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Abstract—The Number Theoretic Transform (NTT) enables
faster polynomial multiplication and is becoming a fundamental
component of next-generation cryptographic systems. NTT hard-
ware designs have two prevalent problems related to design-time
flexibility. First, algorithms have different arithmetic structures
causing the hardware designs to be manually tuned for each
setting. Second, applications have diverse throughput/area needs
but the hardware have been designed for a fixed, pre-defined
number of processing elements.

This paper proposes a parametric NTT hardware generator
that takes arithmetic configurations and the number of processing
elements as inputs to produce an efficient hardware with the de-
sired parameters and throughput. We illustrate the employment
of the proposed design in two applications with different needs:
A homomorphically encrypted deep neural network inference
(CryptoNets) and a post-quantum digital signature scheme
(9TESLA). We propose the first NTT hardware acceleration for
both applications on FPGAs. Compared to prior software and
high-level synthesis solutions, the results show that our hardware
can accelerate NTT up to 28x and 48, respectively. Therefore,
our work paves the way for high-level, automated, and modular
design of next-generation cryptographic hardware solutions.

Index Terms—NTT, Flexible, Hardware, CryptoNets, qTESLA

I. INTRODUCTION

Lattice-based cryptography offers alternative schemes en-
abling interesting applications such as quantum-resistant key-
exchange and digital signature protocols [1], provably-secure
hash functions [2], and homomorphic encryption [3]. Poly-
nomial multiplication is a computational bottleneck of lattice-
based cryptosystems. The Number Theoretic Transform (NTT)
reduces the O(n?) complexity of the schoolbook polynomial
multiplication to O(n - logn). NTT is therefore a major
building block of lattice cryptography implementations.

There are two design-time flexibility requirements for spe-
cialized NTT hardware accelerators. The first one is due to
varying algorithm parameters. For example, while NewHope
algorithm [1] uses polynomials of degree 1024 with 14-
bit coefficients, CryptoNets [4] operates with polynomials
of degree 4096 with up to 60-bit coefficients. The second
flexibility need is a result of application requirements. Even
for a fixed algorithm, while a cloud computing infrastructure
demands a high-throughput hardware, an IoT/embedded device
would favor a low area/energy design.

The prior NTT hardware designs have so far been fixed
in both aspects. Indeed, proposing an efficient multiplier
architecture for fixed polynomial sizes with a fixed number
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of processing elements (PEs) still merits a publication [5].
Extending the hardware from a specific setting is non-trivial
due to memory access and control flow challenges. A recent
work offers run-time reconfigurability with a flexible NTT
hardware, but only supports a few algorithm parameters and
is fixed for low area implementations [6].

In this paper, we propose the first design-time configurable
NTT—a parametric NTT hardware generator. Our solution has
both dimensions of flexibility and supports a wide range of
algorithms. First, it can cater different arithmetic structures of
polynomial size and modular width. Second, it can provide a
trade-off in area vs. performance by incorporating a different
number of PEs. The user of our generator simply enters the
arithmetic needs of an algorithm and a desired number of PEs,
and our tool automatically produces a corresponding efficient
hardware. Prior works, by contrast, are either ad-hoc efforts
fixed for a specific setting [7], [8], [9], [10], [6], [11], [12],
[13] or uses a fixed number of PEs [6].

The most challenging parts of the flexible NTT hardware is
the memory management and the modular multiplier design.
Memory management is difficult because the access pattern,
size, and block RAM (BRAM) count change with the poly-
nomial size and the number of PEs. To achieve a flexible yet
efficient memory organization, we adapted the decimation-in-
frequency Iterative NTT [14]. Modular multiplier design is
difficult because it has to support different modulus values
and still has to be efficient. To achieve this modular multiplier
hardware, we propose the generalized version of the word-
level Montgomery modular reduction algorithm for NTT-
friendly primes [13] and implement its fully-pipelined version.

We demonstrate the genericness of our work by tuning it
to the NTT of two disparate applications: A homomorphically
encrypted deep neural network inference (CryptoNets) [4]
and a post-quantum digital signature scheme (qTESLA) [15].
While the former application enables privacy-friendly neural
network classification on encrypted data, the latter secures
critical cyberinfrastructure against quantum computer attacks.
Our generator allowed proposing the first NTT hardware accel-
eration for both applications on FPGAs. The results quantify
that our design can accelerate these applications up to 48x.
Furthermore, our tool automates the design space exploration
of hardware—the results show a coverage of 95x in area
and 21x in latency. Therefore, this work takes a critical step
towards high-level, automated, and modular design of next-
generation cryptographic hardware solutions.
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Algorithm 1 NTT-based Polynomial Multiplication [16]
Input: A(z), B(x) € Zg[x]/(z™ + 1)
Input: primitive 2n-th root of unity ¢ € Z,

Output: C(z) = A(z) x B(x), C(x) € Zy[z]/(z™ + 1)
11 A(x) < NTT(A(z) © (¢°, ¢, ..., 9" h))

2 7(1)<—NTT( () © (WO, 91, ... ,y"71))

3: C(2) + A(z) © B(x)

4 C(x) « INTT(C(x)) © (%971, ... ;= (*71))
5: return C(x)

Algorithm 2 Iterative NTT Algorithm [14]
Input: A(z) € Zy[z]/(z" + 1)
Input: primitive n-th root of unity w € Zg, n = 2!
Output: A(z) = NTT(A) € Zy[z]/(z™ + 1)

1: for ¢ from 1 by 1 to [ do

22 m=2"1
3 for j from 0 by 1 to 201 —
4 for £ from 0 by 1 to m — 1 do
5: U<+ Al2-j-m+E
6: VA2 -m+k+m]
7
8
9

1 do

A2-j-m+Ek«U+V
AR j-m+k+m] @ R
end for
10: end for
11: end for
12: return A

(U =V)

II. POLYNOMIAL MULTIPLICATION AND THE NTT

A fundamental arithmetic and time-consuming operation in
lattice-based cryptography is the multiplication of polynomi-
als. This operation is defined over the ring of polynomials
Zg|z]/$(x), i.e., polynomials of degree n—1 with coefficients
modulo g. Therefore, the multiplication takes two polynomi-
als A(z)=>"" a;’ and B(z)= S bixt and returns the
output C'(z)=>_"" 01 c;x'. Choosing the reduction polynomial
¢(x) as (z"+1) enables an efficient reduction of multiplica-
tion output C'(x) to a degree n — 1 polynomial.

Algorithm 1 presents the polynomial multiplication with
NTT and Algorithm 2 describes the Iterative NTT algo-
rithm [14]. NTT is a Discrete Fourier Transform defined
over the ring Z,/¢(x). NTT converts a polynomial into the
NTT domain where polynomial multiplication becomes a
coefficient-wise multiplication, which is denoted by ®. NTT
operation takes A(z) = Zn_ol a;xr' as input and generates

A(z) = Y0 At as output where each NTT coefficient
Aj; is defined as A; = ZJ '~ ajw over Z,.

The constant used in the NTT operation, w € Z,, is called
the twiddle factor which is a primitive n-th root of unity
in Z, satisfying w™ = 1 (mod ¢) and Vi < n, w' # 1
(mod ¢), where ¢ = 1 (mod n). Similarly, the inverse NTT
(INTT) can be performed as a; = n~! 27;01 Ajw™ in Z,.
The reduction is computed by multiplying the coefficients
before and after the NTT/INTT with powers of 1/¢)~! where
1 = y/w (mod ¢). The parameters we consider for flexibility
are n and ¢, which respectively define the ring size and bit-
width (or coefficient size) of the modulus.
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NTT computations have three parts: loading related data
(Steps 5 and 6 in Algorithm 2), performing arithmetic compu-
tations (right hand side of Steps 7 and 8 in Algorithm 2) and
storing the result (left hand side assignment of Steps 7 and
8 in Algorithm 2). PEs perform these steps. Within each PE,
the so-called butterfly units execute arithmetic computations,
which are composed of modular addition, subtraction, and
multiplication. The algorithm loops over logs(n) stages and
performs n/2 butterfly at each stage. To achieve a higher
throughput, it is possible to unroll and parallelize the NTT
loops by using multiple PEs.

We will discuss the design of the flexible hardware in
a bottom-up fashion, starting from the design of efficient
modular multiplication. We will then describe the construction
of the PE and finally explain its parallelization along with an
optimized memory access and organization.

III. HARDWARE DESIGN

The proposed parametric NTT hardware generator takes the
ring size, bit-width of the modulus and number of PEs as
input parameters, and it generates an optimized NTT hardware
that performs NTT operation for the given parameters. The
proposed work provides flexibility not only for ring size
and bit size of modulus but also the number of PEs which
determines the throughput of the hardware. The same design
can also execute the INTT.

A. A Novel Word-Level Montgomery Modular Multiplier

The modular multiplier is the key component of the NTT
arithmetic. This unit consists of two parts: an integer multi-
plier followed with a modular reduction. We developed the
parametrized version of both parts.

There are two options to design an efficient modular reduc-
tion: Montgomery [13] and Barrett [6]. Choosing the correct
one for a parametric hardware is a non-trivial design decision.
Banerjee et. al., for instance, uses a Barrett modular reduction
hardware [6], which includes two different reduction units.
The first one is a configurable Barrett reduction hardware
which enables run-time flexibility. The second one employs a
separate, specialized reduction hardware which is only compa-
tible with a small set of pre-determined special moduli.

We argue that for the design-time flexibility, Montgomery
can offer a more efficient solution than Barrett. But the
baseline Montgomery has to be optimized for NTT primes
and extended to support the parametric ring sizes and bit
widths. To that end, we propose a novel Montgomery based
reduction unit that generalizes the word-level Montgomery
modular reduction algorithm for NTT-friendly primes [13],
with a word-size derived from the parameters. Compared to
the configurable Barrett reduction [6], our solution either saves
the number of multipliers or results in smaller multiplier units.
The results show our cycle count advantage when the hardware
uses the same number of PEs.

Algorithm 3 provides the details of our generalized al-
gorithm. The algorithm will require a different number and
bit-width of multipliers for different parameters of ¢ and n.
The proposed algorithm utilizes the property of ¢ = 1
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Algorithm 3 Word-Level Montgomery Reduction Algorithm

for NTT-friendly primes

Input: C' = A - B (a 2K-bit positive integer)

Input: ¢ (a K-bit modulus), ¢ = qp -2V +1

Input: w = log2(2n) (word size)

Output: Res = C-R~! (mod q) where R = 2**L (mod q)
L= [

:T1=C

: for ¢ from O to L do

Ty =T1>>w

T1, =T1 (mod 2¥)

T2 = two's complement of T1y,

cin=T2w-1] V T1gw —1]

T1=Tly+ (qu - T2[w — 1:0]) + cin

9: end for

10: TA=T1—q

11: if (T4 < 0) then Res = T'1 else Res = T4

I R AN AR e

(mod 2n), which should be satisfied by any NTT-friendly
prime using negative wrapped convoluti technique. Thus,
an NTT prime ¢ can be written as ¢ = qp - 2'°92(?") 4 1.
In order to exploit that property, we can perform a word-level
Montgomery reduction with the word size w = log2(2n) and
divide the reduction operation into smaller parts instead of
performing it all at once. This will result in a flexible modular
reduction structure. The modular reduction operation executes
L = [£] times for a K-bit modulus. The Montgomery
modular reduction variable y=—¢ =1 (mod 2*) becomes —1,
simplifying the multiplication of (AB (mod 2%*)) - u in the
Montgomery modular reduction to the two’s complement.

Montgomery reduction algorithm takes A - B as input and
calculates the output A- B- R~ (mod q), where R = 2% is
defined as Montgomery reduction residual. The residual has
to be corrected using an extra multiplication with R to obtain
A-B (mod ¢). This extra multiplication can be moved to the
input by multiplying one of the inputs by R. Since one of the
inputs in NTT is the constant twiddle factor, w, we can fuse
the multiplication by pre-computing it (w - R (mod ¢)) and
loading it into the related memory at design-time to save one
multiplication at run-time.

The proposed word-level Montgomery modular reduction
algorithm divides reduction operation into a set of multi-
ply and accumulate (MAC) operations. Namely, it performs
X .Y + Z + cin operation, which can be implemented using
DSP blocks in FPGAs, for different number of times for
different arithmetic configurations. Therefore, the algorithm
itself provides easiness for generating flexible designs. Our
tool makes use of this to automatically generate the reduction
hardware for the given ring size and bit-size of the modulus.

Fig. 1 illustrates two example modular reduction hardware
generated by the proposed work for (a) ring size of 1024 with
32-bit modulus and (b) ring size of 256 with 16-bit modulus.
Both designs offer advantage over the Barret method [6]—
while the first design uses smaller multiplier units, the second
one saves one multiplication. The first implementation requires
3 MAC operations while the second implementation uses only
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2 MAC operations. The proposed reduction hardware is fully
pipelined, and it produces one output each clock cycle after
filling the pipeline. The generated modular reduction hardware
runs in constant time for a given arithmetic configuration.

The other part of the modular multiplication, integer mul-
tiplier hardware, uses the bit size of modulus as a parameter.
Each input of the multiplier is divided into 16-bit pieces and
one DSP block is used for each 16-bitx 16-bit multiplication
operation. The resulting intermediate values are then added up
to calculate multiplication result using a pipelined adder tree.
Therefore, the proposed integer multiplier is fully pipelined
and it can produce one multiplication result per clock cycle.
Fig. 2 shows the hardware of 32-bit multiplication, which
requires 4 DSP blocks. The number and configuration of
the DSP blocks along with the adder tree are automatically
synthesized based on the input parameters. Although it may be
possible to partition input integers more efficiently, we divide
all inputs into 16-bit (power-of-2) pieces to preserve regularity
and reduce the complexity of the control unit.

B. PEs and Butterfly Units

Since we established the efficient hardware for the core
modular arithmetic, next we discuss the design of the butterfly
units that use modular operations and the PEs that contain
butterfly units.

Each PE implements the Gentleman-Sande butterfly config-
uration [14] corresponding to the Steps 5-8 of the Algorithm 2.
Fig. 3 illustrates one PE. PEs take two coefficients and one
twiddle factor as inputs, perform the butterfly operation, and
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DATA
BRAM#0

Fig. 3. PE and the Butterfly Unit

output two resulting coefficients, namely even (E) and odd (O)
coefficients. A PE consists of one modular adder, one modular
subtractor, and one modular multiplier for implementing the
butterfly operation. Each PE also uses three dual-port BRAMs,
where two data BRAMs store input and intermediate coeffi-
cients while the other, twiddle factor BRAM, stores the twiddle
factors (with Montgomery correction), which are design-time
constants pre-computed based on input parameters.

Fig. 3 depicts that the even coefficient is the output of the
modular addition operation (Step 7 in Algorithm 2) and odd
output coefficient is the output of the modular subtraction and
multiplication (Step 8 in Algorithm 2). To synchronize the
output generation of even and odd coefficients, the proposed
design inserts a parametric number of registers, shown in
green, on the even path based on the input parameters (ring
size and modulus bit-width). The input parameter of the
number of PE can only be a power-of-2, and it could be a
maximum of n/2 for an n-pt NTT.

C. Flexible Memory Access and Overall Design

A significant challenge for the NTT hardware design is
managing the complex memory access schedule. This problem
becomes more challenging for us because our hardware aims
to provide flexibility in the number of core PEs. We need
our parametric hardware generator to synthesize the address
generation logic that will control the 2 BRAMs in each PE
without adding any stalls to the NTT pipeline.

The proposed design uses the Iterative NTT scheme of
Algorithm 2, which consists of logs(n) stages and performs
n/2 butterfly operations at each stage. Fig. 4 (a) demonstrates
an example of the memory read access pattern of coefficients
for n=8. Each yellow dot represents a butterfly operation,
which consumes and produces two coefficients mapping to
the same degree. For example, 0" and 4'" coefficients in the
first stage will correspond to the 0" and 4! coefficients of
the second stage.

The irregular access pattern of the NTT enforces storing
each coefficient to a unique address. Fig. 4 (b) demonstrates
the one PE case where coefficients going to the same butterfly
operation are stored in two distinct memory blocks. For
example, at the first stage of the 8-pt NTT, four coefficient
pairs (0, 4), (1, 5), (2, 6), (3, 7) go into butterfly operation.
These pairs need to be read at the same clock cycle. Therefore,
coefficients 0, 1, 2, 3 and 4, 5, 6, 7 should be stored in separate
memory blocks and accessed in parallel.

Unfortunately, the pairings of the coefficients change at each
stage. The output of the stage, therefore, has to be stored back
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Stage#3

into the memory blocks based on the pairing of the next stage.
Fig. 4 (b) shows the example for n=8 where the coefficient
pairings for the first and second stages are respectively (0, 4),
(1, 5), (2, 6), (3, 7) and (0, 2), (1, 3), (4, 6), (5, 7). Hence,
both outputs of the pairs (0, 4) and (1, 5) should be written
into the first memory block. Likewise, (2, 6) and (3, 7) output
will be placed in the second memory. This guarantees that all
coefficient pairs at the second stage can be read in a cycle.

Our parametric hardware design automatically generates the
required access pattern to handle memory access operations
for different number of PEs. This pattern, however, requires
coefficient pairs to be written into the same memory block. For
example, for n=8, the coefficient pair (0, 4) should be written
into the first memory block after the first stage to improve
coalescing. This is enabled by adding one extra register to
the output of the modular multiplier unit in the PE, shown
as orange register in Fig. 3. This extra latency allows storing
coefficients into the same memory in 2 cycles. Since the PEs
are pipelined, this extra register does not affect the throughput.

The proposed design uses an alternating memory read
pattern because the first and second half of coefficient pairs
should be written into the first and second memories, respec-
tively. For example, as shown in Fig. 4, only the coefficients
(0, 1), (4, 5) are written into the first memory while (2, 3), (6,
7) are written into the second memory. Therefore, the memory
read pattern for 8-pt NTT should be in the order (0, 4), (2, 6),
(1, 5), (3, 7) instead of (0, 4), (1, 5), (2, 6), (3, 7).
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Fig. 6. NTT Hardware (a) with one PE; (b) with two PEs

Fig. 5 gives the memory access examples for 8-pt NTT with
one and two PEs. Green and blue boxes respectively represent
the read and write operations, and the letters in red represent
coefficients written into the memory. For the 8-pt NTT with
one PE, coefficients (0, 4) and (1, 5) need to be stored in the
same memory block. The proposed addressing scheme thus
first reads coefficients (0, 4) and (2, 6), which should be written
into the first and second memories, respectively. Therefore,
operation can continue without any stall. For the 8-pt NTT
with two PEs, the first PE performs the butterfly operation
for the first half of the coefficient pairs while the second PE
performs it for the other half. In this case, the first PE can read
coefficients (0, 4) and (1, 5) in two consecutive cycles because
coefficients 4 and 5 will be written into the memory of the
second PE. Since we have two PEs instead of one, latency of
each NTT stage is reduced.

Fig. 6 outlines the high-level block diagram of the generated
NTT hardware with (a) one and (b) two PEs. The outputs of
one PE are connected to all PEs in the design to broadcast the
coefficients needed due to the memory dependency of NTT.
Before the NTT starts, the hardware first takes twiddle factors
followed with the input coefficient as inputs and writes them
to their related BRAMs within each PE. The data BRAMs
also keep the resulting output coefficients, which can be read
through the output multiplexers.

IV. RESULTS

The parametric hardware generator code is written in Ver-
ilog RTL and the generated NTT hardware are synthesized,
placed, and routed using Xilinx Vivado 2018.1 tool on the
Xilinx VIRTEX-7 FPGA xc7vx690tffg1761-2. The reference
software is compiled with the GCC version 7.3. in Ubuntu
OS 18.04.3 LTS. Timing performance of the software
implementations are obtained on a high-end Intel Xeon CES5-
1650 @ 3.50 GHz x 12 CPU with 16GB RAM.

We first compare our results on a new implementation
with the reference optimized software and high-level syn-
thesis (HLS) generated code. These two approaches are the
alternatives of our design methodology. To that end, we use

350

Area vs. Latency

200000

o Rt e B -
180000 l 64 PEs 21x ]
]
__ 160000 -
M) Faster |
L 140000 ]

w l %
S 0 !
< 120000 z‘&ﬁo e '
= I
2 100000 @5\‘5 2 95x |
> | -
= 80000 32 PEs I
T % .
© 60000 i 1
< | 16 PE ” '
40000 \ s +-# of PE .
LY ]

8 PE
hw N 4PEs 2PEs 1PE |
0 — —
0 10 20 30 40

Latency of one NTT operation (us)
Fig. 7. Area vs. Latency for qTESLA with different PEs

gTESLA and CryptoNets as the driving applications. This
work proposes the first NTT hardware acceleration for both
applications on FPGAs. Both applications represent next gen-
eration cryptosystems—while gTESLA is a running candidate
for the post-quantum standard, CryptoNet s enables privacy-
friendly neural network inference on encrypted data.

We use the reference software of gTESLA-p—1I [15], which
targets NISTs security category 1. CryptoNets software
uses Microsoft SEAL library [19]. For HLS comparison, we
use the result of a prior work [18]. We report our hardware
results in three configurations: an area-optimizde design (1
PE), a throughput optimized design (64 PEs), and a balanced
design (8 PEs). Note that only the NTT implementations of the
same ring size (n) and coefficient size (¢) make a meaningful
comparison. The results in Table I shows the superiority of our
approach, which outperforms existing software and high-level
synthesis designs respectively by up to 28x and 48x.

We next compare our work with optimized hardware de-
signs. Poly256 and Poly512 hardware for n=256 and n=512
are also auto-generated for this experiment. We note that
the target devices are implemented under different FPGA
technology or even ASIC, hence, the comparison should serve
as a first-order estimate rather than an idealized method.
Table I provides these detailed results, which quantify that
our parametric generator can produce a hardware that is
comparable to fixed setting hardware units and can even be
better in some cases. Note that the majority of prior hardware
are fixed for a single arithmetic and/or performance setting.
For instance, as we argue in Section III-A, our one PE design
outperforms the work of Banarjee e al. [6] in latency (cycle
count) due to our proposed word-level Montgomery reduction
unit. Likewise, our designs can achieve either a lower area or
a faster design (in cycle) compared to prior FPGA solutions.

We finally demonstrate the fast design-space exploration
that can be achieved by our parametric hardware generator. To
test this, we sweep the parameter that controls the number of
PEs used in gTESLA hardware and report the implementation
results in Fig. 7. Our generator is able to cover a space of 95 x
in area cost for a tradeoff of 21x in performance by simply
tuning a parameter knob.
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TABLE I
IMPLEMENTATION RESULTS AND COMPARISON TO PRIOR WORK

Clock Latency
Work Platform ‘ n ‘ q ‘ LUT / REG / DSP / BRAM ‘ (MHz) }—]—{CC s
256 250/ /372 - 25
[71% SPARTAN-6 512 17-bit 240/ -/31/72 - - 50
1024 250/-/31/2 - 100
(814 VIRTEX-6 256 13-bit 4549 /3624 / 1/ 12 262 — 8
914 Zynq UltraScale 4096 30-bit 64K / — /200 / 400 225 - 73
(1017 VIRTEX-7 32768 | 32-bit 219K / - /768 / 193 250 7709 51
d SPARTAN-6 . 1208 / -/ 14/ 14 212 - 12
[13] VIRTEX-7 1024 32-bit 34K / 16K / 476 / 228 200 80 1.25
b ~ 256 13-bit 1349 /860 /1 /2 313 1691 5.4
(7] VIRTEX-6 512 | 14-bit 1536 /953 /1/3 278 | 3443 | 123
256 13-bit 1289 17
[61° 40nm CMOS 512 | 14-bit 106K / =/ —/ — 72 2826 | 32
1024 | 14-bit 6155 | 81
b 256 | 13-bit iy ey - 160 | 05
(1] 40nm CMOS 512 | 14-bit -l 3001 400 | 16
256 | 13-bit 2056 | 82
[121° UMC 65nm 512 14-bit 14K /-/-1/- 25 4616 184
1024 14-bit 10248 409
1024 21K /16K / 10/ 12 7597 76
[18]¢ VIRTEX-7 2048 - 25K /20K /11719 100 15852 159
4096 30K /23K / 12/ 36 33337 333
qTESLA (Software) [15]%9 Intel Xeon CE5-1650 1024 28-bit —/—/—-/- - - 11
CryptoNets (Software) [4]* Intel Xeon CE5-1650 4096 60-bit -/ =/ —-/- - - 195
qTESLA (Hardware: Area-Opt.) VIRTEX-7 1024 28-bit 1IK/1K/7/2 125 5290 42
qTESLA (Hardware: Balanced) VIRTEX-7 1024 28-bit 16K / 14K / 56 / 24 125 490 3.9
qTESLA (Hardware: Perf.-Opt.) VIRTEX-7 1024 28-bit 132K / 59K / 448 / 96 125 250 2
CryptoNets (Hardware: Area-Opt.) VIRTEX-7 4096 60-bit 27K /2.6K/31/12 142 24780 173
CryptoNets (Hardware: Balanced) VIRTEX-7 4096 60-bit 22K / 17K / 248 / 96 125 3276 26
CryptoNets (Hardware: Perf.-Opt.) VIRTEX-7 4096 60-bit 338K / 138K / 1984 / 768 125 972 7
[ Poly256 (Balanced) { VIRTEX-7 [ 256 [ 16-bit | 74K /5K /24724 [ 147 | 160 [ 1.1 ]
\ Poly512 (Balanced) \ VIRTEX-7 | 512 [ 16bit | 8.IK/52K/24/24 | 141 | 345 | 24 |

a:Uses fixed . ®:Can work with multiple n and g. ¢:Uses HLS. %:Uses fixed n.

V. CONCLUSION
Designing an efficient hardware accelerator is a delicate
process. Indeed, proposing an optimized NTT hardware for
one arithmetic setting and for one performance goal has been
sufficient to publish in cryptography and hardware design
conferences. But as the lattice cryptosystems mature and gear
towards massive deployment, there will be a heavier emphasis
on HLS for faster adoption and design space exploration,
which enforce scalable and configurable hardware. This paper
shows how to construct a flexible yet efficient hardware
generator for a building block of lattice cryptosystems, pushing
towards that end. Our tool can be integrated as a hard macro to
the HLS flows and ease the process of hardware design for sys-
tem developers. The generated hardware executes in constant-
time, closing timing side-channels, but future extensions can
consider mitigation against, e.g., power side-channels.
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