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ABSTRACT

Drinking water infrastructure in the U.S. is in a deteriorated state needing immediate
intervention that is sustainable. Although many technologies are being developed to inspect
buried pipeline assets, they are still expensive and human-dependent to use for comprehensive
condition assessment and prioritization of the most critical assets for immediate rehabilitation
and replacement planning. This paper presents a novel system-level condition assessment
framework where monitoring data from distribution infrastructure is leveraged to predict the
condition of assets using evolutionary optimization and machine learning algorithms. Pipeline
roughness values and effective hydraulic diameters (given the possibility of
graphitization/corrosion) are two parameters that would reveal their overall condition, and
therefore these two parameters will be used to demonstrate the framework presented in this
paper. In this respect, a modified benchmark water distribution network is used to represent an
ageing, deteriorated network by randomly reducing effective pipe diameters and roughness
coefficient values. Subsequently, a novel reverse engineering optimization method is leveraged
to minimize the mean square errors of operational parameters (e.g., pressure and flow) via both
predicted (through optimization) and modeled data obtained from a given set of monitoring
stations. Roughness values and effective hydraulic diameters are the decision variables in this
optimization framework that are to be predicted. EPANET 2.0 software is used for modeling the
water distribution network performance in this study. Faster convergence is achieved through
fine-tuning of genetic algorithm properties. Specifically, the computational efficiency and
prediction accuracy benefits derived from appropriately narrowing down on the upper and lower
bounds of the decision variables through multiple runs of the optimization process will be
demonstrated in this paper. The framework proposed in this study offers great analytical
capability to predict the condition of various assets in a water distribution network without
having to undertake expensive inspection procedures.

KEYWORDS: Genetic Algorithms, Effective Hydraulic Diameters, Roughness Coefficients,
EPANET, Water Distribution Network

INTRODUCTION

Water distribution systems (WDSs) are as complex as they are critical to societies. Timely
and proper monitoring, rehabilitation and replacement policies of the WDS assets play an
essential role in maintaining the reliability targets of water utilities within budgetary constraints
(Mazumder et al. 2018; Pietrucha-Urbanik and Tchorzewska-Cieslak 2018). The conventional
methods of WDS asset management are expensive and time taking for large systems due to
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operator dependency. They are also based on human-dependent manual methods that may be
prone to errors (Frangopol and Liu 2007; Momeni and Piratla 2019; van Riel et al. 2016). The
methodologies presented in the literature, despite including numerical algorithms, are rather
intertwined with municipal intervention and on-site inspections, thus likely making them more
time-consuming (Bonthuys et al. 2019; Chen et al. 2017). Thus, a cyber-monitoring method has
been presented in the literature that deals with reverse engineering practices to predict the
conditions of a deteriorated pipeline using hydraulic monitoring data (Momeni and Piratla 2019).
Pipeline roughness coefficients were predicted using hydraulic monitoring data derived from a
modeled WDS that is deteriorated (Piratla and Momeni 2019). This study extends the previous
work by predicting the effective hydraulic diameters of pipelines in addition to the roughness
coefficients based on hydraulic monitoring data. The prediction accuracy is evaluated using
numerical metrics such as mean absolute error (MAE) and mean absolute percentage error
(MAPE). The optimization algorithm employed in this study is also improved compared to the
previous study. While the previous studies (Momeni and Piratla 2019; Piratla and Momeni 2019)
attempted to present the fundamental framework and demonstrate it for predicting pipeline
roughness values, this paper specifically offers the following advancements in comparison: (i)
the betterment of the optimization algorithm through tapering function of the boundaries, (i1)
adding a new parameter (effective hydraulic diameters) for prediction, and (ii1)) demonstration on
a new WDS network.

METHODOLOGY

In this study, in order to assess the conditions of a deteriorated pipeline, actual and predicted
values of hydraulic parameters (herein roughness coefficient and effective hydraulic diameters)
are measured and compared using reverse engineering to evaluate their proximity and accuracy.
GoYang network (Kim et al. 1994) depicted in Figure 1 is modified to characterize an ageing
WDS network through reduction in pipe roughness (C) values as well as effective internal pipe
diameters. Flow and pressure monitoring meters are quasi-randomly placed in GoYang modified
network to be a representation of real-time data collection. Five pressure monitoring locations
and seven flow monitoring locations are selected across the network. Base demands are varied
with time to represent the alterations in system behavior through time. Assuming there is no
failure in the network such as pipe failure or pump outage, nodal base demands are the
representatives of inputs whereas pressure heads and flow rates are the outputs. The physics-
based input-output relationship is leveraged to predict deteriorated WDS characteristics in this
study. A total of 200 scenarios of demand variation are used in the optimization algorithm to
characterize the dynamic behavior of the WDS (Piratla and Momeni, 2019). Base nodal demands
in the deteriorated network are varied randomly within £20% of the original GoYang network
(Piratla and Momeni 2019). Subsequently, an optimization framework is developed in MATLAB
by incorporating EPANET 2.0 software simulator to account for the hydraulic simulations
(Piratla and Momeni 2019). In each of these scenarios, nodal pressure heads and pipeline flow
values at the 12 monitoring locations are generated for the randomly varied nodal demands.
Ultimately, the optimization platform is created using genetic algorithm tool by assuming the
decision variables are the pipe roughness coefficients and effective hydraulic diameters, thus
minimizing the absolute difference, quantified through mean squared error (Allen, 1971),
between the predicted and actual (i.e., synthetic) values for pressure heads and flow rates
utilizing the 200 demand scenarios.
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Figure 1. Schematic illustration of the optimized boundary setting
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Figure 2. GoYang Network to represent a deteriorated network for the framework

To optimize the convergence agility of the optimization process, an auxiliary function is
added to the original optimization scheme to fine-tune the boundary conditions of the search
span at each iteration. Particularly, the approach depicted in Figure 1 is leveraged to make the
process of narrowing down more intelligent by running the optimization process five times at
each set of chosen boundary conditions. Then, the best objective function value (minimum of
mean square errors) out of these 5 runs is selected and fed into the next set of boundary
conditions while it is reduced within one increment of the whole upper and lower boundary
ranges one at a time starting from = 10 to £ 1 of the best solution of the previous five runs;
therefore, the search span (the middle closed area in Figure 1) would be smartly reduced
symmetrically from both top and bottom bounds. This procedure goes on until the minimum
value is achieved (Only three steps are shown in Figure 1). Automatically, the entire primary
range of randomization of 40 to 190 (i.e., roughness coefficient and effective pipe diameter
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values) will be back in play again and the whole process will be repeated without overlapping

unless the preferred MSE value of zero, and thus MAE of zero, is obtained yet.

Table 1. GoYang original and modified (deteriorated) network parameters

Original network Modified network
Pipe Pipe diameter Pipe roughness Pipe diameter Pipe roughness

index (mm) © (mm) ©)
1 200.0 100.0 182.0 80.0
2 200.0 100.0 187.0 56.0
3 150.0 100.0 133.0 62.0
4 150.0 100.0 136.0 56.0
5 150.0 100.0 130.0 73.0
6 100.0 100.0 89.0 79.0
7 80.0 100.0 68.0 71.0
8 100.0 100.0 90.0 46.0
9 80.0 100.0 65.0 59.0
10 80.0 100.0 61.0 67.0
11 80.0 100.0 65.0 43.0
12 80.0 100.0 64.0 73.0
13 80.0 100.0 65.0 79.0
14 80.0 100.0 61.0 74.0
15 100.0 100.0 84.0 51.0
16 80.0 100.0 66.0 75.0
17 80.0 100.0 64.0 63.0
18 80.0 100.0 70.0 78.0
19 80.0 100.0 70.0 66.0
20 80.0 100.0 61.0 60.0
21 80.0 100.0 68.0 54.0
22 80.0 100.0 64.0 76.0
23 80.0 100.0 69.0 80.0
24 80.0 100.0 68.0 46.0
25 80.0 100.0 60.0 55.0
26 80.0 100.0 68.0 75.0
27 80.0 100.0 62.0 69.0
28 80.0 100.0 61.0 74.0
29 80.0 100.0 67.0 76.0
30 80.0 100.0 68.0 78.0

population through elite individuals even if they possess a lower fitness value. Subsequently. the

Iteratively, it is evident that the near-optimal solution can be achieved in less time and at
finer accuracy rate using this approach. In this case, through trial and error, less than a hundred
iterations with increasing number of generations have been conducted. Elitism is inherently
embedded in the body of the genetic algorithm framework in that the function “gamultiob;j” in
MATLAB leverages an elitist form of a controlled evolutionary algorithm (a variant of NSGA -
IT). A controlled elitist evolutionary algorithm also contributes to the increase in diversity of

mean absolute error (MAE) (Willmott and Matsuura 2005) and mean absolute percentage error

© ASCE

Construction Research Congress 2020

373



Downloaded from ascelibrary.org by Clemson University on 12/30/20. Copyright ASCE. For personal use only; all rights reserved.

Construction Research Congress 2020 374

(MAPE) (de Myttenaere et al. 2016) play an integral part in determining both the accuracy of the
procedure and the correlation between actual and predicted values.

CASE STUDY

A benchmark WDS — modified GoYang network (Kim et al., 1994) — is chosen to
characterize a deteriorated network by reducing both pipeline roughness coefficients and
effective diameters. Majority of WDS pipelines in the real word are metallic and they get
rougher with age leading to higher energy consumption and accelerated deterioration. Similarly,
aged metallic pipelines could exhibit graphitization that may essentially reduce the effective
hydraulic diameter. Figure 2 depicts the modified version of GoYang (Kim et al. 1994) network,
which consists of one reservoir, one pump, 30 pipes and 22 nodes. First, the roughness
coefficients of the original network are reduced to be in the range of 40 to 80 from the original
value of 100 and then the pipe diameters are randomly reduced by a maximum of 20mm, as can
be seen from Table 1. This reduction characterizes the deteriorated WDS network. A minimum
pressure head of Sm has been maintained to avoid violating pressure constraints.

Table 1 demonstrates the characteristics of the original and deteriorated versions of GoYang
network. As is shown, both diameters and roughness coefficients are reduced in the deteriorated
version, since these parameters are on the wane as pipeline ages.

DEMONSTRATION
Formulation of the Optimization Framework

The proposed optimization algorithm is set out to determine the combined set of roughness
coefficients and hydraulic diameters as decision variables. The objective function is to minimize
the differences (mean square errors - MSE) between the predicted and actual pressure and flow
values at the chosen monitoring locations for a total of 200 randomized demand scenarios. The
actual pressure and flow values are obtained using the deteriorated WDS characteristics
presented in Table 1 whereas the predicted values are obtained from the optimization algorithm
where the reduced pipe diameters and roughness coefficients are the decision variables. Equation
1 below represents the calculation procedure for MSE between actual and predicted values
(Piratla and Momeni 2019).

A. Decision variables: {x1, x2, ...., x60} >where, x; is the roughness coefficient of pipe 1

up to x30 which is the roughness coefficient of pipe 30, and x3; is the diameter of pipe 1
up to xe0 wWhich is the diameter of pipe 30. The decision variables are constrained to vary
between 40 and 80 for roughness values and between 60 and 190 for hydraulic diameters.

B. Objective: Minimize the following

Minimum of [(a,, — P2,,)* + (b, — P6,,)* +(c,, — P15,)* +(d,, — P18,)* +(e,, — P22,,)*]

for all m

+ Minimum of [(f,, — F1,)* +(g,, — F3,)* +(h, —F5,)* +(i, — F10,)* +(j,, — F17,))* (1)
+(k,, —F24,)* +(1,, — F30,)*]

for all m

Where, m is the simulation number (i.e., the scenario number ranging from 1 to 200); a, b,
Cmy, Am, €m, fm, Gm, hm, Im, jm, km are estimated pressures and flows during optimization; a is the
pressure at node 2 in simulation m; by, is the pressure at node 6 in simulation m, ¢ is the pressure
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at node 15 in simulation m; dy, is the pressure at node 18 in simulation m; e, is the pressure at
node 22 in simulation m; f, is the flow in pipe 1 in simulation m, g is the flow in pipe 3 in
simulation m; &, is the flow in pipe 5 in simulation m;, i, is the flow in pipe 10 in simulation m;
Jm 1s the flow in pipe 17 in simulation m; ki is the flow in pipe 24 in simulation m; [, is the flow
in pipe 30 in simulation m;

Where, P2, P6m, P15y, P18m, P22y, Fln, F3m, F5n, F10m, F17,, F24,, F30, are actual
pressures and flows; P2, is the pressure at node 2 in simulation m, P6,, is the pressure at node 6
in simulation m, P15, is the pressure at node 15 in simulation m; P18, is the pressure at node 18
in simulation m, P22,, is the pressure at node 22 in simulation m; F1,, is the flow in pipe 1 in
simulation m; F3,, is the flow in pipe 3 in simulation m; F5,, is the flow in pipe 5 in simulation
m; F10, 1s the flow in pipe 10 in simulation m; F'17, is the flow in pipe 17 in simulation m; F24,
is the flow in pipe 24 in simulation m; F30, is the flow in pipe 30 in simulation m;

C. Constraint Function: Although several parameters can end up contributing to the
constraint function in the optimization framework, only pressure heads at all nodes have
been considered to be the constraint that needs to be satisfied throughout the optimization
process. Since the physical and operational values are rather low in the network, the
minimum pressure head has been set to 5 meters.

Prediction Measures

As mentioned before, the actual and predicted values of roughness coefficients and diameters
are assessed using mean absolute error (MAE) and mean absolute percentage error (MAPE).
These metrics can be found in Equations 2 and 3 below that summarize the calculation of the
MAE and MAPE for both predicted and actual results (Momeni and Piratla, 2019). Lower values
of MAPE or MAE indicate greater accuracy of the prediction model.

Z?zlabs (pr; —sim;)
n

Mean Absolute Error =

2)

n abs(pr, —sim;)
Zi:l sim;

Mean Absolute Percentage Error = . *100 3)
n

Where pr is the predicted value and sim is the simulated value, i is the associated node or link
for a specific scenario as outputs. Also, 7 is the number of inputs, which is the number of
decision variables.

Results

The novelty herein lies in the fact that multiple initial runs have been conducted to
incorporate different initial random populations as well as fine-tuned boundary conditions into
the optimization. The purpose briefly centers on evaluating the tapering nature of the auxiliary
boundary-tuning function that helps both with the accuracy and speed of the optimization
procedure. Table 2 demonstrates the optimization characteristics for all the runs and boundary
conditions.
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Table 2. Optimization Characteristics

Number of Number of Boundary Tuning Crossover
Generations Population Size  Function Factor
Yes/Searching for
optimal solution over a
500 (Ultimately) 135 span of a difference of  0.85

five between lower and
upper bounds

Tables 3 and 4 show optimization outputs (optimal solution for predicted roughness
coefficients and diameters respectively), where MSE has acted as the objective function in the
optimization process for five pressure head stations and seven flow rate stations. After tapering
boundaries from within + 10 of the best solution of five repetitious runs to + 1 and tuning the
number of generations at each iteration, the best results are fine-tuned and produced.

Table 3. Output Correlation for Simulation-based Results for Actual and Predicted
Roughness Coefficients

%U_ Prediction Accuracy
§ = Actual Predicted % Actual Predicted Mean Mean
3 8 Values Values § Values  Values Ab Absolute
Q@ 5. solute p ¢

g Error ercentage

Error
1 80.0 73.0 16 75.0 68.0
2 56.0 58.0 17 63.0 51.0
3 62.0 56.0 18 78.0 74.0
4 56.0 49.0 19 66.0 57.0
5 73.0 61.0 20 60.0 45.0
6 79.0 73.0 21 54.0 56.0
7 71.0 54.0 22 76.0 72.0
8 46.0 47.0 23 80.0 71.0 7.2 11.01%
9 59.0 53.0 24 46.0 58.0
10 67.0 50.0 25 55.0 54.0
11 43.0 49.0 26 75.0 69.0
12 73.0 53.0 27 69.0 76.0
13 79.0 72.0 28 74.0 71.0
14 74.0 74.0 29 76.0 74.0
15 51.0 48.0 30 78.0 71.0

In this regard, Tables 3 and 4 demonstrate that the predictions are accurately approximated
by 7.2 in terms of mean absolute error (MAE) and 11.01% in terms of mean absolute percentage
error (MAPE) for roughness coefficients and 7.0 for MAE and 9.95% for MAPE regarding
effective hydraulic diameters. Evidently, Tables 3 and 4 demonstrate that pipe diameter
predictions are more accurate than those of roughness coefficients — 9.95% to 11.01%. Also, by
closely analyzing the results, there are little variations between actual and predicted results in
some of the values of roughness and pipe diameters whereas there are more of variation between
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other predictions. This accuracy gap could likely fade away through increasing the number of
generations and more diverse initial population runs as well as conducting sensitivity analysis to
determine the efficient number and position of monitoring locations and number of actual
scenarios. Also, Figure 3 depicts the performance behavior of fitness function over time (20
minutes per iteration), since iterative runs have been carried out to select the best set of feasible
solution through elitism.

Table 4. Output correlation for simulation-based results for actual and predicted effective
hydraulic diameters

Correlation Value

Z Z
§ = Actual Predicted g = Actual Predicted Mean Mean
&8 Values Values | & Values Values ca Absolute
@ @ Absolute
Percentage
Error
Error

182.0 186.0 16 66.0 77.0
187.0 185.0 17 64.0 73.0
133.0 140.0 18 70.0 80.0
136.0 130.0 19 70.0 71.0
130.0 130.0 20 61.0 62.0
89.0 80.0 21 68.0 81.0
68.0 75.0 22 64.0 72.0
90.0 87.0 23 69.0 70.0 7.0 9.95%
65.0 71.0 24 68.0 67.0
61.0 67.0 25 60.0 77.0
65.0 79.0 26 68.0 80.0
64.0 69.0 27 62.0 64.0
65.0 80.0 28 61.0 66.0
61.0 67.0 29 67.0 79.0
84.0 70.0 30 68.0 72.0
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Figure 3. Average performance of fitness function through Elitism
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CONCLUSIONS AND FUTURE WORK

First off, fine-tuning the algorithmic parameters in this study has contributed to the
convergence trend to an acceptable extent. Also, the ad-hoc function adjusting the boundary
conditions using a quasi-self-learning tapering feature helps narrow down the search span, thus
tending to increase the probability of reaching the near-optimal solution. Furthermore, the
proposed scheme tends to offer a promising future auxiliary add-on means to the prevalent
manual inspection for higher accuracy and faster results. Also, not only will this method help
with the time-consuming functionality of conventional asset management to a good extent, but it
also tries to put forth a proportionally reliable data-driven scheme. In terms of future work, this
study adds to the notion that the optimization framework attempts to work toward a promising
scheme and that new ideas in terms of the lengthy duration of optimization can be improved
using machine-learning approaches like neural networks. Also, there is an algorithmic limitation
on the scale of the network used to be optimized, as hydraulic simulation through EPANET 2.0
1s time-consuming and by increasing the search span of the optimization framework, it will not
be time-efficient. So, further research should be geared toward circumventing the time-
consuming EPANET 2.0 in MATLAB and making the scheme more accurate and faster, one
way of which is to train neural networks to bypass the EPANET toolkit to make the framework
both more applicable to larger networks and more condition assessment parameters, more
convergent.
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