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H I G H L I G H T S  

• Develop a novel mobility-based approach to derive urban scale building occupant profiles. 
• Compare empirically derived profiles with the existing DoE reference model. 
• Quantify the differences using statistical methods. 
• Urban scale energy simulations show up to 60% differences in heating and 40% in cooling energy consumption.  

A R T I C L E  I N F O   

Keywords: 
Occupancy profile 
Urban mobility 
Global positioning system 
Urban-scale building energy modeling 

A B S T R A C T   

In the US, people spend more than 90% of their time in buildings, which contributes to more than 70% of overall 
electricity usage in the country. Occupant behavior is becoming a leading factor impacting energy consumption 
in buildings. Existing occupant-behavior studies are often limited to a single building and individual behavior, 
such as presence or interactions in confined spaces. Moreover, studies modeling occupant behavior at the 
building or community level are limited. With the development of the Internet of Things, mobile positioning data 
are available through social media and location-based service applications. The goal of this study is to analyze 
the impacts of more representative occupancy profiles, derived from high resolution urban scale mobile position 
data, on building energy consumption. . A pilot study was conducted on more than 900 buildings in downtown 
San Antonio, Texas, with billions of mobile positioning data. We then compared these profiles with the existing 
Department of Energy prototype models and quantified the differences using a statistical method. On average, 
the differences in occupancy rates between the ones derived from the empirical profile and the ones from the 
Department of Energy reference ranged from −30% to 70%. The realistic derived profiles are then simulated in 
the CityBES. The results show that the predicted cooling energy demand is reduced by up to 40% while the 
heating energy demand is reduced by up to 60%. This study, therefore, advances knowledge of urban planning as 
well as urban-scale energy modeling and optimization.   

1. Introduction 

By 2050, 70% of the world’s population is projected to live and work 
in cities [1], with two-thirds of global primary energy consumption 
attributed to cities, resulting in the production of 73% of global energy- 
related greenhouse gas emissions [2]. In the US, people currently spend 
more than 90% of their time in buildings [3], which contributes to more 

than 70% of overall electricity usage in the country [4]. Occupant 
behavior is a leading factor influencing energy consumption in buildings 
[5]. Existing occupant behavior studies are often isolated and focus on 
individual behavior, such as presence or interactions [6–11] in a single 
space or building. Recent studies have addressed various optimization, 
control, and occupancy-related challenges for the operation of individ
ual buildings [12,13]. However, studies modeling occupant behavior at 
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community and urban levels are limited [14] but are necessary for 
urban-scale energy modeling and energy policy decision making. 

Urban-scale energy modeling tools have been used for spatial anal
ysis of energy consumption [15–17], retrofitting of energy-related policy 
development based on building occupancy profiles [18–21], and design 
and planning of new cities to optimize energy use [22]. However, most 
current urban-scale energy modeling tools use pre-defined or synthetic 
data to simulate occupancy profiles [5], which results in obvious energy 
differences compared with the use of practical occupancy profiles 
[23,24]. Existing studies did not use actual occupancy profiles owing to 
the dearth of such datasets. In addition, it is almost impossible to obtain 
information for a large number of buildings because of the high cost of 
occupant counting sensors. Nonetheless, with the development of the 
Internet of Things, researchers are considering data from mobile phones 
and Wi-Fi-based sensor data [25,26]. Recent research on urban mobility 
has uncovered the potential of deriving occupancy locations using mo
bile positioning data [12,27]. Furthermore, geosocial network data, 
such as Twitter and Foursquare, have been used to study the spatio
temporal patterns of occupants in urban environments [28–30]. 

In this study, we explored the possibility to use mobile position data 
to derive occupancy profiles at individual building level and evaluate 
their impacts on building energy consumption. The paper is organized as 
the following: we summarize the recent developments and research gaps 
in Section 2. In Section 3, we describe the overall methodology including 
data processing, deriving empirical occupancy profiles, statistical 
quantification method and urban scale energy modeling. We present the 
results in Section 4. We summarize our concluding remarks and limi
tation of this study in Section 7. 

2. Literature review and research gaps 

2.1. Literature review 

Occupant presence modeling. Arrival, departure, and duration of 
occupancy absence are important factors influencing human–building 
interactions, such as lighting, thermostats, window blinds, and plug 
behaviors [31,32]. The above behaviors all depend on occupancy 
presence. Modern occupant presence modeling approaches fall into 
three general categories: scheduled occupancy patterns, stochastic 
models, and machine learning methods. Scheduled occupancy patterns 
are the most commonly used in industry but can lead to errors as great as 
600% [33]. These patterns are popular because most building simula
tion software uses this type of model. A typical example is the diversity 
factor, with a previous study showing a 46% difference when compared 
to actual profiles [5,34,35]. Stochastic models such as the discrete-time 
Markov chain [36,37] used connected thermostat data to detect occu
pancy presence in residential buildings [38]. Most recently, the Gated 
Recurrent Unit Network has been applied to model the trace of occupant 
location [39] with a root mean square error of 4.79 cm for a single 
occupant in terms of spatial coordinates in a room. 

Occupant sensing. Happle et al. [9] discussed the importance of 
considering occupant behavior models while planning building energy 
consumption and examined different occupancy behavior models, such 
as a deterministic space-based approach, which is a rule-based occupant 
behavior model, a stochastic space-based approach, which is based on 
occupant behavior in the built environment over different time spans on 
the building scale, and a stochastic person-based approach, which con
siders different time spans yet focuses on individuals. Because of the 
diversity of occupant behavior, the stochastic individual-based 
approach is superior to the stochastic space-based approach. To over
come the limitation of implementing this method on both the district 
and individual building levels, Happle et al. implemented a novel 
method, namely an “activity-based multi-agent approach.” The occu
pant activity and appliance usage were monitored to model urban 
building occupancy. 

General occupancy pattern detection methods for urban-scale 

modeling are commonly based on mobile internet-based data, cellular 
service data, Wi-Fi-based sensor data, and geosocial network data, such 
as Twitter and Foursquare. The prevalence of smartphone usage has 
enabled the tracking of human movement and occupancy patterns [25]. 
GPS sensor logs from smartphones have been used as a data source in 
fusion frameworks to study travel mode detection [40], since such 
location data have a high spatiotemporal resolution. Gu et al. [12] 
applied modeling occupancy behavior on an urban scale. K-means 
clustering has been applied to extract typical occupancy data. Occu
pancy data extracted from 60 buildings were classified into 7 categories 
and 19 sub-categories. Different building types showed different occu
pancy profiles and densities, and the same building types in different 
areas followed different occupancy patterns. Pang et al. [27] used mo
bile internet-based positioning data to model occupancy behavior in the 
built environment. Occupancy data were integrated with the building 
energy simulation [41] in EnergyPlus, and the results showed that mo
bile internet-based positioning data increased the precision accuracy of 
building energy models. Using the TimeGeo framework, Barbour et al. 
[42] estimated building occupancy in the city of Boston. Occupancy 
schedules were extracted for residential, commercial, and industrial 
buildings at urban scale. Compared with DOE standard occupancy 
schedules, their study showed potential energy savings up to 21% for 
commercial buildings and 15% for residential buildings. However, the 
building occupancy data generated by TimeGeo framework is not purely 
from raw GPS data. In order to simulate the whole population in each 
census tract, the TimeGeo framework expands active phone users to the 
population of each census tract in Boston’s metro area. To generate in
dividual building occupancy profiles, the TimeGeo framework uses a 
time-inhomogeneous Markov chain model to model temporal choices, 
and uses a rank-based exploration and preferential return (r-EPR) model 
to generate spatial choices. Hence, building occupancy profiles from 
TimeGEO framework are synthetical data. Happle et al. [43] created 
context-specific, data-driven occupancy schedules by utilizing location- 
based services data from Google Maps. Comparing with DOE references, 
it showed that the use of standard schedules could lead to over
estimation of urban scale energy demand. However, Happle’s study is 
limited in downtown areas of 13 selected big cities with occupancy data 
from commercial buildings only. 

Mohammadi and Taylor [44] discussed the spatiotemporal rela
tionship between human mobility and energy consumption in Chicago, 
IL. These authors collected Twitter and electricity consumption data for 
over one year. To determine the spatiotemporal pattern of occupants in 
an urban environment, they used a spatial autoregression model. The 
gyration radius was used to determine returners’ intra-urban mobility. 
Building on previous work on the dichotomy of human mobility [45], 
Mohammadi and Taylor [28] explored two major network mobility 
patterns in urban environments, namely returners and explorers. Re
turners’ mobility networks were dominated by a few frequently visited 
locations, but explorers’ mobility network patterns were much larger. 
Energy consumption in urban environments did not solely depend on 
individual building occupancy level, as the authors provided insight into 
the spill-over effect of neighboring buildings. Thus, a better under
standing of urban mobility patterns will likely improve the prediction, 
management, and efficient allocation of resources [5,8]. Wang et al. 
[30] explored urban human mobility patterns to investigate the social 
nature of people in 50 large American cities. Other studies also used 
geotagged tweets to estimate home and work locations and identify 
peoples’ commutes on the city scale [14,46]. Riascos and Mateos [29] 
discussed human mobility in urban areas using data from Foursquare, a 
location-based networking platform. The co-presence of people was 
analyzed on a temporally and spatially. Social network data were used to 
study occupancy behavior patterns in New York and Tokyo metropolitan 
areas. Their travel distances and co-presence in public establishments, 
such as universities, bars, and restaurants, were examined to elucidate 
these patterns. 

Urban scale energy modeling platform: Urban building energy 
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modeling (UBEM) platform is essential for building energy studies at an 
urban scale, and it supports researchers to model a large group of 
buildings effectively. UBEMs within the literature can be classified into 
the top-down approach and bottom-up approach. Top-down (i.e., data- 
driven) models always include economic variables and statistical in
formation, and those models are primarily based on macro-economic 
modeling principles and techniques. However, the bottom-up 
approach (i.e., Model-based building performance simulation) tends to 
group buildings with similar characteristics into one category which is 
the archetype. Those characteristics include building geometries, 
structural properties, building use, etc. 

Bottom-up models include CityBES [47] UMI [48], HUES [49], 
TEASER [50], CitySim [51], and SUNtool [52]. CityBES was developed 
by Lawrence Berkeley National Laboratory. CityBES [47] is a web-based 
platform for urban-scale building energy modeling and analysis. It uses 
an international open data standard – CityGML for exchanging and 
representing 3D city building models. CityBES is built on OpenStudio 
and EnergyPlus to simulate building energy use and savings from 
energy-efficient retrofits. Reinhart et al. [48] developed a new 
Rhinoceros-based urban modeling design tool, UMI, to study operational 
energy, daylighting, outdoor comfort and walkability evaluations at the 
district level. UMI uses EnergyPlus, Radiance/Daysim as simulation 
engines. HUES platform is an extendable simulation environment for the 
study of urban multi-energy systems. TEASER, CitySim and SUNtool are 
only designed for studying operational building energy usages. 

2.2. Summary and research gaps 

Despite key findings from the abovementioned studies, critical 
knowledge gaps remain, as discussed below:  

(1) Lack of an urban scale mobility data set to create urban scale 
occupancy profiles. Compared with previous studies 
[12,27,42,43], the uniqueness of this study is that it derived oc
cupancy profiles for all DOE referenced building type at an urban 
scale. For example, Barbour’s study only investigated occupancy 
data for 3 types of buildings, Happle’s study only focused on 
commercial buildings, Gu et al. extracted occupancy data for 7 

building types, Pang et al. investigated occupancy data for office 
buildings only, but this study covered 16 different building types.  

(2) Lack of a statistical method to quantify the differences, in terms of 
occupancy rate and profiles, between derived and those from 
DOE prototype models. The existing studies focus on deriving and 
visualizing the occupancy profiles based on different data sour
ces. However, how to quantify and statistically compare the dif
ferences between the derived empirical occupancy profiles to the 
DOE prototype models is still missing. 

(3) Lack of a holistic assessment of the impacts of more representa
tive occupancy profiles on urban-scale building energy usages. 
Previous studies either did not address the differences in at the 
individual building energy usage level or only focuses on a 
limited number and type of buildings. For example, Barbour’s 
study only investigated building energy consumption at census 
tract level. In this paper, we integrated derived occupancy pro
files from mobile position data with an urban scale energy 
simulation platform-CityBES to evaluate such impacts. 

3. Methodology 

3.1. Overview 

Fig. 1 shows the overview of the methodology in this paper. First, 
ArcGIS and LiDAR data were processed to get basic building geometry 
data. Positioning data collected from mobile phones were processed 
used to extract the occupancy profile patterns of more than 900 build
ings on an urban scale. We categorized these buildings according to the 
16 reference building types of the US Department of Energy (DOE) [7], 
and we compared the derived schedules with the default occupancy 
profiles of these 16 building types. A statistical method was then 
developed to quantify the differences in these schedules. As a pilot 
study, this study focused on analysis methods and preliminary results 
with two exemplary building types as case studies. Finally, the assess
ment on the impacts of energy usages from the more representative 
occupancy profiles was conducted, comparing with those from DOE 
models. 

Fig. 2. Three-dimensional illustration and distribution of selected buildings from different Department of Energy reference building types.  
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Fig. 1. Overview of the methodology.  
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Fig. 3. Comparison between the reference schedule and the actual schedule of all building types.  

Table 1 
Temperature set-point control for the actual schedule cases for each building type.   

Occupancy rate Note 

<0.1 0.1–0.2 0.2–0.25 0.25–0.3 0.3–0.4 0.4–0.5 0.5–0.7 0.7–1.0 

Small Office All 
Ts 

~20% zones 
Tn, otherwise 
Ts 

~25% zones 
Tn, otherwise 
Ts 

~30% zones 
Tn, otherwise 
Ts 

100% zones Tn Setback set-point Ts: 
29.44 ◦C for cooling 
and 15.56 ◦C for 
heating; 
Normal set-point Tn: 
23.89 ◦C for cooling 
and 21.11 ◦C for 
heating 

Medium Office All 
Ts 

~30% zones Tn, otherwise Ts ~40% zones 
Tn, otherwise 
Ts 

~50% zones 
Tn, otherwise 
Ts 

100% zones Tn 

Large Office All 
Ts 

~30% zones Tn, otherwise Ts ~50% zones Tn, otherwise Ts ~70% zones 
Tn, otherwise 
Ts 

100% 
zones Tn 

Full-Service 
Restaurant 

All 
Ts 

All Tn Setback set-point Ts: 
30.00 ◦C for cooling 
and 15.60 ◦C for 
heating; 
Normal set-point Tn: 
24.00 ◦C for cooling 
and 21.00 ◦C for 
heating 

Small and 
Medium 
Retailers 

All 
Ts 

All Tn Setback set-point Ts: 
29.44 ◦C for cooling 
and 15.56 ◦C for 
heating; 
Normal set-point Tn: 
23.89 ◦C for cooling 
and 21.11 ◦C for 
heating 

Note: Tn: normal setpoint; Ts: setback setpoint. 
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Fig. 4. Empirical confidence bands for median occupancy profiles in each Department of Energy building type on weekdays.  
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3.2. Data processing 

Building data. We processed building data from San Antonio, Texas. 
First, the addresses, main use, and the construction year of 998 buildings 
were collected from Bexar County Appraisal District (Fig. 2a). The ad
dresses were geocoded to their geographical coordinates using ArcGIS 
[53]. Geolocations were added to building footprints generated from 
ENVI [54]. Building heights were extracted from LiDAR open-source 
data [55] and added to building footprints. The ArcGIS Polygon-to- 
Point tool extracted the vertices of the building footprints. Finally, the 
studied buildings were categorized based on DOE references for com
mercial buildings. Fig. 2b shows the number distribution of building 
types. 

Mobility data. This study processed human mobility data, collected 
from smartphone devices, from Cuebiq Inc. Cuebiq collaborates with 
over 100 smartphone apps that provide location-based services and thus 
is able to gather geolocation data when users utilize these apps. The data 
set is collected from approximately 20 percent of the population in San 
Antonio. It is from January 1 to September 31, 2017, and comprised 
anonymized device ID, latitude, longitude, and corresponding time (in 
seconds) data. The latitude and longitude from each entry of the data set 
allow us to spatially join the coordinate to the geometry of buildings and 
thus estimate occupancies. For better visualization and interpretation, 
we converted the time format from Unix timestamp to standard “HH: 
MM:SS” format. This dataset has also been used to study urban mobility 
and accessibility [56], social connectivity, and commuting and travel 
patterns [57,58]. The results from this dataset have shown high 
robustness [57–59] compared to those from other datasets collected 
from more traditional venues despite certain limitations [60]. 

3.3. Deriving building occupancy profiles 

Obtaining individual building occupancy rate and profile. If the 
number of unique users at each hour t ∈ {1, 2, ..., 24} in a building i on a 
given day j is Cijt, we observed Cijt by counting the distinct users 
appearing in the interior of each building using the latitude and longi
tude of users and building shape coordinates. To obtain the corre
sponding occupancy rate Rijt , we divided Cijt by the corresponding 
capacity Cmax

i , which was estimated using the maximum observed counts 
Cmax

i , which is the maximum occupancy count over a specific week. We 
estimated the building capacity using the weekly maximum count to 
incorporate changes in the total population tracked by mobility data. 
Hence, the hourly occupancy rates (percentages based on building ca
pacity) could be obtained as follows: 

Rijt =
Cijt

Cmax
i

(1) 

We constructed an occupancy profile for each building by obtaining 
a vector of average hourly occupancy rate: Ri = (Ri,1, Ri,2, ⋯, Ri,24)’, 
where Ri,t = 1

ni

∑ni
j=1Rijt, and ni is the total number of days on which valid 

data were collected for building i. To comply with the DOE convention 
and make appropriate comparisons, we obtained Ri for weekdays, Sat
urdays, and other days separately. 

Building occupancy profile for each DOE type. Based on the indi
vidual building occupancy profile Ri, we could obtain the aggregated 
occupancy profile for each DOE type. As mentioned in the previous 
section, we collected individual building-level data of DOE types. If Ωk is 
the building index set for all buildings belonging to DOE type k, we 
computed the average occupancy profile for DOE type k as follows: 

Rk
=

1
Nk

∑

i∈Ωk

Ri (2)  

where Nk is the total number of buildings belonging to DOE type k. 
Statistical quantification of building occupancy profile. The mean 

vectors of hourly occupancy rates served as good representations of 
building occupancy profiles, and we further quantified the variations in 
occupancy rates by constructing a confidence region (band) based on 
daily observations at the individual building level. Specifically, for each 
Ri,t in Ri, we computed the lower and upper bounds of the confidence 
limits as Ri,t ± 2 × stdevit(Rijt), where stdevit(Rijt) the is the standard de
viation of Rijt. 

To quantify the deviation of the occupancy profile from the DOE 
reference occupancy profiles at the individual building level, we pro
posed a discrepancy score computed as follows: 

DSi =
1
24

∑24

t=1
max(0, Dit − Uit) + min(0, Lit − Dit) (3)  

where Dit is the DOE reference occupancy rate at hour t, and Lit = Ri,t −

2 × stdevit(Rijt) and Uit = Ri,t + 2 × stdevit(Rijt) are the lower and upper 
empirical confidence limits at hour t, respectively. The interpretation of 
DSi as the average hourly occupancy profile was significantly different 
(p ≤ 0.05) from the empirical occupancy profile of the DOE reference 
based on the empirical confidence band. Similarly, we computed the 

lower and upper limits for Rk at the aggregated level, which we denoted 
as Lk = (Lk

1, Lk
2, .., Lk

24, )’ and Uk = (Uk
1,Uk

2, ..,Uk
24, )’, respectively. 

For each aggregated DOE type, we performed formal statistical hy
pothesis testing to determine whether the occupancy profile, i.e., the 

Table 2 
Comparison of hourly occupancy rates (%) for selected hours and the overall daily average on weekdays for different building types.  

Department of energy building type 7AM 8AM 9AM 6PM 7PM 8PM All Day 

Medium Office  21.33  34.69  39.44  14.89  11.10  9.97  20.32 
Stand-Alone Retailer  10.33  14.94  16.81  15.56  14.87  13.40  12.78 
Primary School Summer  23.64  32.08  30.98  9.41  6.52  5.25  15.05 
Primary School Regular  33.83  37.40  36.17  9.75  5.90  3.88  17.20 
Small Hotel  24.79  24.73  23.13  23.49  22.64  24.14  21.77 
Strip Mall  9.92  17.17  21.23  22.15  19.86  16.02  15.63 
Outpatient Healthcare Center  17.16  29.23  35.50  10.23  6.32  4.53  15.68 
Warehouse  19.56  23.88  24.75  12.13  9.96  8.69  15.12 
Large Office  32.03  53.77  56.38  14.24  8.59  6.78  26.68 
Hospital  39.64  49.53  53.35  19.59  16.25  12.78  28.53 
Small Office  12.14  20.82  24.23  10.71  8.96  8.11  13.38 
Secondary School Summer  22.39  34.68  38.62  13.40  9.09  6.94  16.95 
Secondary School Regular  26.78  55.00  53.34  11.89  8.37  6.02  22.97 
Large Hotel  33.03  35.91  35.38  34.23  30.37  30.34  29.51 
Supermarket  11.20  29.21  42.28  35.77  28.33  24.02  25.49 
Full-Service Restaurant  9.00  10.69  12.66  19.42  20.90  21.07  13.05 
Midrise Apartment  24.00  26.84  27.49  25.10  21.88  22.03  21.05 
Quick-Service Restaurant  6.43  9.57  10.45  14.58  16.27  16.92  10.26  
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mean vector of hourly occupancy rates, was equivalent to the DOE 
reference given the observed data. We relied on Hotelling’s t-squared 
statistic [10], which is an extension of Student’s t-test in multivariate 
cases, to test the following hypothesis: 

H0 : μk = μ0vsH1 : μk ∕= μ0 (4)  

where μk is the true building occupancy profile for DOE type k, and μ0 is 
the DOE reference corresponding to the specific building type. We 
calculated Hotelling’s t-squared statistic as follows: 

T2 =
(
Rk

− μ0
)’Σ̂

R
k

−1(
Rk

− μ0
)

(5)  

where 

Σ̂
R

k =
1

Nk(Nk − 1)

∑

i∈Ωk

(
Ri − Rk

)(
Ri − Rk

)
’ (6)  

is the sample covariance matrix of Rk. Furthermore, it is known that 

ni − 24
24(ni − 1)

T2 Fp,Nk−p (7)  

where Fp,Nk−p is the F distribution with numerator degrees of freedom p 
and denominator degrees of freedom Nk − p. A larger T2 value provides 
more evidence against H0, i.e., a large T2 value indicates a higher 

probability that μk is different from μ0. 

3.4. Analyze building energy consumption 

Building occupancy behavior plays a key role in determining energy 
consumption in the built environment. On the one hand, it determines 
when building systems (e.g., lighting and heating, ventilation, and air- 
conditioning (HVAC) systems) need to be switched on. On the other 
hand, it partially defines the load of these systems, e.g., ventilation rate 
and temperature setpoints. Numerous studies have shown that occu
pants’ behavior can help save up to 50% energy for single-occupancy 
offices [61], 23.5% energy consumption of central air-conditioning 
systems in campus buildings [62], and up to 41% HVAC energy for of
fice buildings [63]. In addition, Model Predictive Control framework 
incorporating occupancy prediction model is often used to optimize 
HVAC controls [64,65,66]. In this study, we simply implemented tem
perature set-point changes based on the approximate percentage range 
of occupancy profiles. 

We have chosen CityBES with a web-based platform, developed by 
Lawrence Berkeley National Laboratory, as our urban building energy 
modeling tool [65,66]. We have selected 359 out of 998 buildings due to 
the limitation of CityBES in simulating building types. CityBES uses the 
Commercial Building Energy Saver Toolkit [67,68], which builds on 
OpenStudio and EnergyPlus to provide energy retrofit analyses of 

Table 3 
Summary statistics of the discrepancy scores for different building types on Weekday, Saturday, and other days.   

Weekday Saturday Other 

Mean St.dev. Min. Max. Mean St.dev. Min. Max. Mean St.dev. Min. Max. 

Medium Office  5.81%  4.09%  1.15%  22.42%  5.31%  5.22%  0.00%  30.42%  0.18%  0.78%  0.00%  4.90% 
Stand-Alone Retail  3.84%  5.06%  0.00%  25.83%  11.15%  8.76%  0.10%  39.58%  3.85%  5.75%  0.00%  35.00% 
Primary School Summer  3.01%  4.87%  0.00%  27.29%  3.45%  5.67%  0.00%  27.08%  2.01%  2.97%  0.00%  12.50% 
Primary School Regular  1.52%  3.62%  0.00%  23.61%  0.60%  1.80%  0.00%  8.33%  1.61%  3.77%  0.00%  16.67% 
Small Hotel  10.54%  7.19%  0.00%  42.92%  7.22%  7.97%  0.28%  41.67%  6.25%  9.14%  0.00%  55.00% 
Strip Mall  1.40%  1.95%  0.00%  7.75%  6.45%  5.53%  0.00%  22.08%  1.91%  3.31%  0.00%  15.00% 
Outpatient Health Care  10.60%  5.36%  0.00%  25.42%  6.06%  4.96%  0.00%  18.96%  1.48%  3.13%  0.00%  15.49% 
Warehouse  2.88%  4.82%  0.00%  33.13%  2.22%  3.89%  0.00%  27.50%  1.66%  5.63%  0.00%  60.42% 
Large Office  3.79%  1.44%  0.83%  8.71%  7.23%  2.29%  0.52%  10.84%  0.24%  0.96%  0.00%  5.68% 
Hospital  7.15%  4.76%  2.62%  14.20%  3.96%  4.00%  0.00%  9.86%  3.24%  3.79%  0.00%  10.81% 
Small Office  4.59%  5.10%  0.00%  26.53%  3.60%  4.06%  0.00%  20.42%  1.17%  3.40%  0.00%  25.00% 
Secondary School Summer  2.10%  2.91%  0.00%  12.08%  1.75%  4.02%  0.00%  15.97%  0.64%  1.71%  0.00%  6.46% 
Secondary School Regular  0.38%  0.38%  0.00%  1.04%  0.18%  0.44%  0.00%  1.39%  0.78%  2.19%  0.00%  6.94% 
Large Hotel  14.31%  5.46%  5.20%  27.64%  8.90%  5.63%  2.26%  27.85%  7.02%  6.89%  0.47%  26.62% 
Full Service Restaurant  4.37%  3.44%  0.00%  15.66%  5.52%  4.41%  0.06%  20.07%  5.39%  4.30%  0.00%  14.90% 
Midrise Apartment  23.82%  10.36%  2.08%  43.45%  14.24%  5.87%  4.86%  26.10%  1.65%  4.18%  0.00%  17.39% 
Quick Service Restaurant  6.94%  5.70%  0.21%  18.96%  8.85%  6.38%  0.42%  23.96%  11.34%  8.57%  2.19%  31.46%  

Table 4 
Average discrepancy scores for different building types during work hours.   

Weekday Saturday Other 

DOEType All Day Work Hour All Day Work Hour All Day Work Hour 

Medium Office  13.73%  23.47%  6.20%  10.49%  0.93%  1.37% 
Stand-Alone Retail  12.21%  20.94%  11.20%  19.20%  0.38%  0.65% 
Primary School Summer  0.09%  0.16%  0.00%  0.00%  0.00%  0.00% 
Primary School Regular  7.39%  12.65%  0.00%  0.00%  0.00%  0.00% 
Small Hotel  24.31%  6.20%  14.62%  1.94%  14.83%  5.25% 
Strip Mall  8.86%  14.97%  4.77%  8.18%  0.00%  0.00% 
Outpatient Health Care  22.56%  35.61%  0.00%  0.00%  0.00%  0.00% 
Warehouse  9.94%  17.04%  0.00%  0.00%  0.00%  0.00% 
Large Office  11.37%  19.37%  7.48%  12.76%  1.00%  1.64% 
Hospital  11.13%  17.85%  0.00%  0.00%  0.30%  0.29% 
Small Office  17.08%  29.29%  0.00%  0.00%  0.00%  0.00% 
Secondary Summer  1.11%  1.87%  0.24%  0.41%  0.01%  0.01% 
Secondary Regular  1.09%  1.74%  1.23%  2.11%  0.03%  0.05% 
Large Hotel  24.10%  4.50%  12.15%  0.00%  14.83%  5.42% 
Full-Service Restaurant  13.69%  21.71%  7.34%  11.87%  7.38%  12.03% 
Midrise Apartment  35.15%  12.17%  20.95%  33.50%  3.99%  4.73% 
Quick Service Restaurant  11.35%  17.45%  5.65%  8.88%  7.45%  9.54%  
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Fig. 5. Monthly average building occupancy profiles for each Department of Energy building type on weekdays.  
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Fig. 6. Annual energy end-use percentage of all buildings with Department of Energy reference schedule.  
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individual commercial buildings in US cities. It used a prototype 
building database developed by the DOE [7] to generate EnergyPlus 
models for six building types in the study area, including small, medium, 
and large offices, full-service restaurants, and small and medium re
tailers. An occupancy profile based on the mean value for each building 
type was applied to these models and compared with the reference 
models (the basement schedule was not changed, Fig. 3). The HVAC 
temperature setpoint schedule was modified accordingly as shown in 
Table 1. One should note that the suffix ‘_ori’ means the reference 
schedule and ‘_new’ means the mean value from the measured data. A 
building was considered unoccupied if the occupancy rate was less than 
0.1. Zonal control of the set-point was also applied to all office buildings 
(Table 1). For example, for small office buildings, the zones were sorted 
according to the ascending order of the floor area and grouped into four 
groups which representing around 20%, 5%, 5%, and 70% floor area; 
when the occupancy rate was below 0.1, the temperature set-point of all 
zones was set as set-back; when it was 0.1–0.2, the first group of zones 
were set to the normal set-point; when it was 0.2–0.25, the first two 
groups of zones were set to the normal set-point; when it was 0.25–0.3, 

the first three groups of zones were set to the normal set-point; and when 
it exceeded 0.3, all the groups of zones were set to the normal set-point. 
All these temperature set-points and set-back values were selected to be 
consistent with the DOE reference buildings. 

Energy-differences. The energy differences on heating, cooling, fan 
and total energy are calculated by dividing energy difference through 
the actual schedule with end-use energy consumption in the reference 
model: 

Energy Differences =

(
Ei

ref − Ei
mod

)

Ei
ref

× 100% (8)  

where Ei
ref and Ei

mod are the energy consumption by end-use i (heating, 
cooling, or fan) in the reference model or actual schedule, respectively. 

4. Results and discussions 

In this section, we present our empirical findings regarding the 
comparison of DOE-reference occupancy profiles to the empirically 

Fig. 7. Annual end-use energy difference of all the buildings on heating, cooling, and fans between the reference schedule and actual schedule.  
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observed occupancy profiles based on mobility data. We focused on the 
following DOE types: small office buildings, medium office buildings, 
large office buildings primary schools, secondary schools, warehouses, 
quick-service restaurants, full-service restaurants, stand-alone retailers, 
outpatient healthcare centers, hospitals, and strip malls. We present the 
results for weekdays here and show the results for Saturdays and other 
days in the appendix. In the discussion of the findings for Saturdays and 
other days, we refer to the relevant section in the appendix. 

4.1. Empirical occupancy profiles 

Fig. 4 presents the 90% confidence band for the hourly occupancy 
profiles of different DOE building types. The boxplots represent the 
hourly variations between different buildings of the same type. Except 
for some serviced-based building types (e.g., quick-service restaurants, 
full-service restaurants, and stand-alone retailers), the variations were 
generally larger during peak hours than during other times. Medium 
offices and hospitals had the largest hourly variations throughout the 
day, whereas large offices and strip malls had the smallest variations. 
The confidence bands enabled the comparison of empirical occupancy 

profiles to those provided by the DOE references. A DOE reference (red 
dashed line) outside the confidence band indicated that the empirical 
occupancy profile patterns were misaligned with those from the DOE 
references. We observed that for most building types, the DOE refer
ences overestimated the occupancy profile during the day, with the 
exception of schools, where the opposite was observed. These differ
ences significantly impacted energy simulations, as demonstrated in 
Section 6. 

To further assess the differences between the empirical occupancy 
profiles and DOE references, we used Hotelling’s t-test (described in 
Section 4.3) to verify the statistical significance. All the differences were 
significant with low p-values. Hotelling’s t-test tested the overall sig
nificance of the differences between the daily profiles and DOE refer
ences. Hence, for a particular building type, significant differences from 
the DOE reference may have occurred at some hours, whereas insig
nificant differences occurred at others. To demonstrate the hourly dif
ferences, we summarized the hourly occupancy profiles for the selected 
hours in Table 2 and compared them with the average daytime hourly 
occupancy rates. The red and blue values respectively indicate occu
pancy rates that were significantly higher and lower (p ≤ 0.05) than the 

Fig. 8. Annual total energy difference of all the buildings by heating, cooling, and fans between the reference schedule and actual schedule.  
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Warehouse                    Primary School Regular  Primary School Summer

Secondary School Regular  Secondary School Summer

Small Office Medium Office           Large Office

Quick-Service Restaurant Full-Service Restaurant             Stand-Alone Retailer

Outpatient Healthcare building Hospital Strip Mall

Fig. A1. Empirical confidence bands for median occupancy profiles in each Department of Energy (DoE) type on Saturdays.  
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Fig. A2. Empirical confidence bands for median occupancy profiles in each Department of Energy (DoE) type on other days.  

W. Wu et al.                                                                                                                                                                                                                                     



Applied Energy 278 (2020) 115656

14

eciffOegraLeciffOmuideMeciffOllamS

esuoheraWloohcSyradnoceSloohcSyramirP

reliateRenolA-dnatStnaruatseRecivreS-lluFtnaruatseRecivreS-kciuQ

llaMpirtSlatipsoHgnidliuberachtlaeHtneitaptuO

Fig. A3. Monthly average building occupancy profiles within each DOE type for Saturdays.  
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daily average. The nonsignificant differences are denoted in gray. For 
offices and schools, the occupancy rates increased between 7 and 9 AM, 
when people started arriving for work and classes. In contrast, occu
pancy rates decreased between 6 and 8 PM when people started leaving 
for home. For service-related building types, such as restaurants, strip 
malls, and hotels, the opposite was observed, where occupancy rates 
increased during evening hours. For office buildings, the DOE reference 
models used the same occupancy profiles, whereas the actual schedules 
of the small, medium and large offices differed notably. The occupancy 
rates of the three office sizes during office hours were 25, 50, and 60%. A 
similar observation was made for healthcare buildings (outpatient 

healthcare centers and hospitals) and school buildings (primary and 
secondary schools). Hospitals and secondary schools had higher office- 
hour occupancy rates than did outpatient healthcare centers (60 vs. 
40%) and primary schools (50 vs. 40%), respectively. However, similar 
occupancy rates or only slight differences were found for restaurants and 
retail buildings. 

Table 3 summarizes the average discrepancy scores defined in Sec
tion 4.2 for each DOE reference building type. The discrepancy scores 
reflected the significant deviation from the empirical occupancy profiles 
to the DOE reference models. Notably, the large deviations (over 10% 
average hourly deviation) observed during weekdays were for midrise 

eciffOegraLeciffOmuideMeciffOllamS
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Fig. A4. Monthly average building occupancy profiles within each DOE type for other days.  
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apartments, large hotels, small hotels, and outpatient healthcare cen
ters. On Saturdays, the large deviations were for midrise apartments and 
stand-alone retailers. On other days, only quick-service restaurants 
exhibited a large deviation. The deviations for large offices were much 
higher on Saturdays than on weekdays. 

Since most of the divergence from the DOE references occur during 
work hours (7 AM to 9 PM), we recalculated the average discrepancy 
scores between 7 AM to 9 PM and report the results in Table 4. 
Comparing these results to Table 3, if the average discrepancy scores are 
higher in this table, it means that that the variations from the DOE 
references are more severe during the work hours. Among all the re
ported building types, most of them exhibit this phenomenal except for 
Primary School, where the differences are similar. 

4.2. Monthly patterns of occupancy profiles 

Both occupant behavior and energy usage vary from one month to 
another. We, therefore, assessed the monthly patterns of the occupancy 
profiles. Fig. 5 presents the monthly (average) occupancy profiles for 
each DOE reference building type. For primary and secondary schools, 
an expected drop in occupancy rates during summer months occurred. 
The variations between the occupancy profiles in different months were 
small for most building types. While the overall shape of the profiles 
appeared to be similar to those of the DOE references for most building 
types, no significant drop occurred at noon in the different office types, 
and the occupancy profiles of schools consistently shifted. 

4.3. Impacts on building energy usage 

Energy end-use with reference schedule. The energy end-use per
centage of all buildings in the reference schedule is shown in Fig. 6. 
Since San Antonio is classified as Climate Zone 2A (hot and humid), 
cooling made up a large part of the total energy consumption (20–30%), 
whereas heating made up less than 5%. Lighting also consumed a large 
part of the total energy, with interior and exterior lighting constituting 
20–40% of the total energy. In small offices, medium offices, full-service 
restaurants, small retailers, and medium retailers’ fans consumed a large 
part (20–40%) of the total energy, but large offices spent less than 5% 
energy on fans. This was because these offices used chillers with mul
tizone variable air volume systems, whereas the other buildings used a 
packaged air-conditioner unit with a constant air volume system. HVAC 
systems used more than 50% of the total energy in small and medium 
office buildings. 

Energy differences: HVAC end-use energy differences are described 
in Fig. 7. Among the office buildings, the most heating (~55%) and 
cooling (~40%) energy was reduced for small offices, but no energy was 
reduced on fans, because they use constant air volume systems, and fans 
constantly run at the same speed. There was slightly less energy reduced 
for medium offices than small offices (~50% for heating and ~30% for 
cooling), and even less (~5% for both heating and cooling) for large 
offices. This was because large offices had measured occupancy profiles, 
which most closely resembled the reference schedule: The peak occu
pancy rate on weekdays was 64%, whereas those for small and medium 
offices were 26 and 48%, respectively. In addition, around 25% fan 
energy was reduced for large offices compared to 0% for small and 
medium offices since large offices used variable air volume systems. For 
the other three building types, full-service restaurants and medium and 
small retailers, a similar amount of heating (−2 to 25%) and cooling 
(4–15%) energy, but 0% fan energy was reduced. This was also because 
these buildings used a constant air volume system. 

In general, most total energy differences came from cooling 
(0.5–10%). Although 5–60% heating energy was reduced in most cases 
(Fig. 7), the total energy difference by heating was less than 5%, because 
San Antonio is categorized as Climate Zone 2A and thus needs little 
heating during the year (Fig. 8). In addition, heat generation from oc
cupants also contributes to space heating, and the model with a modified 

schedule with a lower occupancy rate may need more heating in occu
pied zones. The most energy was reduced for small offices (~15%), 
followed by medium offices (~8%). The total energy difference for large 
offices dropped to around 1.5%, half of which was via cooling and half 
via fans. The reason for the energy difference by fans only existing in 
large buildings is explained above. Energy difference by heating was 
almost negligible because large office buildings need much less heating 
than other building types do because of their smaller surface/volume 
ratio and higher internal heat gain (by occupancy, internal lighting, and 
equipment). The total energy difference by the other three building 
types was relatively consistent (2–3.5%), with around one-third being 
contributed by heating and two-thirds by cooling. 

5. Conclusions 

In this paper, we utilize a rich urban scale mobile positioning data to 
introduce a new approach to capture empirical occupancy profiles for 
different Department of Energy building types in a city. The empirical 
occupancy profiles provide deeper insights regarding more realistic 
occupancy profiles compared to the Department of Energy prototype 
models. Visualization and statistical testing revealed significant differ
ences between the empirical occupancy profile and that of almost all 
Department of Energy references except for the Primary School building. 
Department of Energy prototype models overestimated the occupancy 
rate during the daytime for most building types, except for schools, for 
which the occupancy rate was notably underestimated. For the same 
Department of Energy building type, the confidence band of the 
empirical occupancy profiles indicates that there are some variations 
that exist among the buildings belong to the same type. Our monthly 
occupancy profile plots demonstrate that there are some variations 
among different months to a certain degree, especially for secondary 
schools where the differences are most significant. That is the occupancy 
rate for the secondary schools that appear to be significantly lower in 
summer months than the winter months. The average discrepancy 
scores, which can be interpreted as the significant average hourly de
viation from the Department of Energy prototype, are as much as 
23.82% for weekdays, as much as 14.24% for Saturdays, and as much as 
11.34% for other days. 

The effect of the more realistic occupancy profiles on urban-scale 
building energy performance was investigated via an urban-scale 
building energy modeling platform. A comparison between models 
with derived and reference schedules demonstrated that (1) after using 
the derived schedule, there are up to 60% heating energy and 40% 
cooling energy differences among all the building types, (2) for restau
rant and retail buildings, there are up to 25% heating energy and15% 
cooling energy differences, (3) small office buildings have more energy 
differences (15%) than medium (8%) or large ones (1.5%), because a 
larger schedule discrepancy was found in smaller offices, and (4) less 
than 5% in whole building energy differences were observed for build
ings, except for small and medium offices, because these types of 
buildings consumed most energy (>50%) through HVAC systems. Those 
results can be applied in the real applications on: (1) Community and 
district level building design and operation; (2) Demand side manage
ment for a cluster of buildings; and (3) Grid interactive-efficient 
buildings. 

The limitations for this study are: (1) Since this study only focused 
on the effect of occupancy profiles on HVAC systems, energy differences 
by lighting and plug loads due to reduced profile was not considered; (2) 
Only six building types were used in the selected district, and the effects 
of the measured occupancy profiles on other building types need to be 
studied in the future; (3) This study adopted deterministic occupancy 
profiles and ignored variations in occupancy profiles between different 
buildings and over time; (4) In this study, while analyzing the impacts of 
more representative occupancy profiles on buildings’ energy usages, we 
assume that the building knows the rough occupancy rate in real-time. 
This is currently a challenge for an existing building. However, there 
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are on-going research projects that aim to address those challenges in 
both hardware and software levels [69]; (5) With the current approach, 
we observed that for Stand-alone retailers, the derived occupancy profile 
is much lower than Department of Energy references. This may be 
caused by the noises in the mobility data for this specific type of 
building. Further investigation is needed; (6) Urban scale energy anal
ysis on peak heating or cooling demand, peak diversity and capacity 
factors, and load duration curves are out of the scope of this study, and 
will be analyzed in the future; (7) mobility data can suffer from repre
sentativeness issues caused by their socio-economic characteristics, 
meaning that more data can be generated from advanced (e.g., wealthy) 
neighborhoods and less from disadvantaged (e.g., poor) ones. Future 
research should, therefore, investigate and solve such potential biases. 
Moreover, we used all visited geolocations to indicate the occupancy 
presence, and future studies should apply more advanced algorithms to 
identify people’s stays (i.e., visits) and time of occupancy. 
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