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HIGHLIGHTS

e Develop a novel mobility-based approach to derive urban scale building occupant profiles.

e Compare empirically derived profiles with the existing DoE reference model.

e Quantify the differences using statistical methods.

o Urban scale energy simulations show up to 60% differences in heating and 40% in cooling energy consumption.
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In the US, people spend more than 90% of their time in buildings, which contributes to more than 70% of overall
electricity usage in the country. Occupant behavior is becoming a leading factor impacting energy consumption
in buildings. Existing occupant-behavior studies are often limited to a single building and individual behavior,
such as presence or interactions in confined spaces. Moreover, studies modeling occupant behavior at the
building or community level are limited. With the development of the Internet of Things, mobile positioning data
are available through social media and location-based service applications. The goal of this study is to analyze
the impacts of more representative occupancy profiles, derived from high resolution urban scale mobile position
data, on building energy consumption. . A pilot study was conducted on more than 900 buildings in downtown
San Antonio, Texas, with billions of mobile positioning data. We then compared these profiles with the existing
Department of Energy prototype models and quantified the differences using a statistical method. On average,
the differences in occupancy rates between the ones derived from the empirical profile and the ones from the
Department of Energy reference ranged from —30% to 70%. The realistic derived profiles are then simulated in
the CityBES. The results show that the predicted cooling energy demand is reduced by up to 40% while the
heating energy demand is reduced by up to 60%. This study, therefore, advances knowledge of urban planning as
well as urban-scale energy modeling and optimization.

1. Introduction than 70% of overall electricity usage in the country [4]. Occupant

behavior is a leading factor influencing energy consumption in buildings

By 2050, 70% of the world’s population is projected to live and work
in cities [1], with two-thirds of global primary energy consumption
attributed to cities, resulting in the production of 73% of global energy-
related greenhouse gas emissions [2]. In the US, people currently spend
more than 90% of their time in buildings [3], which contributes to more
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[5]. Existing occupant behavior studies are often isolated and focus on
individual behavior, such as presence or interactions [6-11] in a single
space or building. Recent studies have addressed various optimization,
control, and occupancy-related challenges for the operation of individ-
ual buildings [12,13]. However, studies modeling occupant behavior at
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community and urban levels are limited [14] but are necessary for
urban-scale energy modeling and energy policy decision making.

Urban-scale energy modeling tools have been used for spatial anal-
ysis of energy consumption [15-17], retrofitting of energy-related policy
development based on building occupancy profiles [18-21], and design
and planning of new cities to optimize energy use [22]. However, most
current urban-scale energy modeling tools use pre-defined or synthetic
data to simulate occupancy profiles [5], which results in obvious energy
differences compared with the use of practical occupancy profiles
[23,24]. Existing studies did not use actual occupancy profiles owing to
the dearth of such datasets. In addition, it is almost impossible to obtain
information for a large number of buildings because of the high cost of
occupant counting sensors. Nonetheless, with the development of the
Internet of Things, researchers are considering data from mobile phones
and Wi-Fi-based sensor data [25,26]. Recent research on urban mobility
has uncovered the potential of deriving occupancy locations using mo-
bile positioning data [12,27]. Furthermore, geosocial network data,
such as Twitter and Foursquare, have been used to study the spatio-
temporal patterns of occupants in urban environments [28-30].

In this study, we explored the possibility to use mobile position data
to derive occupancy profiles at individual building level and evaluate
their impacts on building energy consumption. The paper is organized as
the following: we summarize the recent developments and research gaps
in Section 2. In Section 3, we describe the overall methodology including
data processing, deriving empirical occupancy profiles, statistical
quantification method and urban scale energy modeling. We present the
results in Section 4. We summarize our concluding remarks and limi-
tation of this study in Section 7.

2. Literature review and research gaps
2.1. Literature review

Occupant presence modeling. Arrival, departure, and duration of
occupancy absence are important factors influencing human-building
interactions, such as lighting, thermostats, window blinds, and plug
behaviors [31,32]. The above behaviors all depend on occupancy
presence. Modern occupant presence modeling approaches fall into
three general categories: scheduled occupancy patterns, stochastic
models, and machine learning methods. Scheduled occupancy patterns
are the most commonly used in industry but can lead to errors as great as
600% [33]. These patterns are popular because most building simula-
tion software uses this type of model. A typical example is the diversity
factor, with a previous study showing a 46% difference when compared
to actual profiles [5,34,35]. Stochastic models such as the discrete-time
Markov chain [36,37] used connected thermostat data to detect occu-
pancy presence in residential buildings [38]. Most recently, the Gated
Recurrent Unit Network has been applied to model the trace of occupant
location [39] with a root mean square error of 4.79 cm for a single
occupant in terms of spatial coordinates in a room.

Occupant sensing. Happle et al. [9] discussed the importance of
considering occupant behavior models while planning building energy
consumption and examined different occupancy behavior models, such
as a deterministic space-based approach, which is a rule-based occupant
behavior model, a stochastic space-based approach, which is based on
occupant behavior in the built environment over different time spans on
the building scale, and a stochastic person-based approach, which con-
siders different time spans yet focuses on individuals. Because of the
diversity of occupant behavior, the stochastic individual-based
approach is superior to the stochastic space-based approach. To over-
come the limitation of implementing this method on both the district
and individual building levels, Happle et al. implemented a novel
method, namely an “activity-based multi-agent approach.” The occu-
pant activity and appliance usage were monitored to model urban
building occupancy.

General occupancy pattern detection methods for urban-scale
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modeling are commonly based on mobile internet-based data, cellular
service data, Wi-Fi-based sensor data, and geosocial network data, such
as Twitter and Foursquare. The prevalence of smartphone usage has
enabled the tracking of human movement and occupancy patterns [25].
GPS sensor logs from smartphones have been used as a data source in
fusion frameworks to study travel mode detection [40], since such
location data have a high spatiotemporal resolution. Gu et al. [12]
applied modeling occupancy behavior on an urban scale. K-means
clustering has been applied to extract typical occupancy data. Occu-
pancy data extracted from 60 buildings were classified into 7 categories
and 19 sub-categories. Different building types showed different occu-
pancy profiles and densities, and the same building types in different
areas followed different occupancy patterns. Pang et al. [27] used mo-
bile internet-based positioning data to model occupancy behavior in the
built environment. Occupancy data were integrated with the building
energy simulation [41] in EnergyPlus, and the results showed that mo-
bile internet-based positioning data increased the precision accuracy of
building energy models. Using the TimeGeo framework, Barbour et al.
[42] estimated building occupancy in the city of Boston. Occupancy
schedules were extracted for residential, commercial, and industrial
buildings at urban scale. Compared with DOE standard occupancy
schedules, their study showed potential energy savings up to 21% for
commercial buildings and 15% for residential buildings. However, the
building occupancy data generated by TimeGeo framework is not purely
from raw GPS data. In order to simulate the whole population in each
census tract, the TimeGeo framework expands active phone users to the
population of each census tract in Boston’s metro area. To generate in-
dividual building occupancy profiles, the TimeGeo framework uses a
time-inhomogeneous Markov chain model to model temporal choices,
and uses a rank-based exploration and preferential return (r-EPR) model
to generate spatial choices. Hence, building occupancy profiles from
TimeGEO framework are synthetical data. Happle et al. [43] created
context-specific, data-driven occupancy schedules by utilizing location-
based services data from Google Maps. Comparing with DOE references,
it showed that the use of standard schedules could lead to over-
estimation of urban scale energy demand. However, Happle’s study is
limited in downtown areas of 13 selected big cities with occupancy data
from commercial buildings only.

Mohammadi and Taylor [44] discussed the spatiotemporal rela-
tionship between human mobility and energy consumption in Chicago,
IL. These authors collected Twitter and electricity consumption data for
over one year. To determine the spatiotemporal pattern of occupants in
an urban environment, they used a spatial autoregression model. The
gyration radius was used to determine returners’ intra-urban mobility.
Building on previous work on the dichotomy of human mobility [45],
Mohammadi and Taylor [28] explored two major network mobility
patterns in urban environments, namely returners and explorers. Re-
turners’ mobility networks were dominated by a few frequently visited
locations, but explorers’ mobility network patterns were much larger.
Energy consumption in urban environments did not solely depend on
individual building occupancy level, as the authors provided insight into
the spill-over effect of neighboring buildings. Thus, a better under-
standing of urban mobility patterns will likely improve the prediction,
management, and efficient allocation of resources [5,8]. Wang et al.
[30] explored urban human mobility patterns to investigate the social
nature of people in 50 large American cities. Other studies also used
geotagged tweets to estimate home and work locations and identify
peoples’ commutes on the city scale [14,46]. Riascos and Mateos [29]
discussed human mobility in urban areas using data from Foursquare, a
location-based networking platform. The co-presence of people was
analyzed on a temporally and spatially. Social network data were used to
study occupancy behavior patterns in New York and Tokyo metropolitan
areas. Their travel distances and co-presence in public establishments,
such as universities, bars, and restaurants, were examined to elucidate
these patterns.

Urban scale energy modeling platform: Urban building energy
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Fig. 1. Overview of the methodology.

modeling (UBEM) platform is essential for building energy studies at an
urban scale, and it supports researchers to model a large group of
buildings effectively. UBEMs within the literature can be classified into
the top-down approach and bottom-up approach. Top-down (i.e., data-
driven) models always include economic variables and statistical in-
formation, and those models are primarily based on macro-economic
modeling principles and techniques. However, the bottom-up
approach (i.e., Model-based building performance simulation) tends to
group buildings with similar characteristics into one category which is
the archetype. Those characteristics include building geometries,
structural properties, building use, etc.

Bottom-up models include CityBES [47] UMI [48], HUES [49],
TEASER [50], CitySim [51], and SUNtool [52]. CityBES was developed
by Lawrence Berkeley National Laboratory. CityBES [47] is a web-based
platform for urban-scale building energy modeling and analysis. It uses
an international open data standard - CityGML for exchanging and
representing 3D city building models. CityBES is built on OpenStudio
and EnergyPlus to simulate building energy use and savings from
energy-efficient retrofits. Reinhart et al. [48] developed a new
Rhinoceros-based urban modeling design tool, UMI, to study operational
energy, daylighting, outdoor comfort and walkability evaluations at the
district level. UMI uses EnergyPlus, Radiance/Daysim as simulation
engines. HUES platform is an extendable simulation environment for the
study of urban multi-energy systems. TEASER, CitySim and SUNtool are
only designed for studying operational building energy usages.

2.2. Summary and research gaps

Despite key findings from the abovementioned studies, critical
knowledge gaps remain, as discussed below:

(1) Lack of an urban scale mobility data set to create urban scale
occupancy profiles. Compared with previous studies
[12,27,42,43], the uniqueness of this study is that it derived oc-
cupancy profiles for all DOE referenced building type at an urban
scale. For example, Barbour’s study only investigated occupancy
data for 3 types of buildings, Happle’s study only focused on
commercial buildings, Gu et al. extracted occupancy data for 7
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Fig. 2. Three-dimensional illustration and distribution of selected buildings from different Department of Energy reference building types.

Secondary School

building types, Pang et al. investigated occupancy data for office

buildings only, but this study covered 16 different building types.
(2) Lack of a statistical method to quantify the differences, in terms of
occupancy rate and profiles, between derived and those from
DOE prototype models. The existing studies focus on deriving and
visualizing the occupancy profiles based on different data sour-
ces. However, how to quantify and statistically compare the dif-
ferences between the derived empirical occupancy profiles to the
DOE prototype models is still missing.
Lack of a holistic assessment of the impacts of more representa-
tive occupancy profiles on urban-scale building energy usages.
Previous studies either did not address the differences in at the
individual building energy usage level or only focuses on a
limited number and type of buildings. For example, Barbour’s
study only investigated building energy consumption at census
tract level. In this paper, we integrated derived occupancy pro-
files from mobile position data with an urban scale energy
simulation platform-CityBES to evaluate such impacts.
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3. Methodology
3.1. Overview

Fig. 1 shows the overview of the methodology in this paper. First,
ArcGIS and LiDAR data were processed to get basic building geometry
data. Positioning data collected from mobile phones were processed
used to extract the occupancy profile patterns of more than 900 build-
ings on an urban scale. We categorized these buildings according to the
16 reference building types of the US Department of Energy (DOE) [7],
and we compared the derived schedules with the default occupancy
profiles of these 16 building types. A statistical method was then
developed to quantify the differences in these schedules. As a pilot
study, this study focused on analysis methods and preliminary results
with two exemplary building types as case studies. Finally, the assess-
ment on the impacts of energy usages from the more representative
occupancy profiles was conducted, comparing with those from DOE
models.
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Fig. 3. Comparison between the reference schedule and the actual schedule of all building types.

Table 1
Temperature set-point control for the actual schedule cases for each building type.
Occupancy rate Note
<0.1 0.1-0.2 0.2-0.25 0.25-0.3 0.3-0.4 0.4-0.5 0.5-0.7 0.7-1.0
Small Office All ~20% zones ~25% zones ~30% zones 100% zones Tn Setback set-point Ts:
Ts Tn, otherwise Tn, otherwise Tn, otherwise 29.44 °C for cooling
Ts Ts Ts and 15.56 °C for
Medium Office All ~30% zones Tn, otherwise Ts ~40% zones ~50% zones 100% zones Tn heating;
Ts Tn, otherwise Tn, otherwise Normal set-point Tn:
Ts Ts 23.89 °C for cooling
Large Office All ~30% zones Tn, otherwise Ts ~50% zones Tn, otherwise Ts ~70% zones 100% and 21.11 °C for
Ts Tn, otherwise zones Tn heating
Ts
Full-Service All All Tn Setback set-point Ts:
Restaurant Ts 30.00 °C for cooling
and 15.60 °C for
heating;

Normal set-point Tn:
24.00 °C for cooling
and 21.00 °C for

heating
Small and All All Tn Setback set-point Ts:
Medium Ts 29.44 °C for cooling
Retailers and 15.56 °C for
heating;

Normal set-point Tn:
23.89 °C for cooling
and 21.11 °C for
heating

Note: Tn: normal setpoint; Ts: setback setpoint.
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Fig. 4. Empirical confidence bands for median occupancy profiles in each Department of Energy building type on weekdays.
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Table 2

Comparison of hourly occupancy rates (%) for selected hours and the overall daily average on weekdays for different building types.
Department of energy building type 7AM 8AM 9AM 6PM 7PM 8PM All Day
Medium Office 21.33 34.69 39.44 14.89 11.10 9.97 20.32
Stand-Alone Retailer 10.33 14.94 16.81 15.56 14.87 13.40 12.78
Primary School Summer 23.64 32.08 30.98 9.41 6.52 5.25 15.05
Primary School Regular 33.83 37.40 36.17 9.75 5.90 3.88 17.20
Small Hotel 24.79 24.73 23.13 23.49 22.64 24.14 21.77
Strip Mall 9.92 17.17 21.23 22.15 19.86 16.02 15.63
Outpatient Healthcare Center 17.16 29.23 35.50 10.23 6.32 4.53 15.68
Warehouse 19.56 23.88 24.75 12.13 9.96 8.69 15.12
Large Office 32.03 53.77 56.38 14.24 8.59 6.78 26.68
Hospital 39.64 49.53 53.35 19.59 16.25 12.78 28.53
Small Office 12.14 20.82 24.23 10.71 8.96 8.11 13.38
Secondary School Summer 22.39 34.68 38.62 13.40 9.09 6.94 16.95
Secondary School Regular 26.78 55.00 53.34 11.89 8.37 6.02 22.97
Large Hotel 33.03 35.91 35.38 34.23 30.37 30.34 29.51
Supermarket 11.20 29.21 42.28 35.77 28.33 24.02 25.49
Full-Service Restaurant 9.00 10.69 12.66 19.42 20.90 21.07 13.05
Midrise Apartment 24.00 26.84 27.49 25.10 21.88 22.03 21.05
Quick-Service Restaurant 6.43 9.57 10.45 14.58 16.27 16.92 10.26

3.2. Data processing

Ry = S )
iyt C’max

Building data. We processed building data from San Antonio, Texas.
First, the addresses, main use, and the construction year of 998 buildings
were collected from Bexar County Appraisal District (Fig. 2a). The ad-
dresses were geocoded to their geographical coordinates using ArcGIS
[53]. Geolocations were added to building footprints generated from
ENVI [54]. Building heights were extracted from LiDAR open-source
data [55] and added to building footprints. The ArcGIS Polygon-to-
Point tool extracted the vertices of the building footprints. Finally, the
studied buildings were categorized based on DOE references for com-
mercial buildings. Fig. 2b shows the number distribution of building
types.

Mobility data. This study processed human mobility data, collected
from smartphone devices, from Cuebiq Inc. Cuebiq collaborates with
over 100 smartphone apps that provide location-based services and thus
is able to gather geolocation data when users utilize these apps. The data
set is collected from approximately 20 percent of the population in San
Antonio. It is from January 1 to September 31, 2017, and comprised
anonymized device ID, latitude, longitude, and corresponding time (in
seconds) data. The latitude and longitude from each entry of the data set
allow us to spatially join the coordinate to the geometry of buildings and
thus estimate occupancies. For better visualization and interpretation,
we converted the time format from Unix timestamp to standard “HH:
MM:SS” format. This dataset has also been used to study urban mobility
and accessibility [56], social connectivity, and commuting and travel
patterns [57,58]. The results from this dataset have shown high
robustness [57-59] compared to those from other datasets collected
from more traditional venues despite certain limitations [60].

3.3. Deriving building occupancy profiles

Obtaining individual building occupancy rate and profile. If the
number of unique users at each hour t € {1,2,...,24} in a buildingion a
given day j is Cj, we observed Cj by counting the distinct users
appearing in the interior of each building using the latitude and longi-
tude of users and building shape coordinates. To obtain the corre-
sponding occupancy rate Ry, we divided Cj by the corresponding
capacity C"*, which was estimated using the maximum observed counts
C, which is the maximum occupancy count over a specific week. We
estimated the building capacity using the weekly maximum count to
incorporate changes in the total population tracked by mobility data.
Hence, the hourly occupancy rates (percentages based on building ca-
pacity) could be obtained as follows:

We constructed an occupancy profile for each building by obtaining
a vector of average hourly occupancy rate: R; = (R;1, Riz, -+, Ri24)’,
whereR;, = niizj'.’;lRijt, and n; is the total number of days on which valid
data were collected for building i. To comply with the DOE convention
and make appropriate comparisons, we obtained R; for weekdays, Sat-
urdays, and other days separately.

Building occupancy profile for each DOE type. Based on the indi-
vidual building occupancy profile R;, we could obtain the aggregated
occupancy profile for each DOE type. As mentioned in the previous
section, we collected individual building-level data of DOE types. If Q is
the building index set for all buildings belonging to DOE type k, we
computed the average occupancy profile for DOE type k as follows:
R=1%y& 2

W @
where Ny is the total number of buildings belonging to DOE type k.

Statistical quantification of building occupancy profile. The mean
vectors of hourly occupancy rates served as good representations of
building occupancy profiles, and we further quantified the variations in
occupancy rates by constructing a confidence region (band) based on
daily observations at the individual building level. Specifically, for each
R;; in R;, we computed the lower and upper bounds of the confidence
limits as R;; £+ 2 x stdevit(Rjit), where stdevi(Ry) the is the standard de-
viation of Ry;.

To quantify the deviation of the occupancy profile from the DOE
reference occupancy profiles at the individual building level, we pro-
posed a discrepancy score computed as follows:

1 24 )
DS =5, ; max (0, Dy, — Uy) + min(0, L, — D;;) 3)

where Dy is the DOE reference occupancy rate at hour t, and Ly = R;; —
2 x stdevy(Ry) and Uy = Ri; +2 x stdevy(Ryi;) are the lower and upper
empirical confidence limits at hour ¢, respectively. The interpretation of
DS; as the average hourly occupancy profile was significantly different
(p < 0.05) from the empirical occupancy profile of the DOE reference
based on the empirical confidence band. Similarly, we computed the

lower and upper limits for R" at the aggregated level, which we denoted
as Lk = (L, 1k, . 1%, ) and U* = (UK, UK, ., U,,)’, respectively.

For each aggregated DOE type, we performed formal statistical hy-
pothesis testing to determine whether the occupancy profile, i.e., the



W. Wu et al.

Applied Energy 278 (2020) 115656

Table 3
Summary statistics of the discrepancy scores for different building types on Weekday, Saturday, and other days.
Weekday Saturday Other
Mean St.dev. Min. Max. Mean St.dev. Min. Max. Mean St.dev. Min. Max.

Medium Office 5.81% 4.09% 1.15% 22.42% 5.31% 5.22% 0.00% 30.42% 0.18% 0.78% 0.00% 4.90%
Stand-Alone Retail 3.84% 5.06% 0.00% 25.83% 11.15% 8.76% 0.10% 39.58% 3.85% 5.75% 0.00% 35.00%
Primary School Summer 3.01% 4.87% 0.00% 27.29% 3.45% 5.67% 0.00% 27.08% 2.01% 2.97% 0.00% 12.50%
Primary School Regular 1.52% 3.62% 0.00% 23.61% 0.60% 1.80% 0.00% 8.33% 1.61% 3.77% 0.00% 16.67%
Small Hotel 10.54% 7.19% 0.00% 42.92% 7.22% 7.97% 0.28% 41.67% 6.25% 9.14% 0.00% 55.00%
Strip Mall 1.40% 1.95% 0.00% 7.75% 6.45% 5.53% 0.00% 22.08% 1.91% 3.31% 0.00% 15.00%
Outpatient Health Care 10.60% 5.36% 0.00% 25.42% 6.06% 4.96% 0.00% 18.96% 1.48% 3.13% 0.00% 15.49%
Warehouse 2.88% 4.82% 0.00% 33.13% 2.22% 3.89% 0.00% 27.50% 1.66% 5.63% 0.00% 60.42%
Large Office 3.79% 1.44% 0.83% 8.71% 7.23% 2.29% 0.52% 10.84% 0.24% 0.96% 0.00% 5.68%
Hospital 7.15% 4.76% 2.62% 14.20% 3.96% 4.00% 0.00% 9.86% 3.24% 3.79% 0.00% 10.81%
Small Office 4.59% 5.10% 0.00% 26.53% 3.60% 4.06% 0.00% 20.42% 1.17% 3.40% 0.00% 25.00%
Secondary School Summer 2.10% 2.91% 0.00% 12.08% 1.75% 4.02% 0.00% 15.97% 0.64% 1.71% 0.00% 6.46%
Secondary School Regular 0.38% 0.38% 0.00% 1.04% 0.18% 0.44% 0.00% 1.39% 0.78% 2.19% 0.00% 6.94%
Large Hotel 14.31% 5.46% 5.20% 27.64% 8.90% 5.63% 2.26% 27.85% 7.02% 6.89% 0.47% 26.62%
Full Service Restaurant 4.37% 3.44% 0.00% 15.66% 5.52% 4.41% 0.06% 20.07% 5.39% 4.30% 0.00% 14.90%
Midrise Apartment 23.82% 10.36% 2.08% 43.45% 14.24% 5.87% 4.86% 26.10% 1.65% 4.18% 0.00% 17.39%
Quick Service Restaurant 6.94% 5.70% 0.21% 18.96% 8.85% 6.38% 0.42% 23.96% 11.34% 8.57% 2.19% 31.46%

Table 4

Average discrepancy scores for different building types during work hours.

Weekday Saturday Other

DOEType All Day Work Hour All Day Work Hour All Day Work Hour
Medium Office 13.73% 23.47% 6.20% 10.49% 0.93% 1.37%
Stand-Alone Retail 12.21% 20.94% 11.20% 19.20% 0.38% 0.65%
Primary School Summer 0.09% 0.16% 0.00% 0.00% 0.00% 0.00%
Primary School Regular 7.39% 12.65% 0.00% 0.00% 0.00% 0.00%
Small Hotel 24.31% 6.20% 14.62% 1.94% 14.83% 5.25%
Strip Mall 8.86% 14.97% 4.77% 8.18% 0.00% 0.00%
Outpatient Health Care 22.56% 35.61% 0.00% 0.00% 0.00% 0.00%
Warehouse 9.94% 17.04% 0.00% 0.00% 0.00% 0.00%
Large Office 11.37% 19.37% 7.48% 12.76% 1.00% 1.64%
Hospital 11.13% 17.85% 0.00% 0.00% 0.30% 0.29%
Small Office 17.08% 29.29% 0.00% 0.00% 0.00% 0.00%
Secondary Summer 1.11% 1.87% 0.24% 0.41% 0.01% 0.01%
Secondary Regular 1.09% 1.74% 1.23% 2.11% 0.03% 0.05%
Large Hotel 24.10% 4.50% 12.15% 0.00% 14.83% 5.42%
Full-Service Restaurant 13.69% 21.71% 7.34% 11.87% 7.38% 12.03%
Midrise Apartment 35.15% 12.17% 20.95% 33.50% 3.99% 4.73%
Quick Service Restaurant 11.35% 17.45% 5.65% 8.88% 7.45% 9.54%

mean vector of hourly occupancy rates, was equivalent to the DOE
reference given the observed data. We relied on Hotelling’s t-squared
statistic [10], which is an extension of Student’s t-test in multivariate
cases, to test the following hypothesis:

Ho : py = povsHy = by # o 4

where g, is the true building occupancy profile for DOE type k, and p,, is
the DOE reference corresponding to the specific building type. We
calculated Hotelling’s t-squared statistic as follows:

7= (R — ) e (R — o) (5)
where

- 1 = =\ (= =\,
Zik:mZ<R,-—R>(Ri—R> 6

ey

. . . =k -
is the sample covariance matrix of R". Furthermore, it is known that

n; — 24
TP F N 7
24(n; — 1) TN )
where F, v, is the F distribution with numerator degrees of freedom p
and denominator degrees of freedom Ny — p. A larger T? value provides

more evidence against Hy, i.e., a large T? value indicates a higher

probability that y, is different from p,,.

3.4. Analyze building energy consumption

Building occupancy behavior plays a key role in determining energy
consumption in the built environment. On the one hand, it determines
when building systems (e.g., lighting and heating, ventilation, and air-
conditioning (HVAC) systems) need to be switched on. On the other
hand, it partially defines the load of these systems, e.g., ventilation rate
and temperature setpoints. Numerous studies have shown that occu-
pants’ behavior can help save up to 50% energy for single-occupancy
offices [61], 23.5% energy consumption of central air-conditioning
systems in campus buildings [62], and up to 41% HVAC energy for of-
fice buildings [63]. In addition, Model Predictive Control framework
incorporating occupancy prediction model is often used to optimize
HVAC controls [64,65,66]. In this study, we simply implemented tem-
perature set-point changes based on the approximate percentage range
of occupancy profiles.

We have chosen CityBES with a web-based platform, developed by
Lawrence Berkeley National Laboratory, as our urban building energy
modeling tool [65,66]. We have selected 359 out of 998 buildings due to
the limitation of CityBES in simulating building types. CityBES uses the
Commercial Building Energy Saver Toolkit [67,68], which builds on
OpenStudio and EnergyPlus to provide energy retrofit analyses of
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Fig. 5. Monthly average building occupancy profiles for each Department of Energy building type on weekdays.
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Fig. 7. Annual end-use energy difference of all the buildings on heating, cooling, and fans between the reference schedule and actual schedule.

individual commercial buildings in US cities. It used a prototype
building database developed by the DOE [7] to generate EnergyPlus
models for six building types in the study area, including small, medium,
and large offices, full-service restaurants, and small and medium re-
tailers. An occupancy profile based on the mean value for each building
type was applied to these models and compared with the reference
models (the basement schedule was not changed, Fig. 3). The HVAC
temperature setpoint schedule was modified accordingly as shown in
Table 1. One should note that the suffix ‘ ori’ means the reference
schedule and ‘_new’ means the mean value from the measured data. A
building was considered unoccupied if the occupancy rate was less than
0.1. Zonal control of the set-point was also applied to all office buildings
(Table 1). For example, for small office buildings, the zones were sorted
according to the ascending order of the floor area and grouped into four
groups which representing around 20%, 5%, 5%, and 70% floor area;
when the occupancy rate was below 0.1, the temperature set-point of all
zones was set as set-back; when it was 0.1-0.2, the first group of zones
were set to the normal set-point; when it was 0.2-0.25, the first two
groups of zones were set to the normal set-point; when it was 0.25-0.3,

10

the first three groups of zones were set to the normal set-point; and when
it exceeded 0.3, all the groups of zones were set to the normal set-point.
All these temperature set-points and set-back values were selected to be
consistent with the DOE reference buildings.

Energy-differences. The energy differences on heating, cooling, fan
and total energy are calculated by dividing energy difference through
the actual schedule with end-use energy consumption in the reference
model:

<E;e - Einod)
- x 100%
E;ef X ©

Energy Differences = (€)]

where Eﬁef and E.,

cooling, or fan) in the reference model or actual schedule, respectively.

oq are the energy consumption by end-use i (heating,

4. Results and discussions

In this section, we present our empirical findings regarding the
comparison of DOE-reference occupancy profiles to the empirically
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Fig. 8. Annual total energy difference of all the buildings by heating, cooling, and fans between the reference schedule and actual schedule.

observed occupancy profiles based on mobility data. We focused on the
following DOE types: small office buildings, medium office buildings,
large office buildings primary schools, secondary schools, warehouses,
quick-service restaurants, full-service restaurants, stand-alone retailers,
outpatient healthcare centers, hospitals, and strip malls. We present the
results for weekdays here and show the results for Saturdays and other
days in the appendix. In the discussion of the findings for Saturdays and
other days, we refer to the relevant section in the appendix.

4.1. Empirical occupancy profiles

Fig. 4 presents the 90% confidence band for the hourly occupancy
profiles of different DOE building types. The boxplots represent the
hourly variations between different buildings of the same type. Except
for some serviced-based building types (e.g., quick-service restaurants,
full-service restaurants, and stand-alone retailers), the variations were
generally larger during peak hours than during other times. Medium
offices and hospitals had the largest hourly variations throughout the
day, whereas large offices and strip malls had the smallest variations.
The confidence bands enabled the comparison of empirical occupancy

11

profiles to those provided by the DOE references. A DOE reference (red
dashed line) outside the confidence band indicated that the empirical
occupancy profile patterns were misaligned with those from the DOE
references. We observed that for most building types, the DOE refer-
ences overestimated the occupancy profile during the day, with the
exception of schools, where the opposite was observed. These differ-
ences significantly impacted energy simulations, as demonstrated in
Section 6.

To further assess the differences between the empirical occupancy
profiles and DOE references, we used Hotelling’s t-test (described in
Section 4.3) to verify the statistical significance. All the differences were
significant with low p-values. Hotelling’s t-test tested the overall sig-
nificance of the differences between the daily profiles and DOE refer-
ences. Hence, for a particular building type, significant differences from
the DOE reference may have occurred at some hours, whereas insig-
nificant differences occurred at others. To demonstrate the hourly dif-
ferences, we summarized the hourly occupancy profiles for the selected
hours in Table 2 and compared them with the average daytime hourly
occupancy rates. The red and blue values respectively indicate occu-
pancy rates that were significantly higher and lower (p < 0.05) than the
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Fig. A4. Monthly average building occupancy profiles within each DOE type for other days.

daily average. The nonsignificant differences are denoted in gray. For
offices and schools, the occupancy rates increased between 7 and 9 AM,
when people started arriving for work and classes. In contrast, occu-
pancy rates decreased between 6 and 8 PM when people started leaving
for home. For service-related building types, such as restaurants, strip
malls, and hotels, the opposite was observed, where occupancy rates
increased during evening hours. For office buildings, the DOE reference
models used the same occupancy profiles, whereas the actual schedules
of the small, medium and large offices differed notably. The occupancy
rates of the three office sizes during office hours were 25, 50, and 60%. A
similar observation was made for healthcare buildings (outpatient

healthcare centers and hospitals) and school buildings (primary and
secondary schools). Hospitals and secondary schools had higher office-
hour occupancy rates than did outpatient healthcare centers (60 vs.
40%) and primary schools (50 vs. 40%), respectively. However, similar
occupancy rates or only slight differences were found for restaurants and
retail buildings.

Table 3 summarizes the average discrepancy scores defined in Sec-
tion 4.2 for each DOE reference building type. The discrepancy scores
reflected the significant deviation from the empirical occupancy profiles
to the DOE reference models. Notably, the large deviations (over 10%
average hourly deviation) observed during weekdays were for midrise
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apartments, large hotels, small hotels, and outpatient healthcare cen-
ters. On Saturdays, the large deviations were for midrise apartments and
stand-alone retailers. On other days, only quick-service restaurants
exhibited a large deviation. The deviations for large offices were much
higher on Saturdays than on weekdays.

Since most of the divergence from the DOE references occur during
work hours (7 AM to 9 PM), we recalculated the average discrepancy
scores between 7 AM to 9 PM and report the results in Table 4.
Comparing these results to Table 3, if the average discrepancy scores are
higher in this table, it means that that the variations from the DOE
references are more severe during the work hours. Among all the re-
ported building types, most of them exhibit this phenomenal except for
Primary School, where the differences are similar.

4.2. Monthly patterns of occupancy profiles

Both occupant behavior and energy usage vary from one month to
another. We, therefore, assessed the monthly patterns of the occupancy
profiles. Fig. 5 presents the monthly (average) occupancy profiles for
each DOE reference building type. For primary and secondary schools,
an expected drop in occupancy rates during summer months occurred.
The variations between the occupancy profiles in different months were
small for most building types. While the overall shape of the profiles
appeared to be similar to those of the DOE references for most building
types, no significant drop occurred at noon in the different office types,
and the occupancy profiles of schools consistently shifted.

4.3. Impacts on building energy usage

Energy end-use with reference schedule. The energy end-use per-
centage of all buildings in the reference schedule is shown in Fig. 6.
Since San Antonio is classified as Climate Zone 2A (hot and humid),
cooling made up a large part of the total energy consumption (20-30%),
whereas heating made up less than 5%. Lighting also consumed a large
part of the total energy, with interior and exterior lighting constituting
20-40% of the total energy. In small offices, medium offices, full-service
restaurants, small retailers, and medium retailers’ fans consumed a large
part (20-40%) of the total energy, but large offices spent less than 5%
energy on fans. This was because these offices used chillers with mul-
tizone variable air volume systems, whereas the other buildings used a
packaged air-conditioner unit with a constant air volume system. HVAC
systems used more than 50% of the total energy in small and medium
office buildings.

Energy differences: HVAC end-use energy differences are described
in Fig. 7. Among the office buildings, the most heating (~55%) and
cooling (~40%) energy was reduced for small offices, but no energy was
reduced on fans, because they use constant air volume systems, and fans
constantly run at the same speed. There was slightly less energy reduced
for medium offices than small offices (~50% for heating and ~30% for
cooling), and even less (~5% for both heating and cooling) for large
offices. This was because large offices had measured occupancy profiles,
which most closely resembled the reference schedule: The peak occu-
pancy rate on weekdays was 64%, whereas those for small and medium
offices were 26 and 48%, respectively. In addition, around 25% fan
energy was reduced for large offices compared to 0% for small and
medium offices since large offices used variable air volume systems. For
the other three building types, full-service restaurants and medium and
small retailers, a similar amount of heating (—2 to 25%) and cooling
(4-15%) energy, but 0% fan energy was reduced. This was also because
these buildings used a constant air volume system.

In general, most total energy differences came from cooling
(0.5-10%). Although 5-60% heating energy was reduced in most cases
(Fig. 7), the total energy difference by heating was less than 5%, because
San Antonio is categorized as Climate Zone 2A and thus needs little
heating during the year (Fig. 8). In addition, heat generation from oc-
cupants also contributes to space heating, and the model with a modified
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schedule with a lower occupancy rate may need more heating in occu-
pied zones. The most energy was reduced for small offices (~15%),
followed by medium offices (~8%). The total energy difference for large
offices dropped to around 1.5%, half of which was via cooling and half
via fans. The reason for the energy difference by fans only existing in
large buildings is explained above. Energy difference by heating was
almost negligible because large office buildings need much less heating
than other building types do because of their smaller surface/volume
ratio and higher internal heat gain (by occupancy, internal lighting, and
equipment). The total energy difference by the other three building
types was relatively consistent (2-3.5%), with around one-third being
contributed by heating and two-thirds by cooling.

5. Conclusions

In this paper, we utilize a rich urban scale mobile positioning data to
introduce a new approach to capture empirical occupancy profiles for
different Department of Energy building types in a city. The empirical
occupancy profiles provide deeper insights regarding more realistic
occupancy profiles compared to the Department of Energy prototype
models. Visualization and statistical testing revealed significant differ-
ences between the empirical occupancy profile and that of almost all
Department of Energy references except for the Primary School building.
Department of Energy prototype models overestimated the occupancy
rate during the daytime for most building types, except for schools, for
which the occupancy rate was notably underestimated. For the same
Department of Energy building type, the confidence band of the
empirical occupancy profiles indicates that there are some variations
that exist among the buildings belong to the same type. Our monthly
occupancy profile plots demonstrate that there are some variations
among different months to a certain degree, especially for secondary
schools where the differences are most significant. That is the occupancy
rate for the secondary schools that appear to be significantly lower in
summer months than the winter months. The average discrepancy
scores, which can be interpreted as the significant average hourly de-
viation from the Department of Energy prototype, are as much as
23.82% for weekdays, as much as 14.24% for Saturdays, and as much as
11.34% for other days.

The effect of the more realistic occupancy profiles on urban-scale
building energy performance was investigated via an urban-scale
building energy modeling platform. A comparison between models
with derived and reference schedules demonstrated that (1) after using
the derived schedule, there are up to 60% heating energy and 40%
cooling energy differences among all the building types, (2) for restau-
rant and retail buildings, there are up to 25% heating energy and15%
cooling energy differences, (3) small office buildings have more energy
differences (15%) than medium (8%) or large ones (1.5%), because a
larger schedule discrepancy was found in smaller offices, and (4) less
than 5% in whole building energy differences were observed for build-
ings, except for small and medium offices, because these types of
buildings consumed most energy (>50%) through HVAC systems. Those
results can be applied in the real applications on: (1) Community and
district level building design and operation; (2) Demand side manage-
ment for a cluster of buildings; and (3) Grid interactive-efficient
buildings.

The limitations for this study are: (1) Since this study only focused
on the effect of occupancy profiles on HVAC systems, energy differences
by lighting and plug loads due to reduced profile was not considered; (2)
Only six building types were used in the selected district, and the effects
of the measured occupancy profiles on other building types need to be
studied in the future; (3) This study adopted deterministic occupancy
profiles and ignored variations in occupancy profiles between different
buildings and over time; (4) In this study, while analyzing the impacts of
more representative occupancy profiles on buildings’ energy usages, we
assume that the building knows the rough occupancy rate in real-time.
This is currently a challenge for an existing building. However, there
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are on-going research projects that aim to address those challenges in
both hardware and software levels [69]; (5) With the current approach,
we observed that for Stand-alone retailers, the derived occupancy profile
is much lower than Department of Energy references. This may be
caused by the noises in the mobility data for this specific type of
building. Further investigation is needed; (6) Urban scale energy anal-
ysis on peak heating or cooling demand, peak diversity and capacity
factors, and load duration curves are out of the scope of this study, and
will be analyzed in the future; (7) mobility data can suffer from repre-
sentativeness issues caused by their socio-economic characteristics,
meaning that more data can be generated from advanced (e.g., wealthy)
neighborhoods and less from disadvantaged (e.g., poor) ones. Future
research should, therefore, investigate and solve such potential biases.
Moreover, we used all visited geolocations to indicate the occupancy
presence, and future studies should apply more advanced algorithms to
identify people’s stays (i.e., visits) and time of occupancy.
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