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ABSTRACT 

Drinking water infrastructure in the U.S. is in a deteriorated state needing immediate 
intervention that is sustainable. Although many technologies are being developed to inspect 
buried pipeline assets, they are still expensive and human-dependent to use for comprehensive 
condition assessment and prioritization of the most critical assets for immediate rehabilitation 
and replacement planning. This paper presents a novel system-level condition assessment 
framework where monitoring data from distribution infrastructure is leveraged to predict the 
condition of assets using evolutionary optimization and machine learning algorithms. Pipeline 
roughness values and effective hydraulic diameters (given the possibility of 
graphitization/corrosion) are two parameters that would reveal their overall condition, and 
therefore these two parameters will be used to demonstrate the framework presented in this 
paper. In this respect, a modified benchmark water distribution network is used to represent an 
ageing, deteriorated network by randomly reducing effective pipe diameters and roughness 
coefficient values. Subsequently, a novel reverse engineering optimization method is leveraged 
to minimize the mean square errors of operational parameters (e.g., pressure and flow) via both 
predicted (through optimization) and modeled data obtained from a given set of monitoring 
stations. Roughness values and effective hydraulic diameters are the decision variables in this 
optimization framework that are to be predicted. EPANET 2.0 software is used for modeling the 
water distribution network performance in this study. Faster convergence is achieved through 
fine-tuning of genetic algorithm properties. Specifically, the computational efficiency and 
prediction accuracy benefits derived from appropriately narrowing down on the upper and lower 
bounds of the decision variables through multiple runs of the optimization process will be 
demonstrated in this paper. The framework proposed in this study offers great analytical 
capability to predict the condition of various assets in a water distribution network without 
having to undertake expensive inspection procedures. 

KEYWORDS: Genetic Algorithms, Effective Hydraulic Diameters, Roughness Coefficients, 
EPANET, Water Distribution Network 

INTRODUCTION 

Water distribution systems (WDSs) are as complex as they are critical to societies. Timely 
and proper monitoring, rehabilitation and replacement policies of the WDS assets play an 
essential role in maintaining the reliability targets of water utilities within budgetary constraints 
(Mazumder et al. 2018; Pietrucha-Urbanik and Tchórzewska-Cieślak 2018). The conventional 
methods of WDS asset management are expensive and time taking for large systems due to 

 Construction Research Congress 2020 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
le

m
so

n 
U

ni
ve

rs
ity

 o
n 

12
/3

0/
20

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



Construction Research Congress 2020 371 

© ASCE 

operator dependency. They are also based on human-dependent manual methods that may be 
prone to errors (Frangopol and Liu 2007; Momeni and Piratla 2019; van Riel et al. 2016). The 
methodologies presented in the literature, despite including numerical algorithms, are rather 
intertwined with municipal intervention and on-site inspections, thus likely making them more 
time-consuming (Bonthuys et al. 2019; Chen et al. 2017). Thus, a cyber-monitoring method has 
been presented in the literature that deals with reverse engineering practices to predict the 
conditions of a deteriorated pipeline using hydraulic monitoring data (Momeni and Piratla 2019). 
Pipeline roughness coefficients were predicted using hydraulic monitoring data derived from a 
modeled WDS that is deteriorated (Piratla and Momeni 2019). This study extends the previous 
work by predicting the effective hydraulic diameters of pipelines in addition to the roughness 
coefficients based on hydraulic monitoring data. The prediction accuracy is evaluated using 
numerical metrics such as mean absolute error (MAE) and mean absolute percentage error 
(MAPE). The optimization algorithm employed in this study is also improved compared to the 
previous study. While the previous studies (Momeni and Piratla 2019; Piratla and Momeni 2019) 
attempted to present the fundamental framework and demonstrate it for predicting pipeline 
roughness values, this paper specifically offers the following advancements in comparison: (i) 
the betterment of the optimization algorithm through tapering function of the boundaries, (ii) 
adding a new parameter (effective hydraulic diameters) for prediction, and (iii) demonstration on 
a new WDS network. 

METHODOLOGY 

In this study, in order to assess the conditions of a deteriorated pipeline, actual and predicted 
values of hydraulic parameters (herein roughness coefficient and effective hydraulic diameters) 
are measured and compared using reverse engineering to evaluate their proximity and accuracy. 
GoYang network (Kim et al. 1994) depicted in Figure 1 is modified to characterize an ageing 
WDS network through reduction in pipe roughness (C) values as well as effective internal pipe 
diameters. Flow and pressure monitoring meters are quasi-randomly placed in GoYang modified 
network to be a representation of real-time data collection. Five pressure monitoring locations 
and seven flow monitoring locations are selected across the network. Base demands are varied 
with time to represent the alterations in system behavior through time. Assuming there is no 
failure in the network such as pipe failure or pump outage, nodal base demands are the 
representatives of inputs whereas pressure heads and flow rates are the outputs. The physics-
based input-output relationship is leveraged to predict deteriorated WDS characteristics in this 
study. A total of 200 scenarios of demand variation are used in the optimization algorithm to 
characterize the dynamic behavior of the WDS (Piratla and Momeni, 2019). Base nodal demands 
in the deteriorated network are varied randomly within ±20% of the original GoYang network 
(Piratla and Momeni 2019). Subsequently, an optimization framework is developed in MATLAB 
by incorporating EPANET 2.0 software simulator to account for the hydraulic simulations 
(Piratla and Momeni 2019). In each of these scenarios, nodal pressure heads and pipeline flow 
values at the 12 monitoring locations are generated for the randomly varied nodal demands. 
Ultimately, the optimization platform is created using genetic algorithm tool by assuming the 
decision variables are the pipe roughness coefficients and effective hydraulic diameters, thus 
minimizing the absolute difference, quantified through mean squared error (Allen, 1971), 
between the predicted and actual (i.e., synthetic) values for pressure heads and flow rates 
utilizing the 200 demand scenarios. 
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Figure 1. Schematic illustration of the optimized boundary setting 

 
Figure 2. GoYang Network to represent a deteriorated network for the framework 

To optimize the convergence agility of the optimization process, an auxiliary function is 
added to the original optimization scheme to fine-tune the boundary conditions of the search 
span at each iteration. Particularly, the approach depicted in Figure 1 is leveraged to make the 
process of narrowing down more intelligent by running the optimization process five times at 
each set of chosen boundary conditions. Then, the best objective function value (minimum of 
mean square errors) out of these 5 runs is selected and fed into the next set of boundary 
conditions while it is reduced within one increment of the whole upper and lower boundary 
ranges one at a time starting from ± 10 to ± 1 of the best solution of the previous five runs; 
therefore, the search span (the middle closed area in Figure 1) would be smartly reduced 
symmetrically from both top and bottom bounds. This procedure goes on until the minimum 
value is achieved (Only three steps are shown in Figure 1). Automatically, the entire primary 
range of randomization of 40 to 190 (i.e., roughness coefficient and effective pipe diameter 
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values) will be back in play again and the whole process will be repeated without overlapping 
unless the preferred MSE value of zero, and thus MAE of zero, is obtained yet. 

Table 1. GoYang original and modified (deteriorated) network parameters 
 

Pipe 
index 

Original network Modified network 
Pipe diameter 

(mm) 
Pipe roughness 

(C) 
Pipe diameter 

(mm) 
Pipe roughness 

(C) 
1 200.0 100.0 182.0 80.0 
2 200.0 100.0 187.0 56.0 
3 150.0 100.0 133.0 62.0 
4 150.0 100.0 136.0 56.0 
5 150.0 100.0 130.0 73.0 
6 100.0 100.0 89.0 79.0 
7 80.0 100.0 68.0 71.0 
8 100.0 100.0 90.0 46.0 
9 80.0 100.0 65.0 59.0 
10 80.0 100.0 61.0 67.0 
11 80.0 100.0 65.0 43.0 
12 80.0 100.0 64.0 73.0 
13 80.0 100.0 65.0 79.0 
14 80.0 100.0 61.0 74.0 
15 100.0 100.0 84.0 51.0 
16 80.0 100.0 66.0 75.0 
17 80.0 100.0 64.0 63.0 
18 80.0 100.0 70.0 78.0 
19 80.0 100.0 70.0 66.0 
20 80.0 100.0 61.0 60.0 
21 80.0 100.0 68.0 54.0 
22 80.0 100.0 64.0 76.0 
23 80.0 100.0 69.0 80.0 
24 80.0 100.0 68.0 46.0 
25 80.0 100.0 60.0 55.0 
26 80.0 100.0 68.0 75.0 
27 80.0 100.0 62.0 69.0 
28 80.0 100.0 61.0 74.0 
29 80.0 100.0 67.0 76.0 
30 80.0 100.0 68.0 78.0 

Iteratively, it is evident that the near-optimal solution can be achieved in less time and at 
finer accuracy rate using this approach. In this case, through trial and error, less than a hundred 
iterations with increasing number of generations have been conducted. Elitism is inherently 
embedded in the body of the genetic algorithm framework in that the function “gamultiobj” in 
MATLAB leverages an elitist form of a controlled evolutionary algorithm (a variant of NSGA-
II). A controlled elitist evolutionary algorithm also contributes to the increase in diversity of 
population through elite individuals even if they possess a lower fitness value. Subsequently. the 
mean absolute error (MAE) (Willmott and Matsuura 2005) and mean absolute percentage error 
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(MAPE) (de Myttenaere et al. 2016) play an integral part in determining both the accuracy of the 
procedure and the correlation between actual and predicted values. 

CASE STUDY 

A benchmark WDS – modified GoYang network (Kim et al., 1994) – is chosen to 
characterize a deteriorated network by reducing both pipeline roughness coefficients and 
effective diameters. Majority of WDS pipelines in the real word are metallic and they get 
rougher with age leading to higher energy consumption and accelerated deterioration. Similarly, 
aged metallic pipelines could exhibit graphitization that may essentially reduce the effective 
hydraulic diameter. Figure 2 depicts the modified version of GoYang (Kim et al. 1994) network, 
which consists of one reservoir, one pump, 30 pipes and 22 nodes. First, the roughness 
coefficients of the original network are reduced to be in the range of 40 to 80 from the original 
value of 100 and then the pipe diameters are randomly reduced by a maximum of 20mm, as can 
be seen from Table 1. This reduction characterizes the deteriorated WDS network. A minimum 
pressure head of 5m has been maintained to avoid violating pressure constraints. 

Table 1 demonstrates the characteristics of the original and deteriorated versions of GoYang 
network. As is shown, both diameters and roughness coefficients are reduced in the deteriorated 
version, since these parameters are on the wane as pipeline ages. 

DEMONSTRATION 

Formulation of the Optimization Framework 

The proposed optimization algorithm is set out to determine the combined set of roughness 
coefficients and hydraulic diameters as decision variables. The objective function is to minimize 
the differences (mean square errors - MSE) between the predicted and actual pressure and flow 
values at the chosen monitoring locations for a total of 200 randomized demand scenarios. The 
actual pressure and flow values are obtained using the deteriorated WDS characteristics 
presented in Table 1 whereas the predicted values are obtained from the optimization algorithm 
where the reduced pipe diameters and roughness coefficients are the decision variables. Equation 
1 below represents the calculation procedure for MSE between actual and predicted values 
(Piratla and Momeni 2019). 

A. Decision variables: {x1, x2, …., x60} where, x1 is the roughness coefficient of pipe 1 
up to x30 which is the roughness coefficient of pipe 30, and x31 is the diameter of pipe 1 
up to x60 which is the diameter of pipe 30. The decision variables are constrained to vary 
between 40 and 80 for roughness values and between 60 and 190 for hydraulic diameters. 

B. Objective: Minimize the following 

 

2 2 2 2 2

2 2 2 2 2

2 2

Minimum of [ ( 2 ) ( 6 ) ( 15 ) ( 18 ) ( 22 ) ] 
for all 

 Minimum of[( 1 ) ( 3 ) ( 5 ) ( 10 ) ( 17 )

( 24 ) ( 30 ) ]
for all 

m m m m m m m m m m

m m m m m m m m m m

m m m m

a P b P c P d P e P
m

f F g F h F i F j F

k F l F
m

        

         

   

 (1) 

Where, m is the simulation number (i.e., the scenario number ranging from 1 to 200); am, bm, 
cm, dm, em, fm, gm, hm, im, jm, km are estimated pressures and flows during optimization; am is the 
pressure at node 2 in simulation m; bm is the pressure at node 6 in simulation m, cm is the pressure 
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at node 15 in simulation m; dm is the pressure at node 18 in simulation m; em is the pressure at 
node 22 in simulation m; fm is the flow in pipe 1 in simulation m; gm is the flow in pipe 3 in 
simulation m; hm is the flow in pipe 5 in simulation m; im is the flow in pipe 10 in simulation m; 
jm is the flow in pipe 17 in simulation m; km is the flow in pipe 24 in simulation m; lm is the flow 
in pipe 30 in simulation m; 

Where, P2m, P6m, P15m, P18m, P22m, F1m, F3m, F5m, F10m, F17m, F24m, F30m are actual 
pressures and flows; P2m is the pressure at node 2 in simulation m, P6m is the pressure at node 6 
in simulation m, P15m is the pressure at node 15 in simulation m; P18m is the pressure at node 18 
in simulation m, P22m is the pressure at node 22 in simulation m; F1m is the flow in pipe 1 in 
simulation m; F3m is the flow in pipe 3 in simulation m; F5m is the flow in pipe 5 in simulation 
m; F10m is the flow in pipe 10 in simulation m; F17m is the flow in pipe 17 in simulation m; F24m 
is the flow in pipe 24 in simulation m; F30m is the flow in pipe 30 in simulation m; 

C. Constraint Function: Although several parameters can end up contributing to the 
constraint function in the optimization framework, only pressure heads at all nodes have 
been considered to be the constraint that needs to be satisfied throughout the optimization 
process. Since the physical and operational values are rather low in the network, the 
minimum pressure head has been set to 5 meters. 

Prediction Measures 

As mentioned before, the actual and predicted values of roughness coefficients and diameters 
are assessed using mean absolute error (MAE) and mean absolute percentage error (MAPE). 
These metrics can be found in Equations 2 and 3 below that summarize the calculation of the 
MAE and MAPE for both predicted and actual results (Momeni and Piratla, 2019). Lower values 
of MAPE or MAE indicate greater accuracy of the prediction model. 

 
 1  

n
i ii abs pr sim

Mean Absolute Error
n


 
 
 
 

   (2) 

 

 
1

   *100

n i i
i

i

abs pr sim
simMean Absolute Percentage Error

n



 
 
 
 
 
 


  (3) 

Where pr is the predicted value and sim is the simulated value, i is the associated node or link 
for a specific scenario as outputs. Also, n is the number of inputs, which is the number of 
decision variables. 

Results 

The novelty herein lies in the fact that multiple initial runs have been conducted to 
incorporate different initial random populations as well as fine-tuned boundary conditions into 
the optimization. The purpose briefly centers on evaluating the tapering nature of the auxiliary 
boundary-tuning function that helps both with the accuracy and speed of the optimization 
procedure. Table 2 demonstrates the optimization characteristics for all the runs and boundary 
conditions. 
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Table 2. Optimization Characteristics 
Number of 
Generations 

Number of 
Population Size 

Boundary Tuning 
Function 

Crossover 
Factor 

500 (Ultimately) 135 

Yes/Searching for 
optimal solution over a 
span of a difference of 
five between lower and 
upper bounds 

0.85 

Tables 3 and 4 show optimization outputs (optimal solution for predicted roughness 
coefficients and diameters respectively), where MSE has acted as the objective function in the 
optimization process for five pressure head stations and seven flow rate stations. After tapering 
boundaries from within ± 10 of the best solution of five repetitious runs to ± 1 and tuning the 
number of generations at each iteration, the best results are fine-tuned and produced. 

Table 3. Output Correlation for Simulation-based Results for Actual and Predicted 
Roughness Coefficients 

Pipe 
N

um
ber 

Actual 
Values 

Predicted 
Values 

Pipe N
um

ber 
Actual 
Values 

Predicted 
Values 

Prediction Accuracy 

Mean 
Absolute 

Error 

Mean 
Absolute 

Percentage 
Error 

1 80.0 73.0 16 75.0 68.0 

7.2 11.01% 

2 56.0 58.0 17 63.0 51.0 
3 62.0 56.0 18 78.0 74.0 
4 56.0 49.0 19 66.0 57.0 
5 73.0 61.0 20 60.0 45.0 
6 79.0 73.0 21 54.0 56.0 
7 71.0 54.0 22 76.0 72.0 
8 46.0 47.0 23 80.0 71.0 
9 59.0 53.0 24 46.0 58.0 
10 67.0 50.0 25 55.0 54.0 
11 43.0 49.0 26 75.0 69.0 
12 73.0 53.0 27 69.0 76.0 
13 79.0 72.0 28 74.0 71.0 
14 74.0 74.0 29 76.0 74.0 
15 51.0 48.0 30 78.0 71.0 

In this regard, Tables 3 and 4 demonstrate that the predictions are accurately approximated 
by 7.2 in terms of mean absolute error (MAE) and 11.01% in terms of mean absolute percentage 
error (MAPE) for roughness coefficients and 7.0 for MAE and 9.95% for MAPE regarding 
effective hydraulic diameters. Evidently, Tables 3 and 4 demonstrate that pipe diameter 
predictions are more accurate than those of roughness coefficients –  9.95% to 11.01%. Also, by 
closely analyzing the results, there are little variations between actual and predicted results in 
some of the values of roughness and pipe diameters whereas there are more of variation between 

 Construction Research Congress 2020 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
le

m
so

n 
U

ni
ve

rs
ity

 o
n 

12
/3

0/
20

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



Construction Research Congress 2020 377 

© ASCE 

other predictions. This accuracy gap could likely fade away through increasing the number of 
generations and more diverse initial population runs as well as conducting sensitivity analysis to 
determine the efficient number and position of monitoring locations and number of actual 
scenarios. Also, Figure 3 depicts the performance behavior of fitness function over time (20 
minutes per iteration), since iterative runs have been carried out to select the best set of feasible 
solution through elitism. 

Table 4. Output correlation for simulation-based results for actual and predicted effective 
hydraulic diameters 

Pipe 
N

um
ber 

Actual 
Values 

Predicted 
Values 

Pipe  
N

um
ber 

Actual 
Values 

Predicted 
Values 

Correlation Value 

Mean 
Absolute 

Error 

Mean 
Absolute 

Percentage 
Error 

1 182.0 186.0 16 66.0 77.0 

7.0 9.95% 

2 187.0 185.0 17 64.0 73.0 
3 133.0 140.0 18 70.0 80.0 
4 136.0 130.0 19 70.0 71.0 
5 130.0 130.0 20 61.0 62.0 
6 89.0 80.0 21 68.0 81.0 
7 68.0 75.0 22 64.0 72.0 
8 90.0 87.0 23 69.0 70.0 
9 65.0 71.0 24 68.0 67.0 
10 61.0 67.0 25 60.0 77.0 
11 65.0 79.0 26 68.0 80.0 
12 64.0 69.0 27 62.0 64.0 
13 65.0 80.0 28 61.0 66.0 
14 61.0 67.0 29 67.0 79.0 
15 84.0 70.0 30 68.0 72.0 

 
Figure 3. Average performance of fitness function through Elitism 

 Construction Research Congress 2020 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
le

m
so

n 
U

ni
ve

rs
ity

 o
n 

12
/3

0/
20

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



Construction Research Congress 2020 378 

© ASCE 

CONCLUSIONS AND FUTURE WORK 

First off, fine-tuning the algorithmic parameters in this study has contributed to the 
convergence trend to an acceptable extent. Also, the ad-hoc function adjusting the boundary 
conditions using a quasi-self-learning tapering feature helps narrow down the search span, thus 
tending to increase the probability of reaching the near-optimal solution. Furthermore, the 
proposed scheme tends to offer a promising future auxiliary add-on means to the prevalent 
manual inspection for higher accuracy and faster results. Also, not only will this method help 
with the time-consuming functionality of conventional asset management to a good extent, but it 
also tries to put forth a proportionally reliable data-driven scheme. In terms of future work, this 
study adds to the notion that the optimization framework attempts to work toward a promising 
scheme and that new ideas in terms of the lengthy duration of optimization can be improved 
using machine-learning approaches like neural networks. Also, there is an algorithmic limitation 
on the scale of the network used to be optimized, as hydraulic simulation through EPANET 2.0 
is time-consuming and by increasing the search span of the optimization framework, it will not 
be time-efficient. So, further research should be geared toward circumventing the time-
consuming EPANET 2.0 in MATLAB and making the scheme more accurate and faster, one 
way of which is to train neural networks to bypass the EPANET toolkit to make the framework 
both more applicable to larger networks and more condition assessment parameters, more 
convergent. 
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