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Abstract—The Holomorphic Embedding Load flow Method
(HELM) employs complex analysis to solve the load flow problem.
It guarantees finding the correct solution when it exists, and
identifying when a solution does not exist. The method, however,
is usually computationally less efficient than the traditional
Newton-Raphson algorithm, which is generally considered to be
a slow method in distribution networks. In this paper, we present
two HELM modifications that exploit the radial and weakly
meshed topology of distribution networks and significantly reduce
computation time relative to the original HELM implementation.
We also present comparisons with several popular load flow
algorithms applied to various test distribution networks.

I. INTRODUCTION

Distribution networks are different from transmission sys-
tems in several aspects, including radial or weakly meshed
structures, high R/ X ratios, non-transposed conductors, single
or two-phase laterals, etc. Due to these inherent dissimilarities,
conventional load flow methods, e.g., the Newton-Raphson
(NR) method, are usually less efficient when applied to distri-
bution networks relative to transmission system applications.

Taking advantage of the radial structure of distribution
networks, the backward-forward sweep (BFS) algorithm of
[1] and the direct approach of [2] are well-known for their
computational efficiency. In BFS, the forward sweep consists
of a voltage update step starting from the slack node towards
the far-end nodes, whereas the backward sweep is a current
summation algorithm in the reverse direction. The direct
approach introduces two matrices, namely the upper triangular
Bus Injection to Branch Current (BIBC) matrix, and the lower
triangular Branch Current to Bus Voltage (BCBV) matrix, in
an iterative voltage update scheme.

Despite their computational efficiency, both the BFS and the
direct approach do not guarantee finding the solution when it
exists. In particular, [3] and [4] demonstrate divergence issues
of BFS and a better performance by a variant of NR, known as
the current injection method (CIM), in the presence of constant
impedance loads and under high loading conditions. Neverthe-
less, the convergence of NR-based methods are problematic,
as well. They depend strongly on initialization, and they do
not guarantee, in general, convergence to the correct solution.
Moreover, divergence in the aforementioned methods is neither
a necessary nor a sufficient condition for the solution’s non-
existence.

Aiming at addressing these issues, [5] proposes the Holo-
morphic Embedding Load flow Method (HELM) that employs
analytic continuation of complex analytic functions. Analytic
continuation methods, e.g., Padé approximants representing
nodal voltage functions in HELM, can evaluate a function
beyond the radius of convergence of its respective power
series. Using diagonal or near-diagonal Padé approximants,
which provide maximal analytic continuation, ensures the
theoretical convergence of HELM. More specifically, HELM
promises to find a solution, if it exists. Further, it identifies
the non-existence of a solution by detecting oscillations in the
Padé approximant sequence.

Despite the theoretically attractive properties of HELM, it
is believed to be computationally expensive. HELM requires
solving the recursive solution of a set of linear equations to
obtain the coefficients of the voltage power series, followed by
another set of linear equations, solved to obtain the coefficients
of Padé approximants. In fact, [6] shows worse performance
compared to NR methods for transmission systems. The per-
formance of HELM in distribution networks has not, however,
been thoroughly investigated in the literature. To the best of
our knowledge, a first attempt is made by [7] in the context
of network reduction, and by [8], which extends HELM to
three-phase unbalanced systems.

In this paper, we exploit the radial and weakly meshed
structure of distribution networks, and propose two HELM
modifications which require less computational effort, while
maintaining the theoretical convergence properties. We im-
plement the proposed HELM modifications on several test
networks, and show that they achieve lower computation times
compared with the original HELM implementation. We also
present comparisons with other popular load flow methods,
namely the BFS, the direct approach, the implicit Z-Bus
method, and NR method, and we investigate the impact of
different loading conditions and ZIP load models on compu-
tation times.

The remainder of the paper is structured as follows. In Sec-
tion II, we present a brief overview of HELM. In Section III,
we introduce our proposed HELM modifications. In Section
IV, we present and discuss the numerical results on several
standard test cases. Lastly, we summarize our key findings in
Section V and provide directions for further research.



II. HoLOMORPHIC EMBEDDING LOAD FLOW METHOD

We consider a distribution network with NV +1 nodes, where
node 0 is the “slack node” and all other nodes are of PQ-type
in the set A4 = {1,..,N}. The load flow equations are as

follows:
Zyw

where y;; is the ij-th element of the “Y-bus” admittance
matrix, Vj; is the complex-valued voltage at node j, and
S; is the constant apparent power of load at the i-th node.
The superscript * denotes the complex conjugate operator.
Because the load flow equation (1) is not holomorphic, [5]
proposes to embed a complex-valued parameter «, and obtain
the following implicit holomorphic voltage function:

N
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Note that at « = 0, a simple solution — called germ —
can be found under the no-load, no-generation scenario, and
the original load flow equations (1) can be recovered at a =
1. Following [5], we replace Vj(oz) with its Maclaurin series
(employing the germ), i.e.,

V*’ ie N, (1)

*

“Via)

ieN. 2)

Vi(a) = v;[0] + vj[lla+ ... + v;[nla™ + ..., j €A, (3)
and the reciprocal of the voltage V;(a) with power series W;:
1

Vi(a)

= Wi(a) = w;[0]+w;[l]a+...+w;[n]a”+..., i € A,

4)
which implies that the coefficients of the voltage power series
and its reciprocal at node i € .4, v; and w;, respectively, are
related by their convolution:

1
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, n > 1.
Substituting (3) and (4) into (2), and equating the coeffi-
cients of « at both sides, yields [5]:

N
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HELM requires solving (5) and (6) recursively, starting with
the germ, i.e., v;[0], Vi € .#". However, calculating the germ
is not straightforward in case shunt admittances are included
in the network model. This has motivated [6] to express the
admittance matrix Y as:

Y =Y 4+Y*" (7)

n =0,
w;n] =

win—1], ieN. (6)

where Y includes the series part of the admittance matrix
and Y*" is a diagonal matrix of the shunt admittances. Using
(7), (2) becomes [6]:

*

N g
Jz:;y:j‘/](a) = av;*(la*) - ayz

"Vi(a), i€ N, (8)

where y;; is the ij-th element of the Y*® matrix, and yfh
is the ¢-th diagonal element of the Y*s" matrix. From (8),
the germ calculation becomes straightforward and is given by
v;[0] = Vo, Vi € A, where Vj is the slack-node voltage.
Substituting (3) and (4) into (8), and equating the coefficients
of « at both sides, yields [6]:

Zyvjvj =Sjw

Hence, HELM recursively solves (5) and (9) to obtain
higher-order coefficients of the voltage power series at each
step. The voltage power series may not, however, be converg-
ing as it is often the case. Therefore, [S] proposes to evaluate
the voltage at PQ node i € .4 using a rational function —
the Padé approximant — described as:

C,[O] + Cl[l}a + ...+ C,;[L]OLL
1+ Bi[l]a+ ...+ Bi[M]aM "’
which is often used as an analytic continuation method to
evaluate a function outside the radius of convergence of its
power series but within the function’s domain. The commonly
used method to calculate the coefficients of the polynomials
in (10) is the so-called matrix method [9], in which the
denominator coefficients [ at each node can be obtained by
solving a dense linear system of equations [9], thus time-
consuming and prone to errors as the order of the Padé
approximant increases [10]. The numerator coefficients ¢ can
then be found by a back-substitution.

An alternative method is employed in [10] — the Eta
method, which always results in a diagonal Padé approximant,
thereby retaining the convergence promises of HELM, and
which has reportedly better performance in finding a converg-
ing voltage solution. The Eta method obtains a converging
voltage power series based on a two dimensional array called
the 7 table. Therefore, it allows the evaluation of the nodal
voltage at node i € .4 and recursive step n, denoted by
V;("). Its drawback is that it only yields the solution at a = 1,
as opposed to the matrix method that yields a solution as a
function of . Nonetheless, this drawback does not affect load
flow problems, since, as already mentioned, the solution at
o = 1 suffices to recover the original load flow equations.

In what follows, we present an outline of the recursive
algorithm that describes the original HELM encompassing the
Eta method, which we use for comparison purposes.

Step 1: Set n =0, and v;[0] = V, Vie A

Step 2: Calculate w;[n], Vi € 4, using (5).

Step 3: Set n = n + 1. Calculate RHS of (9).

Step 4: Obtain v;[n], Vi € A4, solving (9).

Step 5: Evaluate Vi(”), Vi € 4, using the Eta method.
Check convergence (for tolerance ¢): If |V;(") 2 | <
€, Vi € ¥, then stop; otherwise, recursively apply steps
2-5.

III. THE PROPOSED LOAD FLOW METHODS

n—1] —ytun—1], i€ A 9)

VYL(Oé) =~ [L/M]Vi(a) = (10)

In this section, we present two HELM modifications that are
tailored to distribution networks. They involve two alternative



methods for solving (9) in Step 4 of the original HELM, for a
radial or weakly meshed topology. Our work is inspired by two
popular load flow algorithms in distribution networks, namely
the BFS algorithm and the direct approach of [2].

The BFS is an efficient algorithm for radial distribution
networks. At each iteration k, it calculates the nodal voltages
and is described as follows:

AL® — (V0.
Y,AT(VH® — Vy1y) =109,

(1)
12)

where V, I, and I, are N x 1 vectors denoting nodal voltages at
PQ nodes, current injections at PQ nodes, and branch currents,
respectively. Note that shunt admittances are modeled in the
current injection vector I Y,isa NxN diagonal matrix
whose elements correspond to branch admittances, and A

is obtained from the node to branch incidence matrix A,

partitioned as follows:
al
A= (%
(%)

where al and A are the rows of A associated with the
slack and PQ nodes, respectively. Note that the rhs of (11)
explicitly shows the dependence of nodal current injection I
on nodal voltages at the previous iteration V#=1 1In a radial
network, obtaining the vector of branch currents I; from (11)
is equivalent to a backward sweep, whereas utilizing I, in
(12) to solve for voltages is equivalent to a forward sweep
[11]. A backward sweep calculates the branch currents by
traveling backward from the far-end nodes to the slack node,
whereas a forward sweep updates nodal voltages by traveling
forward from the slack node to the far-end nodes. (11) and (12)
are solved iteratively until the difference in nodal voltages at
successive iterations is less than a tolerance.

The direct approach [2] is applicable to both radial and
weakly meshed systems and is described as follows:

V) = V51 + (DLF) x I(V*=Y),

(13)

(14)

where DLF is a constant matrix and 1 is a NV x 1 vector of all
ones. Details on how to construct DLF can be found in [2].

Observing (9), we identify an interesting interpretation,
presented in Lemma 1.

Lemma 1. Ar the n-th voltage power series coefficients
calculation, (9) is equivalent to (15) below which describes
a load flow problem of a network without shunt elements and
only constant current type loads/injections:

YV=1 (15)

Note that 1 is the vector of current load/injections and 'V
the vector of nodal voltages (including the slack bus).

Proof. At the n-th voltage power series coefficients calcu-
lation, the rhs of (9) is constant, i.e., I; = Sfw}[n —1] —
yi"viln — 1], Vi € 4. At the lhs, setting y;; = y;;, indicates
that the corresponding network has a bus admittance matrix
Y¥, i.e., without shunt elements. ]

The network introduced in Lemma 1 has some attractive
properties.

Lemma 2. The load flow problem of radial networks de-
scribed in Lemma 1 can be solved in a single iteration of
the BFS algorithm (one backward and one forward sweep).

Proof. The Y-Bus admittance matrix can be partitioned as:

5 %))

where y is a N x 1 vector describing the mutual admittances
between the slack and PQ nodes, yq is the self admittance of
the slack bus and Y is an N x N matrix. Since the Y-Bus
described in Lemma 1 does not include shunt admittances, we
can equivalently express it as:

(16)

Y = AY,AT. (17)
Using (13) and (16), we get from (17):
y=AY,a;, Y=AY,A"T. (18)
Expressing (15) for PQ-type nodes using (16) yields:
yWVo+YV =L (19)
Substituting (18) into (19), we get:
AY,(agVy + ATV) =1 (20)
Note that sum of the elements in each column of A should
be zero, which implies that aOT = —AT1. Therefore, (20) can
be written as:
AY,AT(V - V1) =1, (21)
which can be expressed equivalently as:
AL, =1, (22)
Y, AT(V - Vp1) =1, (23)

representing a single backward and forward sweep, as dis-
cussed for (11) and (12). We note that a similar argument was
made in [11] for a different purpose. O

Lemma 3. The load flow problem of radial or weakly meshed
networks described in Lemma 1 can be solved in a single
iteration of the direct approach.

Proof. A single iteration of the direct approach is described
as:

V =V,1 + (DLF)L (24)
A direct comparison of (24) with (21) yields:
DLF = (AY,AT)"L. (25)

Therefore, (15) can be solved using a single iteration of the
direct approach described by (24). O

We note that, for a radial network, DLF = BCBV x BIBC
[2]. Therefore, (24) can be expressed equivalently as:

I, = (BIBC)I,
V = V1 + (BCBV)I,.

(26)
27)



Corollary 1. For a radial network, the backward (11) and
forward (12) sweeps are expressed equivalently in a matrix
form using the direct approach, with:

BIBC = A1,
BCBV = (Y,AT)™ 1,

(28)
(29)

where A is an N x N matrix.

Proof. Corollary 1 is derived by direct comparison of (26) and
(27) with (22) and (23), respectively.

Proposition 1. The solution of (9) for radial or weakly
meshed networks is obtained by performing a single iteration
of the BFS (radial) or the direct approach (radial/weakly
meshed) methods.

Proof. The proof of Proposition 1 is straightforward, using (i)
Lemma 1 for a network with y;; = y;;» and constant cur-
rents at the n-th voltage power series coefficients calculation,
I; = S;win — 1] — yshv;[n — 1], Vi € A, (ii) Lemma 2 for
radial networks, and (7ii) Lemma 3 for both radial and weakly
meshed networks. O

In what follows, we introduce the two HELM modifications
that modify Step 4, solving (9) based on Proposition 1. The
first algorithm, referred to as S-HELM, uses the BFS algorithm
and is suitable for radial networks. The second algorithm,
referred to as D-HELM, uses the direct approach of [2] and
can be applied to both radial and weakly meshed networks.
We summarize the modified steps below.

The S-HELM algorithm modifies Step 4 as follows:

Step 4-S.a: Calculate branch currents using the nodal injec-
tions given by Step 3 of HELM, employing a backward
current summation scheme.

Step 4-S.b: Solve for v;[n], Vi € .4 using branch currents
calculated in the previous step, employing a forward
voltage update scheme.

The D-HELM algorithm modifies Step 4 of the original
HELM algorithm as follows:

Step 4-D: solve (24) for v;[n] = V;, Vi € A, where I; is
given by Step 3 of HELM.

IV. NUMERICAL RESULTS

We tested the proposed algorithms on several radial and
weakly meshed distribution networks and we compared the
results with other methods, namely the original HELM (using
the Eta method), the BFS [1], the direct approach, [2], the
implicit Z-bus [12], and NR. We modeled the methods in
MATLAB v. 9.4 and used a Dell XPS i7 at 1.8 GHZ CPU
with 16 GB RAM for obtaining the numerical results.

The test networks included IEEE 13, 18, 33, 37, 69, 123,
141 and 8500 node radial test systems. The data for 18, 33,
69, and 141 bus networks can be found in MATPOWER [13].
We used the single phase equivalents of IEEE 13, 37 and
123 node networks derived by [14], and we also obtained the
single phase equivalent of the IEEE 8500 node distribution
network that includes about 2500 nodes. The convergence

TABLE I
LoAD FLOW COMPUTATION TIME (IN MILLISECONDS) ON SEVERAL
IEEE RADIAL DISTRIBUTION TEST SYSTEMS

Methods Test Systems
13 [ 18 [ 33 ] 37 [ 69 | 123 [ 141 | 8500
HELM | 030 | 041 | 056 | 046 | 0.89 | 1.50 | 1.63 | 583
S-HELM | 0.24 | 036 | 048 | 040 | 0.80 | 1.30 | 1.44 | 515
D-HELM | 022 | 031 | 041 [ 032 | 0.68 | 1.19 | 1.32 | 606
ImplZ | 0.14 | 021 | 0.19 | 0.12 | 027 | 032 | 044 | 13.0
BFS 0.05 | 0.10 | 008 | 008 | 0.13 | 022 | 021 | 7.92
Direct | 0.06 | 0.11 | 008 | 0.07 | 0.11 | 0.18 | 0.17 | 19.1
NR 039 | 045 | 0.64 | 0.82 | 1.05 | 2.55 | 2.00 | 38.5

tolerance was ¢ = 1075, The maximum error in nodal
voltage magnitudes compared with Implicit Z-bus, BFS, the
direct approach, and NR was observed to be less than the
tolerance, thus verifying the accuracy of the proposed HELM
modifications.

In Table I, we present the computational times for all
methods and test networks. They include the time required
to run only the main loop of the methods; they do not include
pre-processing time, e.g., branch ordering in BFS or LU factor-
ization in original HELM. In order to derive accurate results,
we ran the main loop of each method for 100,000 times and
obtained the mean computation times. The results indicate that
at least one of the proposed HELM modifications (S-HELM
and D-HELM) outperforms the original HELM — in fact in all
but one networks both modifications outperform the original
HELM. D-HELM appears more efficient in smaller networks
outperforming both original HELM and S-HELM, but achieves
similar times with HELM for the large network. For the
latter network, S-HELM performs better than D-HELM and
original HELM. Overall, the BFS algorithm and the direct
approach perform better, followed by the implicit Z-bus. NR
is generally slower than HELM except for the 8500-node
network. Interestingly but unsurprisingly, comparing Implicit
Z-bus with BFS and the direct approach yields similar results
to comparing HELM with S-HELM and D-HELM; note that
HELM and Implicit Z-bus employ LU factorization, whereas
S-HELM and D-HELM are based on the BFS and the direct
approach, respectively.

Table II presents the average percentage of computation
time spent on each step of HELM. We observe that the
percentage of Steps 2,3 and 4 decrease with the size of the
network, whereas the percentage of Step 5 increases with the
size of the network.

The results in Table I and II indicate that the proposed
modifications achieve computational savings that range from
53% to 92% in Step 4 of HELM, and from 12% to 30% overall
(including all HELM steps).

Further, as it is also discussed in [6], since the voltage
evaluation and convergence check performed in Step 5 is not
used as input in Steps 2—4, one can proceed from Step 4 to
Step 2 while in parallel checking convergence in Step 5. If



TABLE II
AVERAGE PERCENTAGE OF COMPUTATION TIME SPENT ON EACH STEP OF
HELM IN SEVERAL IEEE RADIAL DISTRIBUTION TEST SYSTEMS

TABLE IV
LoAD FLOW COMPUTATION TIME (IN MILLISECONDS) FOR IEEE 123
NODE DISTRIBUTION NETWORK IN DIFFERENT LOADING SCENARIOS

Steps Test Systems Methods Const. Power Const. Current Const. Impedance
13 [ 18 [ 33 [ 37 [ 69 [ 123 | 141 | 8500 Medium | High | Medium | High | Medium | High

2,3 32% | 37% | 11% | 21% 5% 10% 5% 4% HELM 2.5 13.3 242 10.1 2.96 4.86
40% | 31% | 34% | 33% | 29% | 27% | 22% 22% S-HELM 2.2 12.7 2.24 9.64 2.75 4.60

28% | 32% | 55% | 46% | 66% | 63% | 73% | 74% D-HELM 2.0 12.2 1.95 9.05 2.45 4.21

Impl.Z 0.58 1.35 0.40 0.50 0.40 0.46

TABLE 11T BFS 046 | 105 | 037 [ 045 | 118 Div

LoAD FLow COMPUTATION TIME (IN MILLISECONDS) ON WEAKLY Direct 0.29 0.65 0.23 0.28 0.71 Div
MESHED VARIANTS OF IEEE DISTRIBUTION TEST SYSTEMS NR 245 312 Div Div 3.06 3.06

Methods Test Systems
18w [ 33w [ 69w
HELM 042 | 043 | 0.52
D-HELM | 027 | 0.32 | 0.39
Impl.Z 0.18 | 0.16 | 0.19
Direct 0.10 | 0.07 | 0.14
NR 053 | 073 | 1.21

convergence is reached, then algorithm terminates, otherwise
convergence is checked again at the next step. Taking into
account the parallel implementation of Step 5, the compu-
tational savings of the proposed modifications (including all
steps) range from 24% to 50% overall.

We also considered weakly meshed variations of the IEEE
18, 33 and 69 node networks. Table III shows that D-HELM
requires less computation time compared with HELM, and it
also outperforms the NR method. However, we acknowledge
that more testing is required for weakly meshed networks.

Lastly, we evaluated the performance of the proposed mod-
ifications under different loading conditions. We selected the
IEEE 123-node radial distribution network, which contains
a complete ZIP load model and considered medium and
high loading conditions. The load factors for constant power,
constant current, and constant impedance loads were 4, 20,
and 40, respectively, for the medium loading conditions, and
7, 50, and 60, respectively for the high loading conditions.
We present the results in Table IV. We observe that the
proposed modifications outperform the original HELM in all
scenarios. Further, while the BFS, the direct approach and the
NR method diverge under certain loading conditions, HELM
and its proposed modifications manage to find a solution.

V. CONCLUSIONS AND FURTHER RESEARCH

This paper presents two HELM modifications that exploit
radial and weakly meshed structure of distribution networks
and require less computation effort. Numerical experimen-
tation demonstrates overall time savings of up to 30% on
IEEE radial distribution test cases. Furthermore, the proposed
HELM modifications are shown to be robust against different
loading types and conditions. In our future research, we
aim at (i) further investigating the performance in weakly
meshed networks, (i7) extending the proposed modifications to

three-phase unbalanced systems, and (iii) performing extensive
numerical comparisons and sensitivity analysis with respect to
network parameters and loading conditions.

REFERENCES

[1] D. Shirmohammadi, H. W. Hong, A. Semlyen, and G. X. Luo, “A
compensation-based power flow method for weakly meshed distribution
and transmission networks,” IEEE Transactions on Power Systems,
vol. 3, no. 2, pp. 753-762, May 1988.

[2] J.-H. Teng, “A direct approach for distribution system load flow solu-
tions,” IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882—
887, July 2003.

[3] L. R. de Araujo, D. R. R. Penido, S. C. Jnior, J. L. R. Pereira, and
P. A. N. Garcia, “Comparisons between the three-phase current injection
method and the forward/backward sweep method,” International Journal
of Electrical Power & Energy Systems, vol. 32, no. 7, pp. 825 — 833,
2010.

[4] L. R. de Araujo, D. R. R. Penido, N. A. do Amaral Filho, and
T. A. P. Beneteli, “Sensitivity analysis of convergence characteristics
in power flow methods for distribution systems,” International Journal
of Electrical Power & Energy Systems, vol. 97, pp. 211 — 219, 2018.

[5] A. Trias, “The holomorphic embedding load flow method,” in 2012 I[EEE
Power and Energy Society General Meeting, July 2012, pp. 1-8.

[6] S. Rao, Y. Feng, D. J. Tylavsky, and M. K. Subramanian, “The
holomorphic embedding method applied to the power-flow problem,”
IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3816-3828,
Sept 2016.

[7]1 S. Rao and D. Tylavsky, “Nonlinear network reduction for distribution
networks using the holomorphic embedding method,” in 2016 North
American Power Symposium (NAPS), Sept 2016, pp. 1-6.

[8] Y. Ju, “Holomorphic embedding load flow modeling of the three-
phase active distribution network,” preprints 2018, 2018030066 (doi:
10.20944/preprints201803.0066.v1).

[91 G. Baker and P. Graves-Morris, Padé approximants.

University Press, 1996, vol. 59.

S. D. Rao and D. J. Tylavsky, “Theoretical convergence guarantees ver-

sus numerical convergence behavior of the holomorphically embedded

power flow method,” International Journal of Electrical Power & Energy

Systems, vol. 95, pp. 166 — 176, 2018.

F. Zhang and C. S. Cheng, “A modified newton method for radial

distribution system power flow analysis,” IEEE Transactions on Power

Systems, vol. 12, no. 1, pp. 389-397, Feb 1997.

T. H. Chen, M. S. Chen, K. J. Hwang, P. Kotas, and E. A. Chebli, “Distri-

bution system power flow analysis-a rigid approach,” IEEE Transactions

on Power Delivery, vol. 6, no. 3, pp. 1146-1152, Jul 1991.

R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “Mat-

power: Steady-state operations, planning, and analysis tools for power

systems research and education,” IEEE Transactions on Power Systems,

vol. 26, no. 1, pp. 12-19, Feb 2011.

M. Bazrafshan and N. Gatsis, “Convergence of the Z-Bus method for

three-phase distribution load-flow with ZIP loads,” IEEE Transactions

on Power Systems, vol. 33, no. 1, pp. 153-165, Jan 2018.

Cambridge

[10]

(11]

[12]

[13]

[14]



