
A Flexible and Scalable NTT Hardware:
Applications from Homomorphically Encrypted Deep Learning to Post-Quantum Cryptography

Ahmet Can Mert†‡, Emre Karabulut‡, Erdinç Öztürk†∗, Erkay Savaş†∗, Michela Becchi‡, Aydin Aysu‡∗
†Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

‡Department of Electrical and Computer Engineering, North Carolina State University, NC, USA

Abstract—The Number Theoretic Transform (NTT) enables
faster polynomial multiplication and is becoming a fundamental
component of next-generation cryptographic systems. NTT hard-
ware designs have two prevalent problems related to design-time
flexibility. First, algorithms have different arithmetic structures
causing the hardware designs to be manually tuned for each
setting. Second, applications have diverse throughput/area needs
but the hardware have been designed for a fixed, pre-defined
number of processing elements.

This paper proposes a parametric NTT hardware generator
that takes arithmetic configurations and the number of processing
elements as inputs to produce an efficient hardware with the de-
sired parameters and throughput. We illustrate the employment
of the proposed design in two applications with different needs:
A homomorphically encrypted deep neural network inference
(CryptoNets) and a post-quantum digital signature scheme
(qTESLA). We propose the first NTT hardware acceleration for
both applications on FPGAs. Compared to prior software and
high-level synthesis solutions, the results show that our hardware
can accelerate NTT up to 28× and 48×, respectively. Therefore,
our work paves the way for high-level, automated, and modular
design of next-generation cryptographic hardware solutions.

Index Terms—NTT, Flexible, Hardware, CryptoNets, qTESLA

I. INTRODUCTION

Lattice-based cryptography offers alternative schemes en-

abling interesting applications such as quantum-resistant key-

exchange and digital signature protocols [1], provably-secure

hash functions [2], and homomorphic encryption [3]. Poly-

nomial multiplication is a computational bottleneck of lattice-

based cryptosystems. The Number Theoretic Transform (NTT)

reduces the O(n2) complexity of the schoolbook polynomial

multiplication to O(n · log n). NTT is therefore a major

building block of lattice cryptography implementations.
There are two design-time flexibility requirements for spe-

cialized NTT hardware accelerators. The first one is due to

varying algorithm parameters. For example, while NewHope
algorithm [1] uses polynomials of degree 1024 with 14-

bit coefficients, CryptoNets [4] operates with polynomials

of degree 4096 with up to 60-bit coefficients. The second

flexibility need is a result of application requirements. Even

for a fixed algorithm, while a cloud computing infrastructure

demands a high-throughput hardware, an IoT/embedded device

would favor a low area/energy design.
The prior NTT hardware designs have so far been fixed

in both aspects. Indeed, proposing an efficient multiplier

architecture for fixed polynomial sizes with a fixed number

∗Dr. Öztürk and Dr. Savaş were supported by TUBITAK under Grant
Number 118E725. The project is supported by NSF under Grant #1850373.

of processing elements (PEs) still merits a publication [5].

Extending the hardware from a specific setting is non-trivial

due to memory access and control flow challenges. A recent

work offers run-time reconfigurability with a flexible NTT

hardware, but only supports a few algorithm parameters and

is fixed for low area implementations [6].

In this paper, we propose the first design-time configurable

NTT—a parametric NTT hardware generator. Our solution has

both dimensions of flexibility and supports a wide range of

algorithms. First, it can cater different arithmetic structures of

polynomial size and modular width. Second, it can provide a

trade-off in area vs. performance by incorporating a different

number of PEs. The user of our generator simply enters the

arithmetic needs of an algorithm and a desired number of PEs,

and our tool automatically produces a corresponding efficient

hardware. Prior works, by contrast, are either ad-hoc efforts

fixed for a specific setting [7], [8], [9], [10], [6], [11], [12],

[13] or uses a fixed number of PEs [6].

The most challenging parts of the flexible NTT hardware is

the memory management and the modular multiplier design.

Memory management is difficult because the access pattern,

size, and block RAM (BRAM) count change with the poly-

nomial size and the number of PEs. To achieve a flexible yet

efficient memory organization, we adapted the decimation-in-

frequency Iterative NTT [14]. Modular multiplier design is

difficult because it has to support different modulus values

and still has to be efficient. To achieve this modular multiplier

hardware, we propose the generalized version of the word-

level Montgomery modular reduction algorithm for NTT-

friendly primes [13] and implement its fully-pipelined version.

We demonstrate the genericness of our work by tuning it

to the NTT of two disparate applications: A homomorphically

encrypted deep neural network inference (CryptoNets) [4]

and a post-quantum digital signature scheme (qTESLA) [15].

While the former application enables privacy-friendly neural

network classification on encrypted data, the latter secures

critical cyberinfrastructure against quantum computer attacks.

Our generator allowed proposing the first NTT hardware accel-
eration for both applications on FPGAs. The results quantify

that our design can accelerate these applications up to 48×.

Furthermore, our tool automates the design space exploration

of hardware—the results show a coverage of 95× in area

and 21× in latency. Therefore, this work takes a critical step

towards high-level, automated, and modular design of next-

generation cryptographic hardware solutions.

346978-3-9819263-4-7/DATE20/ c©2020 EDAA

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 30,2020 at 21:32:40 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 NTT-based Polynomial Multiplication [16]

Input: A(x), B(x) ∈ Zq[x]/(x
n + 1)

Input: primitive 2n-th root of unity ψ ∈ Zq

Output: C(x) = A(x)×B(x), C(x) ∈ Zq[x]/(x
n + 1)

1: A(x) ← NTT(A(x)� (ψ0, ψ1, ... , ψn−1))
2: B(x) ← NTT(B(x)� (ψ0, ψ1, ... , ψn−1))
3: C(x) ← A(x)�B(x)
4: C(x) ← INTT(C(x))� (ψ0, ψ−1, ... , ψ−(n−1)))
5: return C(x)

Algorithm 2 Iterative NTT Algorithm [14]

Input: A(x) ∈ Zq[x]/(x
n + 1)

Input: primitive n-th root of unity ω ∈ Zq , n = 2l

Output: A(x) = NTT(A) ∈ Zq[x]/(x
n + 1)

1: for i from 1 by 1 to l do
2: m = 2l−i

3: for j from 0 by 1 to 2i−1 − 1 do
4: for k from 0 by 1 to m− 1 do
5: U ← A[2 · j ·m+ k]
6: V ← A[2 · j ·m+ k +m]
7: A[2 · j ·m+ k] ← U + V
8: A[2 · j ·m+ k +m] ← ω(2i−1.k) · (U − V)
9: end for

10: end for
11: end for
12: return A

II. POLYNOMIAL MULTIPLICATION AND THE NTT

A fundamental arithmetic and time-consuming operation in

lattice-based cryptography is the multiplication of polynomi-

als. This operation is defined over the ring of polynomials

Zq[x]/φ(x), i.e., polynomials of degree n−1 with coefficients

modulo q. Therefore, the multiplication takes two polynomi-

als A(x)=
∑n−1

i=0 aix
i and B(x)=

∑n−1
i=0 bix

i and returns the

output C(x)=
∑n−1

i=0 cix
i. Choosing the reduction polynomial

φ(x) as (xn+1) enables an efficient reduction of multiplica-

tion output C(x) to a degree n− 1 polynomial.

Algorithm 1 presents the polynomial multiplication with

NTT and Algorithm 2 describes the Iterative NTT algo-

rithm [14]. NTT is a Discrete Fourier Transform defined

over the ring Zq/φ(x). NTT converts a polynomial into the

NTT domain where polynomial multiplication becomes a

coefficient-wise multiplication, which is denoted by �. NTT

operation takes A(x) =
∑n−1

i=0 aix
i as input and generates

A(x) =
∑n−1

i=0 Aix
i as output, where each NTT coefficient

Ai is defined as Ai =
∑n−1

j=0 ajω
ij over Zq .

The constant used in the NTT operation, ω ∈ Zq , is called

the twiddle factor which is a primitive n-th root of unity

in Zq satisfying ωn ≡ 1 (mod q) and ∀i < n, ωi �= 1
(mod q), where q ≡ 1 (mod n). Similarly, the inverse NTT

(INTT) can be performed as ai = n−1
∑n−1

j=0 Ajω
−ij in Zq .

The reduction is computed by multiplying the coefficients

before and after the NTT/INTT with powers of ψ/ψ−1 where

ψ =
√
ω (mod q). The parameters we consider for flexibility

are n and q, which respectively define the ring size and bit-

width (or coefficient size) of the modulus.

NTT computations have three parts: loading related data

(Steps 5 and 6 in Algorithm 2), performing arithmetic compu-

tations (right hand side of Steps 7 and 8 in Algorithm 2) and

storing the result (left hand side assignment of Steps 7 and

8 in Algorithm 2). PEs perform these steps. Within each PE,

the so-called butterfly units execute arithmetic computations,

which are composed of modular addition, subtraction, and

multiplication. The algorithm loops over log2(n) stages and

performs n/2 butterfly at each stage. To achieve a higher

throughput, it is possible to unroll and parallelize the NTT

loops by using multiple PEs.
We will discuss the design of the flexible hardware in

a bottom-up fashion, starting from the design of efficient

modular multiplication. We will then describe the construction

of the PE and finally explain its parallelization along with an

optimized memory access and organization.

III. HARDWARE DESIGN

The proposed parametric NTT hardware generator takes the

ring size, bit-width of the modulus and number of PEs as

input parameters, and it generates an optimized NTT hardware

that performs NTT operation for the given parameters. The

proposed work provides flexibility not only for ring size

and bit size of modulus but also the number of PEs which

determines the throughput of the hardware. The same design

can also execute the INTT.

A. A Novel Word-Level Montgomery Modular Multiplier

The modular multiplier is the key component of the NTT

arithmetic. This unit consists of two parts: an integer multi-

plier followed with a modular reduction. We developed the

parametrized version of both parts.
There are two options to design an efficient modular reduc-

tion: Montgomery [13] and Barrett [6]. Choosing the correct

one for a parametric hardware is a non-trivial design decision.

Banerjee et. al., for instance, uses a Barrett modular reduction

hardware [6], which includes two different reduction units.

The first one is a configurable Barrett reduction hardware

which enables run-time flexibility. The second one employs a

separate, specialized reduction hardware which is only compa-

tible with a small set of pre-determined special moduli.
We argue that for the design-time flexibility, Montgomery

can offer a more efficient solution than Barrett. But the

baseline Montgomery has to be optimized for NTT primes

and extended to support the parametric ring sizes and bit

widths. To that end, we propose a novel Montgomery based

reduction unit that generalizes the word-level Montgomery

modular reduction algorithm for NTT-friendly primes [13],

with a word-size derived from the parameters. Compared to

the configurable Barrett reduction [6], our solution either saves

the number of multipliers or results in smaller multiplier units.

The results show our cycle count advantage when the hardware

uses the same number of PEs.
Algorithm 3 provides the details of our generalized al-

gorithm. The algorithm will require a different number and

bit-width of multipliers for different parameters of q and n.

The proposed algorithm utilizes the property of q ≡ 1

Design, Automation And Test in Europe (DATE 2020) 347

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 30,2020 at 21:32:40 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Word-Level Montgomery Reduction Algorithm

for NTT-friendly primes

Input: C = A ·B (a 2K-bit positive integer)

Input: q (a K-bit modulus), q = qH · 2w + 1
Input: w = log2(2n) (word size)

Output: Res = C ·R−1 (mod q) where R = 2w×L (mod q)
1: L =
K

w �
2: T1 = C
3: for i from 0 to L do
4: T1H = T1 >> w
5: T1L = T1 (mod 2w)
6: T2 = two′s complement of T1L
7: cin = T2[w − 1] ∨ T1L[w − 1]
8: T1 = T1H + (qH · T2[w − 1 : 0]) + cin
9: end for

10: T4 = T1− q
11: if (T4 < 0) then Res = T1 else Res = T4

(mod 2n), which should be satisfied by any NTT-friendly

prime using negative wrapped convoluti technique. Thus,

an NTT prime q can be written as q = qH · 2log2(2n) + 1.

In order to exploit that property, we can perform a word-level

Montgomery reduction with the word size w = log2(2n) and

divide the reduction operation into smaller parts instead of

performing it all at once. This will result in a flexible modular

reduction structure. The modular reduction operation executes

L =
K
w � times for a K-bit modulus. The Montgomery

modular reduction variable μ=−q−1 (mod 2w) becomes −1,

simplifying the multiplication of (AB (mod 2w)) · μ in the

Montgomery modular reduction to the two’s complement.

Montgomery reduction algorithm takes A · B as input and

calculates the output A ·B ·R−1 (mod q), where R = 2wL is

defined as Montgomery reduction residual. The residual has

to be corrected using an extra multiplication with R to obtain

A ·B (mod q). This extra multiplication can be moved to the

input by multiplying one of the inputs by R. Since one of the

inputs in NTT is the constant twiddle factor, ω, we can fuse

the multiplication by pre-computing it (ω · R (mod q)) and

loading it into the related memory at design-time to save one

multiplication at run-time.

The proposed word-level Montgomery modular reduction

algorithm divides reduction operation into a set of multi-

ply and accumulate (MAC) operations. Namely, it performs

X · Y + Z + cin operation, which can be implemented using

DSP blocks in FPGAs, for different number of times for

different arithmetic configurations. Therefore, the algorithm

itself provides easiness for generating flexible designs. Our

tool makes use of this to automatically generate the reduction

hardware for the given ring size and bit-size of the modulus.

Fig. 1 illustrates two example modular reduction hardware

generated by the proposed work for (a) ring size of 1024 with

32-bit modulus and (b) ring size of 256 with 16-bit modulus.

Both designs offer advantage over the Barret method [6]—

while the first design uses smaller multiplier units, the second

one saves one multiplication. The first implementation requires

3 MAC operations while the second implementation uses only

Fig. 1. Reduction Hardware for (a) n=1024, q=32-bit; (b) n=256, q=16-bit

Fig. 2. Integer Multiplier for 32-bit Inputs

2 MAC operations. The proposed reduction hardware is fully

pipelined, and it produces one output each clock cycle after

filling the pipeline. The generated modular reduction hardware

runs in constant time for a given arithmetic configuration.

The other part of the modular multiplication, integer mul-

tiplier hardware, uses the bit size of modulus as a parameter.

Each input of the multiplier is divided into 16-bit pieces and

one DSP block is used for each 16-bit×16-bit multiplication

operation. The resulting intermediate values are then added up

to calculate multiplication result using a pipelined adder tree.

Therefore, the proposed integer multiplier is fully pipelined

and it can produce one multiplication result per clock cycle.

Fig. 2 shows the hardware of 32-bit multiplication, which

requires 4 DSP blocks. The number and configuration of

the DSP blocks along with the adder tree are automatically

synthesized based on the input parameters. Although it may be

possible to partition input integers more efficiently, we divide

all inputs into 16-bit (power-of-2) pieces to preserve regularity

and reduce the complexity of the control unit.

B. PEs and Butterfly Units

Since we established the efficient hardware for the core

modular arithmetic, next we discuss the design of the butterfly

units that use modular operations and the PEs that contain

butterfly units.

Each PE implements the Gentleman-Sande butterfly config-

uration [14] corresponding to the Steps 5–8 of the Algorithm 2.

Fig. 3 illustrates one PE. PEs take two coefficients and one

twiddle factor as inputs, perform the butterfly operation, and

348 Design, Automation And Test in Europe (DATE 2020)

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 30,2020 at 21:32:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. PE and the Butterfly Unit

output two resulting coefficients, namely even (E) and odd (O)

coefficients. A PE consists of one modular adder, one modular

subtractor, and one modular multiplier for implementing the

butterfly operation. Each PE also uses three dual-port BRAMs,

where two data BRAMs store input and intermediate coeffi-

cients while the other, twiddle factor BRAM, stores the twiddle

factors (with Montgomery correction), which are design-time

constants pre-computed based on input parameters.
Fig. 3 depicts that the even coefficient is the output of the

modular addition operation (Step 7 in Algorithm 2) and odd

output coefficient is the output of the modular subtraction and

multiplication (Step 8 in Algorithm 2). To synchronize the

output generation of even and odd coefficients, the proposed

design inserts a parametric number of registers, shown in

green, on the even path based on the input parameters (ring

size and modulus bit-width). The input parameter of the

number of PE can only be a power-of-2, and it could be a

maximum of n/2 for an n-pt NTT.

C. Flexible Memory Access and Overall Design

A significant challenge for the NTT hardware design is

managing the complex memory access schedule. This problem

becomes more challenging for us because our hardware aims

to provide flexibility in the number of core PEs. We need

our parametric hardware generator to synthesize the address

generation logic that will control the 2 BRAMs in each PE

without adding any stalls to the NTT pipeline.
The proposed design uses the Iterative NTT scheme of

Algorithm 2, which consists of log2(n) stages and performs

n/2 butterfly operations at each stage. Fig. 4 (a) demonstrates

an example of the memory read access pattern of coefficients

for n=8. Each yellow dot represents a butterfly operation,

which consumes and produces two coefficients mapping to

the same degree. For example, 0th and 4th coefficients in the

first stage will correspond to the 0th and 4th coefficients of

the second stage.
The irregular access pattern of the NTT enforces storing

each coefficient to a unique address. Fig. 4 (b) demonstrates

the one PE case where coefficients going to the same butterfly

operation are stored in two distinct memory blocks. For

example, at the first stage of the 8-pt NTT, four coefficient

pairs (0, 4), (1, 5), (2, 6), (3, 7) go into butterfly operation.

These pairs need to be read at the same clock cycle. Therefore,

coefficients 0, 1, 2, 3 and 4, 5, 6, 7 should be stored in separate

memory blocks and accessed in parallel.
Unfortunately, the pairings of the coefficients change at each

stage. The output of the stage, therefore, has to be stored back

Fig. 4. (a) Coefficient Access Pattern; (b) Memory Access Pattern for n=8

Fig. 5. Memory Access for the 8-pt NTT with (a) One PE, (b) Two PEs

into the memory blocks based on the pairing of the next stage.

Fig. 4 (b) shows the example for n=8 where the coefficient

pairings for the first and second stages are respectively (0, 4),

(1, 5), (2, 6), (3, 7) and (0, 2), (1, 3), (4, 6), (5, 7). Hence,

both outputs of the pairs (0, 4) and (1, 5) should be written

into the first memory block. Likewise, (2, 6) and (3, 7) output

will be placed in the second memory. This guarantees that all

coefficient pairs at the second stage can be read in a cycle.
Our parametric hardware design automatically generates the

required access pattern to handle memory access operations

for different number of PEs. This pattern, however, requires

coefficient pairs to be written into the same memory block. For

example, for n=8, the coefficient pair (0, 4) should be written

into the first memory block after the first stage to improve

coalescing. This is enabled by adding one extra register to

the output of the modular multiplier unit in the PE, shown

as orange register in Fig. 3. This extra latency allows storing

coefficients into the same memory in 2 cycles. Since the PEs

are pipelined, this extra register does not affect the throughput.
The proposed design uses an alternating memory read

pattern because the first and second half of coefficient pairs

should be written into the first and second memories, respec-

tively. For example, as shown in Fig. 4, only the coefficients

(0, 1), (4, 5) are written into the first memory while (2, 3), (6,

7) are written into the second memory. Therefore, the memory

read pattern for 8-pt NTT should be in the order (0, 4), (2, 6),

(1, 5), (3, 7) instead of (0, 4), (1, 5), (2, 6), (3, 7).

Design, Automation And Test in Europe (DATE 2020) 349

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 30,2020 at 21:32:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. NTT Hardware (a) with one PE; (b) with two PEs

Fig. 5 gives the memory access examples for 8-pt NTT with

one and two PEs. Green and blue boxes respectively represent

the read and write operations, and the letters in red represent

coefficients written into the memory. For the 8-pt NTT with

one PE, coefficients (0, 4) and (1, 5) need to be stored in the

same memory block. The proposed addressing scheme thus

first reads coefficients (0, 4) and (2, 6), which should be written

into the first and second memories, respectively. Therefore,

operation can continue without any stall. For the 8-pt NTT

with two PEs, the first PE performs the butterfly operation

for the first half of the coefficient pairs while the second PE

performs it for the other half. In this case, the first PE can read

coefficients (0, 4) and (1, 5) in two consecutive cycles because

coefficients 4 and 5 will be written into the memory of the

second PE. Since we have two PEs instead of one, latency of

each NTT stage is reduced.
Fig. 6 outlines the high-level block diagram of the generated

NTT hardware with (a) one and (b) two PEs. The outputs of

one PE are connected to all PEs in the design to broadcast the

coefficients needed due to the memory dependency of NTT.

Before the NTT starts, the hardware first takes twiddle factors

followed with the input coefficient as inputs and writes them

to their related BRAMs within each PE. The data BRAMs

also keep the resulting output coefficients, which can be read

through the output multiplexers.

IV. RESULTS

The parametric hardware generator code is written in Ver-

ilog RTL and the generated NTT hardware are synthesized,

placed, and routed using Xilinx Vivado 2018.1 tool on the

Xilinx VIRTEX-7 FPGA xc7vx690tffg1761-2. The reference

software is compiled with the GCC version 7.3. in Ubuntu

OS 18.04.3 LTS. Timing performance of the software

implementations are obtained on a high-end Intel Xeon CE5-

1650 @ 3.50 GHz × 12 CPU with 16GB RAM.
We first compare our results on a new implementation

with the reference optimized software and high-level syn-

thesis (HLS) generated code. These two approaches are the

alternatives of our design methodology. To that end, we use

Fig. 7. Area vs. Latency for qTESLA with different PEs

qTESLA and CryptoNets as the driving applications. This

work proposes the first NTT hardware acceleration for both

applications on FPGAs. Both applications represent next gen-

eration cryptosystems—while qTESLA is a running candidate

for the post-quantum standard, CryptoNets enables privacy-

friendly neural network inference on encrypted data.

We use the reference software of qTESLA-p-I [15], which

targets NISTs security category 1. CryptoNets software

uses Microsoft SEAL library [19]. For HLS comparison, we

use the result of a prior work [18]. We report our hardware

results in three configurations: an area-optimizde design (1

PE), a throughput optimized design (64 PEs), and a balanced

design (8 PEs). Note that only the NTT implementations of the

same ring size (n) and coefficient size (q) make a meaningful

comparison. The results in Table I shows the superiority of our

approach, which outperforms existing software and high-level

synthesis designs respectively by up to 28× and 48×.

We next compare our work with optimized hardware de-

signs. Poly256 and Poly512 hardware for n=256 and n=512

are also auto-generated for this experiment. We note that

the target devices are implemented under different FPGA

technology or even ASIC, hence, the comparison should serve

as a first-order estimate rather than an idealized method.

Table I provides these detailed results, which quantify that

our parametric generator can produce a hardware that is

comparable to fixed setting hardware units and can even be

better in some cases. Note that the majority of prior hardware

are fixed for a single arithmetic and/or performance setting.

For instance, as we argue in Section III-A, our one PE design

outperforms the work of Banarjee et al. [6] in latency (cycle

count) due to our proposed word-level Montgomery reduction

unit. Likewise, our designs can achieve either a lower area or

a faster design (in cycle) compared to prior FPGA solutions.

We finally demonstrate the fast design-space exploration

that can be achieved by our parametric hardware generator. To

test this, we sweep the parameter that controls the number of

PEs used in qTESLA hardware and report the implementation

results in Fig. 7. Our generator is able to cover a space of 95×
in area cost for a tradeoff of 21× in performance by simply

tuning a parameter knob.

350 Design, Automation And Test in Europe (DATE 2020)

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 30,2020 at 21:32:40 UTC from IEEE Xplore. Restrictions apply.

TABLE I
IMPLEMENTATION RESULTS AND COMPARISON TO PRIOR WORK

Work Platform n q LUT / REG / DSP / BRAM Clock Latency
(MHz) CC μs

[7]a SPARTAN-6
256

17-bit
250 / – / 3 / 2

–
– 25

512 240 / – / 3 / 2 – 50
1024 250 / – / 3 / 2 – 100

[8]a,d VIRTEX-6 256 13-bit 4549 / 3624 / 1 / 12 262 – 8
[9]d Zynq UltraScale 4096 30-bit 64K / – / 200 / 400 225 – 73

[10]d VIRTEX-7 32768 32-bit 219K / – / 768 / 193 250 7709 51

[13]
d SPARTAN-6

1024 32-bit
1208 / – / 14 / 14 212 – 12

VIRTEX-7 34K / 16K / 476 / 228 200 80 1.25

[17]b VIRTEX-6
256 13-bit 1349 / 860 / 1 / 2 313 1691 5.4
512 14-bit 1536 / 953 / 1 / 3 278 3443 12.3

[6]b 40nm CMOS
256 13-bit

106K / – / – / – 72
1289 17

512 14-bit 2826 32
1024 14-bit 6155 81

[11]b 40nm CMOS
256 13-bit – / – / – / –

300
160 0.5

512 14-bit – / – / – / – 492 1.6

[12]b UMC 65nm
256 13-bit

14K / – / – / – 25
2056 82

512 14-bit 4616 184
1024 14-bit 10248 409

[18]c VIRTEX-7
1024

–
21K / 16K / 10 / 12

100
7597 76

2048 25K / 20K / 11 / 19 15852 159
4096 30K / 23K / 12 / 36 33337 333

qTESLA (Software) [15]a,d Intel Xeon CE5-1650 1024 28-bit – / – / – / – – – 11
CryptoNets (Software) [4]a Intel Xeon CE5-1650 4096 60-bit – / – / – / – – – 195

qTESLA (Hardware: Area-Opt.) VIRTEX-7 1024 28-bit 1K / 1K / 7 / 2 125 5290 42
qTESLA (Hardware: Balanced) VIRTEX-7 1024 28-bit 16K / 14K / 56 / 24 125 490 3.9
qTESLA (Hardware: Perf.-Opt.) VIRTEX-7 1024 28-bit 132K / 59K / 448 / 96 125 250 2

CryptoNets (Hardware: Area-Opt.) VIRTEX-7 4096 60-bit 2.7K / 2.6K / 31 / 12 142 24780 173
CryptoNets (Hardware: Balanced) VIRTEX-7 4096 60-bit 22K / 17K / 248 / 96 125 3276 26
CryptoNets (Hardware: Perf.-Opt.) VIRTEX-7 4096 60-bit 338K / 138K / 1984 / 768 125 972 7

Poly256 (Balanced) VIRTEX-7 256 16-bit 7.4K / 5K / 24 / 24 147 160 1.1
Poly512 (Balanced) VIRTEX-7 512 16-bit 8.1K / 5.2K / 24 / 24 141 345 2.4

a:Uses fixed q. b:Can work with multiple n and q. c:Uses HLS. d:Uses fixed n.

V. CONCLUSION

Designing an efficient hardware accelerator is a delicate

process. Indeed, proposing an optimized NTT hardware for

one arithmetic setting and for one performance goal has been

sufficient to publish in cryptography and hardware design

conferences. But as the lattice cryptosystems mature and gear

towards massive deployment, there will be a heavier emphasis

on HLS for faster adoption and design space exploration,

which enforce scalable and configurable hardware. This paper

shows how to construct a flexible yet efficient hardware

generator for a building block of lattice cryptosystems, pushing

towards that end. Our tool can be integrated as a hard macro to

the HLS flows and ease the process of hardware design for sys-

tem developers. The generated hardware executes in constant-

time, closing timing side-channels, but future extensions can

consider mitigation against, e.g., power side-channels.

REFERENCES
[1] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum

key exchangea new hope,” in 25th USENIX, 2016, pp. 327–343.
[2] Y. Arbitman, G. Dogon, V. Lyubashevsky, D. Micciancio, C. Peikert,

and A. Rosen, “Swifftx: A proposal for the sha-3 standard,” Submission
to NIST, 2008. [Online]. Available: https://eprint.iacr.org/2012/343.pdf

[3] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford, CA, USA, 2009.

[4] A. Brutzkus, O. Elisha, and R. Gilad-Bachrach, “Low latency privacy
preserving inference,” CoRR, vol. abs/1812.10659, 2018.

[5] W. Liu, S. Fan, A. Khalid, C. Rafferty, and M. O’Neill, “Optimized
schoolbook polynomial multiplication for compact lattice-based cryp-
tography on fpga,” IEEE Transactions on VLSI Systems, pp. 1–5, 2019.

[6] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A
configurable crypto-processor for post-quantum lattice-based protocols,”
IACR Transactions on CHES, pp. 17–61, 2019.

[7] A. Aysu, C. Patterson, and P. Schaumont, “Low-cost and area-efficient
fpga implementations of lattice-based cryptography,” in 2013 IEEE
International Symposium on HOST. IEEE, 2013, pp. 81–86.

[8] T. Pöppelmann and T. Güneysu, “Towards practical lattice-based public-
key encryption on reconfigurable hardware,” in International Conference
on Selected Areas in Cryptography. Springer, 2013, pp. 68–85.

[9] S.S. Roy et al., “Fpga-based high-performance parallel architecture for
homomorphic computing on encrypted data,” Cryptology ePrint Archive,
Report 2019/160, 2019.

[10] E. Ozturk, Y. Doroz, E. Savas, and B. Sunar, “A custom accelerator for
homomorphic encryption applications,” IEEE Transactions on Comput-
ers, vol. 66, no. 1, pp. 3–16, Jan 2017.

[11] S. Song, W. Tang, T. Chen, and Z. Zhang, “Leia: A 2.05mm2140mw
lattice encryption instruction accelerator in 40nm cmos,” in 2018 IEEE
Custom Integrated Circuits Conference (CICC), April 2018, pp. 1–4.

[12] T. Fritzmann and J. Seplveda, “Efficient and flexible low-power ntt for
lattice-based cryptography,” in 2019 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), May 2019, pp. 141–150.

[13] A. C. Mert, E. Ozturk, and E. Savas, “Design and implementation
of a fast and scalable ntt-based polynomial multiplier architecture,”
Cryptology ePrint Archive, Report 2019/109, 2019.

[14] P. Longa and M. Naehrig, “Speeding up the number theoretic transform
for faster ideal lattice-based cryptography,” in Cryptology and Network
Security, Milan, Italy, Nov. 2016, pp. 124–139.

[15] E. Alkim, P. S. Barreto, N. Bindel, P. Longa, and J. E. Ricardini, “The
lattice-based digital signature scheme qtesla.” IACR Cryptology ePrint
Archive, vol. 2019, p. 85, 2019.

[16] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for
lattice-based cryptography on reconfigurable hardware,” in Progress in
Cryptology – LATINCRYPT 2012, 2012, pp. 139–158.

[17] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact ring-lwe cryptoprocessor,” in CHES, 2014, pp. 371–391.

[18] K. Kawamura, M. Yanagisawa, and N. Togawa, “A loop structure
optimization targeting high-level synthesis of fast number theoretic
transform,” in 2018 19th ISQED, March 2018, pp. 106–111.

[19] “Microsoft SEAL (release 3.2),” https://github.com/Microsoft/SEAL,
Feb. 2019, microsoft Research, Redmond, WA.

Design, Automation And Test in Europe (DATE 2020) 351

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 30,2020 at 21:32:40 UTC from IEEE Xplore. Restrictions apply.

		2020-06-11T22:21:44-0400
	Preflight Ticket Signature

