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Abstract—If all nucleotide sites evolved at the same rate within molecules and throughout the history of lineages, if all
nucleotides were in equal proportion, if any nucleotide or amino acid evolved to any other with equal probability, if all
taxa could be sampled, if diversification happened at well-spaced intervals, and if all gene segments had the same history,
then tree building would be easy. But of course, none of those conditions are true. Hence, the need for evaluating the
information content and accuracy of phylogenetic trees. The symposium for which this historical essay and presentation
were developed focused on the importance of phylogenetic support, specifically branch support for individual clades. Here,
I present a timeline and review significant events in the history of systematics that set the stage for the development of
the sophisticated measures of branch support and examinations of the information content of data highlighted in this
symposium. [Bayes factors; bootstrap; branch support; concordance factors; internode certainty; posterior probabilities;

spectral analysis; transfer bootstrap expectation.]

Trees are meaningless without branch supports, much
like means are useless without variances. Branch
supports—sometimes called nodal supports—measure
how much of the information in the data set used to
create a particular tree supports each internal branch
in that tree. Branch support increases with increasing
numbers of characters and branches with 100% support
are not guaranteed to be correct (Pamilo and Nei 1988).
But even when using large genomic data sets with tens
of thousands of informative characters, some clades
can possess ambiguous (or low) support values leaving
relationships uncertain (e.g., Dietrich et al. 2017; Skinner
et al. 2019).

Branch support varies across data sets and across
clades in a single tree. This can be caused by random
error related to the number of informative sites in the
data set (e.g., Swofford et al. 2001); taxon sampling
(e.g., Hedtke et al. 2006); systematic error/model
misspecification (e.g., Sullivan and Joyce 2005); and/or
short internal branches caused by slow substitution
rates or short periods of time between speciation events
(Maddison and Knowles 2006). Short internal branches
increase the probability of incomplete lineage sorting
(ILS). ILS occurs when ancestral polymorphisms are
inherited during speciation events and then one of the
alleles at the polymorphic locus is randomly fixed in the
population. ILS can result in multiple histories within
and among genes (Pamilo and Nei 1988; Maddison 1997).
Short times between splitting events also increase the
probability of speciation with gene flow or hybridization
(e.g., Sullivan et al. 2014). Both ILS and hybridization
reduce branch support strength due to conflicting
signal. Finally, short branches increase the probability
of the juxtaposition of long and short branches in trees
that makes phylogenetic resolution extremely difficult
(Hendy and Penny 1989; Swofford et al. 2001). The

bottom line is that because evolutionary processes are so
complicated, meaningful branch supports are difficult to
devise and interpret.

Bootstrap Resampling: Definitions, Critiques, and
Corrections

Branch supports have been calculated in many
ways throughout the history of molecular systematics.
Figure 1 juxtaposes a timeline for major events in
phylogenetic systematics with a timeline for the
development of different methods for understanding
branch support. The earliest branch supports were
resampling  techniques. Statistically, resampling
techniques originated with Fisher (1935) who, as
described by Rodgers (1999), recognized the value
of empirically generated sampling distributions for
estimating the approximate variance of a statistic
when the sampling distribution is unknown. Jackknife
resampling techniques were developed by Quenouille
(1949) and Tukey (1958). Efron (1979) modified jackknife
resampling to require replacement of observations
during each subsample such that some were sampled
twice, some never. In this procedure, called bootstrap
resampling, data are sampled randomly until the
fabricated data set or pseudosample is the same size
as the original. The jackknife was introduced into
phylogenetics (for genetic distances) by Mueller and
Ayala (1982) and the bootstrap by Felsenstein (1983,
1985) and Penny and Hendy (1985). For phylogenetic
bootstraps, a tree is created for each replicate and the
bootstrap proportion is the percent of pseudosamples
in which the original branch is supported (Felsenstein
1985; Swofford et al. 1996). Bootstrapping requires that
the original data sample be sufficiently large to capture
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Time line of significant events in the history of phylogenetic support (right) compared to relevant events in the history of molecular

systematics (left). a) 1930-2010; b) 1998-2014. PHYLIP = “Phylogeny Inference Package”; PCR = Polymerase Chain Reaction; PAML = “Phylogenetic
Analysis using Maximum Likelihood” program; PAUP* = “Phylogenetic Analysis Using Parsimony” and * = “other methods” program; ASRV
= Among-Site Rate Variation; Bp = Bootstrap Proportions; RAXML = “Randomized Axelerated Maximum Likelihood” program; MrBayes =
program for Bayesian phylogenetic analysis; Splits Tree = program for tree building via split decomposition; IQPNNI = “Important Quartets”
maximum likelihood tree building with quartet puzzling and “Nearest Neighbor Interchange” program; GARLI = “Genetic Algorithm for Rapid
Likelihood Inference” program; aLRT = Approximate Likelihood Ratio Test; SH-aLRT = Shimodaira-Hasegawa-like approximate Likelihood Ratio

Test. See text for details and citations.

relevant features of the unknown distribution from
which the data are sampled.

During the 1990s a series of papers discussed
the meaning of bootstrap support (also known as
bootstrap proportions), its biased nature, and corrections
for that bias (Zharkikh and Li 1992a,b; Sanderson
1995; Sanderson et al. 2000). Arguments broke out
(reviewed in Sanderson 1995) that focused on whether
bootstraps represented confidence intervals (they do
not) and whether bootstrap proportions can be used
to provide evidential support (they can). Bootstraps
were shown to correlate well with other measures of
branch support such as spectral analysis (discussed
below). Hillis and Bull (1993) used both simulated
data and well-supported phylogenies to examine the
accuracy of bootstraps (defined as the probability that
a result represents the true phylogeny). They found
that, under their simulation conditons, low bootstrap
support overestimated accuracy while high bootstrap
support underestimated accuracy. They pointed out that
bootstraps are influenced by the number of characters
in the data set, the number of taxa, and the location of

internal branches. Their “cut-off” value of 70% bootstrap
support has been taken as a rule of thumb but of course
is specific to the examples they examined.

A number of phylogenetic statisticians attempted
definitions of bootstrap support. Hillis and Bull (1993,
p. 183), called it a “measure of accuracy” or “the
probability that a specified group is contained in the true
tree.” Felsenstein and Kishino (1993) in their rebuttal to
Hillis and Bull (1993)—repeating an idea put forward
by Felsenstein (1985)—stated that accuracy was not the
intended interpretation of bootstrap proportion (BP)
but rather that 1 - BP is a P value for the test of the
null hypothesis that a split is not present. Berry and
Gascuel (1996) argued that the 50% bootstrap consensus
trees represent the phylogenetic estimate with the lowest
combined probability of Type I (including incorrect
groups) and Type II (excluding correct groups) error.
Swofford et al. (1996, p. 509) described bootstraps as
a measure of support that reflects “the frequency in
which a group appears in replicate trees” rather than a
statistical statement that would require that the node of
interest be specified in advance. Efron et al. (1996) argued
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that the Pvalue interpretation was approximately correct
(with increasing sequence length) and later, Susko (2009)
demonstrated that BP was not approximately a P value
but that it was conservative under the hypothesis that
if a split is not present, BP > 95% should occur less
than 5% of the time. All of this presumes, a fixed
split specified in advance. Page and Holmes (1998,
p- 222) described bootstrap support as a measure of
“precision not accuracy” because branches with 100%
support could be wrong. Holmes (2003, p. 244) described
bootstraps as, “a measure of the robustness of the results
of a phylogenetic analysis to small changes in the data.”
Bootstrap supports were widely applied to distance tree-
building analyses as well as maximum likelihood and
parsimony.

Long-branched rogue taxa and properties of DNA
data can influence bootstrap support. Page (1996) and
Wilkinson (1996) demonstrated that if one taxon is
unstable due to homoplasy and jumps around the tree,
then bootstraps will be lowered in that region of the
tree. Page and Holmes (1998) noted that if only one site
supports a node, bootstraps could be spuriously low.
Sanderson pointed out that the bootstrap measurement
assumes that sites are independent (not correlated) and
identically distributed (no among site rate or pattern
variation), which they never are (Simon et al. 1996, 2006).
Of course, analytical methods can violate assumptions
to some degree before they become completely invalid
(Penny et al. 1992).

Meanwhile, Back in the Lab

At the same time that Mueller and Ayala (1982)
and Felsenstein (1985) were introducing bootstraps to
phylogenetic analysis, polymerase chain reaction (PCR)
was invented (Saiki et al. 1985; Mullis and Faloona
1987) making it easy to sequence DNA. In the following
year, the first PAUP manual (Swofford 1985) was
released, and the 2 years after that MacClade version
1.0 and 2.0 (Maddison 1997; Maddison and Maddison
1987). Automated, second-generation sequencing based
on PCR was developed in the late 1980s and
was increasingly deployed in individual laboratories
throughout the 1990s. More data meant higher branch
supports! More taxa raised or lowered branch supports
depending on their placement (Sanderson 1995). By
1993, early unpublished versions of Ziheng Yang’s PAML
and Dave Swofford’s PAUP* were making sophisticated
models available that included among site rate variation
(ASRV). Frati et al. (1997) demonstrated that ASRV was
the most important model parameter to accommodate
in maximum likelihood analyses and Buckley et al.
(2001) demonstrated that the manner in which ASRV was
accommodated made a big difference. However, in the
1990s and early 2000s, maximum likelihood programs
were frustratingly slow when more than ten taxa were
analyzed with realistic models, so it was time consuming
to calculate branch supports.

Spectral Analysis: Conflict, Support, and Predictors of
Bootstraps

Spectral analysis was adapted for phylogenetics in the
early 1990s (Hendy and Penny 1993; Penny et al. 1993).
It was performed using the program HadTree. This
program uses the Hadamard matrix/Hadamard
conjugation (a discrete Fourier transform and
mathematical trick for speeding matrix manipulations)
and Split Decomposition (Bandelt and Dress 1992) or
the Closest Tree method (Penny et al. 1993) to build a
phylogeny. Like maximum likelihood, Had Tree did not
lose information in the original sequence data during
transformation or optimization. Spectral analysis
could be applied to parsimony, corrected parsimony,
likelihood, or distance analyses and implemented with
four models: Cavender 78, JC 69 K2P 80, and K3P 8.
An application of this method (Lento et al. 1995) is
illustrated in Figure 2. Lento et al. (1995) created a tree to
examine pinniped evolution. The Spectra (the frequency
of each split) were plotted as a bar graph (Fig. 2) where
support equals the frequency of that split in the data
and conflict equals the sum of contradictory splits.
Because all splits cannot be represented simultaneously
on a single tree, their tree contains only the mutually
compatible splits that have the most support. A very
nice feature of the method is the ability to visualize both
support and conflict for multiple alternative hypotheses
of relationships on one graph including those splits not
represented on the tree. They also calculated “predictors
of bootstrap” (PB values) using their spectral signals of
support and conflict and showed that PB values were
correlated with bootstrap support values. Unfortunately,
this method was not widely applied due to the lack
of a user-friendly program. The introduction of the
user-friendly program SplitsTree (Huson 1998) later
facilitated the use of split decomposition and the plotting
of splits graphs with useful box-like visualizations of
branch conflicts based on distance data but did not
include HadTree or Lento Plots.

Bayesian Phylogenetics and Posterior Probabilities

In the mid-1990s, in the field of statistics, Kass
and Raftery (1995) discussed the uses of the Bayes
Factor for hypothesis testing in genetics, ecology, and
other fields setting the stage for the introduction
of Bayesian phylogenetics. Rannala and Yang (1996)
introduced to phylogenetics the idea of using Bayesian
analysis and posterior probabilities (PP) to estimate
phylogenetic trees and branch supports, respectively.
Thorne et al. (1998) introduced the first Bayesian relaxed-
clock dating analysis 2 years after that. The Bayesian
approach to phylogenetics was developed further by
Larget and Simon (1999) and widespread adoption
was facilitated by the user-friendly program, MrBayes
(Huelsenbeck and Ronquist 2001). Huelsenbeck et al.
(2001) highlighted the benefits of Bayesian phylogenetic
analysis in an article in Science. In 2007, Drummond
and Rambaut (2007) introduced the BEAST package
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which was the first user-friendly Bayesian program for
dating phylogenetic trees using relaxed-clock methods
(Drummond and Rambaut 2007).

The systematics community was extremely receptive
to the Bayesian approach because trees and supports
were seemingly much faster to calculate than in
maximum likelihood analyses and PP were higher
numbers than bootstrap supports and looked better in
publications! Furthermore, PP was straightforward to
interpret because they were calculated as the percentage
of all the trees in the Markov Chain Monte Carlo
(MCMCQC) chain after burn-in in which a clade was
found. This is equivalent to the probability that a
particular node is found in the true tree given the data,
the model, and the priors including branch lengths
and topology. The speed seemed too good to be true,
and it was. It turned out that at first, users were not
running the chains long enough to attain convergence
(Nylander et al. 2004). Once that was realized, Bayesian
analysis was much slower. Another obstacle to its initial
adoption was the assertion by Suzuki et al. (2002) that
Bayesian phylogenetics was flawed because it produced,
in simulation, high PP for nonexistent clades. Also
worrying, they said, was that high PP were seen in real
data at nodes where maximum likelihood bootstraps
were low. Fortunately, Lewis et al. (2005) were quick
to point out that this “star tree paradox” resulted
from a restrictive model that precluded assigning any
PP mass to a tree topology containing one or more
polytomies. They developed a reversible-jump MCMC
method that introduced a topology prior that allowed
both fully resolved as well as polytomous tree topologies.
Other authors found that support could be anomalously

large for trees with long branches together even when
the generating tree had a polytomy at that node (star
tree). True trees with long branches that are connected
by small middle edge-lengths will result in similar
estimation behavior to a star tree (Steel and Matsen
2007; Yang 2007; Susko 2008, 2015). Steel and Matsen
(2007) proved mathematically that when the number of
sites approaches infinity in a star tree, the PP of any
one resolution of a three-way split does not converge
to one-third for each topology but that there is a distinct
probability that PP will be large. Yang (2007) obtained
the same result using Laplacian expansion. He found
PP for polytomies to be very sensitive to the prior.
Similar problems with polytomies or near polytomies
in likelihood analyses were explored by Simmons and
Norton (2014) who also present, in their introduction, an
excellent mini-review of problems caused by different
implementations and interpretations of the bootstrap.
The appearance of Bayesian PP with their higher
numerical values compared to bootstrap support
immediately stimulated a series of comparison
papers employing simulations and empirical data.
Findings included the demonstration that PP
was sensitive to violations of the model (Buckley
2002; Erixon et al. 2003; Huelsenbeck and Rannala
2004), that modest overparameterization was not a
problem for PP in that it produced only a slightly
increased variance (Cunningham et al. 1998), and that
underparameterization can inflate PP (Erixon et al. 2003;
Huelsenbeck and Rannala 2004; Lemmon and Moriarty
2004). Users should not have been surprised that PP
were correlated, but different, from bootstrap support
because the two values were measuring different things.
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The PP represents the actual probability that a given
node is found in the true tree, given the data, the model,
and the priors. Bootstrap supports are more nebulous
and interpreted differently by numerous statisticians, as
described earlier.

Even More Data

From 1987 to 2014 automation of the Sanger method
had enabled high throughput sequencing, necessitating
methods that could work for even more characters and
taxa, mostly from mitochondrial DNA at first (Kocher
et al. 1989; Simon et al. 1994) and later for nuclear
DNA. Beginning in the late 1990s massively parallel
“next-generation” or “second-generation” sequencing
(e.g., 454, Illumina, Ion Torrent) gradually replaced
automated Sanger (Shendure et al. 2017). As more DNA
sequence data became available it was quickly apparent
that data partitioning was of the utmost importance
for model fitting (Castoe et al. 2004; Nylander et al.
2004; Brandley et al. 2005; Simon et al. 2006). Partition
finder (Lanfear et al. 2012, 2016) made data easier
to handle by condensing model-fitted-partitioned data
into a smaller number of partitions each of which
shared similar properties. Arguments over whether it
was better to add longer DNA sequences or more
taxa (Hillis et al. 2003; Rosenberg and Kumar 2003)
gradually faded from memory. Single-molecule-real-
time, “third generation” PCR-less DNA sequencing
technology diversified between 2009 and 2014 and
continues to improve today resulting in more and
cheaper DNA data (Eid et al. 2009; Kulski 2016;
Shendure et al. 2017). Bioinformatics rather than wet-
lab technology has become the limiting step in the
generation of DNA sequence data.

Speed

The realization that Bayesian phylogenetics and
PP were not the solution to all problems, caused
renewed interest in maximum likelihood methods and
improvement in their speed helped increase their
popularity as more data accumulated. Schmidt et al.
(2002) released Tree Puzzle, followed quickly by IQP-
NNI (Vinh and von Haeseler 2004) a maximum
likelihood method that was based on quartets and used
parallel computing. Other fast ML programs such as
RAXML (Stamatakis et al. 2005a,b), PHYML (Hordijk
2005), and GARLI (Zwickl 2006), followed quickly.

Rapid Branch Supports

Aided by continually increasing computer speed,
phylogenetic methods developers produced techniques
to address the increasing numbers of taxa and
larger amounts of sequence data. In 2008, RAxML
rapid bootstraps (Stamatakis et al. 2008) allowed the
calculation of approximate bootstrap support in a much
shorter time frame but these were later criticized

for providing inflated branch supports (Simmons
and Norton 2013, 2014) especially in cases where
branches are very short or missing data are distributed
nonrandomly (Lemmon et al. 2009). Other fast branch
support techniques such as the parametric approximate
likelihood ratio test (Anisimova and Gascuel 2006),
and the nonparametric Shimodaira Hasegawa-like
approximate likelihood ratio test (Guindon et al. 2010),
proved to be accurate and relatively robust to small
to moderate model violations (Anisimova et al. 2011).
Ultrafast bootstrap approximation (UF-Boot in IQTree)
was released in 2013 (Minh et al. 2013) and an
improvement was announced 5 years later (Hoang et al.
2018) that minimized the chances of artifacts caused
by severe model violations and polytomies/rapid
radiations (as pointed out by Simmons and Norton
2014). Lemoine et al. (2018) defined a “transfer bootstrap
expectation” (TBE) to address the problem that in
phylogenies with very large numbers of taxa, deep
branches are poorly supported because it is harder for
resampled clades to be identical to the original tree.
Minor rearrangements in large clades are inevitable. TBE
takes into account the number of branches that differ
between two clades in each resampled tree to give a more
relaxed support measure for trees with large numbers of
taxa that is easy to compute, has higher supports than
normal phylogenetic bootstraps, and has a low number
of falsely supported branches. TBE is a measure of
branch repeatability. It is now implemented in RAXML-
NG (Lutteropp et al. 2020) as well as in the original
web tool ‘BoosterWeb’ (http://booster.c3bi.pasteur.fr)
Nick Goldman (personal communication) points out
that TBE must be used with care due to sampling issues.
For example, if many closely related taxa are added to
the tree TBE values will increase across the entire tree.
This is because the measure is based on counting the
number of sequences sampled, not taking into account
their variation. The TBE is the proportion of taxa that on
average over bootstrap replicates remain in the smaller
of the two clades defined by a split.

Species Trees

Second- and third-generation DNA sequencing
methods allowed the amount of nuclear DNA data
to catch-up with and then surpass the abundant
organelle sequence data that had been made possible
by PCR and Sanger sequencing. Multiple, potentially
independent, genes facilitated the search for species
histories as opposed to gene histories. Coalescent
methods proliferated starting in 2005 and continue
to improve today with consideration of both ILS and
hybridization (e.g., Nakhleh 2013; Chifman and Kubatko
2014; Ogilvie et al. 2016; Allman et al. 2019), providing an
alternative to concatenation of genes in super-matrices
(Edwards et al. 2016; Springer and Gatesy 2016).

Conflict versus Support Revisited in Species Trees

Because species trees contain multiple gene trees, an
obvious measure of branch support was the proportion
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of inferred single-locus trees that contain a particular
branch of interest; this measure is called the gene
concordance factor (gCF) (Gadagkar et al. 2005; Ane
et al. 2007; Baum 2007). Minh et al. (2020) modify
this statistic to account for variable taxon sampling
across gene trees and introduce a new “site concordance
factor” (sCF) that, as the name suggests, measures
the proportion of sites supporting a particular branch
in the reference tree. The sCF is related to spectral
analysis (Hendy and Penny 1993) but differs in that it
averages site supports for individual splits over a large
set of repeatedly subsampled quartets. Minh et al. (2020)
demonstrate that concordance factor values are not
necessarily correlated with standard bootstrap support
and suggest that calculating both can be useful.

Salichos and Rokas (2013) used the gCF, which they
renamed “Gene Support Frequency” (GSF), to calculate
an “Internode Certainty” (IC) statistic that compared the
GSF of the best-supported split to the GSF of the best-
represented conflicting or competing split. Ties for the
best-represented competing split are broken arbitrarily.
They annotated each node of the tree with values for
both support (GSF) and conflict (IC), as did Lento et al.
(1995) for concatenated DNA sequence data. Quartet-
based internode statistics were developed further by
Salichos et al. (2014), Zhou et al. (2020), and Pease et al.
(2018) and are discussed in this symposium.

Salichos and Rokas (2013) also listed “standard”
methods that help remove the conflict between gene
trees. These included: 1) removing sites containing gaps;
2) removing ‘rogue’ genes that produced alignments of
bad quality; 3) removing unstable and quickly evolving
species (long branches); 4) using only genes that recover
a particular internode widely regarded as certain or
well established, from prior data; 5) using only slowly
evolving genes; and 6) using conserved amino acid
substitutions or indels (as shared blocks). They did not
mention removing sites with extremely high substitution
rates (Cummins and McInerney 2011), or genes that show
extreme heterogeneity in nucleotide bias across taxa,
but these strategies have proved effective in other cases
(Collins et al. 2005; Skinner et al. 2019). Lewis et al. (2016)
review methods for assessing phylogenetic information
content and develop an entropy-based method for
Bayesian phylogenetics.

New Measures of Branch Support

This symposium highlights new measures of branch
support and methods of understanding the information
in DNA sequence data that have grown out of the rich
history of branch support thinking reviewed here, new
work on Bayes factors (Brown and Thomson 2017), gene
genealogy interrogation (Arcila et al. 2017), identification
of outlier genes (Walker et al. 2018), or outlier sites
that drive phylogenetic relationships (Shen et al. 2017),
site and gCFs (Minh et al. 2020), and improvements to
species networks given hybridization (Allman et al. 2019;
Mitchell et al. 2019). It is important to attack the problem
of branch support in multiple ways and the extensions of
the above studies, presented in this symposium, combine
to do just that.
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