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Abstract

We infer the number of planets per star as a function of orbital period and planet size using Kepler archival data
products with updated stellar properties from the Gaia Data Release 2. Using hierarchical Bayesian modeling and
Hamiltonian Monte Carlo, we incorporate planet radius uncertainties into an inhomogeneous Poisson point process
model. We demonstrate that this model captures the general features of the outcome of the planet formation and
evolution around GK stars and provides an infrastructure to use the Kepler results to constrain analytic planet
distribution models. We report an increased mean and variance in the marginal posterior distributions for the number
of planets per GK star when including planet radius measurement uncertainties. We estimate the number of planets
per GK star between 0.75 and 2.5 R⊕ and with orbital periods of 50–300 days to have a 68% credible interval of
0.49–0.77 and a posterior mean of 0.63. This posterior has a smaller mean and a larger variance than the occurrence
rate calculated in this work and in Burke et al. for the same parameter space using the Q1−Q16 (previous Kepler
planet candidate and stellar catalog). We attribute the smaller mean to many of the instrumental false positives at
longer orbital periods being removed from the DR25 catalog. We find that the accuracy and precision of our
hierarchical Bayesian model posterior distributions are less sensitive to the total number of planets in the sample, and
more so for the characteristics of the catalog completeness and reliability and the span of the planet parameter space.

Key words: Exoplanets (498); Exoplanet catalogs (488); Transit photometry (1709); Bayesian statistics (1900);
Astrostatistics (1882)

1. Introduction

NASA’s Kepler mission was designed to yield an ensemble
of planetary systems amenable to statistical analysis (Borucki
et al. 2010; Jenkins et al. 2010; Koch et al. 2010). During its
primary phase, Kepler stared nearly continuously at a single
field for 4 yr, monitoring approximately 190,000 stars that are
mostly on the main sequence (Batalha et al. 2010; Brown et al.
2011). Keplerʼs goal was to look for signs of transiting
exoplanets and ultimately determine the frequency of tempe-
rate, Earth-size planets around Sun-like stars. This process led
to a survey catalog of planet candidates with well-characterized
completeness and reliability (Bryson & Morton 2017; Burke &
Catanzarite 2017; Christiansen 2017; Coughlin 2017;
Mullally 2017). Furthermore, Burke et al. (2015) investigated
systematics in the derived occurrence rates caused by
assumptions about the pipeline sensitivity, characterized by

Christiansen et al. (2015). The characterization of the Kepler
pipeline sensitivity is critical to robust occurrence rate studies
and future work that utilizes the results from Kepler.
With approximately 2327 confirmed planets and 2244 planet

candidates from the Kepler mission (Borucki et al.
2011a, 2011b; Batalha et al. 2013; Batalha 2014; Burke et al.
2014; Mullally et al. 2015; Rowe et al. 2015; Borucki 2016),
scientists are working to incorporate planet formation and
subsequent evolution theories that can explain both the
configuration of our solar system and planetary systems that
can be very different from our own, for example, systems with
dwarf stars and bright giants (Dressing & Charbonneau 2015;
Silva Aguirre et al. 2017), single and binary host stars (Doyle
et al. 2011; Orosz et al. 2012a, 2012b; Welsh et al. 2012, 2015),
the number of planets in a system (Fabrycky et al. 2014;
Lissauer et al. 2014), planet mass and size (Weiss &Marcy 2014;
Rogers 2015; Wolfgang et al. 2016; Carrera et al. 2018), and
orbital characteristics (Van Eylen & Albrecht 2015; Shabram
et al. 2016). However, large uncertainties in stellar properties
translate into large uncertainties in individual planet properties
(Huber et al. 2014; Berger et al. 2018; Fulton & Petigura 2018)
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and can limit studies attempting to characterize the exoplanet
population. Despite the large uncertainties, we are able to
develop generative models (i.e., the statistical process that
describes how the data are generated) that handle large
measurement uncertainty and highly correlated uncertainty of
some planet candidate parameters. Additionally, sources of bias
can be naturally incorporated into statistically robust occurrence
rate analyses (Youdin 2011; Foreman-Mackey et al. 2014; Burke
et al. 2015; Hsu et al. 2018, 2019). These population analyses
are becoming more tractable, enabling a better understanding of
the physical and orbital properties of exoplanet systems on a
broad scale.

Standard occurrence rate studies have largely ignored the
radius uncertainty contribution from the planet’s host star
(Catanzarite & Shao 2011; Howard et al. 2012; Dong &
Zhu 2013; Dressing & Charbonneau 2013, 2015; Petigura
et al. 2013a, 2013b; Farr et al. 2014, 2015; Mulders et al.
2015, 2018, 2019; Silburt et al. 2015; Fulton et al. 2017;
Van Eylen et al. 2018). Burke et al. (2015) characterize
terrestrial planet occurrence rates for the Kepler GK dwarf
sample, also without the inclusion of planet radius measure-
ment uncertainties. Mulders et al. (2018, 2019) use a forward
model with the latest Kepler data products to characterize
planetary systems around stars (in addition to the number of
planets per stellar type). Fulton & Petigura (2018) have
investigated the stellar mass dependence of the planet radius
gap using Gaia-updated stellar mass, stellar radius, and planet
sizes for the Kepler sample. However, Fulton & Petigura
(2018) do not include the impact of planet radius uncertainties,
accounting for survey completeness in an inverse detection
efficiency method, a method shown to bias occurrence rates
toward smaller values in Foreman-Mackey et al. (2014) and
Hsu et al. (2018).

The Gaia Data Release 2 has now provided more precise
stellar measurement uncertainties (Berger et al. 2018; Gaia
Collaboration et al. 2018). Updates to the stellar properties in
the Kepler sample now enable more robust hierarchical
Bayesian occurrence rate posterior distributions. The contrib-
ution to occurrence rate estimates from uncertainty in planet
radius can be included in occurrence rate estimates by using the
uncertainty in the measured planet-to-star radius ratio from
transit light-curve modeling. To get the planet radius, the
planet-to-star radius ratio is simply multiplied by the assumed
host star radius point estimate. This has been done in Hsu et al.
(2018), an approximate Bayesian computation occurrence rate
analysis for GK stars. Foreman-Mackey et al. (2014) consider
the contribution to the planet radius uncertainties from the
measured planet-to-star radius ratio and stellar radius uncer-
tainties in their occurrence rate analysis for GK stars. However,
they use a nonparametric Bayesian method that makes it
difficult to interpret some population-level parameters for
planet formation and subsequent evolution theories. Hsu et al.
(2019) use approximate Bayesian computation to include the
host star radius uncertainties and planet-to-star radius ratio
uncertainties by incorporating additional Kepler data products
to accurately characterize the the efficiency of planets being
recognized as “threshold crossing events” (TCEs). In addition,
Hsu et al. (2019) include catalog reliability in the occurrence
rate calculations, which is also another important parameter
that can affect the results.

Including measurement uncertainties in the occurrence rate
calculations is impactful for many reasons. When using the

Kepler catalog of planet candidates to constrain hierarchical
Bayesian models, we are able to marginalize over noise when
reporting posteriors of the number of planets per star. Including
the measurement uncertainty is necessary to avoid a bias due to
only using a histogram of mean values to infer population
distributions. Furthermore, the inclusion of measurement
uncertainties can allow better exploration of population-level
parameters that describe planet formation and subsequent
evolution relations.
In this work, we use Hamiltonian Monte Carlo (HMC;

Neal 2012; Carpenter et al. 2017) to perform hierarchical
Bayesian model calculations. The HMC method is the state of
the art for sampling hierarchical Bayesian models. HMC uses a
kinetic energy term, taking advantage of the gradient of the
target density to efficiently sample from high-dimensional
posteriors. For example, HMC can handle the inclusion of
measurement uncertainties and many population-level para-
meters, for likelihood-based continuous distribution models.
Furthermore, HMC provides advanced diagnostics to look for
sources of numerical bias and other model pathologies
characteristic of using Markov Chain Monte Carlo (MCMC)
methods to perform hierarchical Bayesian model calculations.
Thus, HMC is a powerful sampling method and very applicable
for this work.
Here we employ a hierarchical Bayesian model in conjunc-

tion with an HMC sampler to infer planet occurrence rates
while including the contribution from the planet host star radius
uncertainty in the uncertainties in planet size. We demonstrate
the use of standard and advanced diagnostics to assess the
application of HMC for performing our hierarchical Bayesian
model calculations. We use this statistical framework to
demonstrate the impact of subtle differences in host star
categorization and small differences in selected planet radii and
orbital period across varied completeness and reliability
parameter spaces.
In Section 2 we describe the observations and parameter

space used in our investigations. In Section 3 we explain the
statistical framework for this work. In Section 4 we explore the
sensitivity of our occurrence rate methodology to small
changes in the selected stars, reliability, and completeness,
the number of planets, and uncertainties in planet size. In
Section 5 we discuss our experimental design and future
research. In Section 6 we summarize the conclusions of
this work.

2. Observations

In Sections 2.1 through 2.3, we describe the various stellar
cuts, planet parameter cuts, and the detection model used in this
work. We use the cuts described below to explore the
sensitivity of posterior estimates of occurrence rates from our
statistical framework to subtle changes in the selected stars,
selected planet parameters, the inclusion of radius measurement
uncertainties, and updated stellar properties from Gaia.

2.1. Stars

We apply our model to three stellar catalogs with two sets of
stellar cuts. A summary of the stellar cuts can be found in
Table 1, and a summary of the catalogs used can be found in
Table 2. The first set of stellar cuts (labeled “ GK cuts ”)
describes stellar cuts similar to those used in Burke et al. (2015)
and Hsu et al. (2018) using the Q1−Q16 catalog release
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(Mullally et al. 2016). The upward-pointing arrow indicates
that this selection of GK stars has more stars compared to our
second definition of GK stars, which we label “ GK cuts .”
This second case contains fewer stars and is similar to the cuts
used in the NASA Exoplanet Program’s Study Analysis Group
1315 (see Table 2). We choose these two selections to
investigate how sensitive our results are to relatively small
differences in the definition of the stellar category of interest
and to explore how much power the data have to explore trends
in stellar properties while using the state-of-the-art Kepler
planet and star catalogs.

Before selecting the GK stars to be analyzed with the
updated Gaia stellar properties, we start with a selection of
FGK stars from the Gaia Data Release 2 (Gaia Collaboration
et al. 2018; van Leeuwen et al. 2018) cross-matched to the
Kepler DR25 stellar catalogs (Mathur et al. 2017). All stars
included in these cross-matched catalogs use the available Gaia
stellar properties. Initially, the cross-match between the Kepler
and Gaia catalogs is based on position alone. For some Kepler
targets, there are multiple Gaia targets that match positionally.
To uniquely identify the source, we computed a delta
magnitude and looked at its distribution. We use various
quality cuts that further reduce our cross-matched sample. The
motivation for these cuts is to choose a sample of stars where
we are reasonably confident that each is near the FGK main
sequence and is less likely to be impacted by sources of
dilution. Both a maximum parallax uncertainty (10%) and the
GAIA data quality flags are chosen so as to provide a cleaner
sample. For instance, binary stellar companions can contribute
to excess scatter about the astrometric model. We note that
unlike Berger et al. (2018), no extinction corrections were
applied. This results in a set of 78,005 Kepler target stars.16

These selection criteria are applied in the following order:

1. First, we remove all duplicate Gaia source ID rows (these
duplicates also share Kepler IDs).

2. We make a cut where the difference for all cross-matched
targets between the Gaia G mean magnitude and the
Kepler magnitude (with bandpasses that have similar
overall shape, range, and median) is within 1.5σ of the
median. We chose this threshold for (Gaia G)–(Kepler
mag) that prevents matching more than one Gaia target to
our Kepler targets, thus preventing us from using stellar

properties associated with a background or foreground
star rather than the intended Kepler target. We address the
slight difference between the Gaia G and Kepler by using
the median of the differences.

3. Following Evans (2018), we select an astrometric good-
ness of fit in the along-scan direction (GOF AL_ ) of less
than 20 and an astrometric excess noise of less than 5, to
exclude potential poorly resolved binaries or other
problematic targets.

4. We include parallax quality cuts using the processing flag
outputs of the module that calculates astrophysical
parameters for the Gaia target stars. We selected only
targets for which the Priam processing flags (A and B) are
zero. This selects strictly positive parallax values, colors
close to the standard locus, and parallax error less than
0.05 mas (Andrae et al. 2018; Lindegren et al. 2018). We
note that the sky position of the target stars does not
change much over the full Kepler field. We assume that
occurrence rates do not depend on a star’s position in the
galaxy, so the dependence of parallax error on sky
position does not introduce significant bias. This would
become important for assessing occurrence rates between
disk and halo stars.

5. Sources with Kepler magnitude less than 16 are removed,
and we apply a magnitude cut of < - <G G0.5 1.7bp rp

(Lindegren et al. 2018). This color cut is more precise
than using the temperature from the Kepler Input Catalog
and more uniform than using temperatures from the
DR25 stellar catalog, for selecting FGK stars.

6. Furthermore, we use a six-iteration quadratic fit of the
color–luminosity relation for the main sequence with

( )log 1.7510 width to select FGK targets.

We summarize the stellar catalog versions investigated in
this work in Table 2, and we report the number of selected stars
for each case. Here “Q1−Q16” refers to the version of the
Kepler star and planet catalogs release that precedes the
“DR25” catalog release. We evaluate occurrence rates for the
DR25 and “DR25+Gaia” (a version that uses Gaia-updated
stellar properties) catalogs with the “ GK cuts ” selections that
were designated during the NASA Exoplanet Exploration
Program Analysis Group Study Analysis Group 13 (SAG 13)
working group meeting. In this work, we analyze the Q1−Q16
planet candidate catalogs to benchmark our methods and results
against the previous work of Burke et al. (2015) and Hsu et al.
(2018). Therefore, we only consider the “ GK cuts ” case
( –T : 4200 6100 Keff , R* < 1.15, and glog >4.0) with the Q1
−Q16 planet and star catalog. By comparing the Q1−Q16
planet candidate catalog occurrence rates to occurrence rates
using the DR25 planet candidate catalog, we can see the impact
on occurrence rates when many of the instrumental false

Table 1
Summary of GK Star Classifications

( )stars GK cuts ( )stars GK cuts

–T : 4200 6100 Keff –T : 3900 6000 Keff

R* < 1.15 R* < 1.35
glog > 4.0 glog > 3.8

Note. “ GK cuts ” are similar to the stellar parameter cuts used in the
occurrence rate studies for the -Q Q1 16 Kepler planet candidate catalog
release (Mullally et al. 2016). “ GK cuts ” are similar to the stellar parameter
selection used in the SAG 13 analysis to compare occurrence rates across
different teams.

Table 2
Summary of Selected Stars from Various Stellar Catalogs

Catalog # ( )stars GK cuts # ( )stars GK cuts

a. -Q Q1 16 91,446 N/A
b. DR25 88,807 81,882
c. DR25 + Gaia N/A 44,597

Note. We can compare results across disparate stellar catalogs using
hierarchical Bayesian analysis.

15 https://exoplanets.nasa.gov/system/internal_resources/details/original/
680_SAG13_closeout_8.3.17.pdf
16 A table listing the 78,005 targets with their KIC and Gaia IDs, parameters,
and parameter uncertainties can be found at github.com/mshabram/PyStan_
Kepler_Exoplanet_Populations/blob/master/Sensitivity-Analyses-of-
Exoplanet-Occurrence-Rates-from-Kepler-and-Gaia/Data/q1q17_dr25_gaia_
fgk.csv.

3

The Astronomical Journal, 160:16 (12pp), 2020 July Shabram et al.

https://exoplanets.nasa.gov/system/internal_resources/details/original/680_SAG13_closeout_8.3.17.pdf
https://exoplanets.nasa.gov/system/internal_resources/details/original/680_SAG13_closeout_8.3.17.pdf
http://github.com/mshabram/PyStan_Kepler_Exoplanet_Populations/blob/master/Sensitivity-Analyses-of-Exoplanet-Occurrence-Rates-from-Kepler-and-Gaia/Data/q1q17_dr25_gaia_fgk.csv
http://github.com/mshabram/PyStan_Kepler_Exoplanet_Populations/blob/master/Sensitivity-Analyses-of-Exoplanet-Occurrence-Rates-from-Kepler-and-Gaia/Data/q1q17_dr25_gaia_fgk.csv
http://github.com/mshabram/PyStan_Kepler_Exoplanet_Populations/blob/master/Sensitivity-Analyses-of-Exoplanet-Occurrence-Rates-from-Kepler-and-Gaia/Data/q1q17_dr25_gaia_fgk.csv
http://github.com/mshabram/PyStan_Kepler_Exoplanet_Populations/blob/master/Sensitivity-Analyses-of-Exoplanet-Occurrence-Rates-from-Kepler-and-Gaia/Data/q1q17_dr25_gaia_fgk.csv


positives at longer orbital periods have been removed from the
DR25 catalog. The vetting process and reliability characteriza-
tion can be found in Thompson et al. (2018).

In Section 4.6 we compare occurrence rate posteriors using
the catalogs described here to the catalog provided in Berger
et al. (2018). The Berger et al. (2018) catalog updates host star
radius values using values that were spectroscopically derived
in the California-Kepler Survey (CKS; Fulton et al. 2017;
Johnson et al. 2017; Petigura et al. 2017), as well as stars cooler
than 4000 K from Gaidos et al. (2016). However, the full
population of stars searched by Kepler has not been updated
with spectroscopic follow-up at this time.

2.2. Planets

We choose two different cuts in planet parameters. First, we
consider planets with sizes that range from 1 to 2 R⊕ and orbital
periods that range from 50 to 200 days, referred to as the
“ planets ” case in Table 3 and hereafter. These cuts span a
parameter space for GK stars that has a slightly higher average
detection completeness than the second case we investigate.
The second case we refer to as “ planets ,” which includes
planets with sizes between 0.75 and ÅR2.5 and orbital periods
between 50 and 300 days. This case now contains less reliable
planet candidates and has a larger variance in completeness
values across the planet parameter space. In this case, the top
left corner of the completeness grid (Thompson et al. 2018)
near Porb=50 days and Rp=2.5 R⊕ has a higher reliability
and completeness, while the opposite corner near Porb=300
days and at Rp=0.75 R⊕ has a lower reliability and
completeness. The “ planets ” case is contained within the
“ planets ” case and has overall less variance than the
“ planets ” case. The detection completeness model is
discussed further in Section 2.3. These cuts were chosen to
compare to previous work and to assess how subtle differences
in the completeness and reliability and in the ranges in planet
parameter space can influence occurrence rate posteriors.

2.3. Detection Model

We employ the analytic pipeline completeness model
described in Section 2 of Burke et al. (2015) to compare our
results against previous catalogs and for sensitivity analysis.
We precompute the completeness over a 61×57 (planet
radius× orbital period) grid. We approximate the complete-
ness as constant within each bin using the value calculated for
each bin center after dividing the planet radius range by 61 and
the orbital period range by 57. For the gamma cumulative
distribution function (CDF) coefficients (shape a, scale, and
size) that describe the average detection efficiency of selected
GK stars for our DR25 and DR25+Gaia catalog analysis, we
use a=30.87, size=0, and scale=0.271, with a plateau

factor of 0.94 (Christiansen 2017; Thompson et al. 2018).
These coefficients are derived using a gamma CDF that is fit to
a detection efficiency model that includes vetting completeness.
For our Q1−Q16 analysis, we use a=4.65, size=0, and
scale=0.98 (Burke et al. 2015). We calculate transit durations
assuming a circular orbit and use the mean stellar radius
estimates. Figure 2 of Burke et al. (2015) shows the absolute
difference between the analytic model used in this study and
the higher-fidelity completeness model available as part of the
DR25 occurrence rate data product release. Since differences
are largest (a relative fraction of approximately 0.06) toward
longer orbital periods, we focus our analysis on the parameter
space of Porb<300 days for GK stars. This allows us to
investigate a region of parameter space with relatively high
reliability and completeness. We have not included a model for
reliability in our analyses; however, we have restricted our
analyses to shorter orbital periods where reliability is higher
based on estimates from Thompson et al. (2018). Furthermore,
preliminary results show that occurrence rate posteriors are not
significantly influenced by reliability when planet orbital
periods are less than 300 days. A discussion of the impact of
the latest DR25 pipeline completeness and reliability products
will be available in C. J. Burke et al. (2019, in preparation).
Future studies will explore more vigorous treatments of
including vetting efficiency and numerical pipeline complete-
ness models. We discuss this further in Section 5.2.

3. Statistical Framework

We calculate occurrence rates using the inhomogeneous
Poisson point process method with a parametric rate intensity
as implemented in Burke et al. (2015), Youdin (2011), and
Gregory & Loredo (1992), now using HMC (Neal 2012;
Carpenter et al. 2017) and including planet radius measurement
uncertainties.17

3.1. The Hierarchical Bayesian Model

For this study, we parameterize the rate intensity function of
an inhomogeneous Poisson point process as a power-law
scaling of the planet radius and the orbital period. The
inhomogeneous Poisson point process is a natural choice of the
likelihood function for the occurrence of exoplanets per star,
where each planet occurrence that is counted is very nearly
independent of each other planet occurrence that is counted
(ignoring multiple-planet systems).
The likelihood for our model is adopted from Burke et al.

(2015) and Youdin (2011), now with the addition of Gaussian
noise in planet size:

[ ] ( ) ( )= -
=

 f Nexp , 1
l

N

l
1

exp

l

where Nl is the number of selected planets after the cuts in
stellar parameters, planet radius, and orbital period have been
applied. Nexp is the number of expected detections in all bins,

Table 3
Summary of Planet Size and Orbital Period Ranges

( )- ÅR R Rp pmin max ( )-P P daysorb orbmin max

planets 1.00–2.00 50–200
planets 0.75–2.50 50–300

Note. We select these fairly complete orbital period and planet size ranges to
facilitate comparison between catalogs and previous work, and we assess the
sensitivity of occurrence rate posteriors to the choice of planet parameters when
using our parametric hierarchical Bayesian model.

17 Code can be found at: github.com/mshabram/PyStan_Kepler_Exoplanet_
Populations.
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P
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,

, 2

P

P

R

R

j
N

j p

p
p

exp 0 1 orb

orb

0 0
orb

min

max

min

max

*

where nj is the survey completeness (see Section 2.3 and
references therein), which is a function of the planet radius Rp,
orbital period Porb, and stellar properties. The survey
completeness is precomputed outside of our hierarchical
Bayesian model as was done in Burke et al. (2015), and it
also depends on the stellar mass, stellar radius, and semimajor
axis. The hyperparameters in this hierarchical Bayesian model
are α (the power-law index for the planet radius distribution), β
(the power-law index for the orbital period distribution), and F0

(the integrated number of planets per star); fl is the number
density from the power-law scaling of the planet occurrence
rate evaluated over the list of detected planets. As we
numerically simulate this likelihood function using HMC (see
Section 3.2), each planet can take on values normally
distributed around the true planet size ( )R p l (with Nl latent
variables corresponding to the number of planets in the sample)
and reported standard deviation ( )sR p l of the observed planet

radius ( )RPobs l :

( ) [ ] ( )( ) ( ) ( )s~R R T R RNormal , : , . 3P p R p pobs l l
p l min max

The convolution of the true planet sizes with their measurement
uncertainties is truncated, [ ]T R R,p pmin max

, so that draws that are
outside the selected planet range (either planets or planets )
are not considered when numerically simulating the integral of
the likelihood. The truncation allows the data to be described as
resulting from a data-generating process that only produces
values within an interval. In this case values that are drawn
below and/or above the specified interval are treated as not
observed. This allows us to investigate how the choices in cuts
impact the resultant occurrence rate distributions. Creating a
model that allows for planets with mean radius values outside
the selected parameter space to enter into the calculation of the
posterior distribution for the selected range is beyond the scope
of this paper. In this work, by definition, if the planetʼs true
value exists inside the selected range, it does not exist outside
the selected range.

This hierarchical Bayesian model also ignores the constant
multiplicative factors resulting in the survey completeness only
entering the equations in the number of expected detections for
all bins (Youdin 2011). We note that the uncertainties in planet
size mean that when using our hierarchical Bayesian analysis,
there is a nonzero number of planets that have a nonzero
chance of occurring outside of the selected range while
sampling from our likelihood function. This effect will need
to be explored in the future by allowing the number of planets
in the sample Nl to have flexibility, and to exclude planets
where draws do not land inside the given range. Currently, our
method assumes that all the planets selected have true values
within the planet radius ranges specified. We reason that this
effect would be important when stitching together occurrence

rate analysis for different planet radius ranges with our current
parametric method.

3.2. Hamiltonian Monte Carlo

We use the Stan Bayesian statistical modeling software
(Carpenter et al. 2017) to perform numerical calculations. We
utilize the extensive Stan diagnostics to assess the convergence
of our HMC simulations. We use uniform priors ranging from
−5 to 5 for our hyperparameters α, β, and ln F0. We advance
four chains for 1500 warm-up iterations followed by 1500
sampling iterations.
The tree depth is a configuration parameter of the No-U-

Turn-Sampler used by Stan that can impact efficiency.18 We set
the maximum tree depth to 10. We increase the maximum to
11, which roughly doubles the compute time. Each chain has
an energy Bayesian fraction of missing information (E-BFMI)
of approximately 0.8. A low E-BFMI (<0.02) for a given chain
implies a problem with the adaptation phase, and those chains
likely did not explore the posterior distribution efficiently
(Betancourt 2016).
We obtain Gelman–Rubin statistics R̂ of 1.0 for all

parameters, as well as zero divergent transitions. Gelman–
Rubin statistics are used to evaluate the variance within and
between Markov chains. Large Gelman–Rubin statistics
indicate possible nonconvergence. A Gelman–Rubin value
close to 1 indicates no sign of nonconvergence from this
particular statistical test. Divergent transitions are an indication
that your posterior estimates are biased from numerical error.
We obtain effective samples sizes (ESSs) of ∼4600 for α, 6000
for β, ∼4300 for ln F0, and 6000 for all the latent variables

( )R p l . The ESS is a measure of how many draws from the
Markov chain are effectively independent after the burn-in
phase.

4. Results

In order to investigate the sensitivity of occurrence rate
posteriors from Kepler data to small changes in the selected
stars, reliability and completeness, the number of planets, and
uncertainties in planet size, we perform fits over both the Rp

and Porb ranges (“ planets ” and “ planets ,” described in
Table 3). The posterior distribution for all model parameters,
including the power-law parameter estimates that describe the
general features of the outcome of planet formation and
subsequent evolution, can be found on the github repo for this
project.19 We assess the occurrence rate posteriors when
making subtle changes to the definition of GK stars (described
in Table 1). Figure 1 shows kernel density estimates of
marginal posterior distributions for the occurrence rate (i.e., the
number of planets per GK star, F0). The key labels read from
top to bottom corresponding to curves going from the left to
right. The stars ( stars ) label means more (fewer) stars, the

planets ( planets ) label means more (fewer) planets, and the
s (s) label means with (without) measurement uncertainty in
planet size. The dashed lines help indicate the occurrence rates
calculated using the slightly warmer set of stars, GK cuts
(i.e., stars ), described in Table 1. The thicker lines help

18 A brief guide to Stan’s warnings can be found at http://mc-stan.org/misc/
warnings.html.
19 github.com/mshabram/PyStan_Kepler_Exoplanet_Populations/tree/
master/Sensitivity-Analyses-of-Exoplanet-Occurrence-Rates-from-Kepler-
and-Gaia/posterior-distributions
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indicate the inclusion of planet radius measurement uncertain-
ties (i.e., s). We will refer to this figure in Sections 4.2
through 4.5. Summary statistics for the occurrence rate
posterior distributions can be found in Table 4, and two
sample Kolmogorov–Smirnov (K-S) statistics for pairs of these
occurrence rate posterior distributions can be found in the
Appendix.

4.1. Sensitivity to Selections in Planet Radius and Orbital
Period

We investigate the sensitivity of occurrence rate posteriors to
the range of planet radii and orbital periods by comparing
across the two ranges in planet radius and orbital periods
described in Table 3. Our “ planets ” case contains approxi-
mately half the number of selected planets as our “ planets ”

case and lies in a slightly higher average completeness space
for GK stars of interest. The top panel of Figure 1 shows the
marginal posterior for the number of planets per GK star for
which the selected number of planets follows from the
“ planets ” case. The middle and bottom panels of Figure 1
show occurrence rate posteriors for the number of planets per
GK star when using the “ planets ” case (which includes the
planets from the “ planets ” case).

When comparing these two clusters of marginal posteriors,
we see that the “ planets ” curves have less variance than the
marginal posteriors for the cluster of the “ planets ” cases, even
though the “ planets ” case contains approximately half the
number of selected planets. This could be in part due to the
completeness and reliability varying more across the
“ planets ” case (the larger planet parameter space box). For
example, when comparing the completeness between the
“ planets ” case and the “ planets ” case, parts of the larger
box (“ planets ”) are in a higher-completeness and higher-
reliability space (i.e., at Porb= 50 days and at Rp= 2.5 R⊕),
while another section is in a lower-reliability and lower-
completeness space (i.e., at Porb= 300 days and at Rp= 0.75
R⊕). Therefore, we attribute the larger variance for occurrence
rate posteriors for the “ planets ” cases in part to (a) the larger
variance in the detection efficiency across this parameter space
and (b) the larger span in parameter space covered by the
power-law rate intensity parameterization. Furthermore,
although we expect the “ planets ” cases to have larger
occurrence rates than the planets cases (because we are
probing a larger domain), the “ planets ” occurrence rate
posteriors could be overestimated owing to the low, unac-
counted-for reliability in the corner near 0.75 R⊕ and 300 days.

4.2. Sensitivity to Selected Stars

Subtle differences in stellar cuts can impact the number of
planets selected, where more (fewer) stars results in a smaller
(larger) planet occurrence rate posterior mean. Table 5 shows
that the “ ( )DR GK cuts stars25 ” case has approximately 8%
fewer selected stars than the “ ( )DR GK cuts stars25 ” case.
For these two selections of GK star cuts used in this study, see
Table 1. We compare occurrence rates across these subtle
differences in selected stars to first assess how sensitive our
occurrence rate posteriors are to the choice of target stars. The
difference in occurrence rates across subtle changes in stellar
parameter cuts can be assessed by comparing the dashed
green/black and the dashed blue/purple curve pairs in the top
panel of Figure 1 and the dashed orange/pink and dashed red/

cyan curve pairs in the middle panel of Figure 1. In these
comparisons, the selected star parameters are varied while
holding both the planet radius measurement uncertainty and the
ranges in selected planet parameters fixed.
The “ planets ” case has a larger difference (8%) in the

number of selected planets that make it through the two
different GK stellar cut designations than the “ planets ,” yet
this has a smaller influence on the difference in occurrence rate
modes between these stellar cut designations. The “ planets ”

Figure 1. Kernel density estimates of marginal posterior distributions for the
number of planets per GK star. The key labels read from top to bottom
corresponding to curves going from the left to right. stars ( stars ) means more
(fewer) stars. planets ( planets ) means more (fewer) planets. s (s) means
with (without) measurement uncertainty in planet size. The dashed lines help
indicate the occurrence rates calculated using the slightly warmer set of stars,

GK cuts (i.e., stars ), described in Table 1. The thicker lines help indicate the
inclusion of planet radius measurement uncertainties (i.e., s). Excluding
planet size (Rp) measurement uncertainty biases occurrence rates toward
smaller values: compare dashed green/dashed blue and black/purple pairs in
the top panel and dashed orange/dashed red and pink/cyan curve pairs in the
middle panel. These correspond to fixed planet and star cuts with no
measurement uncertainty/with measurement uncertainty (s Rp /s Rp ), respec-
tively. A previous lower-reliability Kepler planet candidate catalog ( -Q Q1 16
catalog) included more false positives, inflating the occurrence rate for this
parameter space (dashed gray curve in the middle panel). Subtle differences in
stellar cuts can impact the number of planets selected, where more stars result
in fewer planets (compare dashed green/black and dashed blue/purple curves
in the top panel and dashed orange/pink and dashed red/cyan curves in the
middle panel). The occurrence rate variance is lower for planets in a slightly
more complete part of parameter space ( planets in top panel) than in a slightly
less complete part of parameter space ( planets in middle and bottom panels),
even when there are fewer planets present in the planets case. Although we
expect the “ planets ” cases to have larger occurrence rates than the planets
cases (because we are probing a larger domain), the “ planets ” occurrence rate
posteriors could be overestimated owing to the low, unaccounted-for reliability
in the corner near 0.75 R⊕ and 300 days. Comparing the pink and brown curves
in the bottom panel shows the impact on occurrence rate posteriors in the

planets and stars parameter space when using updated stellar radii from Gaia
in the completeness model and updating planet sizes (and excluding
measurement uncertainty). Propagating the stellar uncertainties from Gaia into
the planet size (Rp) uncertainties while simultaneously updating stellar radii in
the completeness model removes the bias toward smaller values and increases
the variance of the occurrence rate (light-green curve in bottom panel).
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case has a smaller difference (5%) in selected planets than the
“ planets ” case and a larger difference in occurrence rate
between occurrence rates calculated using these two stellar cut
designations. The smaller difference in occurrence rate modes
for the “ planets ” cases is likely in part due to the smaller area
in parameter space, which must be described by the power-law
rate intensity parameterization. Furthermore, differences in the
occurrence rate posteriors between the two selections of GK
stars may be from differences in the signal-to-noise regime
(e.g., the GK cuts regime containing slightly larger maximum
stellar radii and slightly cooler stars may let through more false
positives in the “ planets ” case). It’s also possible that cooler
GK stars host more planets, because we see the slight increase
in occurrence rate posterior means in both selections of planet
parameters. Mulders et al. (2015) find that the occurrence of
Earth- to Neptune-sized planets is successively higher toward
later spectral types at all orbital periods probed by Kepler.

4.3. Sensitivity to Planet Radius Measurement Uncertainties

Our analysis shows that when the planet-to-star radius ratio
uncertainties are included, there is an upward shift in the
occurrence rate posterior mean relative to when the planet-to-
star radius ratio uncertainties are not included. In Figure 1, we
can compare cases with fixed selected stars and planets for the
DR25 catalogs, including measurement uncertainties in planet
size (indicated by “s Rp ”) and not including them (indicated by
“s Rp ”). The “s Rp ”/“s Rp ” pairs of marginal posteriors for the
number of planets per GK star are shown as dashed green/
dashed blue and black/purple curve pairs in the top panel of
Figure 1 and the dashed orange/dashed red and pink/cyan
curve pairs in the middle panel of Figure 1, respectively.

The upward shift in the occurrence rate posterior mean can
largely be attributed to (a) the wide range in uncertainty values
across the planet radius sample. For planets that have well-
constrained radius uncertainty, the location in completeness
space stays relatively unchanged, whereas planets with large
fractional radius uncertainties are more likely to have a large
uncertainty in their detection completeness. (b) The detection
probability is a sharp function of planet size near the detection
threshold, with small planets more likely to be missed. For
those small detected planets in the selected planet sample that

have larger planet radius measurement uncertainties, their
observed radius will be more biased relative to their true radius.
Both of those effects cause the model that ignores uncertainties
to be biased toward a lower occurrence rate for more selected
planets with radii near the threshold of detection.

4.4. Distribution Comparison to Burke+2015

We use a joint power-law rate intensity function in planet
radius and orbital period for our inhomogeneous Poisson point
process likelihood. This generative model is specified to
capture broad features of the results of planet formation and
subsequent evolution over small ranges in planet orbital period
and radius. This likelihood and parameterization for Kepler
exoplanet occurrence rates was put forth in Youdin (2011) and
later applied by Burke et al. (2015), but neither of these studies
included measurement uncertainties in a hierarchical Bayesian
statistical framework. We re-create the conditions of Burke
et al. (2015) to benchmark our methods and to evaluate how
occurrence rates have changed when using the latest Kepler
planet candidate catalog (the DR25 planet candidate catalog).
Our result for this occurrence rate is indicated as the dashed
gray curve in the middle panel of Figure 1 and labeled
“ - Q Q GK cuts1 16 ” for the “ planets ” case, without
measurement uncertainties (“s Rp ”), in the figure legend. In
this case, we find an occurrence rate posterior mean of 0.85
with a 68% credible interval of 0.72–0.99 and an allowed range
of 0.48–1.58. For the same set of stellar and planet parameter
cuts, Burke et al. (2015) report an occurrence rate posterior
mean of 0.77 with an allowed range of 0.3–1.9. We attribute
the smaller posterior width and larger posterior mean calculated
in this study to be from a combination of unaccounted-for
differences in the custom catalog used in Burke et al. (2015)
and the -Q Q1 16 catalog available at the NASA Exoplanet
Archive, and potentially due to differences in the MCMC
methods and diagnostics used.

4.5. Stars from Gaia

Using our statistical framework, we can compare disparate
stellar catalogs. With the Gaia-updated stellar properties, the
assumed stellar radii became larger on average (Berger et al.
2018). Additionally, the sample now has fewer evolved stars

Table 4
Summary Statistics for Occurrence Rate Posterior Distributions

Distribution Mean Var Std Mode 68% Credible Interval

planets ∣ ∣s  DR stars25 Rp 0.154 0.001 0.029 0.145 [0.126, 0.182]

∣ ∣s  DR stars25 Rp 0.168 0.001 0.03 0.157 [0.139, 0.198]

∣ ∣s  DR stars25 Rp 0.188 0.002 0.04 0.174 [0.149, 0.226]

∣ ∣s  DR stars25 Rp 0.199 0.002 0.04 0.179 [0.16, 0.239]

planets ∣ ∣s  DR stars25 Rp 0.35 0.003 0.055 0.322 [0.297, 0.405]

∣ ∣s  DR stars25 Rp 0.407 0.004 0.062 0.385 [0.348, 0.467]

∣ ∣s  DR stars25 Rp 0.442 0.007 0.085 0.4 [0.361, 0.523]

∣ ∣s  DR stars25 Rp 0.497 0.008 0.089 0.452 [0.411, 0.585]

∣ ∣s-  Q Q stars1 16 Rp 0.854 0.017 0.131 0.812 [0.724, 0.985]

∣ ∣s+  DR Gaia Gaia stars25 Rp 0.519 0.01 0.098 0.483 [0.424, 0.613]

∣ ∣s+  DR Gaia w Gaia stars25 Rp 0.63 0.02 0.141 0.606 [0.492, 0.767]

Note. We summarize the occurrence rate posterior distributions from Figures 1 and 2 via the mean, variance, standard deviation, mode, and 68.3% credible interval.
The credible intervals are calculated such that the left- and right-hand regions of the posterior distribution outside the credible interval are equal in area.
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for which Kepler has reduced planet detection efficiency due to
their larger size. We first assess the impact of updated stellar
radii from Gaia on the mean and variance of occurrence rate
posteriors in this region of parameter space. Updating stellar
radii with Gaia DR2 parameter estimates will change both the
precomputed completeness functions and the resulting planet
sizes. In this first case, we exclude the measurement
uncertainties in planet size that come from both the uncertainty
in R Rp * measurements and from stellar radius measurements.
Thus, we simply multiply the planet-to-star radius ratios in the
Kepler DR25 catalog by the new stellar radius estimates from
Gaia DR2 and change the stellar radius estimates used in the
completeness model. The resultant occurrence rate posterior is
shown in the bottom panel of Figure 1 as the brown curve
labeled “ ( )+ DR Gaia GK cuts25 ” with “ planets ” cuts.
Comparing this occurrence rate posterior to the pink curve in
the middle and bottom panels of Figure 1 (“ DR GK cuts25 ”

with “ planets ” cuts) demonstrates the increase in the mean
and variance of the occurrence rate posterior for the Gaia-
updated planet radius point estimates and completeness inputs.
The large difference in these two occurrence rates can be
attributed to planets moving out of the planet radius range of
interest, to changes in the precomputed completeness (due to
shifting stellar radii values), and to planets and stars being
removed from the sample when using more aggressive stellar
cuts (described in Section 2.1).

Next, we propagate the stellar radius uncertainties from Gaia
DR2 into the planet size (Rp) uncertainties (and are now
included along with the contribution to the planet radius
uncertainty from R Rp * measurements) while updating stellar
radii in the precomputed completeness model. The resulting
occurrence rate posterior is shown as the light-green curve in
the bottom panel of Figure 1, exhibiting a much wider posterior
(larger variance) than previous posteriors that did not include
the contribution to the planet radius uncertainty due to the host
star radius uncertainties. This marginal posterior has a 68%
credible interval of 0.49–0.77 and a mean of 0.63. This
occurrence rate posterior has a larger variance and a smaller
posterior mean than the posterior for this parameter space using
the -Q Q1 16 planet candidate catalog, which has a 68%
credible interval of 0.72–0.99 and a posterior mean of 0.85, and
larger than the occurrence rate posterior when using the DR25
planet candidate catalog alone, which has a 68% credible
interval of 0.41–0.59 and a posterior mean of 0.50. This shows
that previous studies have overestimated the occurrence rate in
this region of parameter space, likely because previous lower-
reliability Kepler planet candidate catalogs, such as the

-Q Q1 16 catalog, likely included more false positives.
However, selecting a cleaned stellar catalog partially compen-
sates for this change.

4.6. Results Using the Berger+2018 Catalog

The Berger et al. (2018) study has provided a catalog of
revised planet and star radius measurements using Kepler
DR25 stars cross-matched with stars from Gaia DR2. Berger
et al. (2018) use quality cuts similar to those described in
Section 2.1 and also incorporate the stellar host star spectro-
scopic follow-up from the CKS (Fulton et al. 2017; Johnson
et al. 2017; Petigura et al. 2017). Furthermore, the results from
Berger et al. (2018) account for the impact of reddening. The
orange curve in Figure 2 shows the marginal posteriors for the
number of planets per GK star, over the stars and planets

parameter space, using the Berger et al. (2018) catalog. For this
case, we find a 68% credible interval of 0.45–0.64 and a
posterior mean of 0.55. This result is close to the result for the
occurrence rate posterior distribution using the DR25 + Gaia
cross-match (without updates using CKS) described in
Section 2.1, when measurement uncertainties are not included
(shown as the brown curve in Figures 1 and 2). The results
when measurement uncertainties are included for the DR25 +
Gaia catalogs (without spectroscopic host star follow-up) are
shown as the green curve in Figures 1 and 2, for reference.
Systematic differences in measurement uncertainties for stars
with and without detected planets are not included in our
statistical model. The orange curve shown in Figure 2
demonstrates that using the Berger et al. (2018) catalog that
includes heterogeneous stellar parameters introduces a bias in
the occurrence rate. We note that we have not included the
impact of reddening in our catalog, which could impart
differences in the base occurrence rate calculated before planet
radius uncertainties are included. However, this would not
account for the bias we see between the orange and green
curves where planet radius uncertainties are included in the
model. We note that this bias can be addressed with
spectroscopic characterization of all stars in the catalog.

5. Discussion

The application of hierarchical Bayesian inference to infer
planet occurrence rates handles a relatively small number of
detected planets by pooling and mustering the strength of each
constituent while learning about the population. By using HMC

Figure 2. Kernel density estimates of marginal posterior distributions for the
number of planets per GK star. The posteriors shown here are for planets with
radii between 0.75 and 2.5 R⊕ and orbital periods between 50 and 300 days.
The brown curve corresponds to the occurrence rate posterior calculated using
the DR25 Kepler star and planet catalogs with stellar radii updated by cross-
matching with Gaia DR2 data and does not include measurement uncertainty in
planet size. The green curve is this same case but now includes planet radius
measurements uncertainties from the R Rp * measurements and from the
uncertainties in stellar radius measurements when using Gaia data. The orange
curve is the occurrence rate posterior when using the Berger et al. (2018)
catalog that includes stellar parameters updated using spectroscopic follow-up
for host stars only. The stellar sample in full is updated using Gaia DR2. The
orange curve demonstrates that using heterogeneous stellar parameters
introduces a large bias in occurrence rates.

8

The Astronomical Journal, 160:16 (12pp), 2020 July Shabram et al.



to sample from our posterior, we can apply a high-dimensional
hierarchical Bayesian model that has more parameters than
measurements. There are more parameters than measurements
because when we include planet radius measurement uncer-
tainties (i.e., noise, error, and model assumptions), the planet
radius for every planet in the model becomes a parameter in the
model. By assessing how the occurrence rates behave in
response to subtle difference in the inputs, we can see the
positive impact of the Kepler science team’s efforts to provide
high-quality occurrence rate data products, and we can evaluate
the opportunities for advancing the depth of the science
questions we are asking regarding exoplanetary systems.

Current analysis from Gaia data has provided stellar radii with
average uncertainties of 8% (Berger et al. 2018). Our selected
Gaia cross-matched stellar population has uncertainties of
approximately 5% on average. This allows us to incorporate
quality stellar data into the current occurrence rate framework we
are using, parameterized by planet orbital period and planet radius.

Hierarchical parametric Bayesian exoplanet occurrence rate
studies provide the foundation for constraining more complex
exoplanet population distributions using Kepler data. As the
data quality improves with complementary observations such
as stellar follow-up, and with reprocessing of the current Kepler
data using emerging statistical methods, scientists can begin to
answer more in-depth questions in order to characterize
planetary systems. In the following section we discuss
occurrence rates from several angles: the population model,
the data quality, the computational methods used to constrain
hierarchical Bayesian models, and the science questions
at hand.

5.1. Generative Model and Precomputing the Survey
Completeness

The likelihood we use in this study assumes a rate intensity
that is correlated between bins, similar to Burke et al. (2015)
and Foreman-Mackey et al. (2014). This is important to
consider when including planet radius measurement uncer-
tainty in occurrence rate studies, since each planet’s size can
now take on a variety of values. In this case, the data-
generating process would be the outcome of planet formation
and subsequent evolution, whereas a nonparametric Bayesian
method such as a Gaussian Cox process would be agnostic to
any planet formation and subsequent evolution relations.

In this initial study, we use a precomputed completeness grid
over planet radius and orbital period described in Section 2.3.
When assessing the impact on occurrence rates from planet radius
measurement uncertainties, our precomputed completeness grid
eases the computation. In order to include the contribution from

the host star radius into the planet radius uncertainty, we need to
include the host star uncertainty into the calculation of the
probability of detection, the geometric transit probability, and any
functions in the completeness model that depend on stellar
properties. In Section 4.5, we probe how occurrence rate
posteriors change when using stellar properties from Gaia to
update the stellar radius point estimates for each observed star,
the means of the planet candidate radius measurement uncertain-
ties, and the means of the host star radius measurement
uncertainties. In this case we assess the impact of the contribution
to the planet radius uncertainty from the host star radius
uncertainty by approximating the completeness function as
constant within each bin in planet radius and orbital period.
We find that occurrence rate marginal posterior distributions are
not changed when increasing the resolution of our complete-
ness grid.

5.2. Future Work

Future studies to include the stellar radius uncertainties in the
completeness model and therefore include the stellar radii as
latent variables in our hierarchical Bayesian model may require
the calculation of the completeness model in each iteration
when sampling from the likelihood. This would replace the
precomputed completeness we use in this study, which is used
as input in our statistical framework. The analytic completeness
models described in Burke et al. (2015) and used in this work
take significantly less computational time than the numerical
completeness functions available as part of the DR25 Kepler
occurrence rate data products. Moving away from a precom-
puted completeness and using the latest numerical complete-
ness models may require more advanced computing resources
and techniques to constrain occurrence rate statistical frame-
works that include stellar parameter measurement uncertainties.
Measurement uncertainties for orbital periods are negligible,

but when reparameterizing in terms of insolation flux,
uncertainties in stellar effective temperature, stellar multi-
plicity, stellar mass, and stellar radius could contribute
significantly to the uncertainties in occurrence rates as a
function of insolation flux. Updates to stellar effective
temperatures from analysis of Gaia data will allow future
studies to properly parameterize the occurrence rate in terms of
insolation flux, as orbital distance is calculated from the stellar
mass and orbital period, and the orbital distance estimate is
used in the detection efficiency calculations. By including the
completeness functions directly in the hierarchical Bayesian
model’s data-generating process (instead of a precomputed
completeness) in addition to a functional form for the planet
formation and subsequent evolution model, it will be possible

Table 5
Summary of Selected Stars and Planets

Catalog # planets /stars # planets /stars

a. ( )- Q Q GK cuts stars1 16 N/A 106/91,446(0.0012)
b. ( ) DR GK cuts stars25 54/88,807(0.0006) 118/88,807(0.0013)
b. ( ) DR GK cuts stars25 58/81,882(0.0007) 124/81,882(0.0015)
c. ( )+ DR Gaia GK cuts stars25 N/A 85/44,597(0.0019)

Note. Subtle changes in stellar parameter selections can result in data sets with fewer stars having more planets. This effect is seen in occurrence rate posteriors,
suggesting that our method may be sensitive to probing relations with stellar parameters, even when using simple planet formation and subsequent evolution
distribution models. The differences in the number of selected stars have a negligible contribution to the expected number of planets per star due to the contribution
from the completeness model used in the hierarchical Bayesian statistical framework. However, subtle differences in the number of selected planets could in part be
due to unaccounted-for reliability.
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to marginalize over uncertainties in stellar parameters. This will
ultimately lead to constraining occurrence rates as a function of
insolation flux (and other stellar parameters) in addition to
planet parameters.

By using Gaia data to better constrain planet radius
uncertainties and provide accurate fractional uncertainties for
insolation flux, we can assess the impact of excluding
measurement uncertainty in the occurrence rate parameteriza-
tions that go beyond the impact of the planet radius
uncertainties investigated here. This will improve previous
occurrence rates calculated in terms of insolation flux that are
biased by the inverse detection efficiency method (e.g., Fulton
& Petigura 2018). The large disparity in the number of selected
stars for the different catalogs used to investigate changes in
occurrence rate posteriors motivates including stellar parameter
dependence directly in occurrence rate studies in the future.

When cross-matching the DR25 Kepler stellar catalog with the
Gaia DR2 stellar parameters, we remove stars that have indications
that they may be poorly resolved binaries. This provides results
that are less contaminated with dilution from binarity than previous
studies. Ciardi et al. (2015), Hirsch et al. (2017), Furlan et al.
(2017, 2018), and Furlan & Howell (2017) have measured a
nonnegligible planet radius correction factor to account for stellar
multiplicity. Furthermore, Bouma et al. (2018) show that for
terrestrial-sized planets, stellar multiplicity can contribute uncer-
tainties in occurrence rates of approximately 50%. Stellar multi-
plicity is an important consideration for occurrence rates beyond
the dilution of the planet radius by overestimating the size of its
host star, as it can also impact the measured semimajor axis. In
future studies, including a model of the impact of stellar binarity
directly in the generative model used in this analysis will allow the
impact of stellar binarity on occurrence rates to be measured.

Preliminary occurrence rate estimates of potentially habi-
table planets are lower with the new reliability estimates from
the DR25 9.3 Kepler occurrence rate data products. This
suggests that a vigorous treatment of the catalog reliability for
occurrence rate studies will be necessary for learning about the
population of potentially habitable planets.

By including planet radius measurement uncertainties in a
parametric hierarchical Bayesian occurrence rate calculation, we
have provided the foundation for researchers to use the Kepler data
set to constrain parameters in analytic planet distribution models.
This can be done by investigating these relations in place of the
simplistic power-law intensity parameterization described in this
work. Furthermore, Zink et al. (2019) show that the Kepler
dichotomy can be filled in by accounting for the effects of
multiplicity on the detection efficiency, and they provide improved
estimates of the multiplicity distribution. Future studies can include
this updated detection efficiency while also incorporating radius
measurement uncertainties into the likelihood function.

6. Conclusion

When using our parametric hierarchical Bayesian model in
conjunction with Gaia data to (i) remove stars that have
indications they may be poorly resolved binaries, (ii) update the
uncertainties in planet radii and in turn include the contribution
of the host star radii in the uncertainty in planet radii, and (iii)
update the stellar parameters in the completeness model,

• we estimate the GK star planet occurrence rate between
0.75 and 2.5 R⊕ and 50–300 days to have a 68% credible
interval of 0.49–0.77 and a mean of 0.63.

When using the Berger et al. (2018) catalog that includes
spectroscopic follow-up of host stars only, Gaia-updated stellar
radii, and reddening,

• we find that a bias is introduced into the occurrence rate
posterior distributions when using heterogeneous stellar
radius measurement uncertainties.

By performing a hierarchical Bayesian occurrence rate
analysis in a particular part of planet parameter space with
differences in reliability and completeness,

• we find an upward shift in the occurrence rate posterior
mean and a larger posterior variance when including
measurement uncertainty in planet radius.

When evaluating the sensitivity of planet occurrence rates to
subtle changes in the selected stars,

• our results suggest that our hierarchical Bayesian models
(Bayesian models that include measurement uncertainties)
are less sensitive to subtle differences in stellar properties,
and more so to the the selected ranges in planet parameters.

By evaluating a set of slightly cooler stars and a set of slightly
warmer stars across two sets of selected planets with different
completeness and reliability characteristics,

• we show that the choice of stellar cuts can influence the
number of planet candidates selected over the planet radius
and orbital period grid of interest.

• we find that the cooler star sample has a slightly higher
occurrence rate posterior for both sets of selected planets.

This difference could in part be from (a) the slightly cooler
selected stars letting through more false positives and (b) the fact
that the slightly cooler set of GK stars could host more planets.
Work by Dressing & Charbonneau (2013, 2015) found that
cooler M dwarf stars have larger occurrence rates. Note that the
Dressing & Charbonneau (2013, 2015) results are derived for
much cooler stars (2600–4000 K) than those investigated here.
This motivates the inclusion of a more vigorous treatment of the
catalog reliability in future occurrence rate studies. Furthermore,
the inclusion of stellar population-level parameters in hierarch-
ical Bayesian occurrence rate studies will allow the character-
ization of the stellar dependence of exoplanet occurrence rates. It
may be important to include the stellar dependence in
statistically robust occurrence rate studies before we can select
targets of opportunity for some exoplanet research.
We also evaluate the impact of selecting planets in a slightly

higher average completeness space, compared to a part of
parameter space with slightly less average and larger variance
in completeness.

• We find that the selection of planets over the slightly more
complete part of parameter space results in occurrence rate
marginal posteriors with less variance than the space
evaluated over a slightly less complete part of parameter
space with more variance in completeness.

This is interesting because the “ planets ” case (slightly more
complete space) contains approximately 50% fewer planets
than the “ planets ” case.

• This suggests that the precision (variance) in the occur-
rence rate posteriors when using the statistical framework
in this work is less sensitive to the number of planets that
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make it through the planet cuts, and more so on (a) the span
that the rate intensity parameterization is providing cover-
age over and (b) the effective number of stars searched.
The effective number of stars searched (i.e., how efficient
Kepler is at detecting planets in a given part of parameter
space) depends on the characteristics of the completeness
and reliability space and the signal-to-noise regime.
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Appendix
Two-sample Kolmogorov–Smirnov Statistics for

Occurrence Rate Posterior Distribution Comparisons

In Figure A1, we show the “two-sample Kolmogorov–
Smirnov (K-S) statistic” to asses the distance between pairs of

Figure A1. Two-sample K-S statistics for occurrence rate posterior distribution comparisons.
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occurrence rate posterior distributions. A K-S statistic close to
0 means that the distributions are likely both drawn from the
same underlying population, and a K-S statistic of 1 means that
it is less likely that the distributions come from the same
underlying distribution. The label colors correspond to the
distribution plot color in Figures 1 and 2.
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