most important
information from Gaia, which we use in combination with
APOKASC-2 photometric information to derive radii against
which we test the asteroseismic radius scale.
The Gaia DR2 parallaxes are of excellent quality, with

typical statistical errors of 0.05 mas for the sort of bright stars
that are in our sample. Some parallaxes, however, may be
erroneous due to unresolved binary motions or statistical errors
in the Gaia red and/or blue passband. We therefore apply
quality cuts to the Gaia data according to Lindegren et al.
(2018), by only selecting stars that fulfill the following criteria,
which are the same as used in Zinn et al. (2019):

1. astrometric_excess_noise=0;
2. c cº n2 , ( ( ))c < - -G1.2 max 1, exp 0.2 19.5 ;
3. visibility_periods_used>8;
4. ( )+ - <G G1.0 0.015 BP RP

2 phot_bp_rp_excess_
factor ( )< + -G G1.3 0.06 BP RP

2;

where c º2 astrometric_chi2_al, ºn astrome-
tric_n_good_obs_al - 5, GBP=phot_bp_mean_mag,
GRP=phot_rp_mean_mag, G=phot_g_mean_mag.

The first and second cuts remove stars with a bad parallax
solution, which may be caused by unresolved binary motion.
The third cut rejects stars whose Gaia observations are over
time baselines that are not well separated, and therefore whose
underlying astrometric data do not constrain the astrometric
model very well. The fourth cut removes stars that are plagued
by bad Gaia photometry. 43 stars were rejected by these cuts
for the dwarf/subgiant sample, and 182 from the giant sample.
We apply a final quality cut to remove stars whose

asteroseismic parallaxes (which are derived according to the
next section) and Gaia parallaxes do not agree at the 5σ level.
This cut is performed for each analysis method described in
Section 3. One star from the dwarf/subgiant sample is rejected
in this way, and 15 from the giant sample.
Photometric information and temperatures are required to

compute a radius from a parallax and vice versa, as discussed in
the next section. We adopt Two Micron All Sky Survey
(2MASS; Skrutskie et al. 2006) Ks photometry, rejecting 11 RGB
stars without reliable photometric uncertainty (photometric
quality flag of “F”). We use APOGEE DR14 temperatures to
perform these transformations. For the giants in our analysis,
extinctions from Rodrigues et al. (2014) from the APOKASC-2
catalog are used to apply small de-extinction corrections to the
infrared photometry. For the Ks extinction coefficient, we use the
reddening law of Fitzpatrick (1999) applied to the 2MASS Ks
passband, as implemented in mwdust (Bovy et al. 2016),
assuming an ( )-E B V from Schlegel et al. (1998), as
recalibrated by Schlafly & Finkbeiner (2011). The dwarf and
subgiant extinction values are from Green et al. (2015).
Our final sample consists of 328 dwarfs/subgiants and 3554

RGB stars.
12 One star present in both the sample of Serenelli et al. (2017) and our giant
sample, KIC 10394814, was excluded from the dwarf/subgiant sample.
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3. Methods

The naive approach to testing the asteroseismic radius
scaling relation would be to compare APOKASC-2 asteroseis-
mic radii to the radii released as part of Gaia DR2. However,
the out-of-the-box Gaia DR2 radii were derived without
modeling extinctions, without correcting for the known DR2
parallax zero-point errors, and with temperatures that are not on
the same scale as the APOGEE DR14 temperatures used to
compute our asteroseismic radii. Therefore, we compute our
own set of radii using the Gaia DR2 parallaxes, and adopt
temperatures and extinctions from APOKASC-2. To do this,
we use the Stefan–Boltzmann law to invert a luminosity (from
an observed flux and bolometric correction in combination with
a Gaia DR2 distance) plus a temperature to yield a radius.

The Gaia–asteroseismology radius comparison requires not
only a temperature, extinction, bolometric correction, and a
scaling relation radius, but also a Gaia parallax, of course. The
Gaia parallaxes suffer from a small but non-negligible zero-
point offset that is position-dependent and appears to be
dependent on color and magnitude as well. This needs to be
taken into account. Fortunately, our data set spans a range in
both radius and parallax/distance. That means that, for a given
radius, there are stars that are very close by and stars that are far
away. One the one hand, the nearby stars have relatively high
parallax, and therefore their Gaia radii are not sensitive to a
relatively small zero-point correction. On the other hand, the
distant stars have a relatively low parallax, and their radii are
sensitive to zero-point corrections. We use the range in distance
in our sample to our advantage by applying our primary
analysis to a subsample of our asteroseismic comparison
sample consisting of stars with high parallaxes whose Gaia
radii are therefore not sensitive to Gaia parallax zero-point
errors. As we describe in the next section, we fit for radius
correction factors among this subsample that bring the
asteroseismic radius scale into agreement with the Gaia radius
scale, after correcting the Gaia parallaxes according to Zinn
et al. (2019). In practice, we do this by working in parallax
space and not radius space: we use the Stefan–Boltzmann law
to transform our asteroseismic radii, in combination with fluxes
and temperatures, into distances/parallaxes. As we note in
Section 3.6, the asteroseismic parallax is more sensitive to
problems in the asteroseismic radius scale for high-parallax
stars than low-parallax stars, which is another benefit of
applying our primary analysis to high-parallax stars. The rest of
the stars with lower parallaxes are then used to further validate
the differential trends we see in the radius agreement as a
function of evolutionary state (Section 4.2), and to validate the
choice in our Gaia parallax zero-point correction (Section 5.2).

Elements of this approach are described in Zinn et al. (2019),
wherein the authors derived a Gaia DR2 parallax zero-point for
the Kepler field assuming that the asteroseismic radii were not
subject to errors. This assumption is valid given the relative
insensitivity of the inferred parallax offset to the asteroseismic
radius scale (see their Figure 5(b)). We discuss this assumption
further in Section 5.2, and demonstrate that the Gaia DR2
parallax zero-point we adopt does not bias our results.
Ultimately, we use the Gaia DR2 parallax zero-point of Zinn
et al. (2019) to correct the Gaia parallaxes and derive Gaia
radii, against which we compare the asteroseismic radius scale.

To test the asteroseismic radius scale, we begin by
constructing an asteroseismic parallax, vseis, based on an

effective temperature, Teff , and bolometric flux, F:
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where the bolometric flux is computed based on a magnitude,
m, a bolometric correction for that band, BC, a flux zero-point
calibrated for that band, f0, and an extinction in that band, Am.
sSB is the Stefan–Boltzmann constant, and the stellar radius, R,
is taken to be the asteroseismic radius, Rseis, which is derived
from the radius scaling relation (Equation (1)).
Like the approach from Zinn et al. (2019), we then model the

differences in asteroseismic and Gaia parallaxes. In that work,
the authors fit a three-parameter model that described a global,
color- and magnitude-dependent parallax zero-point such that
the asteroseismic parallaxes and Gaia parallaxes agreed. In this
work, we adopt the zero-point from Zinn et al. (2019), and then
fit for asteroseismic radius correction factors that minimize the
difference between the two parallax scales. We describe this
model in the next section.

3.1. Scaling Radius Correction Model

We are interested in comparing asteroseismic radii to those
derived using classical constraints from a combination of L and
Teff . As there are physical effects that could be radius-
dependent, we begin by defining distinct radius regimes where
we will test our agreement. We can therefore test not only for
problems in the radius scaling relation, but also whether the
asteroseismic–Gaia radius agreement is different for evolved
stars in different radius regimes. The smallest radius regime
that we explore is the dwarf/subgiant regime, with radii less
than 3.5 R , and down to ≈0.8 R . The other radius regimes
we consider are all stages on the first-ascent RGB. The low-
luminosity RGB stars below the radius of the red clump,
3.5 R �R�10 R , and more evolved RGB stars with
10 R <R<30 R comprise the next two radius regimes.
The largest radii that we consider in our analysis are those for
which R�30 R .
In order to identify problems in the asteroseismic radius

scale, we fit for an asteroseismic radius correction factor in
each of the above radius regimes. We do so after correcting for
the Gaia parallax zero-point described by a global offset,
c=52.8 μas; an offset dependent on astrometric pseudo-color
(neff ), d=−151.0 μas μm; and a Gaia G-band magnitude-
dependent offset, e=−4.20 μas mag−1 (Zinn et al. 2019). We
fit for the radius anomalies, a1, a2, a3, and a4, such that they
minimize the difference between v̂seis and v̂Gaia. In parallax
space, this is written as

⎧
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where z describes the Gaia parallax zero-point correction:

( ˆ ) ( ˆ ) ( )n= + - + -z c d e G1.5 12.2 . 6eff

We turn our model for ˆ ˆv v- Gaiaseis into a likelihood by
assuming Gaussian errors and a covariance matrix describing
the covariance in parallax space of two stars, i and j, separated
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by an angular distance, Δθij, which reads

( ) ( ) ( )q c q s s d sD = D +v vC , 7ij ij ij ij i
2

Gaia i Gaia j, ,

where χ(Δθij) is the spatial correlation in the parallaxes of the
stars (see Appendix B), svGaia i, is the Gaia parallax error for star
i, σi is the uncertainty on ˆ ˆv v- ,i Gaia iseis, , and δij is the
Kronecker delta function. Hence, for i=j, ( )qD = =C 0ij ij

s s s= +v vi
2 2 2

Gaia i i, seis,
. We defer a discussion of the off-

diagonal elements of C to Appendix B, and report our result
for radius agreement (Section 4.1) with and without spatial
parallax correlation terms in C. Our results are unaffected by
the level of spatial correlation present in the high-parallax
subsample due to the sparsity of these stars in the Kepler field.
If we were making inferences using the full sample of ∼3900
stars, these spatial correlations would inflate uncertainties in
averaged values at the 10% level.

We therefore write the likelihood for the parameters of
interest, a1, a2, a3, and a4, as

⎡
⎣⎢

⎤
⎦⎥

( ∣ ˆ ˆ ˆ ˆ ˆ
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and

ˆ ( ˆ ) ( ˆ )v nº + + - + -x c d e G1.5 12.2 .Gaia eff

The only free parameters in our asteroseismic radius
correction model are a1, a2, a3, and a4 because c, d, e are
fixed to the values from Zinn et al. (2019). We fit for the mean
values and uncertainties in {a1, a2, a3, a4} with the Markov
chain Monte Carlo (MCMC) method, as implemented with the
emcee package (Foreman-Mackey et al. 2013). To do so, we
work with the posterior probability for {a1, a2, a3, a4}, which is
the likelihood multiplied by any priors we may have on the
parameters. We apply the priors that the radius correction
factors should not be larger than 1.2 or less than 0.8, which is
borne out by previous studies that find that problems in the
radius scaling relations appear to be at less than the 5% level
(Gaulme et al. 2016; Huber et al. 2017; Brogaard et al. 2018;
Sahlholdt & Silva Aguirre 2018).

In this work, we adopt an infrared bolometric correction.
This choice means that the bolometric correction is much less
dependent on temperature because the Ks band is only linearly
sensitive to temperature for a blackbody with the temperature
of a cool giant (instead of exponentially sensitive in the visual
band). Effects due to dust absorption are also markedly reduced
in the infrared compared to the visual. The bolometric
correction is interpolated from MIST bolometric correction
tables (Paxton et al. 2011, 2013, 2015; Choi et al. 2016;

Dotter 2016), which are computed from the C3K grid of 1D
atmosphere models (C. Conroy et al. 2019, in preparation;
based on ATLAS12/SYNTHE; Kurucz 1970, 1993). We
discuss the effects of our choice of bolometric correction in
Section 3.2.

3.2. Systematics Due to the Luminosity Scale

The luminosities that enter into our radius comparison have
two components that admit systematic uncertainties: the
bolometric flux scale and the parallax scale.
The parallax systematic is easily understood to be an additive

systematic, since our radius comparison is performed by
converting asteroseismic radii into parallaxes (Equation (5)).
By adopting the Gaia parallax zero-point from Zinn et al.
(2019), we admit a systematic uncertainty of 8.6 μas in our
parallax difference comparison (Equation (5)) due to the
uncertainty on c (Equation (6)). This corresponds to a ≈1.3%
systematic in radius space for a typical giant in our sample, and
even less among our dwarfs and subgiants because they have
higher parallaxes.
Systematics in the bolometric correction and extinction

scales enter into our analysis when converting an asteroseismic
radius into an asteroseismic parallax via the flux term, F, in
Equation (4). This means that a systematic in the bolometric
correction or extinction of X mag introduces an %X

2
systematic

in our radius comparison. We explore the sensitivity of our
reported radius correction factors for giants to the choice of
bolometric correction and extinction by using an alternative
extinction scale and five alternative bolometric corrections.
The extinction scale is tested using a spectral energy

distribution (SED) approach, and it also provides an indepen-
dent check on the bolometric correction. With the SED method,
a bolometric correction is not required because the entire SED
is fitted, and extinction is computed simultaneously, based on
the SED shape. This process is described in Stassun & Torres
(2016) and Stassun et al. (2017). We have also tested the
robustness of our results by using the IRFM bolometric flux
scale of González Hernández & Bonifacio (2009), the Ks-band
bolometric flux scale from the same reference, the MIST
g-band bolometric flux scale, and the V-band bolometric flux
scale of Flower (1996). More details on these checks of
bolometric correction and extinction systematics are found in
Appendix A.
Between the self-consistency of the MIST bolometric

corrections and comparisons to independent systems described
further in Appendix A, we conclude that the Ks-band
bolometric correction may have a systematic error of up to
1.9%, meaning that the radii are good to at least 1.0%, which
we take as a systematic error due to the choice of bolometric
correction and extinction.

3.3. Systematics Due to the Temperature Scale

Our radius comparison is more sensitive to temperature scale
systematics than the above luminosity systematics because

µR R TGaiaseis
5 2 as opposed to µ -R R LGaiaseis

1 2 (see
Equations (1) and (4)). The APOGEE DR14 temperatures we
adopt for both giants and dwarf/subgiants have been calibrated
to be on the IRFM scale of González Hernández & Bonifacio
(2009). Therefore, the predominant systematic possible in the
temperature scale used in this work is the systematic in the
fundamental IRFM scale. Work on the IRFM scale dates back
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decades (Blackwell & Shallis 1977; Blackwell et al. 1980), and
has had widespread application in astronomy due to its relative
insensitivity to metallicity, surface gravity, and model atmo-
spheres (e.g., Arribas & Martinez Roger 1987; Alonso et al.
1994). Recently, Casagrande et al. (2010) determined that the
IRFM scale for dwarfs and subgiants is good to at least
30–40 K when comparing to other temperature scales. They
concluded that any small temperature systematics that may
exist in the IRFM scale are likely due to the underlying
accuracy of infrared photometric calibrations and Vega zero-
points. Similarly, in the giant regime, González Hernández &
Bonifacio (2009) found that their IRFM implementation agreed
to within ≈40 K with the prevailing application of IRFM
temperature to giants in the literature (Alonso et al. 1999), for
the metallicity range of the majority of stars considered in this
work (−0.4<[Fe/H]<0.4). These systematics, when taken
to be 2σ errors, imply that there is a systematic uncertainty in
the radius scale due to the temperature scale used in this work
of up to 1.1% at the 1σ level. Because the APOGEE
temperatures are adjusted to be on a fundamental scale, any
inferred temperature difference must therefore be in the
fundamental system, not on uncalibrated spectroscopic mea-
surements that have much larger systematics (see Casagrande
et al. 2010 for an extensive discussion.)

3.4. Systematics Due to the Asteroseismic Radius Scale

Note that due to the calibration of the APOKASC-2
asteroseismic data to open cluster dynamical masses, the
asteroseismic radii for giants and dwarfs/subgiants port over a
systematic uncertainty of 0.7% from the random uncertainty of
the dynamical mass scale. This means that when we go on to
test the asteroseismic radius scale, all the reported agreements
have an implicit systematic uncertainty of 0.7%.

3.5. Total Systematic Uncertainty in Radius Comparison

Adding in quadrature the systematic uncertainties from
Sections 3.2–3.4, we estimate a total systematic uncertainty of
2.0% in our comparison of Gaia and asteroseismology radius
scales.

3.6. A Subsample for Determining the Absolute Accuracy of the
Scaling Relations

The primary goal of this work is to test the accuracy of the
radius scaling relation. To do so, we need to ensure that the
Gaia parallaxes themselves are on an absolute scale. Zinn et al.
(2019) have looked at the issue of zero-point errors in Gaia
parallaxes by assuming that the asteroseismic parallaxes were
on an absolute scale and correcting the Gaia parallaxes to
minimize the difference between the two scales. They showed
that problems in asteroseismic radius of the sort we are looking
for in this work would manifest as a difference in Gaia and
asteroseismic parallax scales that is larger at higher parallaxes
(see their Figure 2). Furthermore, any Gaia zero-point errors
are not as important among high-parallax stars as they are for
low-parallax stars (see Section 5.2). For these two reasons, we
constructed a high-parallax subsample consisting of stars with
v > 1 mas, which will be the population from which we infer
our best-fitting model for the asteroseismic radius correction
model (Equation (5)). Its distributions in the H-R diagram and
in parallax–radius space are shown in Figures 1(b) and 2(b). To
compute the absolute magnitudes, we used distances based on

Gaia DR2 parallaxes, calculated following Bailer-Jones et al.
(2018), by using the mode of the likelihood with an exponentially
decreasing volume density prior with scale length 1.35 kpc. All of
the dwarfs and subgiants are included in this subsample, given
their relatively close distances. However, none of the stars with
R�30 R has a parallax that satisfies the high-parallax
subsample selection criterion of ϖ>1mas. Therefore, a4 is
inferred using all of the stars with R�30 R , regardless of
parallax. As we argue in Section 5.2, it does not appear that a4
should be significantly biased by this choice.

3.7. A Sample for Determining Differential Corrections to the
Radius Scaling Relation along the Giant Branch

Whereas we believe the high-parallax sample described in
the previous section gives the best estimate of corrections to the
asteroseismic radius scaling relation, we can also evaluate the
agreement between Gaia and asteroseismic radius for stars at all
parallaxes, and with a larger number of stars than the high-
parallax subsample. For this purpose, we use all of our giant
sample, whose distributions in the H-R diagram and in parallax–
radius space are shown in Figures 1(a) and 2(c). This sample,
which includes low-parallax stars, will also prove useful for
demonstrating that Gaia parallaxes have been adequately
corrected for the zero-point offsets (see Section 5.2).

Figure 1. H-R diagram showing the full giant and dwarf/subgiant samples
(left) and the high-parallax subsample (right) used in this work, divided into the
four different radius regimes we consider.

Figure 2. The distribution in parallax–radius space of the dwarf sample (left),
the high-parallax subsample (middle), and the full giant sample (right) used in
this work.
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4. Results

4.1. Absolute Radius Agreement

Figure 3 compares asteroseismic and Gaia radii for dwarfs/
subgiants, color-coded by metallicity, and plotted without any
radius correction factor applied to the asteroseismic radii. The
agreement is excellent, with a median offset of≈2% and scatter
of ≈5%. We observe no strong dependence of the residuals on
metallicity, consistent with the results for the larger and more
evolved giant sample discussed in Section 4.3.1. The radius
correction factor we find in this, the smallest radius regime
we consider (R<3.5 R ), is ( )=  a 0.979 0.005 rand.1

( )0.020 syst. . This means that the asteroseismic radius scale for
dwarfs and subgiants agrees with the Gaia radius scale within
the uncertainties.

Figure 4(a) shows our main result in the giant regime:
asteroseismic radii agree with those from Gaia within 2.1%±
2.0% (syst.). Figure 4(b) indicates the residuals when the
parallaxes are only corrected by a zero-point offset (c in
Equation (6)). Figure 4(c) shows the agreement after an
additional correction with color- and magnitude-dependent
terms (d and e in Equation (6)). Finally, Figure 4(d) shows the
agreement after additionally applying the best-fitting radius
correction factors from Equation (5). Irrespective of the Gaia
zero-point model, and across a wide range in radius, the
agreement between asteroseismic and Gaia radii is excellent.

Our best-fitting model that we assume in Figure 4(d) is fit
using the high-parallax subsample of our giants (“K MIST” in
Table 1) described in Section 3.6. The radius correction factors
on the RGB of {a2, a3, a4}=(1.015±0.003 (rand.)±0.020
(syst.), 1.019±0.006 (rand.)±0.020 (syst.), 1.087±0.009
(rand.)±0.020 (syst.)) indicate that the only statistically
significant deviation in the asteroseismic radius scale from
the Gaia radius scale is among the most evolved giants.

At radii larger than 30 R , non-adiabatic effects should begin
to manifest in the atmosphere, certainly leading to breakdowns in
the scaling relations (Mosser et al. 2013; Stello et al. 2014).
R>30 R also roughly corresponds to the same gravity regime
(log g<1.6) in which Pinsonneault et al. (2018) found that the
APOKASC-2 asteroseismic masses were offset from what the
giant branch masses should be in the clusters NGC 6791 and
NGC 6819. These evolved stars with R�30 R may have a

radius scale that is too large compared to the parallactic radius
scale: their radius correction factor (a4 in Equation (5))
corresponds to a radius inflation of 8.7%±0.9% (rand.)±2.0%
(syst.). In this regime, the asteroseismic measurement of nmax in
this regime is ill-defined, given the small number of excited
modes, and may therefore be systematically biased. Whether due
to measurement systematics or due to the physical assumptions in
the nmax and nD scaling relations themselves no longer being
valid (Equations (3) and (2)), the result is that the radius scaling
relation as it is commonly used appears to break down
for R�30 R .
In Table 1, we provide a2 and a3 for different choices of

bolometric correction, extinction, and temperature. The agree-
ment of a2 and a3 for these different test cases is generally
within the systematic error due to bolometric correction and
extinction of 1%. We discuss such systematic differences
further in our solution in Section 5.2.

4.2. Differential Radius Agreement

As we mention in Section 3.7, thanks to the larger number of
stars in the full giant sample compared to just the high-parallax
giant subsample (see Figure 4(d) gray points versus navy
points), the full giant sample gives an indication of differential
trends in the asteroseismology–Gaia radius agreement.
First and foremost, there is a hint of a differential trend in the

radius agreement in the regime 0.8 R  R  30 R , which can
be seen in Figure 5(b). Although adjacent radius regimes yield
radius correction factors that are statistically consistent with
each other (e.g., the flat trend among just giants with R< 30 R
seen in Figure 5(b)), when considering the radius correction
factors required for dwarfs/subgiants (a1=0.979±0.005)
and for stars with 10 R <R<30 R (a3=1.019±0.0060),
they are not statistically consistent with each other at the 5σ
level. One explanation of this trend with radius would be a
variation of the underlying physics determining the relationship
between asteroseismic frequencies and stellar parameters as a
function of radius. Such trends are supposed to be removed by
fΔν, but small inadequacies in fΔν could result in radius-
dependent asteroseismic radius errors. This differential trend
could also be caused by small systematic trends in the
underlying measurements. For instance, small radius-dependent
nmax trends are noted by Pinsonneault et al. (2018); it is also
feasible that there exists a small temperature offset between
APOGEE dwarf and giant temperature scales. The second trend
of note is that the asteroseismic radius scale appears to
increasingly overpredict radii compared to Gaia for R  30 R .
The statistical significance of this trend is convincing in the
sense that there is a bona fide radius inflation, but further work
must be done to understand the asteroseismic radius scale for
the upper giant branch—both observationally and theoretically
—before commenting further on it. These trends are statisti-
cally significant, even when perturbing the temperature scale,
as we note in Section 5.2.

4.3. Recommended Asteroseismic Radius Scale

According to our model for asteroseismic radius correction
factors, dwarfs and subgiants have an asteroseismic radius scale
that is too small at the 2% level, compared to the Gaia radius
scale. As we noted in Section 4.1, the effect is not statistically
significant, because it falls within the combined random and
systematic uncertainty budget. The effect is reversed among

Figure 3. Comparison of radii derived using Gaia DR2 parallaxes with radii
calculated from asteroseismic scaling relations for the sample in Huber et al.
(2017). Color-coding denotes the metallicity for each star. The average residual
median and scatter are ∼2% and ∼5%, respectively.
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giants, in the sense that both stars below and stars above the red
clump radius (R∼10 R ) indicate an inflation of the aster-
oseismic radius scale above the Gaia radius scale at the 2% level.
We can interpret these radius scale disagreements as consistent

with errors in some combination of bolometric correction,
extinction, temperature, the APOKASC-2 asteroseismic radius
calibration, and the Gaia zero-point, which in total allow for
systematic shifts in the radius agreement at the 2% level.

Figure 4. Asteroseismic RGB radii are in excellent agreement with Gaia radii, which indicates that the asteroseismic radius scaling relation is good to within
2%±2% up to radii of 30 R . Panel (a) shows Gaia radius as a function of asteroseismic radius for the giants in our sample. Green points are stars with surface
gravities of log g<1.6 (R  30 R ) the regime in which there could be measurement-error related radius systematics (Pinsonneault et al. 2018). Navy points are stars
that are part of the sample used to fit radius correction factors for the giants, a2, a3, and a4, which have Gaia parallaxes greater than 1 mas (“hi plx” in Figures 1 and 2).
The error bars indicate median errors as a function of Gaia radius. Panels (b)–(d) show the residuals in the radius agreement after successively correcting the data
according to the model of Equation (5), with red error bars showing binned uncertainties on the median: panel (b) includes a global offset to the Gaia parallaxes of
52.8 μas (brown curve in panel (a)); panel (c) further includes color- and magnitude-dependent terms of −151.0 μas μm and −4.20 μas mag−1 (gray curve in panel
(a)); panel (d) finally also corrects the asteroseismic radii by factors a2=1.015±0.0025, a3=1.019±0.0060, and a4=1.087±0.0092 (purple curve in
panel (a)).

Table 1
Parameters for Corrections to Fitted Asteroseismic Radius Scaling Relation

Method a1 a2 a3 a4 AV (mag) AKs (mag) c dof2 N

K MIST 0.979±0.005 ... ... ... 0.079 0.009 0.261***** 328
K MIST ... 1.015±0.003 1.019±0.006 ... 0.104 0.012 0.579***** 566
K MIST ... ... ... 1.087±0.009 0.212 0.024 1.722**** 112
K MIST no cov ... 1.015±0.002 1.019±0.006 ... 0.104 0.012 0.579***** 566
V ... 1.001±0.003 0.992±0.007 ... 0.103 0.012 0.525***** 560
V MIST ... 1.017±0.003 1.017±0.008 ... 0.103 0.012 0.511***** 560
IRFM ... 1.014±0.002 1.014±0.006 ... 0.103 0.012 0.601***** 556
SED ... 0.996±0.002 0.998±0.007 ... 0.104 0.012 0.690***** 531

Note. The best-fitting parameters a1, a2, a3, and a4 for Equation (5). Different choices of bolometric correction, extinction, temperature, and spatial correlation are
considered for fitting a2 and a3. Asterisks denote the level of discrepancy with the expected c2 given the degrees of freedom; each asterisk (up to and including five)
denotes 1σ in the significance of the discrepancy. Also noted are the median extinctions in the V and Ks bands. Our preferred results are from the “K MIST” case, as
discussed in the text. All the solutions take into account spatial correlations in Gaia DR2 parallaxes except the “K MIST no cov” case. See text for details.
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We therefore do not recommend specific corrections to the
asteroseismic red giant radius scale, but rather conclude that the
asteroseismic radius scale of giants, like that of dwarfs/subgiants,

is consistent with the Gaia radius scale to within 2%±2%
(syst.). The most evolved giants have asteroseismic radii that are
inflated still further—by 9%±2% (syst.).
Table 2 contains the Gaia radii we have derived in this work.

We provide both radii corrected for the Gaia parallax zero-
point, and radii that have not been corrected. Note that a
systematic uncertainty of 1.8% should be adopted for the
corrected radii, which is smaller than our 2% systematic
uncertainty on the ratio of Gaia and asteroseismic radii because
of the smaller temperature dependence of the Gaia radii
compared to the ratio of the two radius scales. The uncorrected
Gaia radii are provided to use in conjunction with a custom
Gaia zero-point, and their systematic uncertainty would be
1.6%, without taking into account systematics due to not
correcting for the Gaia parallax zero-point. The radii corrected
for parallax zero-point are plotted in Figure 6 as a function of
temperature for both the full sample (panel (a)) and the high-
parallax subsample (panel (b)).

4.3.1. Scaling Relations as a Function of Metallicity for [Fe/H]�−1

Based on the argument that scaling relations depend on the
sound speed, and that the sound speed depends on molecular
weight, Viani et al. (2017) have proposed that the nmax
asteroseismic scaling relation (Equation (3)) should depend on
metallicity. This theory would predict that nf max

in Equations (1)
and (3) would be non-unity and a function of metallicity. We
can test this prediction with our data, by showing the parallax
difference as a function of metallicity, as we do in Figure 7.
Here, we have plotted the observed radius agreement as a
function of [Fe/H], and have included the expected error in
asteroseismic radius for the giants in the sample due to not
including a molecular weight term in the scaling relations,
according to Equation (21) of Viani et al. (2017) (brown band).
The width of this band is due to the spread in [α/Fe], which we
take from the APOKASC-2 catalog. We compute the molecular
weight according to ( )m = +X4 3 1 , assuming a helium
enrichment of ΔY/ΔZ=1, a primordial helium abundance of
Y=0.248, Ze=0.02, and for each star in the sample,

[ ]= -Z 100.977 M H 1.699 (Bertelli et al. 1994), where [ ] =M H
[ ] ( )[ ]+ +aFe H log 0.63810 0.362Fe (Salaris et al. 1993). The
primary assumption in this simple implementation of a
metallicity-dependent nf max

is that there is a one-to-one relation
between metallicity and helium fraction. A spread in intrinsic
helium fraction would tend to smear out any trend with
metallicity and therefore flatten the predicted effect. In our
expression for mean molecular weight, we have also assumed
that the gas is neutral within the acoustic radius of the star,
which induces an uncertainty in the predicted metallicity-
dependent radius error. There should also be an uncertainty due
to not considering the adiabatic index in the atmosphere of the
star, which will depend on metallicity. Investigating the impact
of these effects would require detailed modeling of the stars,
which is beyond the scope of this work. With these modeling
caveats in mind, we see no evidence for the predicted
metallicity effect across the more than 1 dex spread in
metallicity shown in Figure 7. Indeed, the data are consistent
with having no trend with metallicity to within 0.5% per dex
for giants and 1.1% per dex for dwarfs/subgiants, based on
least-squares fitting. Taking into account the 2% systematic
uncertainty in our radius comparison does not change this
conclusion, because the systematic is insensitive to metallicity,
and therefore would tend to shift all of the data shown in

Figure 5. A close-up of Figure 4(c), but also including dwarfs/subgiants. The
error bars are binned medians and the errors on the binned medians for the giant
(red) and dwarf/subgiant (blue) samples. The gray band indicates the region of
±1% agreement. The agreement between asteroseismic and Gaia radii is good to
within ( )2% 2% syst. for dwarfs, subgiants, and giants. Panel (a) shows the
radius agreement if the APOGEE temperature scale is shifted downward by a 2σ
systematic uncertainty on the temperature scale of 40 K, panel (b) shows the radius
agreement with the APOGEE temperature scale unchanged, and panel (c) shows
the radius agreement with the APOGEE temperature scale shifted upward by 40 K.
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Figure 7 up or down. Until such a time as the intrinsic scatter in
helium enrichment can be determined, which, at this point,
hinders a comparison between the theoretical metallicity trend
and the observed radius agreement, we conclude that the
asteroseismic scaling relation radius does not require a
metallicity term to within the precision afforded to us by our
data set.

4.3.2. Scaling Relations for [Fe/H]<−1

Motivated by the observation in Epstein et al. (2014) that
halo stars have asteroseismic masses that appear to be inflated
compared to the masses expected from stellar models, we
discuss here the asteroseismic radius and mass scale in the halo
metallicity regime ([Fe/H]<−1). There seems to be no
significant disagreement in radius space for the most metal-
poor stars, which we show in Figure 8. Here, we have only
shown the stars below the red clump ( R R10seis ) as black
error bars, to disambiguate metallicity-dependent effects and
radius scaling relation effects that we find in the most evolved

stars (see Section 4.2). To isolate the metallicity effect, the a2
radius correction factor is applied. When correcting for the
radius correction factor derived from the high-parallax
subsample at all metallicities as well as the parallax offset
using the Gaia zero-point model from Zinn et al. (2019), which
includes a color term, the radius anomaly of the eight stars with
[Fe/H]<−1.0 and R R10seis is 1.02±0.02 (rand.)±
0.02 (syst.) and thus does not deviate from unity. The color
term (d in Equation (6)), however, will tend to correct for
metallicity effects as well, if present. Even when only
correcting the Gaia parallaxes using the radius correction
factor and a global offset term, c, the anomaly is still not
statistically significant, at 1.02±0.02 (rand.)±0.02 (syst.).
For this reason, there does not appear to be a problem with the
asteroseismic radius scale at low metallicity.

Table 2
A Subset of Our Recommended Gaia Radii, RK ,MISTs , and Their 1σ Random Uncertainties

KIC ( )R RK ,MISTs
( )s RRKs,MIST ( )R RK ,MIST,raws

( )s RRKs,MIST,raw Flags

11400880 9.75 0.71 11.08 0.88 20
6587865 21.63 1.50 25.64 2.03 30
5007332 6.79 0.44 7.40 0.50 20
5039087 21.98 2.39 31.30 4.61 30
4832196 16.61 1.24 19.78 1.71 30
10220213 4.38 0.23 4.54 0.24 21
10669876 13.12 0.62 14.14 0.69 30
4139784 10.04 0.43 10.72 0.47 30
3443483 6.33 0.28 6.65 0.30 20
6383574 23.42 1.38 27.17 1.75 30

Note. The full list is available online. We also include Gaia radii that have been computed without correcting the Gaia parallaxes, RK , MIST,raws . The listed uncertainties
do not include systematic contributions to the uncertainties: there is a 1.8% systematic uncertainty on the zero-point-corrected Gaia radii and a 1.6% systematic
uncertainty on the uncorrected Gaia radii, which does not account for the error induced by not correcting for the Gaia parallax zero-point. Flags are two digits in
length: the first digit indicates to which of the four asteroseismic radius bins the star belongs (either 1, 2, 3, or 4 corresponding to Equation (5)), and the second digit is
1 if the star is a part of the high-parallax subsample, or 0 otherwise.

(This table is available in its entirety in machine-readable form.)

Figure 6. Gaia radii as a function of temperature for the full giant and dwarf/
subgiant samples (left) and the high-parallax subsample (right) used in this
work, divided into the four different regimes of asteroseismic radius we
consider. These radii are excerpted in Table 2 in the column RK ,MISTs .

Figure 7. Difference between asteroseismic and Gaia parallax as a function of
metallicity, after correction using our adopted Gaia parallax zero-point, but
with no asteroseismic radius correction factors applied. The median and error
on the median radius agreement in bins of metallicity are shown as red error
bars for giants and as blue error bars for dwarfs/subgiants. The gray band
indicates an agreement between the radius scales to within ±1%. The brown
band indicates the expected disagreement from Viani et al. (2017) between the
red giant radius scales with and without taking into account a molecular weight
term. See Section 4.3.1 for details.
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We can also infer the corresponding inflation in mass space,
by combining the mass scaling relation,
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with a Gaia radius to yield a Gaia mass, which depends on
both parallax and nD :

( ) ( )  
» n

n
D
DnD

.M

M f

R

R

2 3
Gaia Gaia

The assumption here is that fΔν corrects the scaling relation
completely so that MGaia is unbiased, whereas the asteroseismic
mass has an additional dependence on n ;max looking at the ratio of
Gaia to asteroseismic radius for a low-metallicity sample would
reveal a metallicity-dependent nf max

. We have already inferred in
Section 4 that there is a statistically insignificant but non-zero
asteroseismic radius correction factor for stars with R�10 R of
a2=1.015 averaged over the entire sample (with relatively high
metallicities, mostly −0.2<[Fe/H]< 0.2). We find for these
eight stars ⟨ ⟩ ( ) ( )/ =  M M 0.94 0.08 rand. 0.07 syst.Gaia seis

when correcting only for the radius correction factor and theGaia
global zero-point, and ⟨ ⟩ ( )/ =  M M 0.96 0.08 rand.Gaia seis

( )0.07 syst. when also accounting for the color and magnitude
terms. These ratios depart mildly from unity, but not strongly.
Here, we have corrected the nmax scale for the effect of radius
inflation we note in this paper, which lowers the asteroseismic
mass scale by 4.5% given nµRseis max and nµMseis max

3 . The
mass ratio we find is in agreement with that from Epstein et al.
(2014), who found a mass ratio of 0.89±0.04 when comparing
halo and thick-disk masses expected from stellar models to
asteroseismic masses corrected with fΔν according to the
prescription of White et al. (2011). The strong temperature
dependence, µ -M M TGaia seis

15 2, means that the ratio is
particularly sensitive to temperature scale systematics, and so
improvement upon these estimates of a metallicity effect may
prove difficult even using a larger sample of halo stars.

5. Discussion

5.1. Comparison with Literature

5.1.1. Constraints from Gaia

We compare in Figure 9 the radius agreement we find in this
work to recent work comparing the Gaia radius scale to the
asteroseismic radius scale. First we consider the result from Hall
et al. (2019), who performed a hierarchical Bayesian analysis of
the red clump absolute magnitude in the Ks and Gaia G bands
using both an asteroseismic luminosity and a Gaia luminosity.
Using their best-fitting Gaia absolute luminosity in the Ks band of
m = - 1.634 0.018RC,Gaia (which uses an uninformative prior
on the Gaia parallax zero-point) and their best-fitting value using
asteroseismology and APOKASC-2 temperatures of m =RC,seis
- 1.693 0.003 yields a radius agreement that is statistically
consistent with the one inferred by us for RGB stars near the
radius of the clump R∼10 R . The constraint on absolute
magnitude from Hall et al. (2019) is not a pure radius constraint,
however, because the absolute magnitude depends on the
luminosity and thus the temperature of the star. On the
asteroseismic side, Hall et al. (2019) use temperatures either from
APOKASC-2 or from Mathur et al. (2017). The former is the
same temperature scale we adopt in this work, and so the
agreement between red clump asteroseismic and Gaia absolute
magnitudes from Hall et al. (2019) using the APOKASC-2 red
clump stars would be an appropriate point of comparison to our
constraints on the radius agreement along the first-ascent giant
branch. However, the Gaia estimate of red clump absolute
magnitude from Hall et al. (2019) is based on a sample of stars
from the asteroseismic analysis of Yu et al. (2018), which have
temperatures from Mathur et al. (2017) that are hotter on average
than those from APOKASC-2. Taking into account this
temperature effect results in a range of possible radius agreement
on the red clump, which is shown in Figure 9 (the result of Hall
et al. (2019) has been placed at a representative location on the
abscissa in Figure 9 of R=11 R and with a spread of 1 R ,
according to their Figure 2). We see agreement within the
uncertainty between the radius of Hall et al. (2019) and the result

Figure 8. Fractional difference between asteroseismic and Gaia radius as a
function of metallicity for low-metallicity stars with R R10seis . A gray
band corresponding to ±0.01 has been added to guide the eye. There is no
statistically significant evidence for a metallicity-dependent asteroseismic
radius error for [Fe/H]<−1.0. See Section 4.3.1 for details.

Figure 9. Comparison of asteroseismic–Gaia radius agreement among
literature estimates and this work. The dark purple bands indicate the best-
fitting radius correction factors that would bring asteroseismic radii into
agreement with Gaia radii (Table 1), and the light purple bands indicate the 1σ
systematic possible as a result of uncertainties in the luminosity scale, the
temperature scale, and the asteroseismic radius scale. A gray band corresp-
onding to ±0.01 has been added to guide the eye. See Section 5.1.1 for details.
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from this work. Hall et al. (2019) postulate that the difference they
find between asteroseismic and Gaia absolute magnitudes could
be explained by a systematic offset of −70 K in the spectroscopic
temperature scale. Systematic differences among uncalibrated
spectroscopic temperature scales can indeed disagree at this level.
However, as we note in Section 3.3 the APOGEE temperature
scale has a 1σ systematic uncertainty of 20K because it has been
calibrated to the IRFM temperature scale. Hall et al. (2019) also
find that the choice of fΔν for red clump stars can significantly
shift the red clump absolute magnitude scale. In this sense, an
offset between the asteroseismic radius scale of red giants and red
clump stars at the level of a few per cent is easily accommodated
by the systematics in red clump models used to compute fΔν (e.g.,
Pinsonneault et al. 2018; An et al. 2019; Hall et al. 2019).

Sahlholdt & Silva Aguirre (2018) investigated the agreement
between asteroseismology and Gaia radius scales among dwarfs
and subgiants using Gaia DR2 parallaxes. Using scaling
relations corrected according to White et al. (2013), they found
a mean ratio of á ñ = R R 1.024 0.004Gaiaseis (plotted in
Figure 9). An additional set of asteroseismic scaling relation
radii were computed using an additional set of surface
corrections following Ball & Gizon (2014), which yielded a
mean á ñ = R R 1.002 0.004Gaiaseis . Both of these estimates
are mildly discrepant with our estimates and those of Huber et al.
(2017) in the dwarf and subgiant regime. This could be due to
the simple polynomial expansion in temperature that White et al.
(2013) employ to parameterize fΔν as opposed to the grid-based
interpolation scheme from BeSPP. The asteroseismic data from
Sahlholdt & Silva Aguirre (2018) are also not calibrated to be on
the cluster mass scale (as are the data we use in this work),
which could help to explain the tension. Sahlholdt & Silva
Aguirre (2018) also found deviations of ±3% at the extreme
ends of their sample’s temperature distribution, near 5400 and
6600K (their Figure 4(c)). When we view our dwarf radius
comparison as a function of temperature, shown in Figure 10, we
see a similar effect at ∼5400 K, but not at higher temperatures.
We believe that the lack of any trends beyond the 1% level with
temperature at higher temperatures is a result of a difference in
our adopted fΔν.

Finally, Figure 9 also shows the mean and error on the mean
of the radius agreement from Huber et al. (2017), who worked

with Gaia DR1 and the same dwarf/subgiant asteroseismic
sample used in this work. These results are consistent with
ours, though with a larger uncertainty due to the less precise
parallaxes in Gaia DR1.
To analyze our dwarf/subgiant radius comparison in more

detail, we reproduce Figure 10 of Huber et al. (2017) in
Figure 11 by comparing the Gaia results to independent
comparisons from interferometry (e.g., Huber et al. 2012b;
White et al. 2013). The ≈5% offset for subgiants identified by
Huber et al. (2017) (with asteroseismic radii being smaller) is
significantly reduced, suggesting that at least part of that offset
may have been caused by an incomplete understanding of the
Gaia parallax systematics in DR1, which would have affected
the typically more distant subgiants more than the typically
more nearby dwarfs. The largest offsets with Gaia DR2 are at
the ≈2% level, fully consistent to within 1σ with the
uncertainties for seismic radii derived from scaling relations
using corrected nD values via fΔν. This excellent agreement
strongly suggests that scaling relation radii (using fΔν

according to Equation (3)) are precise and accurate at the
( )2% 2% syst. level for stars in the range R≈0.8–3.5 R .

Comparing Kepler first-ascent red giant branch and red
clump asteroseismic parallaxes to Gaia DR2 parallaxes, Khan
et al. (2019) find agreement between the Gaia and asteroseis-
mic radius scales within ∼5%. We note that our results are not
directly comparable because they do not account for fδν, and so
their level of agreement between Gaia and asteroseismic radius
scales is an upper bound. Their results nevertheless confirm our
conclusion that the asteroseismic radius scale is very accurate
for red giants.

5.1.2. Constraints from Eclipsing Binaries

The largest study of the asteroseismic radius and mass scales
of red giants using eclipsing binaries concluded that the radius
scale was overestimated by 5% compared to the dynamical radius
scale (Gaulme et al. 2016). The latter study examined stars with
radii less than 15 R , and so our results for the stars of smaller
radius (R�10 R ) are directly comparable. Our results in this
radius regime indicate that the agreement, in fact, is much better

Figure 10. Comparison of asteroseismic radii derived from scaling relations
with those derived from Gaia parallaxes, as a function of temperature. Red
circles and blue triangles show our dwarf/subgiant sample without and with
the use of fΔν. Error bars indicate scatter in the median. The gray band indicates
agreement to within 1%.

Figure 11. Comparison of asteroseismic radii derived from scaling relations
with radii derived from three methods in the dwarf/subgiant radius regime
( <R R3.5 ). Red circles and blue upward triangles show our dwarf/subgiant
sample without and with fΔν. We also show stars with interferometrically
measured radii (green triangles, Huber et al. 2012b; White et al. 2013; Johnson
et al. 2014). Error bars indicate scatter in the median. The gray band indicates
agreement to within 1%.
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than 5%. In that sense, our results accord with indications from
Brogaard et al. (2018) that the temperatures in Gaulme et al.
(2016) could be affected by the blending of the binary systems,
therefore biasing the asteroseismic radii. For our sample,
however, we use spectroscopic temperatures, which are not
sensitive to blending in the same way as photometric estimates
are, and we have furthermore selected against binarity using the
Gaia data quality cuts described in Section 2.2.

5.2. Dependence on the Luminosity and Temperature Scales

In converting asteroseismic radii to parallaxes according to
Equation (4), the luminosity scale enters through a dependence
on the bolometric flux and distance/parallax, and the
temperature enters through the explicit temperature dependence
as well as the dependence of the bolometric correction on
temperature. In this section, we discuss checks we have
performed to ensure that our adopted luminosity and temper-
ature scales in this work do not bias the radius agreement
beyond our systematic uncertainty estimates in Section 3.2.

The observed variations of a2 and a3 using different choices
for bolometric correction and extinction are generally within
our estimated systematic bolometric correction and extinction
error of 1% (Section 4.1), when including the random errors
quoted on a2 and a3. Interestingly, the agreement between SED
and Gaia radii is closer to unity than the asteroseismic–Gaia
radius comparison. We show in Appendix A that it is the SED
bolometric fluxes that differ the most from the MIST Ks-band
bolometric corrections among the independent bolometric flux
scales we compare to. So whereas the SED bolometric flux
scale differs from the one we adopt for our asteroseismic–Gaia
radius comparison by ∼4%, a difference of ∼0.2 mag in the
SED extinctions and those from Rodrigues et al. (2014) that we
adopt for our asteroseismic radii compensates to bring the SED
radius scale closer to the Gaia radius scale.

The other component of the luminosity scale involves the
parallaxes. The parallax zero-point correction we apply consists

of both color- and magnitude-dependent terms (d and e in
Equation (6)) as well as a global zero-point correction, c, with
values taken from Zinn et al. (2019). An argument could be
made that the parallax zero-point correction, which is itself
constrained by the asteroseismic data from Zinn et al. (2019),
necessarily enforces agreement between the asteroseismic and
Gaia radius scales. For reasonable values of the color and
magnitude terms in the Gaia parallax zero-point correction in
Equation (6), however, the asteroseismic radii remain con-
sistent with the Gaia radii. Figure 4(b) shows a model without
color and magnitude terms and without radius scale factors a2,
a3, and a4. It is, in this sense, a conservative estimate of the
agreement between asteroseismic and Gaia radii. This
simplified model is still in excellent agreement with the
observed ratio of asteroseismic to Gaia radii, which indicates
that the asteroseismic radius correction factors that have been
inferred in this work are not determined by choice of color or
magnitude terms in the Gaia parallax zero-point. Regarding the
global term, c=52.8 μas, we show in Zinn et al. (2019) that
the global parallax correction behaves differently than an
asteroseismic radius correction factor. In this work, we have
been conservative in our approach by inferring radius
correction factors using only high-parallax stars (ϖ>1 mas),
which are essentially unaffected by a Gaia parallax zero-point
correction of ≈0.05 mas. Not only should high-parallax stars be
unbiased indicators of the radius agreement, but their
asteroseismic parallaxes are more sensitive to errors in the
asteroseismic radius scale than low-parallax stars (Zinn et al.
2019), and therefore are doubly useful for fitting the radius
correction factors (a1–a4 in Equation (5); see Section 3.6).
Looking at the stars least affected by a Gaia parallax correction
in this way, we found that absolute agreement between the
asteroseismic radius scale and the Gaia radius scale is within
2%±2% (syst.) for stars with radii below R=30 R . We also
examined the differential trends using the full giant sample,
which includes stars with low parallax (Section 4.2). The flat
trend with parallax of the radius agreement shown in Figure 12

Figure 12. The fractional difference between asteroseismic and Gaia scales as a function of Gaia parallax for stars with (a) R R10seis , (b)  < <R R R10 30seis ,
and (c) R R30seis . A gray band corresponding to ±0.01 has been added to guide the eye. The solid gray curves show the expected trend with parallax of the
fractional radius agreement if our adopted Gaia zero-point were shifted by the systematic uncertainty on c of ±8.6 μas from Zinn et al. (2019); the flatness of the gray
curves at high parallax indicates that high-parallax stars are essentially unaffected by the Gaia parallax zero-point correction. We use a high-parallax (v > 1 mas)
subsample of giants for all but the largest radius regime, R R30seis , to infer the radius agreement between asteroseismic and Gaia scales in this work.
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demonstrates that even these low-parallax giants have unbiased
Gaia radii following a zero-point correction to the Gaia
parallax scale. If errors in the parallax offset existed at the
±9 μas level (the systematic error on the global parallax offset
from Zinn et al. (2019), which is included in our 2% systematic
uncertainty in the radius agreement), they would manifest as
trends denoted by the solid gray curves in Figure 12.

Regarding the effect of the temperature scale on our results,
we quantified the systematic effect of global temperature shifts
to be at the 1% level. We illustrate with Figures 5(a)and (c)
how the radius agreement would change if the APOGEE
temperature scale were smaller by 40 K (Figure 5(a)) and larger
by 40 K (Figure 5(c)). These temperature variations would
constitute a 2σ systematic error according to our systematic
uncertainty budget from Section 3.3, and in this sense represent
an extreme example of the effect of temperature systematics. In
these panels, we have included the effect of a temperature shift
on the bolometric correction, which tends to moderate the
effect of temperature on the radius, such that the Gaia radius
does not scale as strongly with temperature as Equation (4)
implies.

We have also verified that systematics due to the choice of
fΔν (which affects the asteroseismic radii according to
Equation (1)) does not significantly impact our results by
using the prescription from Sharma et al. (2016) instead of
using our nominal BeSPP fΔν values.

13

6. Conclusions

1. For radii between 0.8 R and 30 R we conclude that the
asteroseismic radius scale and the Gaia radius scale agree
within 2%, which is within systematic uncertainties.
There appear to be differential trends as a function of
radius in this agreement, which are statistically signifi-
cant (4%±0.6%).

2. Our results agree with those from Hall et al. (2019), who
performed a comparison of the asteroseismic and Gaia
red clump absolute luminosity. In that work, the
asteroseismic radii of the red clump stars were found to
be larger than those from Gaia, which could be corrected
by adjusting the temperature scale by 70 K. Here, we find
a similar level of radius inflation, but can only attribute
1% of our 2% total systematic uncertainty on the radius
inflation to temperature effects, because of the 0.5%
accuracy of the temperature calibration of the infrared
flux method.

3. After correcting Gaia parallaxes and asteroseismic radii
according to our best-fitting model, the largest stars in our
sample, with R>30 R , have asteroseismic radii that are
too large by 8.7%±0.9% (rand.)±2.0% (syst.).

4. We quantify the spatial correlations of Gaia parallaxes
for the Kepler field, but find that they are unimportant for
our analysis. At scales of 0°.05, 1°, and 5°, a typical
parallax systematic error floor given a statistical uncer-
tainty on parallax of svGaia would be 0.1 svGaia, sv0.07 Gaia,
and sv0.016 Gaia, respectively.

5. By investigating systematics in our radii due to
bolometric corrections, we find that reasonable choices
of bolometric correction from the literature disagree at the
2% level, which suggests that a fundamental bolometric

correction scale at the level of a few per cent is difficult to
arrive at.

6. We find only marginal evidence for an asteroseismic
radius inflation of 2%±2% (rand.)±2% (syst.) and
mass inflation of 6%±8% (rand.)±7% (syst.) for low-
metallicity stars, [Fe/H]<−1.0. For more solar-like
metallicities, there are also no significant metallicity-
dependent radius anomalies, to within 0.5% per dex in
metallicity for giants and 1.1% per dex for dwarfs/
subgiants.

In light of the remarkable agreement between asteroseismol-
ogy and a fundamental parallactic radius scale, the systematics
in bolometric correction, extinction, and temperature that we
have identified in this work will likely limit future work on
constraining the asteroseismic radius scale. For this reason, we
are currently investigating the origin of the seemingly inflated
asteroseismic radii for the most evolved giants in our sample
(30 R �Rseis<50 R ), whose scaling relation radii disagree
beyond our nominal systematics level of 2%. It is likely the
case that additional systematics will be significant in this
regime (e.g., nmax measurement errors). Nevertheless, we
believe that accounting for non-adiabatic effects in pulsation
models in evolved stars could help to explain the radius
inflation we observe in this work, and are thus conducting a
complementary theoretical approach to understand these
observations.
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Appendix A
Bolometric Correction and Extinction Systematics

Our adopted bolometric scale in this work is the MIST
Ks-band bolometric correction, BCKs, and therefore the first test
we performed was a self-consistency check of the MIST
bolometric corrections for the giant sample. We started out by
assuming extinction coefficients, lA AV , for SDSS optical
bands, λ=g, r, i from An et al. (2009). We then derived a
visual extinction, AV, based on each SDSS-Ks color. This
process of course depends on both the SDSS-band and Ks-band
bolometric corrections, and is effectively a test of the
consistency of the bolometric corrections. We compared these
extinctions to a common scale: our adopted extinction scale
from Rodrigues et al. (2014). We took the median differences
between the SDSS-band MIST extinctions and the extinctions
of Rodrigues et al. (2014) for the giant sample as an indication
of the self-consistency of the MIST bolometric corrections. We
found that the g-band, r-band, and i-band MIST extinctions
agree with the extinctions of Rodrigues et al. (2014) to within
1.3%±0.3%, 3.2%±0.2%, and 0.4%±0.4%, where the
systematic error due to the uncertainty in the extinction
coefficients dominates over the random uncertainty on the
median of the MIST extinctions for the giant sample. We
conclude that the MIST bolometric corrections are consistent
with each other to at least 3%.

Ultimately, the quantity that we would like to pin down is
not the Ks-band bolometric correction, but rather the bolometric
flux itself. This quantity of course depends on not only the
bolometric correction, but also the adopted extinction. We have
adopted an infrared-based bolometric flux because of the
relative insensitivity to extinction. Using the bolometric
correction, we de-extinct the 2MASS Ks photometry by
converting our AV from Rodrigues et al. (2014) into AKs by
way of an infrared extinction coefficient, as mentioned in
Section 2.2. We adopt a solar irradiance from Mamajek et al.
(2015), = ´ - -f 1.361 10 erg s cm0

6 1 2, and assume an

apparent bolometric magnitude of = -m 26.82cal (using the
visual magnitude of the Sun,  = -V 26.76, and its visual
bolometric correction,  = -BC 0.06;V , Torres 2010). The
bolometric flux is then ( )= - - + -f f 10 K m A

bol 0
0.4 BC Ks cal s . To test

the accuracy of our MIST Ks bolometric flux scale, we have
computed bolometric fluxes for comparison using several other
approaches, which are described below.
First, we compare to a bolometric flux computed via SED

fitting described in the main text. We computed the bolometric
fluxes using this method for all giant stars with positive
parallax and parallax errors less than 20%. The SED fitting was
initialized with an initial guess for the extinction taken to be
that of Rodrigues et al. (2014).
We also compare the bolometric fluxes we use to those from

the IRFM method described in the main text. The IRFM hinges
on a different dependence on temperature of the visual and
infrared flux to iteratively estimate temperature and angular
diameter (and bolometric flux). As the name implies, this
method requires infrared photometry, for which we use J, H,
and Ks from 2MASS. By way of visual photometry, we used g
and r photometry from the Kepler Input Catalog (KIC; Brown
et al. 2011), which has been recalibrated to be on the SDSS
scale (Abolfathi et al. 2018) by Pinsonneault et al. (2012). As
implemented in González Hernández & Bonifacio (2009), the
IRFM requires V-band photometry, and so we transform g and
r magnitudes to Johnson B and V according to Lupton (2005).14

The extinctions in the de-extinction procedure are our adopted
extinctions of Rodrigues et al. (2014).
The SED and IRFM bolometric fluxes are compared to our

adopted Ks-band MIST bolometric fluxes in Figure 13. Also
shown are three more sets of bolometric fluxes computed
assuming the extinctions of Rodrigues et al. (2014): one using a
g-band MIST bolometric correction, another the empirical
visual bolometric correction from Flower (1996), and another

Figure 13. Fractional difference in our adopted Ks-band bolometric fluxes
computed using MIST bolometric corrections and extinctions from Rodrigues
et al. (2014) and various other bolometric flux systems, as a function of radius.
See text for details.

14 https://www.sdss3.org/dr10/algorithms/sdssUBVRITransform.php
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using the Ks-band bolometric correction from González
Hernández & Bonifacio (2009) (“GHB09, K” in the figure).

The figure demonstrates first and foremost that the agreement
across these methods is globally good. This is especially true
when considering that the bolometric corrections span a range of
two decades in publication date: from 1996 to present. In
particular, this figure demonstrates excellent agreement in the
mean fluxes (0.73%± 0.09%) between our adopted Ks-band
MIST bolometric fluxes and the Ks-band bolometric fluxes
using the bolometric correction from González Hernández &
Bonifacio (2009). Part of this agreement is certainly due to the
fact that any infrared flux scale is insensitive to the choice of
extinction, but it more importantly establishes a consensus in the
infrared bolometric corrections. Indeed, there is also excellent
agreement with the IRFM bolometric flux scale (0.66%±
0.11%), even though that scale incorporates visual information
(B and V ) and therefore depends to some extent on the
extinctions of Rodrigues et al. (2014).

The largest deviations in bolometric flux scale are between
Ks MIST and SED (mean difference of 3.8%± 0.1%) and
between Ks MIST and V band (3.0%± 0.1%). As we see in
Figure 14, the disagreement between our adopted infrared scale
and the V-band scale is a strong function of temperature, which
suggests there are genuine disagreements between the MIST
models and the empirical V-band bolometric corrections.
Unlike the other approaches, the SED approach does not
assume the extinctions of Rodrigues et al. (2014). Differences
in model atmospheres between those used in the C3K grid (C.
Conroy et al. 2019, in preparation) and those used in the SED
approach described in Stassun & Torres (2016) and Stassun
et al. (2017) would result in different extinctions and
bolometric corrections, both of which would affect bolometric
flux agreement. On the extinction side, the predicted extinc-
tions using the SED approach differ by ∼0.2 mag from those of
Rodrigues et al. (2014). If adopting the bolometric fluxes from
Rodrigues et al. (2014) and not allowing extinction as a free
parameter in the SED fitting process, the SED bolometric
fluxes would shift to be about 3% lower than our adopted

Ks-band bolometric fluxes (otherwise, they are about 4% higher
than the infrared fluxes). Shifts in extinction estimates from the
SED fitting approach, in other words, map to shifts in
bolometric fluxes. Given the relative insensitivity of the
infrared bolometric fluxes to the choice of extinction, there
are likely model color differences among Rodrigues et al.
(2014), Stassun & Torres (2016), and C3K that would explain
both (1) the different extinctions from the SED approach of
Stassun & Torres (2016) and from that of Rodrigues et al.
(2014) and (2) the remaining 3% difference between the SED
and the MIST Ks-band bolometric fluxes when fixing the SED
extinctions to those from Rodrigues et al. (2014).
The bolometric corrections we have discussed here reflect

substantive differences in approach, as well as choice in
adopted atmosphere models. For these reasons, we interpret
these differences in the bolometric flux scale as 2σ
systematics. So while, on the face of it, the largest mean
offset in the bolometric corrections is ∼4%, we adopt this as
a 2% systematic at the 1σ level. This choice for the
systematic uncertainty in the bolometric correction scale for
our work reflects the understanding, for instance, that the
underlying atmosphere models for these two bolometric
corrections (C3K and SED) are separated by 26 yr, and have
significant departures in, e.g., adopted line lists. Ultimately,
the largest differences we note in bolometric flux (∼2%–4%)
map to differences of 1%–2% in radius space, as Table 1
indicates.

Appendix B
Spatial Correlations in DR2 Parallaxes

Having corrected for global, color-, and magnitude-depen-
dent terms in the zero-point in Gaia parallaxes, we need to
similarly account for the spatial dependence in the zero-point.
The effect of spatial correlations in parallax can inflate the
random error on inferred quantities in our sample, and so we
describe here how we go about quantifying the off-diagonal
elements in the covariance matrix, C.
Zinn et al. (2019) quantified the spatial dependence of the

offset between parallaxes derived from asteroseismology
(calculated according to Equation (4)) and those from Gaia
DR1. The basis of the inference of spatially correlated
systematics was a Pearson correlation coefficient that described
the autocorrelation of the quantity v v-Gaia seis as a function
of angular separation on the sky. This correlation function
would be positive when two regions of the sky separated by an
angular distance qD had Gaia parallax measurements that were
both too low or both too high compared to the asteroseismic
parallax, indicating a positive correlation at a certain angular
scale. A negative angular correlation would exist where two
patches of sky had Gaia parallaxes that were offset from the
asteroseismic parallaxes in opposite directions. Where the two
parallaxes agreed, the quantity would be zero.
We compute the binned Pearson correlation coefficient,

correcting the Gaia parallaxes according to the zero-point model
from Zinn et al. (2019) using the full giant sample, and then also
remove any residual median in the difference in parallax scales.
(If we were not to correct the Gaia parallaxes for global,
magnitude-, and color-dependent errors before fitting for the
spatial correlations, we would find too high a spatial parallax
correlation due to the global offset between asteroseismic and
Gaia parallaxes across the entire Kepler field.)

Figure 14. The same as Figure 13, except plotted as a function of temperature.
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We fit the correlation coefficient of the parallax difference as
a function of angular separation on the sky, qD , with the
following model:

( ) ( )[ ( ) ] ( )c q q q qD = D - D +H A Bexp ln 2 ln 91 2

where A is a characteristic amplitude of the correlations, q1 2 is
a characteristic angular scale, and B is a constant. The
Heaviside function, ( )qDH , ensures that the correlation is set
to zero for the same star, ( )c qD = =0 0. We follow the
approach described in Zinn et al. (2019) to fit this functional
form to the binned Pearson correlation coefficient. In this
approach, the correlations between adjacent bins in the Pearson
correlation coefficient (error bars in Figure 15) are taken into
account, and the model is fitted using the MCMC method. We
do not take into account edge effects as Zinn et al. (2019) do by
fitting to simulated data. The best-fitting parameters for
Equation (9) and their 1σ uncertainties are given in Table 3.

The observed correlation coefficient for our sample, along
with the best-fitting model from Equation (9), is shown in
Figure 15. We use this model for the angular parallax
correlation, ( )c qD , in our covariance matrix when taking into
account spatial correlations in parallax (Equation (8)). Accord-
ing to this best-fitting model, the level of correlation at angular
separations of 0°.05 is 0.02, and it decreases to 0.01 at 1°, and
to 0.0003 at 5°. This means that one cannot reduce the parallax
uncertainty when averaging over more than 60, 200, or 4000
stars at these angular separations.

We find that our covariance agrees well with the covariance
reported by Lindegren et al. (2018, hereafter L18) under a
simple rescaling, assuming the median error of their quasar
sample is 0.25 mas. We show the resulting data points from
L18ʼs Figure 14 in our Figure 15. The exponential behavior at

Δθ  0°.1 is similar to ours, and both our and L18ʼs
measurements indicate the presence of small-amplitude oscil-
latory behavior.
Whether or not we include the full covariance matrix in our

analysis, according to Equations (7) and (8), our results are
unaffected (compare “K MIST no cov” and “K MIST” entries
in Table 1). This can be understood from the fact that the
variability in the Gaia parallax scale as a function of position
averages out over the Kepler field of view, leaving unaffected
the central values of our radius agreement fit. Moreover, the
relatively small number of stars in this high-parallax subsample
means that one does not average down by N1 to the
systematic floor set by the spatial correlations.
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