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Abstract We consider multi-period (24-hour day-ahead) multi-commodity
(energy and regulation reserves) decentralized electricity Transmission and
Distribution (T&D) market designs. Whereas conventional centralized gener-
ators with uniform price-quantity offers are scheduled by a Transmission Sys-
tem Operator, low voltage network connected Distributed Energy Resources
(DERs) with complex preferences and requirements, such as Electric Vehicles
(EVs), are allowed to self-schedule adapting to spatiotemporal marginal cost
based prices. We model the salient characteristics of interconnected T&D net-
works, and we consider self-scheduling DER responses under alternative distri-
bution network information-Aware or information-Unaware market designs.
Moreover, we consider a single (EV load aggregator) network-information-
aware scheduler market design. Our contribution is the characterization and
comparative analysis — analytic as well as numerical — of equilibria, using
game theoretical approaches to prove existence and uniqueness, and the in-
vestigation of the role of information on self-scheduling and EV aggregator
coordinated EV scheduling. Finally, we derive conclusions on the impact to
social welfare and distributional equity of information-Aware/Unaware self-
scheduling as well as single EV aggregator scheduling, and implications that
are relevant to market design and policy considerations.
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1 INTRODUCTION

1.1 Motivation and Background

Distributed Energy Resources (DERs) are becoming significant in electricity
networks. They are capable of flexibly scheduling their hourly consumption,
generation, and storage levels, thereby providing valuable hourly and real-
time balancing services to the grid. Incorporating flexible DERs is crucial in
view of increasing penetration of environmentally clean, yet intermittent and
volatile renewable resources. Should existing wholesale markets implemented
for centralized generation scheduling be extended to incorporate distribution
networks with DER participants, they could bring significant benefits. In this
work, we focus on Electric Vehicle (EV) battery charging as a rapidly in-
creasing DER [1]. EVs can be put to dual use and provide regulation service
reserves, while optimally scheduling their hourly charging. We focus on a multi-
commodity 24-hour day-ahead market, where energy consumption/generation
and regulation reserve provision by distribution network connected EVs and
Transmission network connected generators are co-optimized under various
decentralized market designs.

Conventional centralized market-clearing algorithms used today to deter-
mine socially optimal hourly locational marginal prices (LMPs) and generation
schedules in the wholesale market (i.e., at high voltage transmission network
nodes) become computationally intractable in the presence of a large number
of distribution network connected DERs and their complex inter-temporal dy-
namics. Decentralized market-clearing with self-scheduling DERs adapting to
granular distribution network locational prices appears to be the only feasi-
ble approach [2],[3]. Self-scheduling EVs optimally decide their hourly energy
consumption and reserve provision levels in response to distribution locational
marginal prices (DLMPs). DLMPs are hourly distribution network locational
prices that are derived from transmission level LMPs adjusted to incorporate
the cost of distribution network marginal line losses.1 Decentralized Transmis-
sion and Distribution (T&D) market-clearing through DER self-scheduling
raises several questions: Are there conditions, e.g., distribution network in-
formation available to individual DERs and load aggregators, that allow self-
scheduling with anticipation of its impact on prices? Can self-scheduling lead
to market-clearing equilibria, and if so, might social welfare be compromised?
This paper analyzes and compares decentralized market designs to provide
answers to these questions.

The various decentralized market designs considered in this work differ
in terms of the distribution network information that self-scheduling DERs
and load aggregators have access to. Self-scheduling EVs that are aware of
distribution network information (e.g., how marginal line losses are affected by
power flowing through them) can predict how DLMPs are affected by their own

1 In reality, DLMPs are a function of other marginal costs, for instance transformer loss
of life [4], that are not modeled here for simplicity, but have qualitatively similar impacts to
those of marginal network losses.
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and neighboring DER actions for given wholesale market LMPs. As such, self-
scheduling DERs are no longer pure price-takers compatible with a competitive
market. Due to the dependency of individual EV decisions on neighboring EVs,
EVs engage in a non-cooperative game and the resulting equilibrium can be
analyzed in the Nash Equilibrium context [5].

A major objective of this paper is to investigate the impact of information-
aware DER scheduling designs on (i) the uniqueness of aggregate DER re-
sponses to wholesale market-clearing prices (LMPs), and (ii) the ability of
information-aware DERs to influence T&D markets at the expense of social
welfare. To this end, we examine the existence, uniqueness and efficiency of
the Nash equilibrium of self-scheduling EVs. Our investigation compares self-
scheduling DER decentralized market designs to a centralized market design
where a single system operator, the T&D System Operator (TDSO), clears
the market to optimize social welfare with complete knowledge of the T&D
network characteristics and DER preferences and capabilities. Our compari-
son involves both the optimality conditions, and, for small system instances
where the centralized market design can be solved, numerical solutions as
well. We also consider a tractable and scalable centralized market design vari-
ation where a Transmission System Operator (TSO) collaborates with multiple
Distribution System Operators (DSOs) to clear the T&D market. The TSO
receives information on distribution network losses from DSOs and schedules
both centralized generators and decentralized DERs in a small number of it-
erations needed for DER schedules and marginal losses to stabilize. Given the
large number of distribution networks associated with a real life transmission
system, this centralized market design is more practical, since there is no single
operator that has knowledge of both T&D network characteristics. Moreover,
we show that this design admits a decomposition to distributed algorithms
that renders it scalable to real size systems and, in fact, equivalent to an
Information-Unaware decentralized design.

We consider two centralized and three decentralized market designs, as
shown in Figure 1. Centralized designs consist of (i) a single all-knowing oper-
ator (TDSO) who solves a T&D Optimal Power Flow (OPF) to schedule cen-
tralized generation and DERs to maximize social welfare, and (ii) a single TSO
who schedules centralized generation and DERs iteratively using total and
marginal line loss relations provided by collaborating DSOs. This enables the
parallelization of T&D network load flows that eases the computation and in-
formation communication burden at the expense of social welfare attainment.
As such, the latter centralized design provides a second best social welfare.
Decentralized designs involve EV self-scheduling under distribution network
Information-Aware/Unaware conditions. information-Aware EVs can explic-
itly calculate DLMPs at their own distribution network location as a function
of LMPs, their own decisions and the aggregate demand of all others con-
nected to the same location. Hence, distribution network information-Aware
EVs are no longer price-takers and can exploit this information to influence
market-clearing to their favor and at the expense of social welfare. Although
LMPs are calculated by the TSOs, and EVs do not know, nor can they learn,
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Fig. 1 Centralized and Decentralized Market Designs. Double arrow identifies designs with
identical market-clearing outcome.

how to influence LMPs, distribution network information-aware EVs know
how their actions impact marginal distribution network losses and through
them DLMPs. When information-aware EVs rely on a load aggregator, who
has access to their collective information and schedules them simultaneously,
they can extract an even larger portion of social welfare for themselves. In
contrast, distribution network information-Unaware EVs simply respond to
DLMPs, and do not know, nor can they learn, how their own or others’ ac-
tions affect DLMPs. Clearing of the decentralized markets under consideration
may rely on distributed algorithm parallel computation. Interestingly, we show
that the second best centralized design based on TSO-DSO collaboration is
characterized by identical optimality conditions and reaches the same equilib-
rium outcome as the decentralized information-Unaware EV design. As such,
the second best centralized design may also rely on parallel computation.

In conclusion, we analyze the aforementioned centralized and decentral-
ized market designs to address key issues and questions that arise with self-
scheduling participants. These issues center around the existence and unique-
ness of equilibria, and the role that distribution network information awareness
by self-scheduling DERs may play on social welfare and hence the fairness and
efficiency of a market design. We finally note that under information-unaware
conditions, the associated equilibrium of load aggregator assisted EV schedul-
ing is identical to that of the individual EV self-scheduling market design.

1.2 Related Work and Contributions

Decentralized control of DERs has gained significant attention ([6]-[16]) due
to scalability issues of load aggregation and direct utility control methods [17],
[18]. Decentralized EV charging control with the objective of load flattening is
studied in [12] and [13], without considering distribution network market with
locational and hourly marginal prices. In [13], optimal EV charging schedules
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obtained from the decentralized and the centralized problems are identical,
however, network properties, such as losses, are not considered. A similar re-
sult is shown in [16], however, even though distribution network costs are
approximated and included in the objective function, network losses are not
modeled explicitly. In general, decentralized control methods for EV charg-
ing are based on the assumption that EVs are price-takers [11], [16]. In this
work, we study market designs where EVs or load aggregators use network
information, hence anticipate and influence local distribution level prices.

The differences in individual versus load aggregator EV scheduling in the
presence of a large number of EVs are studied in [10]. However, distribution
networks are not modeled, their impact on the marginal cost that drives prices
is omitted, and the eventual long-term adaptation of the network to increasing
number of EVs is not considered either. The energy price is also simplified as
a linear function of the total load. In this work, we present a closed-form of
EV schedules enabled by a special case assuming an unlimited EV charging
rate capacity similar to the assumption used in [10]. In addition, we construct
the closed-form optimal market-clearing schedules under network conditions
necessary for adaptation of a large number of EVs and study important qual-
itative differences between individual and load aggregator scheduling.

Two important issues arise in the decentralized market designs: (i) Is there
a unique equilibrium that can be obtained for the market to clear, and more-
over, (ii) is the equilibrium efficient? That is, does the decentralized self-
scheduling equilibrium match the equilibrium obtained by centralized market
clearing? Or is the opposite true, that is, can DERs self-schedule to increase
their individual benefits at the expense of social welfare? Due to the hierarchi-
cal nature of decentralized designs, game theoretical methods have been widely
adapted to answer such questions. For instance, hierarchical DER-system op-
erator interactions are studied in [19]-[21], [24]. We adopt similar methods and
develop novel conclusions on the second question, focusing on the interactions
among self-scheduling DERs. We investigate equilibrium uniqueness under
system operator calculated LMPs, but with distribution network information-
Aware/Unaware conditions using in both cases the potential function approach
[34] employed in the DER control literature, e.g., [26]-[28]. Competitive and
Nash equilibria for price-taking and price-anticipating DERs are also studied
in [27], however, salient network characteristics, such as line losses and their
price ramifications, are considered only in this work.

In [7], [14], [15], equilibrium existence and uniqueness is investigated for
asymptotically increasing EVs under the mean field game theory concept,
where EVs respond to an aggregate population signal and the contribution
of each individual EV to the aggregate signal is negligible. In such a case,
it is shown in [7] that the EV best-response iterations converge to a unique
Nash equilibrium. However, given the granularity of the distribution network,
it is interesting to consider interactions among a finite number rather than an
asymptotically increasing number of DERs. To this end, we study the unique-
ness of Nash Equilibrium for finite number of EVs connected to the distribu-
tion network. Furthermore, for a simplified model with infinite charging rate
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capacity and identical EVs, we derive closed-form Nash equilibrium schedules
for distribution network information-Aware/Unaware EVs.

Most game theoretical methods in DER control are applied to single-period,
single-commodity markets [21]-[24], [28]. Equilibrium uniqueness is shown in
[19] and [25] for a multi-period DER Game, but DERs minimize the same
global objective. The hierarchical game between the price-determining utility
company and EVs that also compete among them — since each EV charging
strategy space depends on other EV strategies — is investigated in [20], how-
ever, EVs are price-takers and are not subject to inter-temporal constraints.

Our contributions in this paper are as follows:

– We model the salient details of decentralized multi-period multi-commodity
(i.e., 24-hour energy and regulation reserve) market designs and consider
distribution network information-Aware/Unaware EVs. We employ a high
fidelity model internalizing key T&D network characteristics, such as losses.

– In decentralized market designs, we show Nash equilibrium existence and
uniqueness for schedules of network information-Aware EVs, enabling them
to anticipate local prices (DLMPs). We repeat for network information-
Unaware, local price non-anticipating EVs, and we show that this equi-
librium is identical to that of a centralized design, where the TSO (who
schedules the DERs) receives DLMP information from collaborating DSOs.

– We show existence and uniqueness of a decentralized market equilibrium,
where all EVs are scheduled by a network information-Aware aggregator
to whom they entrust their individual preferences.

– Both numerically and analytically, we investigate differences between cen-
tralized and decentralized market design equilibria, and we evaluate im-
pacts on social welfare and EV charging costs.

The remainder of this paper is organized as follows. Section 2 introduces
a stylized T&D network and the market participants. Section 3 describes the
clearing processes of centralized and decentralized market designs, and Section
4 compares their equilibria by contrasting the first order optimality conditions.
Section 5 shows existence and uniqueness of equilibria for fixed wholesale prices
(LMPs), and Section 6 derives closed-form expressions assuming similar EV
preferences and relaxing the charging rate constraints. Section 7 presents nu-
merical results on the full market design/EV preference and capability mod-
els illustrating social welfare and EV charging cost differences across market
designs. Section 8 summarizes the main findings and their likely impact on
policy and regulatory concerns, and identifies interesting directions for future
research. For ease of exposition, the proofs are moved to Appendix A.

2 T&D Network, Participants, and Nodal Marginal Costs

We consider a T&D network with centralized generators connected to the high
voltage low losses transmission network and distribution network consumers
with both inelastic and flexible EV demand connected to the low voltage
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high losses distribution network. For simplicity, we assume there is a single
transmission bus, as shown in Figure 2. This simplification does not affect the
generality of our results; multiple transmission buses with limited capacity
lines can be easily handled. Similar to [12], we consider N radial feeders.
Notably, radial operation is common in distribution networks. Each feeder n ∈
N is connected to the transmission bus through a single line, with aggregated
distribution feeder demand, both inelastic and flexible, located at the end of
each line (see Figure 2). Each EV j ∈ J consumes qPj,t amount of energy and

provides qRj,t amount of regulation reserves during hour t. We define Tj as the
number of hours EV j is plugged in, and assume that Tj is deterministic. The
subset Jn,t is the set of EVs that are connected to feeder n at hour t. The
total demand at location n, hour t is given by:

dPn,t = dfn,t +
∑
j∈Jn,t

qPj,t, (1)

where dfn,t is the inelastic demand at feeder n. We explicitly model quadratic
distribution line losses as a function of total load at feeder n. Quadratic and
marginal losses on line n are given by:2

Ln,t =
γn
2

(dPn,t)
2, (2)

mn,t =
∂Ln,t
∂dPn,t

= γnd
P
n,t, (3)

where γn is the line loss factor and is equal to two times the ratio of the line
resistance over the square of voltage at n.

Fig. 2 T&D network, single transmission bus, multiple distribution networks n = 1, ..., N .

Each generator i ∈ I has a capacity and technical minimum of Qi, Qi, as

well as marginal energy generation and reserve provision cost denoted by cPi

2 Index n is interchangeably used for both the distribution feeder location and the line
connecting this location to the transmission bus.
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and cRi . The total energy generation and reserve provision cost of generator
i during hour t is CPi (QPi,t) = cPi Q

P
i,t, and CRi (QRi,t) = cRi Q

R
i,t, respectively.

The T&D market is simultaneously cleared with the objective of achieving the
minimum energy generation plus reserve provision cost.

Lastly, we introduce the following vectors: qPj = {qPj,t, ∀t}, qP = {qPj , ∀j},
dP = {dPn,t, ∀n, t}, L = {Ln,t, ∀n, t}; vectors qRj , qR, QP , QR are defined
similarly. For clarity, we list the notation in Table 1.

Table 1 Notation

Abbreviations
TDSO Transmission Distribution System Operator
TSO Transmission System Operator
DSO Distribution System Operator
DER Distributed Energy Resource
EV Electric Vehicle

Indices
ind Individual scheduling
agg Aggregator scheduling
A Information-Aware
Un Information-Unaware
P Energy
R Reserves

Sets
J Set of EVs, J = {1, .., j, .., J}
I Set of generators, I = {1, .., i, .., I}
N Set of distribution network nodes, N = {1, .., n, .., N}

Input & Decision Variables

qPj,t, q
R
j,t Energy consumption and reserve provision of EV j during hour t

QPi,t, Q
R
i,t Energy generation and reserve provision of generator i during hour t

qj Charging rate capacity of EV j

Qi, Qi Generation capacity and technical minimum of generator i

dfn,t, Rt Inelastic demand at node n and system reserve requirement during hour t

Ln,t,mn,t Total quadratic and marginal losses at node n during hour t

3 Centralized and Decentralized T&D Market Designs

This section details the algorithms underlying the centralized (Subsection 3.1)
and decentralized market designs (Subsection 3.2).

3.1 Centralized Market Designs

3.1.1 Centralized Market-Clearing with a Single TDSO (TDA)

In this centralized design, a single TDSO clears the market in a single step with
access to full distribution network information including distribution feeder



Power Markets with Information-Aware Self-Scheduling Electric Vehicles 9

specific loss factor values, γn, central generator variable costs, cPi , c
R
i , as well as

EV preferences and capabilities. The market equilibrium consists of a complete
centralized generation and EV energy and reserve schedule across feeders and
hours and is obtained by the following social cost minimization problem:

min
QP ,QR,qP ,qR

∑
i,t

(
cPi Q

P
i,t + cRi Q

R
i,t

)
+
∑
j,t

δ(qPj,t)
2, (4)

subject to

– Energy balance and reserve requirement constraints:∑
i

QPi,t =
∑
n

[Ln,t((Σq
P
j,t)

2) + dPn,t] ∀t→ λPt , (5)

∑
i

QRi,t +
∑

n,j∈Jn,t

[1 +mn,t(Σq
P
j,t)]q

R
j,t ≥ Rt ∀t→ λRt , (6)

– Generator constraints:

QPi,t +QRi,t ≤ Qi, QPi,t −QRi,t ≥ Qi ∀i, t, (7)

– EV constraints: ∑
t

qPj,t ≥ sj ∀j → ζ
j
, (8)

∑
t

qPj,t ≤ Sj ∀j → ζ̄j , (9)

qRj,t + qPj,t ≤ qj ∀j, t→ ν1j,t , (10)

qRj,t − qPj,t ≤ 0 ∀j, t→ ν2j,t . (11)

where Ln,t((Σq
P
j,t)

2) and mn,t(Σq
P
j,t) are given by (2) and (3). Note that all

decision variables are non-negative. We refer to the above problem as TDA,
where TD denotes simultaneous clearing of the T&D networks, and A denotes
the distribution feeder information-Aware TDSO, i.e., its knowledge of the
detailed functional form of mn,t, and loss factor values, γn, ∀n.

The objective function (4) models total generation and reserve provision
cost, as well as aggregate EV costs. The term δ(qPj,t)

2 represents the EV battery

degradation cost, which penalizes fast charging [29]. The dual variables, λPt
and λRt , of the energy balance and reserve requirements constraints in (5)
and (6) represent the energy and reserve LMPs at the transmission bus (or
distribution substation) over the 24-hour daily cycle. The energy balance (5) is
a non-convex equality constraint due to the inclusion of quadratic distribution
network losses that can be relaxed (convexified) to an inequality constraint:∑

i

QPi,t ≥
∑
n

[Ln,t((Σq
P
j,t)

2) + dPn,t] ∀t→ λPt ,

which will in fact be binding in most cases, expect for extreme cases, e.g. when
the reserve provision cost of EVs is very high.
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Note that reserves offered at the end of a distribution feeder n provide
a higher per unit amount at the transmission bus level due to line losses.
Since the ratio of total reserve deployment from EVs to inelastic demand is
fairly small, it is reasonable and practical to approximate incremental losses by
marginal losses. Therefore, offering qRj,t amount of reserves by EV j at the end

of distribution feeder n is equivalent to offering qRj,t(1+mn,t) of reserves at the
transmission bus. The system reserve inequality constraint, 0which notably
includes bilinear terms qPj,tq

R
j,t, requires a total reserve provision by generators

and EVs that is equal to or exceeds system reserve requirements, Rt.
Given the transmission bus wholesale LMPs, λPt and λRt , the marginal cost

based prices at distribution feeder n (DLMPs), λPn,t and λRn,t, are given by:3

λPn,t = [1 +mn,t(Σq
P
j,t)]λ

P
t , (12)

λRn,t = [1 +mn,t(Σq
P
j,t)]λ

R
t . (13)

We note again that the centralized TDSO market design requires complete
knowledge of individual DER preferences and distribution network feeder in-
formation, an onerous task in itself. Moreover, the non-convexities identified
above render its solution particularly hard and not scalable for real size sys-
tems. We solve for this market design equilibrium on a relatively small system
for the purpose of comparing social welfare impacts from the adoption of de-
centralized market designs. Before proceeding with the decentralized designs,
we explore next a second best (in terms of social welfare) centralized market
design, which we show to admit a parallelizable clearing process, and is hence
scalable to real size systems.

3.1.2 Centralized Market Design with TSO-DSO Collaboration (TDUn)

Centralized generators and DERs are cleared by the TSO, who does not have
access to distribution feeder information, relying instead on DSOs that com-
municate the total value of losses and marginal losses on each distribution
network feeder. All DERs, however, provide the TSO with their preferences
and capabilities, namely the battery degradation cost and their individual con-
straints (8)-(11). The TSO proceeds to an iterative process interacting with
DSOs to obtain the value of total and marginal losses (Ln,t and mn,t) associ-
ated with the most recent DER schedule set by the TSO. Note that the TSO
does not need to know the values of distribution line loss factors, γn. We re-
fer to this design as TDUn, since the TSO is Unaware of feeder information,
but T&D markets are cleared simultaneously. The energy balance and reserve
requirements constraints (5) and (6) in the TDSO centralized problem are
replaced with the following:∑

i

QPi,t =
∑
n

(L
(k)
n,t −m

(k)
n,td

P,(k)
n,t ) +

∑
n

[(1 +m
(k)
n,t)d

P
n,t] ∀t, (14)

3 The reader is forewarned that in the DLMP directed decentralized market designs,
distribution feeder information-Aware EVs will have access to the exact functional form of
DLMPs and price anticipation will be possible impacting the associated Nash Equilibrium.
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i

QRi,t +
∑

n,j∈Jn,t

[(1 +m
(k)
n,t)q

R
j,t] ≥ Rt ∀t, (15)

where a first order Taylor approximation is used for the quadratic losses to
linearize the energy balance and reserve requirements constraints. The iterative
market-clearing process for TDUn is described in Algorithm 1.

Algorithm 1 : TDUn

Initialize d
P,(0)
n , calculate m

(0)
n , L

(0)
n given d

P,(0)
n , and set k := 0

while ||m(k+1)
n −m(k)

n || > tolerance do

Step 1. Conditional upon m
(k)
n , L

(k)
n , d

P,(k)
n , the TSO optimizes (4) subject to (14),

(15), (7)–(11) and simultaneously schedules QP,(k+1), QR,(k+1), qP,(k+1), qR,(k+1).

Step 2. Given the updated qP,(k+1), the DSO calculates d
P,(k+1)
n , m

(k+1)
n , L

(k+1)
n and

submits them to the TSO.
k := k + 1

end while

return qP , qR, QP , QR, λP , λR, λPn , λRn

3.2 Decentralized Market Designs

In the decentralized designs, the market clears to an equilibrium obtained
by a converging iterative process. In each iteration, the TSO solves a simple
(linear) OPF problem that schedules centralized generator energy and reserve
provision for given DER energy and reserve schedules adjusted for the impact
of losses over distribution feeders. This tentative OPF solution updates the
LMPs and DLMPs. EVs then modify their energy and reserve schedules so
as to minimize their individual costs against the updated DLMPs. To avoid
or damp oscillations, the EV cost minimization problems are solved with La-
grangian Augmentation regularization terms added to their objective function
[31], and the iterations continue until convergence. Hence, the iterative process
that involves the TSO solving a Transmission System OPF given EV sched-
ules to determine DLMPs, and the EVs that respond to DLMPs by optimally
self-scheduling — solving well defined convex cost-minimization problems —
falls into the broad category of proximal algorithms for which we can achieve
descent (in the system cost) at each iteration [31]. We note that given existence
and uniqueness of the equilibrium (which we show in Section 5), convergence of
the iterative algorithms described in detail below is achieved by an appropriate
selection of the regularization term coefficients.

EV self-scheduling is tantamount to parallelizing the market equilibrium
process. In fact, the centralized TDUn design clears to the same equilibrium
as the information-Unaware decentralized design, hence amenable to paral-
lelization.4

4 Moreover due to privacy concerns, EV owners might not opt to communicate their
preferences directly to the TSO.
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We investigate next three decentralized market designs:

1. Feeder information-Unaware EVs individually self-scheduling: EVind
Un ;

2. Feeder information-Aware EVs individually self-scheduling: EVind
A , and

3. EVs in the same feeder are scheduled by a feeder information-Aware Load
Aggregator: EVagg

A .

The reason that we do not consider an information-unaware load aggrega-
tor market design is that it can be analytically shown to reach an identical
market-clearing equilibrium as the EVind

Un design. In fact, load aggregation
does not provide EVs with any advantage in the absence of access to distribu-
tion feeder information (i.e., the functional form of marginal losses mn,t).

For simplicity of exposition and without loss of generality, we used the
staircase supply function employed in today’s wholesale power markets, which
renders LMPs rather insensitive to EV schedule changes. This is a reason-
able choice given that LMP determination is dominated by the mostly price
inelastic conventional demand that will continue to make up the bulk of con-
sumption even after EV battery charging accounts for over 10 percent of total
electricity demand by 2030. Nevertheless, DLMPs in EV connected feeders
remain quite sensitive to EV self-scheduling decisions.

3.2.1 Information-Unaware EV Self-Scheduling (EVind
Un )

In the EVind
Un decentralized design, EVs do not have access to the functional

form of marginal losses — see (12) and (13), and as such they are price-takers
that schedule their battery charging to minimize their perceived charging costs.

The equilibrium is reached by an iterative process. At iteration k, upon
receiving the tentative LMPs from the TSO and the value of marginal losses
from the DSO, EV j minimizes its costs against DLMPs estimated according
to (12) and (13) by solving:

min
qPj ,q

R
j

∑
t

[
λ
P,(k)
n,t qPj,t − λ

R,(k)
n,t qRj,t + δ(qPj,t)

2 + θ‖qPj,t − q
P,(k)
j,t ‖

2
]
, (16)

subject to (8)–(11). Note that the Lagrangian Augmentation regularization

term, θ‖qPj,t − q
P,(k)
j,t ‖2, approaches to zero upon convergence and assists in

avoiding/damping oscillatory behavior during the iterative process [31]. The
TSO then solves an OPF problem, which we refer to as TUn, since it is es-
sentially the TDUn market-clearing problem conditional upon (i.e., given)

self-scheduled (fixed) EV energy and reserve quantities q
P,(k+1)
j,t , q

R,(k+1)
j,t :

min
QP ,QR

∑
i,t

(
cPi Q

P
i,t + cRi Q

R
i,t

)
, (17)

subject to (7) and∑
i

QPi,t =
∑
n

(
L
(k+1)
n,t + d

P,(k+1)
n,t

)
∀t→ λ

P,(k+1)
t , (18)
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i

QRi,t +
∑

n,j∈Jn,t

(
1 +m

(k+1)
n,t

)
q
R,(k+1)
j,t ≥ Rt ∀t→ λ

R,(k+1)
t . (19)

The iterative process, which describes the market-clearing of the EVind
Un de-

centralized market design, is summarized in distributed Algorithm 2.

Algorithm 2 : EVind
Un (Distributed Algorithm)

Initialize LMPs λP,(0), λR,(0), marginal losses m
(0)
n and set k := 0

while
∑
j,t ||q

P,(k+1)
j,t − qP,(k)j,t || > tolerance do

Step 1. ∀j ∈ J , EV j synthesizes λ
P,(k)
n , λ

R,(k)
n given λP,(k), λR,(k), and m

(k)
n accord-

ing to (12) and (13).
Step 2. ∀j ∈ J , EV j optimizes (16), subject to (8)–(11), given λP,(k), λR,(k), and

updates q
P,(k+1)
j and q

R,(k+1)
j , and submits them to the DSO.

Step 3. Given qP,(k+1), the DSO updates L
(k+1)
n,t and m

(k+1)
n,t according to (2) and

(3), and submits them to the TSO.

Step 4. Given qP,(k+1), qR,(k+1), m
(k+1)
n,t , and L

(k+1
n,t , the TSO solves TUn, optimizing

(17), subject to (7), (18), (19), and determines λP,(k+1), λR,(k+1).
k := k + 1

end while

return qP , qR, QP , QR, λP , λR, λPn , λRn

3.2.2 Information-Aware EV Self-Scheduling (EVind
A )

In the EVind
A decentralized design, EVs are feeder information-Aware, i.e.,

they know the functional form of marginal losses, mn,t, and as such they are
able to anticipate how their own and other EVs’ actions influence the DLMPs
at their own feeder, i.e., they know mn,tλ

P
t and mn,tλ

R
t . EV j minimizes:

min
qPj,t,q

R
j,t

∑
t

{[
1 +mn,t(q

P
j,t, q

P
−j,t)

] (
λPt q

P
j,t − λRt qRj,t

)
+δ(qPj,t)

2 + θ‖qPj,t − q
P,(k)
j,t ‖

2

}
, (20)

subject to (8) – (11), where qP−j,t =
∑
j′∈Jn,t,j

′ 6=j q
P
j′,t is the complementary EV

load to EV j, and mn,t(q
P
j,t, q

P
−j,t) = γn(qPj,t + qP−j,t + dfn,t). Since the optimal

self-schedule of EV j depends on its own and neighboring EV schedules, the
equilibrium can be studied in the Nash Equilibrium context.

The iterative process, which describes the market-clearing of the EVind
A de-

centralized market design, is summarized in distributed Algorithm 3. It differs
from Algorithm 2, since in Step 1, EV j knows the parameters and arguments
of the feeder marginal losses mn,t(q

P
j,t, q

P
−j,t). More precisely, EV j can infer

the sum of total neighboring EV load and inelastic consumption, qP−j,t + dfn,t,
when it is provided the value of mn,t. EVj can therefore use this information
when solving the EVind

A cost minimization problem assuming qP−j,t will be
equal to the previous iteration’s value deduced from the most recent value of
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mn,t. As such, EVs engage in a best response iterative action moderated by
the regularization term.

Algorithm 3 : EVind
A (Distributed Algorithm)

Initialize LMPs λP,(0), λR,(0), marginal losses m
(0)
n and set k := 0

while
∑
j,t ||q

P,(k+1)
j,t − qP,(k)j,t || > tolerance do

Step 1. ∀j ∈ J , EV j calculates dfn + q
P,(k)
−j given the functional form and value of

m
(k)
n according to (3).

Step 2. ∀j ∈ J , EV j optimizes (20), subject to (8)–(11), given λP,(k), λR,(k), dfn +

q
P,(k)
−j , and updates q

P,(k+1)
j and q

R,(k+1)
j , and submits them to the DSO;

Steps 3-4. Repeat Steps 3-4 of Algorithm 2.
k := k + 1

end while

return qP , qR, QP , QR, λP , λR, λPn , λRn

3.2.3 Information-Aware Load Aggregator Scheduling (EVagg
A )

In the EVagg
A decentralized design, a Load Aggregator is assumed to schedule

all EVs connected to a distribution feeder. Information-Aware load aggrega-
tors, similar to information-Aware self-scheduling EVs, can infer the value of
the arguments of mn,t(Σq

P
j,t) affecting energy and reserve DLMPs. Upon re-

ceiving DLMPs, the load aggregator at feeder n schedules EVs by solving the
following minimization problem:

min
qP ,qR

∑
j,t

{[
1 +mn,t(Σq

P
j,t)
] (
λPt q

P
j,t − λRt qRj,t

)
+ δ(qPj,t)

2
}
, (21)

subject to (8)–(11) for all EVs. Note that the objective function couples all
EVs that are located in the same feeder. The EVagg

A decentralized market
design is summarized in Algorithm 4. It is similar to the EVind

A design with
the exception that in Step 1, load aggregator at feeder n only needs to infer
dfn, and in Step 2, EVs at the same feeder are simultaneously scheduled by
the load aggregator. Note that although we model a single aggregator at each
feeder, our analysis extends to several aggregators and groups of EVs ([30]).

Algorithm 4 : EVagg
A (Distributed Algorithm)

Initialize LMPs λP,(0), λR,(0), marginal losses m
(0)
n and set k := 0

while
∑
j,t ||q

P,(k+1)
j,t − qP,(k)j,t || > tolerance do

Step 1. Repeat Step 1 of Algorithm 3 and only calculate dfn.
Step 2. Repeat Step 2 of Algorithm 3 but optimize (21).
Steps 3-4. Repeat Steps 3-4 of Algorithm 2.
k := k + 1

end while
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4 Comparison of Equilibrium Conditions across Market Designs

In this section, we study the differences in the centralized and decentral-
ized market designs by comparing the first order optimality conditions of the
market-clearing optimization problems w.r.t. EV decisions qPj,t and qRj,t. Since
generators are scheduled by the TSO, the optimality conditions w.r.t. genera-
tor variables QPi,t and QRi,t are identical.

The optimality conditions of the TDA centralized design are as follows:

λPt (1 +mn,t)− λRt γn
∑
j∈Jn,t

qRj,t +A = 0, (22)

− λRn,t + ν1j,t + ν2j,t = 0, (23)

where A = 2δqPj,t − ζj + ζj + ν1j,t − ν2j,t. Since the condition in (23) is identical

across all market designs, we present optimality conditions w.r.t. qPj,t only. For
the TDUn market design we have:

λPn,t +A = 0. (24)

For the distribution feeder information-Unaware decentralized market design
EVind

Un , we obtain exactly the same optimality conditions as above. This is not
surprising, since we can observe by inspection that its clearing process is an
exact decomposition of the centralized market design TDUn. The distribution
feeder information-Aware decentralized design EVind

A yields:

λPt (1 +mn,t) + λPt γnq
P
j,t − λRt γnqRj,t +A = 0. (25)

Finally, the EV Load Aggregator with feeder information decentralized design,
EVagg

A , yields:

λPt (1 +mn,t) + λPt γn
∑
j

qPj,t − λRt γn
∑
j

qRj,t +A = 0. (26)

Optimality conditions (22)-(26) reveal non-matching terms that imply dif-
ferences in the market equilibria. The following proposition describes a major
difference in the scheduling decisions across the three decentralized designs.

Proposition 1 (Key impact of decentralized designs on scheduling
decisions) Consider the decentralized market designs EVind

Un , EVind
A , and

EVagg
A . At equilibrium, assume that the minimum daily energy charging con-

straint (8) is binding. Then, for given hours t, t′ with qPj,t > 0, the marginal cost
reduction associated with moving infinitesimal consumption away from hour t
is equal to the increase in marginal cost associated with moving infinitesimal
consumption into hour t′. Moreover, the marginal change in cost in hour t
associated with moving consumption away from hour t is given by:

– EVind
Un : λPn,t + λRn,t + 2δqPj,t,

– EVind
A : (λPt + λRt )[γnq

P
j,t + 1 +mn,t(q

P
−j,t, q

P
j,t)] + 2δqPj,t,
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– EVagg
A : (λPt + λRt )[γn

∑
j q

P
j,t + 1 +mn,t(Σq

P
j,t)] + 2δqPj,t.

Proof The proof is available in Appendix A, Subsection A.1.

Proposition 1 shows the difference across decentralized market designs in
the marginal costs perceived by individual EVs (or their aggregator) when they
consider to transfer charging from hour t to hour t′. The differences depend
on whether EVs (or their aggregator) do or do not have access to distribution
feeder information. In the EVind

Un design, EVs have no information on how they
can affect marginal losses, mn,t, and the resulting DLMPs that determine
their cost, whereas in the EVind

A design, EVs do have that information as
they are aware of mn,t(q

P
−j,t, q

P
j,t). However, individual self-scheduling EVs

can impact marginal losses mn,t and the DLMPs that determine their cost
only by changing their own consumption qPj,t, whereas in the EVagg

A design,
the load aggregator has a greater leverage in impacting marginal losses mn,t

by controlling the consumption of all EVs,
∑
j q

P
j,t. In summary, Proposition

1 shows how the market-clearing equilibria under each decentralized market
design differ during hours when EV charging is strictly positive.

5 Existence and Uniqueness of EV Schedule Equilibrium in the
Decentralized Market Designs

The cost function of self-scheduling EVs in the EVind
Un and EVind

A decentral-
ized designs, characterized by (16) and (20), respectively, in addition to their
own energy and reserve decisions, also depends on the total hourly energy
consumption by other EVs connected to the same feeder. Hence, we study the
associated market-clearing equilibrium as a non-cooperative game resulting in
a Nash equilibrium [5]. To this end, we study existence and uniqueness of the
EV schedules and DLMP Nash equilibria under decentralized EV information-
Aware/Unaware market designs. Our goal is to show that spatiotemporal equi-
libria of EV energy and reserve schedules aggregated over identical groups of
EVs exist and are unique. Although these results are shown for a single distri-
bution feeder and EV group, their extension to mobile EVs visiting multiple
feeders and constituting multiple identical groups is straightforward.

The fact that EVs co-optimize their Energy consumption and Reserve offers
in the EVind

A and EVagg
A decentralized designs renders the characterization

and analysis of the multi-commodity market-clearing equilibrium a non-trivial
task. Indeed, the associated objective functions (20) and (21) are non-convex
due to bilinear qPj,tq

R
j,t terms in the cost functions whose Hessian is indefinite.

We overcome these difficulties by reducing the EV scheduling problem to a
single-commodity problem involving explicitly only the energy decisions qPj,t.
This is by no means a straightforward task, which we address as follows:

– We rely on the fact that energy and reserve decisions are coupled through
a double constraint imposed by the fact that reserves are bidirectional (up
and down) and can neither exceed the battery charging rate, qPj,t, nor the

unused charging rate capacity, qj − qPj,t.
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– We partition the input space to mutually exclusive and exhaustive subsets.
Within each subset, we exploit the necessary optimality conditions (pre-
sented in Section 4) and duality, i.e., ζ

j
, ζj ≥ 0, ν1j,t, ν

2
j,t ≥ 0, to express

reserve decisions qRj,t in terms of energy decisions qPj,t, and thus reduce the
multi-commodity problem to a single-commodity one.

– We construct appropriate potential functions [35] that convert individual
EV decisions to a centralized strictly convex problem within each partition.

In the EVagg
A market design, where EVs are scheduled by an information-

Aware load aggregator, there is no notion of a Nash Equilibrium among EVs
in the same group.5 Hence, we simply show that the EVagg

A optimization
problem is strictly convex within each input space partition.

Lemma 1 Consider the EVind
Un , EVind

A , and EVagg
A decentralized market de-

signs. For the EV scheduling problems solved in Step 2 of Algorithms 2, 3, and
4, respectively, the optimal solution satisfies the following:
(i) At least one of constraints (10) or (11) is binding.
(ii) If there exists t such that qPj,t > 0 and λPt − λRt > 0, then constraint (8) is
binding.
(iii) If there exists t such that qRj,t < qPj,t, then constraint (8) is binding.
(iv) If constraint (8) is not binding and there exists t such that constraint (10)
is not binding, then constraint (9) is binding.

Proof The proof is available in Appendix A, Subsection A.2.

Corollary 1 If qPj,t <
qj
2 , then qRj,t = qPj,t.

Corollary 2 If qPj,t >
qj
2 , then qRj,t = qj − qPj,t.

Note that when qPj,t =
qj
2 , Corollaries 1 and 2 are identical.

If the battery needs to charge during an hour when the energy price exceeds
the reserve price, total charging is equal to minimum charging demand sj , since
the total cost increases if the battery charges beyond this level. The reverse
of Lemma 1(ii) is also intuitive and helpful; if the minimum charging demand
constraint (8) is not binding, then one can show that the hours when the
battery charges satisfy λPt − λRt < 0, i.e., the minimum charging demand is
exceeded only in the case EV charges during hours when the reserve prices
exceed energy prices. When constraint (8) is not binding, constraint (11) is
binding ∀t, hence, qRj,t = qPj,t, ∀t. If reserve prices exceed energy prices, the

battery will charge up to its maximum capacity, Sj , if possible. The existence
of a residual hour t where qPj,t + qRj,t < qj suggests that reaching maximum
total charging capacity is feasible.

Corollaries 1 and 2 imply that the relationship between reserves and energy
consumption depends on whether energy consumption is smaller or greater

5 Note, however, that if multiple EV groups that are internally homogeneous, as for
example fleets of electrified UPS, FEDEX, Amazon delivery etc., are scheduled by competing
load aggregators, the Nash equilibrium notion becomes relevant.
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Fig. 3 Illustration of the charging flexibility levels for a two-hour problem. HF=High Flex-
ibility, MF=Moderate Flexibility, LF=Low Flexibility.

than
qj
2 . In addition, whether EV j needs to charge more than

qj
2 during an

hour t depends on the relationship between the ratio
sj
qj

and the number of

hours that the EV is plugged in, Tj . This leads to the definition of the following
input space partitions:

– High Charging Flexibility : The charging demand of EV j is small enough

so that qPj,t ≤
qj
2 , ∀t is a feasible solution, i.e.,

sj ≤ Tj
qj
2
, (27)

implying that EV j does not need to charge more than
qj
2 in any hour to

meet its minimum charging demand. Therefore, Corollary 1 can hold ∀t.
We later show that under a mild assumption this holds at equilibrium.

– Moderate Charging Flexibility : It is characterized by:

Tj
qj
2
< sj ≤ (Tj − 1)qj +

qj
2
, (28)

implying that EV j needs to charge more than
qj
2 during at least one hour.

– Low Charging Flexibility : EV j needs to charge more than
qj
2 every hour

to fulfill its charging demand, i.e., its charging demand sj satisfies:

sj > (Tj − 1)qj +
qj
2
. (29)

Since qPj,t >
qj
2 ∀t, Corollary 2 holds ∀ t as well. Therefore, qRj,t = qPj,t, ∀t.

The charging flexibility levels are illustrated in Figure 3 for a two-hour prob-
lem. In this case, High Flexibility is satisfied when the minimum charging
demand, sj , does not exceed qj .

To proceed with the proof of equilibrium existence and uniqueness for
decentralized information-Unaware and Aware EV market designs, the input
space partition approach is strengthened by the following reasonable input
assumptions that hold true under extensive tests on actual LMP data:
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Assumption 1 λPt′ + λRt′ > λPt − λRt , ∀t, t′|t′ 6= t.

Assumption 1 relies on the anticipated increase in reserve prices due to
renewable energy penetration. Since hourly marginal losses on distribution
network lines average 10%, Assumption 1 should hold for distribution feeder
DLMPs as well, i.e.,

λPn,t′ + λRn,t′ > λPn,t − λRn,t, ∀t, t′|t′ 6= t, (30)

implying that charging more than
qj
2 is not optimal unless it is required for

feasibility. The marginal cost of charging beyond
qj
2 at hour t is equal to

λPn,t+λ
R
n,t, since an additional unit of energy consumption requires one less unit

of reserve provision due to constraint (10). On the other hand, the marginal

cost of charging when qPj,t <
qj
2 equals to λPn,t − λRn,t. Therefore, as long as

the marginal cost of charging when qPj,t >
qj
2 is greater than when qPj,t <

qj
2 ,

∀t, t′ pairs, it is not optimal to charge more than
qj
2 at any hour.6 Analysis of

PJM energy and reserve LMP data reveals that Assumption 1 holds almost
certainly [32].

Assumption 2 λPt > λRt , ∀t.

We assume energy LMPs are higher than reserve LMPs. This assumption
is required only for some charging flexibility input space partitions. In the
analysis that follows, we assume that EVs may belong to the same charging
flexibility category, but their actual minimum charging demand values may
differ. Assumption 2 is used in employing the potential function approach
required to prove Nash equilibrium uniqueness.

The following two theorems are restatements of known results on the exis-
tence and uniqueness of a Nash equilibrium that are employed in our analysis.

Theorem 1 (Nash Equilibrium Existence) Given a game with a set of
players J = {1, .., J} where player j ∈ J has a strategy qj ∈ Sj and a cost
function fj(q

P
j , q

P
−j) : S1 × S2 × . . . × SJ → R, a Nash equilibrium exists

if fj(qj , q−j) is strictly convex in qPj , continuous in both qPj and qP−j, and
Sj ⊂ Rmj is convex, closed and bounded ∀j, where mj is the dimension of
player j’s strategy.

Proof Theorem 1 is a restatement of Theorem 1 in [33].

Theorem 2 (Nash Equilibrium Uniqueness) For the game described by
Theorem 1, given a strictly convex function P (qP1 , . . . , q

P
j , . . . , q

P
J ) that satisfies

argmin
qPj ∈Sj

fj(q
P
j , q

P
−j) = argmin

qPj ∈Sj

P (qP1 , . . . , q
P
j , . . . , q

P
J ), any Nash Equilibrium is

a minimum point of P if fj(q
P
j , q

P
−j) is bounded ∀j and P is smooth on S1 ×

. . .× SJ . Moreover, strict convexity of P implies a unique Nash Equilibrium.

6 If (30) does not hold, an EV might decide to provide no reserve or strictly smaller reserve
than qPj,t. For instance, for a two-hour case where {λPn,1, λRn,1} = {20, 15}, {λPn,2, λRn,2} =

{50, 10}, qj = 3, sj = 3, the optimal solution is qPj,1 = 3, qRj,1 = qPj,2 = qRj,2 = 0.
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Proof Theorem 2 is a restatement of known results in [34]–[37]. A short dis-
cussion and proof can be found in Appendix A, Subsection A.3.

5.1 Existence and Uniqueness of Equilibrium under High Charging Flexibility

In the following Lemma, we first show the coupling between energy and re-
serves under High Charging Flexibility, and transform the multi-commodity
to a single-commodity problem.

Lemma 2 (Single-Commodity, High Charging Flexibility) Consider
the EVind

Un , EVind
A , and EVagg

A decentralized designs. For the EV schedul-
ing problems solved in Step 2 of Algorithms 2, 3, and 4, respectively, given
Assumptions 1 and 2, under High Charging Flexibility, the optimal solution

satisfies qPj,t ≤
qj
2 , ∀t.

Proof The proof is available in Appendix A, Subsection A.4.

Having shown qPj,t ≤
qj
2 , we can also conclude qRj,t = qPj,t, ∀t, by Corollary 2.

For the EVind
A design, the self-scheduling problem solved by EV j (Step 2 of

Algorithm 3) can then be written as a function of qPj,t only:

min
qPj ∈SHF

j

f
EVind

A
j (qPj , q

P
−j) =

∑
t

{
∆λt

[
1 +mn,t(q

P
j,t, q

P
−j,t)

]
qPj,t + δ(qPj,t)

2
}
,

(31)

where SHFj = {qPj,t|qPj,t ∈ [0,
qj
2 ],

∑
t q
P
j,t ≥ sj} and ∆λt = λPt − λRt . We refer

to ∆λt as the effective price (LMP) of hour t. Note that since sj ≤ Sj and∑
t q
P
j,t = sj , we can omit the maximum total charging capacity constraint

(9). Similarly, for the EVind
Un design, the EV self-scheduling problem (Step 2

of Algorithm 2) can be written as:

min
qPj ∈SHF

j

f
EVind

Un
j (qPj ) =

∑
t

{
∆λn,tq

P
j,t + δ(qPj,t)

2
}
, (32)

where ∆λn,t = ∆λt(1 + mn,t). Lastly, for the EVagg
A design, the problem

solved by the load aggregator at location n (Step 2 of Algorithm 4) is written
as:

min
qP∈SHF

fEVagg
A (qP ) =

∑
j,t

{
∆λt

[
1 +mn,t(Σq

P
j,t)
]
qPj,t + δ(qPj,t)

2
}
. (33)

Proposition 2 (Existence and Uniqueness, High Charging Flexibil-
ity) Under High Charging Flexibility, given Assumptions 1 and 2, a unique
Nash Equilibrium exists for the EVind

A and EVind
Un decentralized market de-

signs, described by Algorithms 2 and 3. For the EVagg
A decentralized market

design, described by Algorithm 4, the aggregate EV response is also unique.
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Proof The proof is available in Appendix A, Subsection A.5.

We remind the reader that in this paper, we do not consider the game
among multiple load aggregators in a single feeder. This could also be investi-
gated in the Nash Equilibrium context, where a few but big players are market
participants. We refer the reader to our previous work [30], where we provide
results with respect to quantitative differences among market design outcomes
when multiple load aggregators in a single feeder engage in a game.

5.2 Existence and uniqueness of Equilibrium under Moderate and Low
Charging Flexibility

Since the definition of Moderate Charging Flexibility in (28) requires that

there exists t s.t. qPj,t >
qj
2 , the equilibrium satisfies

∑
t q
P
j,t = sj based on

Lemma 1(iii) regardless of the sign of ∆λt. Therefore, in the Lemma below,
Assumption 2 is not required.

The one to one relationship between energy and reserves is shown in the
following lemma.

Lemma 3 (Single-Commodity, Moderate/Low Charging Flexibility)
Consider the EVind

Un , EVind
A , and EVagg

A decentralized designs. For the EV
scheduling problems solved in Step 2 of Algorithms 2, 3, and 4, respectively,
given Assumption 1 and under Moderate Charging Flexibility, or under Low

Charging Flexibility, the optimal solution satisfies qPj,t ≥
qj
2 , ∀t.

Proof The proof is available in Appendix A, Subsection A.6.

By Corollary 1 and Lemma 3, we can write qRj,t = qj − qPj,t. Therefore, for

the EVind
A design, the individual information-aware EV scheduling problem

(Step 2 of Algorithm 3), under Moderate or Low Charging Flexibility, can be
written only in terms of qPj,t as follows:

min
qPj ∈SMLF

j

f
EVind

A
j (qPj,t, q

P
−j,t) =∑

t

{[
1 +mn,t(q

P
j,t, q

P
−j,t)

] [
λPt q

P
j,t − λRt (qj − qPj,t)

]
+ δ(qPj,t)

2
}
, (34)

where SMLF
j = {qPj,t|qPj,t ∈ [qj/2, qj ],

∑
t q
P
j,t ≥ sj}. Due to positivity of λPt

and λRt , the above objective function in (34) is strictly convex regardless of the
sign of ∆λt. Similarly, for the EVind

U n and EVagg
A designs, the objective func-

tions of the individual information-unaware and load aggregator scheduling
problems (Step 2 of Algorithms 3 and 4) are given by:

f
EVind

Un
j (qPj ) =

∑
t

[
λPn,tq

P
j,t − λRn,t(qj − qPj,t) + δ(qPj,t)

2
]
, (35)

fEVagg
A (qP ) =

∑
j,t

{[
1 +mn,t(Σq

P
j,t)
] [
λPt q

P
j,t − λRt (qj − qPj,t)

]
+ δ(qPj,t)

2
}
.

(36)
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Proposition 3 (Existence and Uniqueness, Moderate/Low Charging
Flexibility) Under Moderate Charging Flexibility and given Assumption 1
or under Low Charging Flexibility, a unique Nash Equilibrium exists for the
EVind

A and EVind
Un decentralized market designs, described by Algorithms 2

and 3. For the EVagg
A decentralized market design, described by Algorithm 4,

the aggregate EV response is also unique.

Proof The proof is available in Appendix A, Subsection A.7.

Having shown existence and uniqueness, we proceed in the next two sec-
tions to a qualitative and quantitative exploration of the role of information in
decentralized market-clearing. Section 6 relies on analytic closed-form expres-
sions of decentralized market equilibria that are possible under simplified EV
models, whereas Section 7 uses the full EV model and provides quantitative
analysis based on numerical solutions of equilibria instances.

6 Closed-Form Characterization of EV Decisions in Decentralized
Markets

In this section, we assume that EVs have practically unlimited charging ca-
pacity, which enables us to derive closed-form equilibrium expressions across
decentralized market designs. Since the total EV load is a small percentage
of total system demand in a transmission network, transmission bus LMPs
are fairly insensitive to the changes in the total EV load. We may therefore
focus on the role of EV-decision-sensitive DLMPs on market-clearing. Individ-
ual EVs or assisting EV load aggregators determine optimal EV schedules in
response to marginal loss, mn,t, dependent DLMPs. A major objective is to
use the analytic characterization of the various equilibria to understand the
role of information.

We first consider (in Subsection 6.1) a two-hour model of the EVind
Un ,

EVind
A , and EVagg

A market designs, for which we can obtain simple closed-
form equilibrium expressions. We then generalize our model to 24 hours (in
Subsection 6.2), and we analyze asymptotic behaviour (in Subsection 6.3) as
the number of EVs connected to each feeder increases while distribution feeder
losses adapt to increasing load. Since the charging rate capacity is assumed
unlimited,7 the High Charging Flexibility input partition holds always and
minimum total charging demand, sj , satisfies (27) ∀j . Lemma 2 and Corol-

lary 2 then imply that the equilibrium will satisfy qPj,t = qRj,t.

6.1 Closed-Form Equilibria in the Two-Hour Model

If EVs are connected for two hours, the only decision variable for EV j is energy
consumption during hour 1 (qPj,1), since, by Lemma 1(ii), qPj,1+qPj,2 = sj . Hence

7 This will be the case when fast chargers, with say a 240kW capacity, are widely available.
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in the explicit two-hour model, the feasible decision set of EV j is given by
S2hr
j = {qPj,1|qPj,1 ∈ [0, sj ]}.

For the EVind
Un market design, assuming identical EVs and writing sj = s,

the equilibrium schedule of EV j is given by8:

q
P,EVind

Un
j,1 =

∆λ2(1 + γdf2 )−∆λ1(1 + γdf1 ) + 2δs+∆λ2γJs

4δ + (∆λ2 +∆λ1)γJ
, (37)

when q
P,EVind

Un
j,1 ∈ (0, s). We note that∆λn,t = ∆λt(1+mn,t) and that information-

Unaware EVs do not know how their decisions influence ∆λn,t.
For the EVind

A market design, using the EV information-Aware optimality
conditions, we characterize qPj,1(qP−j,1), which depends on aggregate consump-
tion of other EVs given the effective LMPs (∆λ1, ∆λ2):

q
P,EVind

A
j,1 (qP−j,1) =

∆λ2(1 + γdf2 )−∆λ1(1 + γdf1 ) + γ∆λ2(J + 1)s+ 2δs− γ(∆λ1 +∆λ2)qP−j,1
4δ + 2γ(∆λ1 +∆λ2)

(38)

when q
P,EVind

A
j,1 ∈ (0, s). The above can be viewed as the best response function

of EV j to given LMPs and other EVs’ aggregate consumption, qP−j,t. Unsur-

prisingly, the optimal consumption during hour 1 is decreasing in qP−j,t. The
best response function of EV j also implies that if the effective price difference
across the hours, |∆λ2 − ∆λ1|, is large, EVs will charge their batteries only
during one of the hours. Similarly, as the inelastic demand difference between
the hours, |df2 − d

f
1 |, increases, the difference in marginal losses and effective

DLMPs increases too.
Figure 4 illustrates the best response functions with two EVs and zero

inelastic demand, for various values of ∆λ2 − ∆λ1. The unique equilibrium
can be recovered from the intersection of best response functions. When the
best response function is piecewise linear, the optimal consumption of EV j
given by (38) is within the [0, s] range for lower values of qP−j,1. However, as

qP−j,1 increases, EV j consumes energy only during the hour with the lower

effective LMP. When ∆λ1−∆λ2 is larger, the best response of qPj,1 falls outside

the [0, s] range for all possible levels of qP−j,1. In other words, there exists a
dominantly cheap hour and EV j’s best response is not affected by the other
EV’s consumption. Comparing the EVind

A equilibrium in Figure 4 to EVind
Un

and EVagg
A for ∆λ1 − ∆λ2 = 0.3, we observe that q

P,EVind
Un

j,1 = 4.38 kW,

q
P,EVind

A
j,1 = 4.90 kW, and q

P,EVagg
A

j,1 = 5.17 kW.

Proposition 4 (Stability of N.E. under Information-Awareness) Con-
sider the EVind

A market design. In the two-hour model, the equilibrium of the
information-Aware self-scheduling EVs is stable for J ≤ 3.

8 For simplicity, we omit location index n from loss factor γn and inelastic demand dfn,t.
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Fig. 4 EV best responses; EVind
A design; 2 EVs, ∆λ1−∆λ2 = {0.3, 1.2}; s1 = s2 = 12kW.

Proof The proof is available in Appendix A, Subsection A.8.

Proposition 4 suggests that the unique Nash equilibrium is guaranteed to be

reached when EV j iteratively plays the best response q
P,EVind

A
j,1 (qP−j,1). This

refers to Step 2 of Algorithm 3. The best response iteration path with two
EVs is illustrated in Figure 4, for ∆λ1 − ∆λ2 = 0.3. For identical EVs, the
solution to the system of the best response functions in (38) results, when

q
P,EVind

A
j,1 ∈ (0, s), to the equilibrium solution:

q
P,EVind

A
j,1 =

∆λ2(1 + γdf2 )−∆λ1(1 + γdf1 ) + (J + 1)∆λ2γs+ 2δs

4δ + (J + 1)γ(∆λ1 +∆λ2)
. (39)

Note that qP−j,t = (J − 1)qPj,t. Similarly to the information-unaware self-
scheduling equilibrium given in (37), as |∆λ1−∆λ2| increases, the equilibrium
solution falls outside the (0, s) range.

We now write the optimal consumption of EV j, q
P,EVagg

A
j,1 (qP−j,1), obtained

from the first order optimality condition of the EVagg
A market design:

q
P,EVagg

A
j,1 (qP−j,1) =

∆λ2(1 + γdf2 )−∆λ1(1 + γdf1 ) + 2∆λ2Jγs+ 2δs− 2γ(∆λ1 +∆λ2)qP−j,1
4δ + 2γ(∆λ1 +∆λ2)

.

(40)

The difference between the expression given in (40) and the best response
in the EVind

A market design given by (38) is the relative slope of EV j to qP−j .

For q
P,EVagg

A
j,t ∈ (0, s), the equilibrium of EV j in the EVagg

A market design
becomes:

q
P,EVagg

A
j,1 =

∆λ2(1 + γdf2 )−∆λ1(1 + γdf1 ) + 2J∆λ2γs+ 2δs

4δ + 2Jγ(∆λ1 +∆λ2)
. (41)



Power Markets with Information-Aware Self-Scheduling Electric Vehicles 25

5 10 15 20 25

Number of EVs

0

1

2

3

4

5

q
j,
1

P
 (

M
W

)

10
-3

EV
ind

Un

EV
ind

A

EV
agg

A

5 10 15 20 25

Number of EVs

0.32

0.33

0.34

0.35

0.36

C
o
s
t 
P

e
r 

E
V

EV
ind

Un

EV
ind

A

EV
agg

A

Fig. 5 Hour 1 Consumption level (qPj,1) and Cost per EV for the EVind
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A and EVagg
A

market designs for fixed effective LMPs, w.r.t. the number of EVs. Loss factor γ is fixed and
equal to 0.8, ∆λ1 −∆λ2 = 2.5$/MWh, s = 12kW.

Proposition 5 (Closed form expressions for differences in equilibria
across market designs) Assuming qPj,t ∈ (0, s) , t = 1, 2 and disregard-
ing the battery degradation term δ, the magnitude of the difference in optimal
EV consumption at t = 1, qPj,1, across the decentralized market design equi-

libria is as follows:
∣∣∣qP,EVind

Un
j,1 − qP,EVind

A
j,1

∣∣∣ = 1
J(J+1)M ,

∣∣∣qP,EVind
A

j,1 − qP,EVagg
A

j,1

∣∣∣ =

(J−1)
2J(J+1)M ,

∣∣∣qP,EVind
Un

j,1 − qP,EVagg
A

j,1

∣∣∣ = 1
2JM , where M =

∣∣∣∆λ2(1+γd
f
2 )−∆λ1(1+γd

f
1 )

(∆λ1+∆λ2)γ

∣∣∣.
Proof Proposition 5 follows from (37), (39), and (41).

Proposition 5 implies that the magnitude of the difference in consump-
tion between the load aggregator market design (EVagg

A ) and the individual
self-scheduling (EVind

Un , EVind
A ) equilibria, whether information-Aware or Un-

aware, q
P,EVind

Un
j,1 or q

P,EVind
A

j,1 , is greater than the magnitude of the difference

between the self-scheduling EVind
Un and EVind

A equilibria for a given J ≥ 3

with qPj,t ∈ (0, s) in all equilibria. This is because (J−1)
2J(J+1) ≥

1
J(J+1) and,

1
2J > 1

J(J+1) for J ≥ 3. This result implies that there is a greater leverage of

distribution feeder information-aware EVs, when they entrust their scheduling
to an aggregator, or, in other words, when they collude. Moreover, Proposi-
tion 5 implies further that, as the number of EVs increases, the difference in
energy consumption between the self-scheduling EVind

Un and EVind
A market de-

signs decreases. This makes intuitive sense, since a single EV’s influence on the
marginal losses, and hence the DLMPs, diminishes as the “other” loads affect-
ing feeder marginal losses become increasingly larger relative to an individual
EV’s battery charging load.

Proposition 5 is illustrated further in Figure 5, which shows the equilib-
rium consumption level of a single EV during hour 1 and the total cost per
EV in EVind

Un , EVind
A , and EVagg

A market designs and plots them against the



26 F. Selin Yanikara et al.

number of EVs that are connected to the distribution feeder. We note that the
cost per EV is the lowest when EVs are scheduled collectively by a distribu-
tion feeder information-aware EV aggregator. As expected, and demonstrated
analytically in Proposition 5, the difference in the first hour consumption level
and the total cost per EV is higher between the EVind

A and EVagg
A market

designs than between the EVind
Un and EVind

A designs. Figure 5 also shows that
for smaller number of EVs, optimal consumption level is identical across the
EVind

Un , EVind
A , and EVagg

A equilibria, because the equilibrium obtained from
all the market designs fall outside the [0, s] range and EVs charge only during
hour 2. However, as the number of EVs increases, the effective DLMP dif-
ference across the hours becomes small enough for EVs to reduce their cost
by splitting their charging across both hours. The number of EVs beyond
which EV consumption occurs during both hours is the smallest in the load
aggregator market design.

6.2 Closed-Form Equilibria in the Multi-Hour Model

In what follows, we provide the 24-hour simplified EV model closed-form equi-
librium relations.

Proposition 6 (Closed form equilibria expressions for simplified 24-
hour problem) Consider the EVind

Un , EVind
A , and EVagg

A market designs.
For the multi-hour model, assuming identical EVs with unlimited charging rate
capacity, the closed-form equilibria are given by:

q
P,EVind

Un
j,t = [G(J, t)]

+
, q

P,EVind
A

j,t = [G(J + 1, t)]
+

, and q
P,EVagg

A
j,t = [G(2J, t)]

+
,

where [x]+ = max {x, 0}, t′ = {t|qPj,t > 0}, g(t) = ∆λt(1 + γdft ), h(J, t) =

Jγ∆λt + 2δ, and G(J, t) =

∑
t′

g(t′)
h(J,t′)+s∑

t′

h(J,t)

h(J,t′)
− g(t)

h(J,t) .

Proof The proof is available in Appendix A, Subsection A.9.

Proposition 6 has an interesting interpretation: If the small battery degra-
dation term δ is disregarded, it is clear that the EVs scheduled by the EV
aggregator consume, during the hours with the higher effective LMPs, more
than they would if they were to self schedule whether information Aware or
Unaware. This is easier to conclude in the two-hour model; the difference

q
P,EVagg

A
j,1 − q

P,EVind
A

j,1 is positive for J ≥ 2 when ∆λ1 > ∆λ2.9 As shown in
Proposition 1, this is because the load aggregator is able to estimate the
marginal change in cost during an hour associated with shifting the consump-
tion of all EVs.

9 Assuming that inelastic demand levels in a single feeder are not large enough to affect
this inequality.



Power Markets with Information-Aware Self-Scheduling Electric Vehicles 27

6.3 Asymptotic Results for an Unlimited Number of EVs

We conclude the simplified EV model based closed-form equilibrium character-
ization analysis by investigating the limiting behavior of EV schedules as the
number of EVs grows substantially at the distribution feeder level. Although
in real distribution networks increasing EV numbers will be compensated by
increasing feeder capacity as well as feeder numbers, and, as such, granularity
will persist, we adopt a simpler model for the purpose of looking at some inter-
esting qualitative results. We assume that feeder line loss factors will decrease
in the long run linearly in the number of EVs connected to the distribution
network. Specifically, for J EVs, we define γn = γ̂n/J . The closed-form EV
schedule equilibria depend now on J .10 For the two-hour model selected for
simplicity, we have:

q
P,EVind

Un
j,1 =

[
A+∆λ2γ̂s

4δ + (∆λ1 +∆λ2)γ̂

]+
, (42)

q
P,EVind

A
j,1 =

[
A+ (J+1)

J ∆λ2γ̂s

4δ + (J+1)
J (∆λ1 +∆λ2)γ̂

]+
, (43)

q
P,EVagg

A
j,1 =

[
A+ 2∆λ2γ̂s

4δ + 2(∆λ1 +∆λ2)γ̂

]+
, (44)

where A = ∆λ2(1 + γ̂
J d

f
2 )−∆λ1(1 + γ̂

J d
f
1 ) + 2δs.

Decentralized market design equilibria differences persist with increasing
EVs. More specifically, EVind

Un and EVagg
A market design equilibria are only

implicitly dependent on the number of EVs through the effective loss factor,
and become completely independent as the inelastic demand becomes rela-
tively small.11 This makes sense, since the marginal hourly losses are constant
in the short run w.r.t. the number of EVs. Another intuitive result from the
closed-form equilibrium relations is that as J → ∞, the impact of inelastic
demand on EV schedules approaches zero, since the total EV load dominates
inelastic demand. Figure 6 demonstrates clearly the preceding discussion.

Proposition 7 (Asymptotic coincidence of individual self scheduling
information Aware and Unaware EVs) Given the postulated long term
dependence of the feeder loss factor on the number of EVs, γ̂

J , information-
unaware and aware self-scheduling EVind

Un and EVind
A equilibria become asymp-

totically identical as J →∞.

Proof The proof is listed in Appendix A, Subsection A.10.

10 Under a large number of EVs, we also assume the generation capacity of generator i
is adjusted as Qi = Qi + Js, so that wholesale prices are not significantly affected by the
increased demand from EV charging.
11 Replace dft = 0 to see this clearly.
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Fig. 6 Hour 1 consumption levels (qPj,1) and cost difference per EV between EVind
A and

EVagg
A designs, for fixed effective LMPs (∆λt), w.r.t. large number of EVs. Loss factor

γ = γ̂
J

, where γ̂ = 15; dft = 0, ∀t; ∆λ1 −∆λ2 = 2.5$/MWh; s = 12kW.

Proposition 7 is consistent with and reinforces a conclusion we can draw from
Proposition 5, which shows the analytical differences in equilibrium under fi-
nite number of EVs connected to a feeder. Proposition 5 implies that the
difference between the equilibrium of information-aware/unaware EVind

A and
EVind

U n market designs approach zero as the number of EVs J increases. In
Proposition 7, we show that these two market designs become identical for a
large number of EVs even when the network loss factor adjusts to accommo-
date an unlimited increase in the number of connected EVs.

Proposition 8 (Individually scheduled information Aware and Un-
aware EVs are asymptotically indistinguishable relative to aggrega-
tor scheduled information Aware EVs) Given the postulated long term
dependence of the feeder loss factor on the number of EVs, γ̂

J , and disregard-
ing battery degradation term δ, the difference in consumption level between
the two-hour self-scheduling and the load aggreator EVagg

A market designs as
J →∞ is given by:∣∣∣qP,EVagg

A
j,1 − qP,EVind

A
j,1

∣∣∣ =
∣∣∣qP,EVagg

A
j,1 − qP,EVind

Un
j,1

∣∣∣ =

∣∣∣∣ ∆λ1 −∆λ2
2(∆λ1 +∆λ2)γ̂

∣∣∣∣ . (45)

Proof The results are obtained directly from (42), (43), and (44).

Figure 6 shows the optimal consumption level in the information-aware
EVind

A and EVagg
A market designs for the two-hour model for a wide range of

EV numbers. The difference in cost per EV stabilizes as J
J+1 approaches 1.

7 Numerical Results

This section illustrates differences among the equilibria of centralized and de-
centralized market designs under a realistic EV model. Since the emphasis



Power Markets with Information-Aware Self-Scheduling Electric Vehicles 29

is on the distribution network connected EVs, we use a single transmission
bus12 with N distribution network feeders. Note that since the EV schedule
of the information-unaware decentralized market design (EVind

Un ) is identical
to the centralized scheduling with TSO-DSO collaboration (TDUn), we only
report results on the former for the sake of brevity. We assume that EVs are
connected to only one feeder, and the remainder of the feeders carry only
inelastic demand. EVs have a battery capacity of 24 kWh, a charging rate
capacity of 15 kW, and they are are connected for 24 hours, i.e., they have
High Charging Flexibility, and we use the respective reduced single-commodity
formulation with energy consumption qPj,t being the only decision variable. In
the multi-hour numerical experiments, we add another regularization term in
the battery dynamics representing the dependency of the charging efficiency
on the charging rate. The minimum charging demand constraint (8) becomes:∑
t
qPj,t(1− ε

qPj,t
qj

) ≥ sj , where we select ε = 0.1, i.e., if the EV is charging at

the maximum charging rate, charging efficiency drops to 90%.

The total hourly system inelastic demand levels and resulting effective
LMPs (∆λt) are shown in Figure 7. As expected, we observe that across all
market designs, EVs charge during the hours with the lowest system inelastic
demand (hours 1-5, Figure 8).
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Fig. 7 Hourly total system inelastic demand and resulting effective LMPs (∆λt).

Figure 8 compares the hourly EV consumption and marginal losses with
15 EVs across the decentralized designs. As discussed in Proposition 6, EVs
scheduled by the EV aggregator consume more during the hours with higher
effective LMPs (hours 1, 2, 5) than they do when they self-schedule, whether
with or without feeder information. If we include only the hours when qPj,t > 0,
i.e., hours 2,3,4, the difference in total hourly EV load reaches 19% between
EVind

A and EVagg
A , and 2.2% between EVind

Un and EVind
A .

12 Or equivalently a low losses transmission network with no line congestion, a choice that
does not compromise the qualitative generality of our results.
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Fig. 8 Total EV consumption and marginal losses with 15 EVs. Comparison of decentralized
EVind

Un , EVind
A , and EVagg

A market designs, with γ = 1.1.
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Fig. 9 Cost per EV and difference in Cost per EV among decentralized EVind
Un , EVind

A ,
and EVagg

A market designs w.r.t. the number of EVs.

We compare the cost per EV differences among decentralized market de-
signs w.r.t. the number of EVs. First we consider a small range of EV num-
bers without adjusting the line loss factor (Figure 9), and then for higher EV
adoption rates we use an EV number sensitive loss factor γ set equal to γ̂

J
(Figure 10). Total EV demand even in the highest EV penetration case is a
relatively small percentage of total system demand, LMPs (λPt , λ

R
t ) are still

considered relatively insensitive to EV demand. More specifically, at a 250 EV
penetration, total hourly EV demand reaches 2% of total system demand in
a particular hour. Hourly DLMPs, however, are quite sensitive to hourly EV
consumption, and hence the game context is still relevant.

The difference in cost per EV and hourly consumption between the EV load
aggregator EVagg

A and EV self-scheduling market designs is higher than the
difference between EV self-scheduling information-Aware and Unaware mar-
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Fig. 10 Differences in total EV cost and cost per EV w.r.t. the number of EVs. Comparison
among decentralized EVind

Un , EVind
A , and EVagg

A market designs; γ = γ̂
J

, with γ̂ = 22.

ket designs (Figure 9 and 11). In fact, the cost per EV difference between the
individual scheduling information Unaware EVind

Un and individual scheduling
information Aware EVind

A market designs starts to decrease beyond 15 EVs
(Figure 9). On the other hand, the difference in cost per EV between the indi-
vidual and the EV aggregator EVagg

A market designs stabilizes asymptotically
as the number of EVs increases, resulting in a persistent difference in total EV
cost (Figure 10).
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A market designs.

Table 2 summarizes the aggregate EV net costs and its components for
small and high penetration levels of EVs, as well as the total marginal cost
based charges assessed to inelastic demand located at the same feeder n′

as EVs. Inelastic demand marginal cost based charges are equal to λPt (1 +

mn′,t)d
f
n′,t. Numerical results indicate that EVs achieve lower net costs when
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they self-schedule compared to the centralized TDA market design equilib-
rium. EVs are able to enjoy lower costs relative to the centralized market
design equilibrium, and achieve the lowest cost when scheduled by an infor-
mation aware load aggregator under the EVagg

A market design. They interest-
ingly decrease their battery charging costs while also decreasing, albeit at a
lower rate, their reserve revenue. As expected, social costs are lowest under the
single operator centralized market design, TDA.13 Notably, inelastic demand
cost is higher under the decentralized market design equilibria, suggesting that
self-scheduling EVs lower their cost at the expense of both social welfare and
inelastic demand customers.

Table 2 Summarized EV and inelastic demand cost with Low and High EV Penetration

Number of EVs=15 TDA EVind
Un EVind

A EVagg
A

Cost Per EV 0.744 0.740 0.739 0.736
Total EV cost 11.157 11.093 11.084 11.047
Energy cost 17.238 17.097 17.075 16.933
Reserve Revenue 6.082 6.004 5.990 5.886
Max. marg. losses 0.320 0.307 0.305 0.288
Social cost 1,712,928.66 1,712,928.68 1,712,928.69 1,712,928.76
Inelastic dem. cost 840.01 840.03 840.04 840.08

Number of EVs=250 TDA EVind
Un EVind

A EVagg
A

Cost Per EV 0.648 0.638 0.638 0.635
Total EV cost 162.117 159.631 159.621 158.690
Energy cost 249.988 244.749 244.723 241.399
Reserve Revenue 87.881 85.118 85.102 82.714
Max. marg. losses 0.166 0.138 0.138 0.112
Social cost 1,712,979.79 1,712,980.25 1,712,980.25 1,712,981.87
Inelastic dem. cost 665.106 665.179 665.179 665.296

With increasing EV numbers the impact of a single EV’s consumption on
the marginal losses becomes insignificant, a fact shown analytically by Propo-
sition 7. Numerical results confirm that EVind

Un and EVind
A equilibria become

almost identical (Table 2) and differences in cost per EV approaches zero with
increasing number of EVs (Figure 10). With 250 EVs, the difference in to-
tal EV cost between the information-aware decentralized EVagg

A and EVind
A

equilibria is about 0.6%, while the difference is about 2.1% relative to the
centralized social welfare maximizing TDA market design equilibrium.

In summary, numerically computed equilibria under accurate EV models
are fully compatible with the analytical results of Section 6 derived under
simplified EV models.

8 Conclusions, Policy Recommendations and Future Work

We considered multi-commodity and multi-period electricity markets in the
anticipated massive presence of DERs, primary among them EVs, which have

13 A large portion of the social cost is associated with fixed/inelastic demand.
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complex inter-temporally coupled preferences. As such, EVs can practically
participate in network enabled electricity markets through self-scheduling in
response to granular and dynamically varying spatiotemporal marginal net-
work cost based prices, or, through group scheduling assisted by load aggrega-
tors responding to similar marginal network cost rates. Notably, however, self
or aggregator-assisted EV scheduling can benefit EVs with access to network
cost information which enables them to anticipate how their scheduling deci-
sions affect marginal costs. To this end, decentralized market designs enabling
self or group EV scheduling with network information-Aware or Unaware deci-
sion makers were analyzed. Existence and uniqueness of decentralized market
equilibrium were proven and compared both analytically and numerically. A
novel and unique contribution of this work was the modeling and internal-
ization of the salient network characteristics and their impact on the multi-
commodity (energy and regulation reserves) and multi-period (24-hour day
ahead) markets where inter-temporally coupled EV charging must be sched-
uled. Under network information-Aware scheduling, convexity conditions do
not hold and proving equilibrium existence and uniqueness is nontrivial. Using
a pioneering input state partition approach we were able to exploit the in-
equality constraints coupling battery charging and reserve provision decisions
to map the multi-commodity to a single-commodity market. This mapping en-
abled us to construct and use potential functions to not only show equilibrium
uniqueness and existence, but to also compare market designs and reach the
following conclusions:

1. As expected, social Welfare is maximized under a centrally cleared market
operator (TDA) who has full access to network information (especially
line loss factors) as well as preferences of centralized generation, EVs, and
inelastic demand. A second best social welfare is obtained when DERs
self-schedule adapting to prices without being aware of how their decisions
affect line losses.

2. Self-scheduling EVs achieve a lower cost at the expense of social welfare
when they are fully Aware of network marginal losses (EVind

A ) and thus
may (i) learn inelastic demand and the behavior of other EVs, and (ii)
anticipate how their own scheduling decisions impact marginal cost based
rates at their node.

3. Social welfare is even lower and EVs achieve an even lower cost if EVs
are scheduled as a group by a distribution network information-aware EV
aggregator (EVagg

A ).
4. In asymptotic results where high and low voltage networks increase their

capacity in proportion to the number of EVs, information-aware EV self-
scheduling (EVind

A ) converges to information-Unaware scheduling (EVind
Un )

as the number of EVs approaches infinity. However, this is not a realistic
comparison, since actual distribution networks will respond to accommo-
date a larger number of EVs by a proliferation of feeder lines rather than
strengthening a single line to drive its loss factor down in proportion to
the number of EVs connected to it.
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5. Interestingly, however, even under the simplistic assumption that feeder
capacity increases in proportion to the connected number of EVs, infor-
mation Aware EV load aggregators may still achieve a leveling but not
diminishing cost advantage.

6. All the aforementioned conclusions are shown on numerically estimated
realistic cases, but also on simplified EV models that allow analytic repre-
sentation of the information-Aware and Unaware market design equilibria.

7. The computationally tractable market design with the highest social wel-
fare is the information-Unaware self-scheduling described as the second
best under item 1. Interestingly, information-Unaware group scheduling
is identical to self-scheduling under the Information-Unaware market de-
sign. This provides a very significant regulatory policy recommendation
that distribution network operators who are fully aware of the network
information, should remain regulated and not allowed to engage in profit
maximizing EV group schedulers. It is important to note that this is a
conclusion that is true even in the asymptotic case where the number of
EVs goes to infinity as discussed under item 5.

In terms of future work, the results obtained here by a simple (but not too
simple as to prevent us to discriminate between salient characteristics of real
distribution networks) model of the electricity network should be extended and
implemented to higher fidelity network and DER models including EV utility
functions. For example, the simple notion of marginal losses increasing in the
level of charging during a given hour, is likely to be magnified significantly
if the marginal cost of transformer life degradation is modeled [39], [40]. The
computational issues, as for example algorithmic convergence to the Nash
Equilibrium, are magnified by hard to deal with non-convexities when the
distribution network is represented with a higher fidelity model which considers
both real and reactive power flows (e.g., the branch flow model introduced in
[41] and recently revisited by [42]). Our brief discussion of convergence under
Section 3 should and most probably can be extended to hold under the non-
convexities introduced by higher fidelity network models.

A APPENDIX

A.1 Proof of Proposition 1 (Key impact of decentralized designs on
scheduling decisions)

For the purposes of the proof, we reduce the multi-commodity (energy and reserves) deci-
sions to a single-commodity decision. To this end, we note that reserve provision qRj,t either

increases with energy consumption qPj,t if constraint (10) is not binding, or decreases if con-

straint (11) is not binding. If the former is true, then (i) ν1j,t = 0 and, (ii)
∂qRj,t

∂qPj,t
= 1. In

that case, rearranging the optimality conditions w.r.t. qPj,t and qP
j,t′ yields:

– EVind
Un : λPn,t − λRn,t + 2δqPj,t = λP

n,t′ − λ
R
n,t′ + 2δqP

j,t′ ,

– EVind
A : (λPt − λRt )[γnqPj,t + 1 +mn,t(qP−j,t, q

P
j,t)] + 2δqPj,t =

= (λP
t′ − λ

R
t′ )[γnq

P
j,t′ + 1 +mn,t′ (q

P
−j,t′ , q

P
j,t′ )] + 2δqP

j,t′ ,
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– EVagg
A : (λPt − λRt )

[
γn
∑
j q
P
j,t + 1 +mn,t(ΣqPj,t)

]
+ 2δqPj,t =

= (λP
t′ − λ

R
t′ )
[
γn
∑
j q
P
j,t′ + 1 +mn,t′ (Σq

P
j,t′ )

]
+ 2δqP

j,t′ .

If, on the other hand, reserve provision decreases with energy consumption, then (i) ν2j,t = 0

and (ii)
∂qRj,t

∂qPj,t
= −1. Rearranging the optimality conditions w.r.t. qPj,t and qP

j,t′ yields:

– EVind
Un : λPn,t + λRn,t + 2δqPj,t = λP

n,t′ + λR
n,t′ + 2δqP

j,t′ ,

– EVind
A : (λPt + λRt )

[
γnqPj,t + 1 +mn,t(qP−j,t, q

P
j,t)
]

+ 2δqPj,t =

= (λP
t′ + λR

t′ )
[
γnqPj,t′ + 1 +mn,t′ (q

P
−j,t′ , q

P
j,t′ )

]
+ 2δqP

j,t′ ,

– EVagg
A : (λPt + λRt )

[
γn
∑
j q
P
j,t + 1 +mn,t(ΣqPj,t)

]
+ 2δqPj,t =

= (λP
t′ + λR

t′ )
[
γn
∑
j q
P
j,t′ + 1 +mn,t′ (Σq

P
j,t′ )

]
+ 2δqP

j,t′ .

The equality of marginal cost reduction in hour t to the marginal cost increase in hour t′ is
thus shown and quantified by expressing qRj,t in terms of qPj,t.

A.2 Proof of Lemma 1

(i) The result follows directly from the optimality conditions (23). Since the equality is not
satisfied when ν1j,t = ν2j,t = 0, at least one of these dual variables must be nonzero, assuming

that λRt > 0, ∀t. Note that we do not consider the unlikely event that λRt = 0.
(ii) The result follows from (24) for EVind

Un , from (25) for EVind
A and from (26) for EVagg

A .

Note that ζ
j

is positive when ∆λt = λPt −λRt > 0. Therefore, the minimum charging demand

constraint in (8) is binding. That is,
∑
j q
P
j,t = sj .

(iii) For EVind
A , the result follows from (23) and (25). Note that when qRj,t < qPj,t, constraint

(11) is not binding and ν2j,t = 0. Then, combining (23) and (25), we obtain: ζ
j

= λPt (1 +

mn,t)+λRt (1+mn,t)+γn(λP qPj,t−λRt qRj,t)+2δqPj,t+ζj . Therefore, ζ
j
> 0 and constraint (8)

is binding. The positivity of ζ
j

in the EVind
Un and EVagg

A market designs is shown similarly.

(iv) For EVind
A , the result follows from (23) and (25). When ζ

j
= ν2j,t = 0, we obtain ζj =

−∆λt+γn(λRt q
R
j,t−λPt qPj,t)−2δqPj,t. Since a non-binding constraint (8) implies λRt −λPt > 0,

we conclude that ζj > 0 and constraint (9) is binding. The positivity of ζj in the scheduling

problems solved in Step 2 of Algorithms 2 (EVind
Un ) and 4 (EVagg

A ) can be shown similarly.

A.3 Proof of Theorem 2 (Nash Equilibrium Uniqueness)

Theorem 2 employs the potential function approach to show uniqueness of an equilibrium.
A game in strategic form is called a potential game if the change in the payoff of a player
due to change in strategy is equal to the change in the global potential function due to
unilateral change of strategy of the player. That is, a game where each player i has payoff
function fi(qi, q−i), is a potential game if for every qi ∈ S, fi(qi, q−i) − fi(q

′
i, q−i) =

P (qi)−P (q′i), ∀i, qi. The function P that couples all players is called the potential function.
Constructing it is key to invoke Theorem 2. The relation between the Nash equilibrium
condition and the optimization problem with objective function replaced by P is based on
[35, Definition 1]. The conditions under which the Nash equilibrium is unique are given by
[37, Theorem 2] and restated in [36]. In fact (see [36]), the diagonal strict convexity condition
for equilibrium uniqueness given by [33, Theorem 2] is satisfied when the potential function
is strictly convex. Lastly, it is stated in [34] that there is no clear economic interpretation
of the potential function, in other words, the function that players jointly maximize.
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A.4 Proof of Lemma 2 (Single-Commodity, High Charging Flexibility)

We prove the result by contradiction for the EVind
Un , EVind

A and, EVagg
A market designs and

illustrate it for EVind
A . Assume the opposite is true, i.e., ∃t s.t. qPj,t >

qj
2

. By Assumption 2

and Lemma 1(ii),
∑
t q
P
j,t = sj . Then, given (27), there should exist some hour t′ s.t. qP

j,t′ <
qj
2

. Comparing the expressions of ζ
j

obtained from the first order optimality conditions

associated with qPj,t and qP
j,t′ , we get: ζ

j
= (λPt + λRt )(1 + mn,t) + γn(λPt q

P
j,t − λRt qRj,t) +

2δqPj,t+ζj , and ζ
j

= ∆λt′ (1+mn,t′ )+γn(λP
t′q

P
j,t′−λ

R
t′q

R
j,t′ )+2δqP

j,t′ +ζj . Note that the terms

γn(λPt q
P
j,t−λRt qRj,t) include energy and reserve decisions of EV j only. Hence, these quantities,

including the degradation term, are small enough, implying that the two expressions for ζ
j

cannot be identical since λPn,t + λRn,t > ∆λn,t′ from Assumption 1. Therefore, the optimal

solution of the EV scheduling problem satisfies qPj,t ≤
qj
2

, ∀t.

A.5 Proof of Proposition 2 (Existence and Uniqueness, High Charging
Flexibility)

Existence of equilibrium for the EVind
A and EVind

Un market designs follows from Lemma A1
and Theorem 1.

Lemma A1 Consider the EVind
Un and EVind

A market designs. The feasible set SHFj of EV
j in the EV self-scheduling problems, under High Charging Flexibility, is closed, bounded,

and convex. In addition, given Assumption 2, the cost functions f
EVind

A
j and f

EVind
Un

j of

EV j are both strictly convex and continuous in qPj .

Proof Due to the positivity of ∆λt from Assumption 2, f
EVind

A
j (qPj , q

P
−j) and f

EVind
Un

j (qPj )

given in (31) and (32) are strictly convex in qPj and continuous in both qPj and qP−j . In

addition, the feasible set SHFj of EV j is closed and bounded. Without the inter-temporal

minimum charging demand constraint (8), the feasible set of EV j is the box constraint

qPj,t ∈ [0,
qj
2

]. Therefore, the feasible set of EV j without constraint (8), denoted by Sj , is

given by Sj = S
1
j × . . .× S

t
j × . . .× S

T
j where S

t
j = [0,

qj
2

] and T is the number of periods

EVs are plugged in. Therefore, Sj is closed and bounded. The feasible set in the presence

of constraint (8), SHFj , is then a closed subset of Sj , hence also bounded. SHFj is convex as
well since the constraints are linear.

Consider the EVind
A market design. The potential function P

EVind
A for the game with

information-aware EVs, where EV j has the cost function f
EVind

A
j in (31) and strategy set

SHFj , is given by:

P
EVind

A =
∑
j,t

∆λt
[
1 +mn,t(Σq

P
j,t)
]
qPj,t + δ(qPj,t)

2 −
∑

j,j′|j′>j,t
∆λtγnq

P
j,tq

P
j′,t. (A.1)

In addition, P
EVind

A is strictly convex in qPj,t, ∀j. The J × J Hessian matrix of the potential

function P
EVind

A (qPt ) in (A.1) for a given t has the following form:

Ht =


2∆λtγn + 2δ ∆λtγn ∆λtγn . . . ∆λtγn

∆λtγn 2∆λtγn + 2δ ∆λtγn . . . ∆λtγn
..
.

..

.
..
.

. . .
..
.

∆λtγn ∆λtγn ∆λtγn . . . 2∆λtγn + 2δ

 ,
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which can be written as the sum of a positive semi-definite matrix and the identity matrix
multiplied by a positive scalar. Since the identity matrix is positive definite, and the sum of
a positive semi-definite and positive definite matrix is also positive definite, Ht is positive
definite, and hence, the potential function (A.1) is strictly convex, which implies uniqueness.
We then proceed to show that the equilibrium conditions are identical to the optimality
conditions of the equilibrium recovery problem (Nash equilibrium is recovered by minimizing

the potential function P
EVind

A subject to SHFj , ∀j). The first order optimality condition of

the EV self-scheduling problem (Step 2 of Algorithm 3) w.r.t. qPj,t is written as:

∆λt(1 +mn,t) +∆λtγnq
P
j,t + 2δqPj,t − ζj + ν1j,t = 0. (A.2)

The optimality condition w.r.t. qPj,t of the problem with the objective function replaced by

the potential function P
EVind

A given in (A.1) is:

∆λt(1 +mn,t) +∆λtγq
P
j,t +∆λtγq

P
−j,t + 2δqPj,t −∆λtγqP−j,t − ζj + ν1j,t = 0. (A.3)

By inspection, optimality conditions (A.2) and (A.3) are identical. Hence, by Theorem 2, the
Nash equilibrium of the EVind

A market design, under High Charging Flexibility, is unique.

Consider the EVind
Un market design. The potential function P

EVind
Un for the game with

information-unaware EVs, where EV j has the cost function f
EVind

Un
j in (32) and strategy

set SHFj , is given by:

P
EVind

Un =∑
j,t

∆λt
[
1 +mn,t(Σq

P
j,t)
]
qPj,t + δ(qPj,t)

2 −
∑

j,j′|j′>j,t
∆λtγnq

P
j,tq

P
j′,t −

1

2

∑
j,t

∆λtγn(qPj,t)
2.

(A.4)

In addition, P
EVind

Un is strictly convex in qPj,t, ∀j, and the Hessian of a single hour t of

P
EVind

Un in (A.4) is given by:

Ht =


∆λtγn + 2δ ∆λtγn ∆λtγn . . . ∆λtγn
∆λtγn ∆λtγn + 2δ ∆λtγn . . . ∆λtγn

...
...

...
. . .

...
∆λtγn ∆λtγn ∆λtγn . . . ∆λtγn + 2δ

 ,
where ∆λt = λPt − λtR. Given Assumption 2, the Hessian is positive definite. We can also
show that the equilibrium conditions and optimality conditions of the equilibrium recovery

problem where P
EVind

Un is minimized over SHFj , ∀j are identical. Hence, by Theorem 2, the

Nash equilibrium of the EVind
Un market design, under High Charging Flexibility, is unique.

For the EVagg
A market design, we note that the objective function of the load aggregator,

fEV
agg
A (qPt ), given by (33), under High Charging Flexibility, is strictly convex subject to

linear constraints. Therefore, the optimal solution is unique.

We note that diagonal strict convexity of EV cost functions f
EVind

A
j and f

EVind
Un

j can also
be shown both for information Aware and Unaware market designs, which is an equilibrium
uniqueness condition provided by [33, Theorem 2].

A.6 Proof of Lemma 3 (Single-Commodity, Moderate/Low Charging
Flexibility)

We illustrate the proof for the EVind
A market design; the proofs for EVind

Un and EVagg
A are

similar. Assume the opposite is true, i.e., ∃t s.t. qPj,t <
qj
2

. By the definition of Moderate
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Charging Flexibility, there should exist another hour t′ s.t. qP
j,t′ >

qj
2

. We then use the same

contradiction argument as in Subsection A.4 in the opposite direction, and we show that

the two expressions of ζ
j

cannot be identical. Therefore, qPj,t ≥
qj
2

, ∀t. Under Low Charging

Flexibility, due to (29), qPj,t >
qj
2

, ∀t, regardless of Assumption 1 or 2.

A.7 Proof of Proposition 3 (Existence and Uniqueness, Moderate/Low
Charging Flexibility)

Equilibrium existence for the EVind
A and EVind

Un market designs follows from Lemma A2
and Theorem 1.

Lemma A2 Consider the EVind
Un and EVind

A market designs. The feasible set SMLF
j of

EV j in the EV self-scheduling problems, under Moderate or Low Charging Flexibility, is

closed, bounded, and convex. In addition, the cost functions f
EVind

A
j and f

EVind
Un

j of EV j

are both strictly convex and continuous in qPj .

Proof Since λPt + λRt > 0, f
EVind

A
j and f

EVind
Un

j are both convex. The convexity, closedness

and boundedness of SMLF
j is shown similarly to the proof of Lemma A1. In this case, we

define S
t
j as S

t
j = [

qj
2
, qj ].

Consider the EVind
A market design. The potential function P

EVind
A for the game with

information-aware EVs, where EV j solves (34) subject to SMLF
j is:

P
EVind

A =
∑
j,t

(1 +mn,t(Σq
P
j,t))(λt

P qPj,t − λRt (qj − qPj,t) + δ(qPj,t)
2,

−
∑

j,j′|j′>j,t
(λPt + λRt )γqPj,tq

P
j′,t +

∑
j,j′|j′ 6=j,t

λRt γq
P
j,tqj′ . (A.5)

In addition, P is strictly convex in qPj,t, ∀j. The Hessian of the potential function in (A.5)
has the following form:

Ht =


2Σλtγn + 2δ Σλtγn Σλtγn . . . Σλtγn

Σλtγn 2Σλtγn + 2δ Σλtγn . . . Σλtγn
...

...
...

. . .
...

Σλtγn Σλtγn Σλtγn . . . 2Σλtγn + 2δ

 ,
where Σλt = λPt + λRt . Due to positivity of Σλt, the above Hessian is positive definite and
the objective function is strictly convex. Uniqueness of Nash Equilibrium is then shown by
identical optimality conditions. The optimality condition of the EV self-scheduling problem
(Step 2 of Algorithm 3) w.r.t. qPj,t is given by:

(λPt + λRt )(1 +mn,t + γqPj,t)− γλRt qj + 2δqPj,t − ζj + ν1j,t = 0. (A.6)

One can show that the optimality condition of the potential function P in (A.5) w.r.t. qPj,t
is identical to (A.6).

Consider the EVind
Un market design. The potential function P

EVind
Un for the game with

information-unaware EVs, where EV j minimizes the cost function in (35) is given by:

P
EVind

Un =
∑
j,t

(1 +mn,t)(λt
P qPj,t − λRt (qj − qPj,t) + δ(qPj,t)

2−

∑
j,j′|j′>j,t

(λPt + λRt )γqPj,tq
P
j′,t +

∑
j,j′,t

λRt γq
P
j,tqj′ −

1

2

∑
j,t

(λPt + λRt )γ(qPj,t)
2. (A.7)
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and strictly convex. The Hessian of the potential function in (A.7) has the following form:

Ht =


Σλtγn + 2δ Σλtγn Σλtγn . . . Σλtγn
Σλtγn Σλtγn + 2δ Σλtγn . . . Σλtγn

...
...

...
. . .

...
Σλtγn Σλtγn Σλtγn . . . Σλtγn + 2δ

 ,

where Σλt = λPt + λtR, and is positive definite. In addition, it is straightforward to show
that the optimality conditions of the EV self-scheduling problem (Step 2 of Algorithm 2)

and the optimality conditions of the problem where P
EVind

Un is minimized over SMLF
j are

identical. Hence, uniqueness follows from Theorem 2.
For the EVagg

A market design, we note that the objective function of the load aggregator,

fEV
agg
A (qPt ), given by (36), under Moderate or Low Charging Flexibility, is strictly convex

subject to linear constraints. Therefore, the optimal solution is unique.

A.8 Proof of Proposition 4 (Stability of N.E. under Information-Awareness)

In the two-hour model, the cost function of information-aware EV j, f
EVind

A
j (qPj,1), given in

(31), satisfies the following condition for J ≤ 3:

∑
j|j 6=j′

|
∂2f

EVind
A

j′

∂qP
j′,1∂q

P
j,1

(qP ) |<|
∂2f

EVind
A

j′

∂2qP
j′,1

(qP ) |, ∀j′ , qPj′,1 ∈ [0, sj ]. (A.8)

Therefore, by [38, Theorem 4], the Nash equilibrium in the EVind
A market design is stable.

A.9 Proof of Proposition 6 (Closed form equilibria expressions for simplified
24-hour problem)

We provide the proofs for EVind
A and EVagg

A market designs; the proof is similar for EVind
Un .

The first order optimality conditions of EVagg
A market design in (33) subject to only the

minimum charging demand constraint (8) with J identical EVs can be written as:

q
P,EV

agg
A

j,t = max

{
0,
ζ −∆λt(1 + γdft )

2Jγ∆λt + 2δ

}
, (A.9)

(−
∑
t

qPj,t + s)ζ = 0. (A.10)

Since EVs are identical, ζ
j

= ζ, sj = s, and qPj,t = qPt , ∀j. Combining (A.9) and (A.10),

we can write: ζ =

[∑
t′

∆λt′ (1+γd
f
t )

2Jγ∆λt′+2δ
+ s

]
/

(∑
t′

1
2Jγ∆λt′+2δ

)
, where t′ = {t|qPj,t > 0}, and

substituting in (A.9), we obtain:

q
P,EV

agg
A

j,t =

∑
t′

∆λt′ (1+γd
f

t′ )

2Jγ∆λt′+2δ
+ s∑

t′

2Jγ∆λt+2δ
2Jγ∆λt′+2δ

−
∆λt(1 + γdft )

2Jγ∆λt + 2δ
. (A.11)

Note that (A.11) matches (41) if EVs are connected only for two hours.
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The first order optimality conditions of EVind
A in (31) subject to only (8) are:

q
P,EVind

A
j,t = max

{
0,
ζ−∆λt(1+γd

f

t′ )

(J+1)γ∆λt+2δ

}
, and (−

∑
t
qPj,t + s)ζ = 0, yielding:

q
P,EVind

A
j,t =

∑
t′

∆λt′ (1+γd
f

t′ )

(J+1)γ∆λt′+2δ
+ s∑

t′

(J+1)γ∆λt+2δ
(J+1)γ∆λt′+2δ

−
∆λt(1 + γdft )

(J + 1)γ∆λt + 2δ
.

A.10 Proof of Proposition 7 (Asymptotic coincidence of individual self
scheduling information Aware and Unaware EVs)

We illustrate this on the two-hour equilibria given by (42) and (43). As J → ∞, J+1
J
→ 1

rendering q
P,EVind

Un
j,1 = q

P,EVind
A

j,1 .
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