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Optimal Grid - Distributed Energy Resource Coordination:
Distribution Locational Marginal Costs and Hierarchical Decomposition
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Abstract— We consider radial distribution networks hosting
Distributed Energy Resources (DERs), including Solar Photo-
voltaic (PV) and storage-like loads, such as Electric Vehicles
(EVs). We employ short-run dynamic Distribution Locational
Marginal Costs (DLMCs) of real and reactive power to co-
optimize distribution network and DER schedules. Striking
a balance between centralized control and distributed self-
dispatch, we present a novel hierarchical decomposition ap-
proach that is based on centralized AC Optimal Power Flow
(OPF) interacting with DER self-dispatch that adapts to real
and reactive power DLMCs. The proposed approach is designed
to be highly scalable for massive DER Grid integration with
high model fidelity incorporating rigorous network component
dynamics and costs and reflecting them in DLMCs. We illustrate
the use of an Enhanced AC OPF to discover spatiotemporally
varying DLMCs enabling optimal Grid-DER coordination in-
corporating congestion and asset (transformer) degradation. We
employ an actual distribution feeder to exemplify the use of
DLMC:s as financial incentives conveying sufficient information
to optimize Distribution Network and DER (PV and EV)
operation, and we discuss the applicability and tractability of
the proposed approach, while modeling the full complexity of
spatiotemporal DER capabilities and preferences.

I. INTRODUCTION

With Distributed Energy Resources (DERs), including
Solar Photovoltaic (PV) and storage-like loads such as Elec-
tric Vehicles (EVs) with Volt/VAR capabilities, emerging
as a major user of distribution grid infrastructure, the grid
is becoming increasingly active, distributed, dynamic, and
challenging to plan and operate [1]. As such, DERs are
bound to have a profound impact on the adequacy of T&D
assets, efficient grid operation, reliability, and security of
supply, and hence their scheduling will be crucial. We argue
that optimal DER scheduling depends on dynamic Distribu-
tion Locational Marginal Costs (DLMCs) [2], [3], [4], [5],
[6], whose accurate estimation is expected to bring about
fundamental changes in distribution planning, operation, and
eventually power markets.

Unsurprisingly, DER scheduling and coordination with the
grid and its assets in the context of distribution network oper-
ational planning is attracting increasing attention. Emerging
literature focuses on the extension of wholesale Locational
Marginal Price (LMP) markets to the distribution network
through reliance on Distribution LMPs (DLMPs) [2], [3],
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[4], [7], [8], [9]. A variety of suggested approaches and
models have attempted to do just that by considering uni-
form price-quantity bidding DERs and/or using DC Optimal
Power Flow (OPF) models. However, we argue that existing
transmission market-clearing approaches do not extend to
Distribution Networks. Current wholesale markets determine
spatiotemporal, i.e., location and time specific, marginal cost-
based prices [10], [11], clear over large energy balancing
areas, and for all intents and purposes they manage nodal
market participant uniform price-quantity bids, which, un-
der competitive conditions, represent the short-run marginal
cost (for generators) or marginal utility (for wholesalers).
Such markets have resulted in significant operational effi-
ciency improvements and have provided participants with
strong incentives to improve their actual costs through better
maintenance and innovation adoption. However, small DER
prosumers connected at the low voltage distribution network
have been so far left out of dynamic short-run marginal
cost based markets, facing instead average cost volumetric
rates. Contrary to the transmission system where centralized
generation is scheduled through linear DC OPF models,
optimal distribution-grid connected DER scheduling requires
AC OPF formulations (see e.g., [2], [9] that employ the
branch flow (a.k.a. DistFlow) equations, introduced for radial
networks by [12], and in fact their relaxation to convex Sec-
ond Order Cone constraints proposed by [13]), to accurately
calculate real/reactive power flows, and ensure the engineer-
ing (current and voltage) limits are respected. A compre-
hensive analysis of several approaches in decomposing and
interpreting real and reactive power DLMPs in the AC OPF
context is provided in [14]. In [2], DLMPs are extended to
include reserves — apart from real/reactive power — and an
iterative distributed architecture is sketched capturing DER
intertemporal preferences and physical system dynamics.
Apart from nodal voltage congestion, sustained trans-
former overloading in distribution networks also renders
the explicit modeling of reactive power a must in the
context of a 24-hour ahead AC OPF capable of modeling
Volt/VAR control, ampacity constrained feeders, intertem-
porally coupled transformer life degradation and complex
DER/EV charging preferences. Interestingly, early studies
on EVs [15] pointed out that the clustering of EV chargers
under the same transformer may cause damage and outages
from persistent overloading. More recently, a study on the
Sacramento Municipal Utility District [16] estimated that
a high PV penetration would cause overvoltages (by at
least 5% of nominal) to about 26% of the substations and
service transformers, and that a high EV penetration would



cause overloads to up to 17% of the approximately 12,000
service transformers (exceeding 140% the nameplate rating)
with an average estimated cost of $7,400 per transformer
replacement. Notably, the 2017 FERC Financial Form I
filing by Commonwealth Edison, a typical urban distribution
Utility, reports the original cost of line transformers at 8%
of the total cost of the Electric Plant. Indeed, several works
study the impact of EVs on distribution transformers [17],
[18], [19], [20], [21], and the acceleration of transformer
degradation from increasing EV penetration, noting that
transformer aging is dependent upon the thermal effects
of persistent transformer loading. Furthermore, it is shown
that rooftop solar may utilize their inverters by adjusting
their power factor to mitigate overvoltages, and that the
transformer thermal time constant may allow PV generation
to reduce the transformer temperature when EVs are charging
[22], with a beneficial impact on transformer Loss of Life
(LoL).! However, these simulation studies do not internalize
transformer degradation to the operational planning problem.

In this paper, we employ short-run dynamic DLMCs of
real and reactive power to co-optimize distribution network
and DER schedules. Striking a balance between centralized
control and distributed self-dispatch, we present a novel hier-
archical decomposition approach that is based on centralized
AC OPF capability interacting with DER self-dispatch that
adapts to real and reactive power DLMCs. The proposed
approach is designed to be highly scalable allowing for
massive DER participation with high model fidelity that cap-
tures precise estimation and cost inclusiveness of DLMCs.
We illustrate that the discovery of spatiotemporally varying
DLMC s, using an enhanced AC OPF model, which apart
from network congestion also reflects transformer degrada-
tion, is key to optimal Grid - DER coordination. We employ
actual distribution feeders to exemplify the use of DLMCs
as financial incentives that convey sufficient information
to optimize Distribution Network, and DER (PV and EV)
operation, and we discuss the applicability and tractability of
the proposed approach, while modeling the full complexity
of spatiotemporal DER capabilities and preferences.

The remainder of the paper is organized as follows. In
Section II, we present the distributed self-dispatch DER
models, and in Section III, we present the formulation of a
centralized, enhanced AC OPF model. In Section IV, we dis-
cuss the implications of the optimal Grid - DER coordination,
in the context of the operational planning problem. In Section
V, we highlight the ideas of a hierarchical decomposition
approach, and in Section VI we illustrate its applicability
on an actual distribution feeder. Lastly, in Section VII, we
conclude and provide directions for further research.

IThe life of a distribution transformer is estimated at about 20 years
(180,000 hours), assuming operation at a reference Hottest Spot Temperature
(HST) of 110°C (insulation designed for an average winding temperature of
65°C). IEEE Standard C.57.91-2011 [23] and IEC Standard 60076-7:2018
[24] provide guidelines for transformer loading and propose an exponential
representation of the aging acceleration factor in terms of the HST when
it exceeds 110°C. In particular, for HSTs exceeding (being lower than)
110°C, the aging acceleration factor is greater (less) than 1.
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II. DER MODELS

In this section, we present DER self-dispatch models, for
solar PVs (in Subsection II-A) and EVs (in Subsection II-B),
in the context of a general multi-period (day-ahead) problem
setting, accommodating smart inverter capabilities and EV
mobility (EVs can be connected at different nodes during
the time horizon).

A. PV Model

Let us consider a self-scheduling rooftop solar PV s,
which is offered a price ;\f for the provision of real power
at time period ¢, denoted by p,;, and a price /\tQ for the
provision of reactive power, denoted by ¢, ;. PV s can use its
smart inverter capabilities and adjust its power factor, aiming
at maximizing its revenues from the provision of real and
reactive power over the optimization horizon, as follows:

,max Xt: A Pt + Zt: A2 qs . (1)
PV constraints are as follows:
Dot < ésm Vs,t € Tr, (2)
P+ @i, <O VsteTr, (3)
Ds,t = qs,t = 0, Vs, t & Tr, “)

with ps; > 0, and 7; C T the subset of time periods
for which p, > 0. Constraints (2) impose limits on the
real power, based on the adjusted PV nameplate capacity,
C’S,t = pCs, where p; € [0, 1] is the irradiation level, and Cj
the nameplate capacity. Constraints (3) impose limits on real
and apparent power assuming an appropriately sized inverter,
whereas constraints (4) impose zero generation when p; = 0.
We note that this model does not account for using the smart
inverter at night, but an extension to include such a capability
is straightforward.

Hence, the following optimization problem, referred to
as PV-opt, describes a self-scheduling PV that adapts its
real/reactive power profile to the offered real and reactive
power prices.

PV-opt: (1)

We note that PV-opt can be solved in parallel for each
time period, since there are no intertemporal constraints.
Evidently, if A\ is negative, then PV s will select to produce
no real power, setting ps ¢ = 0. If ;\? is positive (negative),
then PV s will adjust its power factor to provide (consume)
reactive power, i.e., gs;: > 0 (gs,; < 0), so that the term
j\tQ gs,: 18 positive.

2)—@. &)

subject to:

B. EV Model

Let us consider a self-scheduling EV e, which is offered a
price 5\f for consuming real power at time period ¢, denoted
by pe,:, and a price /\tQ for consuming reactive power, g,
at the node that it is connected during each time period. EV
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Fig. 1. General case of EV charging intervals during the optimization time
horizon, with first interval beginning in the previous day (Tf °9 = 0), and
last interval ending in the following day (Tend =1T).

e employs its EV charger so as to minimize its net charging
cost over the daily cycle:

min Z)\tpet—i—z)\t Qe,ts (6)

Pe,tyqe,t

Assume an EV that is connected for Z intervals, at nodes
Jiserjz. Let 737 (73¢P), for z = ., Z, denote the
periods at which an arrival (departure) occurs. In general, as
illustrated in Fig. 1, intervals 1 (first) and Z (last) may not
entirely fit within the time horizon. Hence, let 7% = {rt9}
and 7¢"? = {77} be the sets of time periods of interval
z, for z =1, ..., Z, denoting an adjusted beginning and end,
respectively, considering only the part of the interval within
the time horizon. Also, let 7, = {75°9 + 1, ...,7¢"¢} be the
set of time periods of interval z, for z = 1,..,Z, during
which the EV is connected at node j.. In what follows, we
add in the aforementioned sets the EV subscript e, which
was omitted for simplicity.

The State of Charge (SoC) of EV e is described by variable
e, for time periods ¢ € 729 U 7", The SoC is reduced
by Au, . after departure z and until arrival z + 1, for z =
1,..,Z. — 1. EV constraints are as follows:

Uy pbeg = u™t Ve, @)

Ue, rend = U, beg + g Det, Ve, z=1,....7., (8)

teTe, -
Ug,rbea = Ue,rend — Aue ., Ve,z=1,....,Z.—1, (9
quZ" <Ues < CB, Ye,t € T, (10)
0<pes <Cr, VeteUZ T, (11)
2 2 2 Ze
pe,t + qe,t S Cev Ve7t S UZ:17—6,27 (12)
Pet=Ges =0, Vet e TH\UZ T,  (13)

with p. s, ue; > 0. Eq. (7) initializes the SoC (ui"¥) at
leeg , (8) and (9) define the SoC at the end/beginning of
an interval, after charging/traveling, respectively. Constraints
(10) impose a minimum SoC, u’;”t‘”, at the end of an

interval as well as the limit of the EV battery capacity, CZ.
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Constraints (11) impose the limit of the charging rate, C.,
which is related to the capacity of the EV battery charger,
whereas constraints (12) impose the limits of the charge,
C., which is related to the size of the inverter. Lastly, (13)
imposes zero consumption when the EV is not plugged in.

Hence, the following optimization problem, referred to
as EV-opt, describes a self-scheduling EV that adapts its
real/reactive power charging profile to the offered real and
reactive power prices.

EV-opt: (6) (7) — (13).

Unlike PV-opt, EV-opt includes intertemporal constraints,
and, hence, it cannot be solved in parallel. Evidently, if 5\?
is positive (negative), then the EV will provide (consume)
reactive power i.e., ge¢ will be negative (positive), so that
the term /\t ge,t 1s negative thus reducing the charging cost.

subject to: (14)

III. DISTRIBUTION NETWORK AC OPF MODEL

We consider a radial network with N + 1 nodes and N
lines. Let ' = {0,1, ..., N} be the set of nodes, with node
0 representing the root node, and Nt = AN\ {0}. Let £
be the set of lines, with each line denoted by the pair of
nodes (i,7) it connects — henceforth ij for short, where
node ¢ refers to the (unique due to the radial structure)
preceding node of j € NT. Transformers are represented
as a subset of lines, denoted by y € Y C L. For node
i € N, v; denotes the magnitude squared voltage. For node
Jj € N, p; and ¢; denote the net demand of real and reactive
power, respectively. A positive (negative) value of p; refers
to withdrawal (injection); similarly for ¢;. Net injections
at the root node are denoted by P, and @)y, for real and
reactive power, respectively. These are positive (negative)
when power is flowing from (to) the transmission system. For
each line ¢4, with resistance r;; and reactance x;;, [;; denotes
the magnitude squared current, P;; and ();; the sending-end
real and reactive power flow, respectively.

For the purposes of this section, we assume that the real
and reactive power net injections at each node are known
(fixed). In such case, the main decision variable is the
voltage of the substation; once this is decided, then the model
practically reduces to a load flow model.

The centralized AC OPF problem aims at minimizing the
aggregate real and reactive power cost and the transformer
degradation cost, as follows:

Real Power Cost Reactive Power Cost ~ Transformer Cost

—_—N— ——N—
min ZcfPo,t + ZC?QO,t + chfyyt )
t t Yt

where ¢! is the real power cost — typically the LMP at the
T&D interface (substation), c? is the opportunity cost for the
provision of reactive power, ¢, is an hourly transformer cost
representing the cost for losing one hour of life, and f, ; is
the transformer aging acceleration factor. Hence the last term
in (15) represents the aggregate cost of the transformers’ LoL
resulting from their loading conditions in the optimization
horizon.

15)



The constraints of the AC OPF problem are based on the
relaxed branch flow model, supplemented by voltage and
ampacity limits and transformer-related constraints. In what
follows, and unless otherwise mentioned, j € N't, and t €
T, with T ={0,1,..., T}, T+ = T\{0}, and T the length
of the optimization horizon.

PO,t = POl,t — (A(Iit)a Vt,
Qot = Qore = (\y), W,

Pijt —rijlije = Z Pjki+pic — (AL,), Vit (18)

k:j—k

Qijt — Tijlije = Z Qjk,t + qjt — ()\?,t), vj,t, (19)

k:j—k

(16)

a7

Vi =iy — 2135 Pij 1 — 22,5 Qij4) + (T?j + 1312J) Lije, V5,1,

(20)

vilije > P+ Qb Vit (21)

v <oy <O = (p i), Vit (22)

Lije <lij — (7j1), Vi, t, (23)

Syt = auhy e+ Byrlyt + vy = Eyiw), VY, t 6, (24)
hyt = 0hy -1+ €yly +Cyr,  Vy,t. (25)

Constraints (16)—(19) define the real and reactive power
balance. Constraint (20) defines the voltage drop along a
line. Inequality (21) is the Second Order Cone Programming
(SOCP) relaxation — introduced by [13] — of the (non-
convex) equality constraint that defines apparent power. Con-
straints (22) and (23) represent voltage limits and ampacity
limits, where v;, v;, and Zij are the lower voltage, upper
voltage, and line ampacity limits (squared), respectively.
Constraints (24) represent a piecewise linearization of the
exponential aging acceleration factor — note that f,; > 0,
with k = 1,..., M, where M is the number of segments
— see [5, Fig. 1] for a graphical illustration, and h, ; the
transformer top-oil temperature. The coefficients o, 3y .,
and vy, . are transformer specific, and they are related to the
slope of the aging acceleration factor w.r.t. the transformer
HST, and the transformer winding thermal response. Their
detailed formulas and recommended values are found in [5].
Constraints (25) are a linear recursive equation that defines
the transformer top-oil temperature. Coefficient § plays an
important role in the intertemporal impact of the transformer
degradation cost; its value — always less than 1 — depends
on the time granularity of the problem. Using the recom-
mended distribution transformer constants, for time periods
equal to 1 hour, 30 minutes or 15 minutes, § will be 0.75,
0.857 or 0.923, respectively. The coefficients €,, and ¢, ; are
transformer specific, related to the top-oil thermal response,
and the latter one also depends on the ambient temperature.
Their detailed formulas and recommended values are found
in [5]. Dual variables of constraints (16)—(19), (22), (23), and
(24) are shown in parentheses.
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The resulting relaxed AC OPF problem is a convex SOCP
problem — referred to as Net-opt — and is summarized as
follows:

Net-opt: (15) (16) — (25). (26)

We note the following interesting remarks. First, we refer
the interested reader to recent works that discuss and propose
remedies for cases when the relaxation presented in (21) —
which defines the apparent power but can also be viewed as
a definition of the current — is not exact [25], [26], [27],
[28], [29]. We note that we did not encounter such cases
in our numerical illustration. Second, the linear inequality
constraints (24) that define the aging acceleration factor f, ;
are also a relaxation of the piecewise linear representation,
which would otherwise require the introduction of binary
variables. However, since ¢, > 0, it is straightforward to
show that at least one of the above inequalities should be
binding (at equality), and hence this relaxation is exact.
In fact, since f,. is actually related to the line current
values, l,;, we expect that the transformer degradation
costs would mitigate the results obtained in cases when the
relaxation in (21) is not exact. Third, it is important to
note that the transformer model thermal response is very
accurately represented in our optimization problem mainly
due to: (i) the fact that the dynamics of the thermal response
fit nicely the time granularity of the operational planning
problem, since the top-oil thermal time constant (of about 3
hours) allows us to consider difference equations whereas the
winding thermal time constant (of about 4 minutes) allows
us to consider a steady state, and (ii) the fact that the branch
flow variable [, ¢, which represents the magnitude squared of
the current, allows us to define the square of the ratio of the
transformer load to the rated load using a linear equation,
hence fitting nicely the thermal response to the branch flow
model. Lastly, we note that the intertemporal impact in
the transformer degradation cost that extends beyond the
optimization horizon — typical to many scheduling problems
— can be captured by rolling horizon approaches or by
requiring the transformer temperature at the end of the
horizon to less than or equal to a certain target value (e.g.,
the value at the beginning of the horizon).

subject to:

IV. OPTIMAL GRID - DER COORDINATION

In the previous sections, we presented the two basic opti-
mization modules related to DERs and distribution networks
separately. In this section, we present the links between the
two modules.
First, the two modules are linked through the net demand
at each node. More specifically, the real power net demand
pj,¢ includes the aggregate effect of conventional loads, EVs,
and PVs, denoted by sets D, &, and S, as follows:
« Conventional demand consumption pg ; of load d € D;,
where D; C D is the subset of loads connected at node
Js

« consumption p. ¢ of EV e € &;;, where &;; C &€ is the
subset of EVs that are connected at node j, during time
period ¢, and



o Generation p,; of PV (rooftop solar) s € &;, where
S; C & is the subset of PVs connected at node j.

Similarly for reactive power net demand ¢; ¢, and the con-
ventional demand consumption g4+ of load d, consumption
ge,t of EV e, and generation ¢, of PV s. For clarity, the
definitions of aggregate dependent variables are listed below:

Pia= Y DPar+ D Per— Y Pers Vi, (27)
deD; e€&jt SES;

Gi= Y Qai+ Y Get— D Gst; Vit (28)
deD; e€&j ¢ s€ES;

Considering the contribution of EVs and PVs as decision
variables, the system optimal solution of Optimal Grid - DER
coordination is obtained by the solution of the following
SOCP optimization problem, referred to as Full-opt:

Full-opt:

(15) subject to:  (16) — (25),

(27) = (28),(2) = D), (7) — (13).

Let us now assume that the system-optimal DER schedules
are py, and gz, for PVs, and p;, and q;"yt for EVs. The
DLMCs of the Full-opt solution at node j, time period t,
reflecting the optimal DER schedules, are /\P £ and )\Q Itis
easy to show that if AP + and )\Qt* were the prices announced
to each PV s and EV e, then the system-optimal PV and EV
schedules would also be optimal for the PV-opt and EV-
opt problems, respectively. To verify the above, consider the
partial Lagrangian of Full-opt. It is obtained by appending
the real and reactive power balance constraints (18)-(19) and
substituting the net demand variables with (27)-(28). The
terms that include the DER (PV/EV) variables in the partial
Lagrangian are as follows:

> (/\i,tpe,t + Aﬁ,tqe,O -3 (z\jps,tps,t + /\ﬁ,tqs,t>,
t

e,t s,

(29)

where j, refers to the node that PV s is installed, and j.
to the node that EV e is connected at time period ¢. The
ﬁrst sum c01n01des with the objective function of EV-opt, for

76 = )\f and )\ = ;\?, summed for all EVs. Similarly,
the second sum c01n01des with the objective function of PV-
opt summed for all PVs; the minus sign is obtained if we
convert PV-opt to a minimization problem. Also, we note
that PV constraints appear in both PV-opt and Full-opt, and
that EV constraints appear in both EV-opt and Full-opt.

Let us consider the optimality conditions of Full-opt
that involve DLMCs and DER variables (it is convenient
to consider the partial Lagrangian representation), and the
respective optimality conditions of PV-opt and EV-opt. It is
rather straightforward to see that if we replace in PV-opt and
EV-opt parameters )\f and )\Q with the DLMCs derived by
the optimal solution of Full-opt, say )\P 7 and /\?t , with j
referring to appropriate nodes j; and ]e, respectively, then
the optimality conditions of PV-opt and EV-opt will also
be encountered in the optimality conditions of Full-opt that
refer to PV and EV variables, respectively. Hence, an optimal
solution of the Full-opt problem will also be optimal for
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the PV-opt and EV-opt problems if the prices announced to
PVs and EVs reflect the respective DLMCs of the Full-opt
solution.

Although only PVs and EVs are modeled in this paper
as representative DER examples, other DERs can be treated
similarly. The individual optimization problems suggest the
following interpretation: Nodal marginal costs can be con-
strued as prices that elicit a price-taking DER to adapt fully
and self-schedule to its socially optimal real/reactive power
profile. In other words, if we were able to determine these
socially optimal spatiotemporal DLMCs and charge DERs on
DLMC-based-prices, DERs would self-schedule in a manner
that is optimal for the system as a whole.

We wish to note that DLMC-based pricing has attracted
strong criticism that points to undesirable DLMC volatility.
However, our numerical results provide overwhelming evi-
dence that DER schedule adaptation to DLMC-based prices
removes the volatility, which is indeed observed only when
DERs schedule themselves in a manner that is not adaptive
to the spatiotemporal DLMCs.

V. HIERARCHICAL DECOMPOSITION

In this section, we present at a high-level the design of
the proposed hierarchical decomposition approach. Having
already introduced the DER and distribution network models,
we show in this section how they can be used iteratively in
the context of the proposed hierarchical decomposition.

Considering the two levels, DERs and Distribution net-
works, we call our approach ‘“hierarchical”, since at the
higher level, Distribution Network Operators (DNOs) opti-
mize their network operation conditional upon the DER self-
dispatch, whereas at the lower level DERs self-dispatch op-
timizing their consumption/generation profile by adapting to
tentative DLMC-based prices announced by DNOs. Notably,
more levels could be introduced, considering the interplay
at the sub-transmission network and even the transmission
system. For the purposes of this paper, we present the two
main levels of DERs and Distribution Networks, in order to
convey the high-level idea of the proposed approach. The
iterative algorith employed is sketched below.

Initialization: Obtain an initial guess of DLMCs, A,
and /\tQ[O] and announce them to the DERs. There are several
ways to obtain such a guess. For instance, we can set the
initial values equal to the LMPs and the opportunity cost
for the provision of reactive power at the substation or we
can solve Net-opt for an anticipated load forecast and/or
anticipated DER dispatch.

Iteration £ + 1:

o Step 1: DERs (PVs and EVs) optimize their schedules
for the announced DLMCs (solving PV-opt and EV-
opt). Regularization terms are included in the PV-opt
and EV-opt objective functions to deal with synchro-
nization effects. Obtain: p[kﬂ], Hl , Vs € S, and

[ekj 1], [kH] , Ve € £. Check for convergence of DER
schedules If not within tolerances, Go to Step 2.
Step 2: For the optimal DER schedules obtained from
Step 1, optimize the network operation, solving Net-opt

P[o]



with net real (reactive) demand reflecting the updated

DER schedules. Obtain new DLMCs, Af[kH , and
/\tQ[kH]. Go to next iteration (Step 1).

For clarity, we present the objective functions of PV-opt

and EV-opt that include the added regularization terms, for

iteration k + 1 below:

max Z)\

ps,t + Z /\?[k]QS t

Ps,t:4s,t
(30)
k k
—UZ ps,t—pil —OZ (g — a)*
t
. Plk k
pf,?ii,tzt)t et ZA?[ e (31)
k [k
‘HTZ pet—p[e}g "‘UZ QEt_qel
t

Furthermore, we also show the updated aggregate net
demand at iteration k + 1 below:

[k+1]

pre= pact S pE ST it (32)
deD; e€&j ¢ SES;

gt = Z qd,t + Z q[kﬂ] Z q[kﬂ, Vi,t. (33)
deD;j e€&j ¢ SES;

The above iterative algorithm falls into the category of
proximal algorithms. Although we do not provide a formal
proof for convergence in this work, we sketch the key idea
that is employed in the proof.

As discussed, the social optimum is obtained by the
solution of the Full-opt problem presented in Section IV. The
key is to observe that Full-opt falls into the setting provided
in [30, Prop. 7.2.1]. The idea is to eliminate the network
variables by expressing the optimal values as a function of
the DER variables. Then, Full-opt can be solved using an
iterative method that updates the DER variables based on
(sub)gradients of the network part of Full-opt reflected by
the DLMCs at Net-opt.

Lastly, we note that the proposed algorithm has several
advantages. First, Step 1 scales to massive DER participation
with accurate modeling of their costs/preferences, since each
DER problem can be solved in parallel and very fast due to
their size (they are small problems). Second, the regulariza-
tion terms added in the DER problems avoid synchronization
and if properly tuned — in an adaptive manner — they may
speed up convergence — the idea is equivalent to scaling the
regularization terms. Their magnitude also has an interesting
interpretation that could be exploited in a practical setting:
they represent the willingness of each DER to accept sub-
optimal solutions at each iteration. Third, the algorithm does
not require the exchange of private DER information with
the DNO, but only the real/reactive power profiles, which
are also aggregated at each node — as we have seen Net-
opt practically requires the aggregate net demand at each
node and does not need to have DER-specific information.
Fourth, the network problems fit nicely the operation of
DNOs by solving AC OPF problems that do not require
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DER scheduling, since the DER dispatch is known. Hence,
distribution utilities could use available tools/modules to
solve Net-opt at Step 2. Fifth, the Net-opt problems are
convex SOCP problems, and they do not depend on the
number of DERs, since they only “see” aggregate demand.
Hence, their solution depends mainly on the size of the
network. Last but not least, a very important advantage of the
proposed decomposition is that a feasible AC OPF solution
for the Full-opt problem is available at each iteration. This is
of paramount importance for practical implementations, since
other decomposition approaches, e.g., dual decomposition
or the popular Alternating Direction Method of Multipliers
(ADMM) only provide a feasible solution when they con-
verge.

VI. NUMERICAL ILLUSTRATION

We illustrate the applicability of the hierarchical decom-
position on an actual 13.8 KV feeder of Holyoke Gas and
Electric (HGE), a municipal distribution utility in MA, US.
The feeder topology is shown in [6, Fig. 1], which also shows
the commercial and residential load profiles as a percentage
of the transformer nameplate capacity, the PV solar irradation
factor, p;, and the ambient temperature. Line and transformer
data are listed in [6, Table I]. Lower voltage limits are set at
0.95 p.u. and upper voltage limits are set at 1.05 p.u. LMPs
range from 25.59 to 53.48 ($/MWh). The opportunity cost
for reactive power is assumed equal to 10% the value of the
LMP.

Numerical experimentation focuses on two selected nodes,
representing two 30-KVA transformers serving commercial
and residential loads. To make results easier to follow while
emphasizing the local effect of EVs and PVs on a distribution
feeder, we consider different levels of EVs (0, 3, and 6
EVs) and of PVs (0, 30 KVA and 60 KVA) connected
exclusively to these two nodes. At the commercial node,
EVs are connected 9am-5pm and require charging 12 KWh.
At the residential node, EVs are connected 7pm—7am and
require charging 18 KWh. At the time of departure, EVs
must be fully charged. EV battery capacity is 24 KWh,
the maximum charging rate is 3.3 KW/h, and the charger
capacity is 6.6 KVA. PVs are assumed to be 10-KVA rooftop
solar. The regularization constant o was set at 10,000. Also,
to model initial conditions in the daily cycle reasonably,
transformer temperatures were required to coincide at the
beginning and at the end of the cycle, ¢t = 0, and ¢ = 24;
a similar constraint was imposed on EV battery State of
Charge. The optimization problems were solved on a Dell
Intel Core i7-5500U @2.4 GHz with 8 GB RAM, using
CPLEX 12.7, and solution times were up to 10 sec.

Before proceeding with the results of the decomposition,
we should mention an important outcome of our enhanced
AC OPF model. In our parallel work [5], [6], we have empha-
sized the importance of introducing transformer degradation
in the short-run marginal costs, and we have provided analyt-
ical results that unbundle DLMCs into additive components,
based on the cost of real and reactive power at the substation,
real and reactive power marginal losses, voltage congestion,
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Fig. 2. Real power DLMCs (left) and reactive power DLMCs (right),
under PQ-opt and Full-opt, for a 6-EV and 60-KVA PV penetration, at the
commercial node.

line (ampacity) congestion, and transformer degradation [5].
We have provided extensive numerical results [6] supporting
the significant benefits of internalizing short-run marginal
asset, primarily transformer, degradation, and that voltage
and ampacity congestion DLMC components are insufficient
in providing the price signal that supports the system optimal
schedules. We have also demonstrated that apart from opti-
mal short-run scheduling, our approach can harvest otherwise
idle DER reactive power compensation capabilities, and in-
crease distribution network DER hosting capacity mitigating
investments in distribution infrastructure (see also our work
on non wires solution [31], [32]). In this work, we only
provide a simple example of how DLMCs convey the price
signals to self-dispatching DERs.

In Fig. 2, we illustrate the DLMCs for real and reactive
power for the case with 6 EVs and 60-KVA PV penetration
at the commercial node for two scheduling options: (i) PQ-
opt (as it is named in [6]), which refers to traditional line
loss minimization, i.e., when DER schedules are obtained by
minimizing the network losses, and (ii) Full-opt. The spikes
observed at the PQ-opt values are due to the transformer
component. Indeed such high DLMCs would be the result if
we solved the AC OPF problem by minimizing only the cost
for real and reactive power, since DERs would overutilize
their inverter to reduce losses, without considering the local
impact on the distribution transformer. In the context of the
proposed decomposition, DER schedules will adapt to the
price signals, e.g., EVs will shift their consumption, both
EVs and PVs will adjust their reactive power profile, and
as the solution approaches the system optimal, i.e., the Full-
opt solution, DLMCs will become much smoother (see the
Full-opt DLMCs).

In Fig. 3, we illustrate the convergence of the hierarchical
decomposition for the various DER scenarios of EV/PV
penetration. The vertical axis shows the difference in system
cost (in $) from the system optimal solution at each iteration.
The system optimal solution was obtained by solving Full-
opt. The initialization was performed with the substation
LMP and the opportunity cost for reactive power, and we
observe that the cost at the first response of the DERs (first
iteration) was up to 25$ higher compared to the system
optimal for the 6 EV and 60-KVA penetration. The results
illustrate that the algorithm practically converged — reached
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Fig. 3. Performance of the hierarchical decomposition approach for several
DER penetrations; vertical axis shows the difference of the system cost from
the system optimal at each iteration.

at or below 0.1 $ — in a few tens of iterations (we show up to
the 50th iteration). These initial results are encouraging that
by tuning the regularization terms (we kept them constant in
this example), convergence may even be improved.

VII. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we employ DLMCs as price signals that
provide DERs with sufficient information to self-schedule
in a manner interpretable as a minimization (maximization)
of their individual cost (benefit). Indeed, DLMCs support
optimal DER self-scheduling. A point of caution worth
making is that DLMCs are not necessarily prices that,
when charged, will render the distribution network whole in
terms of allowing it to recover its variable and fixed costs.
The difference of DLMCs during periods ¢ and ¢’ simply
represents the change in the system (marginal) cost if a unit
of power consumption is transferred from period ¢ to period
t’. For example, spatiotemporal DLMC-based prices may be
set equal to a constant + the DLMC, as in a two-part tariff
pricing approach. As long as the price differences across time
and location equal the DLMC and the value of the constant
is selected to provide adequate total revenue, the two-part
tariff design will also support optimal DER self-scheduling.

We have also presented a hierarchical decomposition ap-
proach, which promises to enable Grid - DER coordination,
allowing for massive DER participation, without relying on
DER aggregators, while capturing with high fidelity the
DER costs/preferences as well as the salient distribution
network features. A preliminary numerical illustration has
shown that this approach is quite promising reaching near-
optimal solutions after some tens of iterations. Nevertheless,
more numerical experimentation is required to evaluate the
performance of the proposed decomposition, and compare it
with alternative distributed schemes summarized in [33].

Lastly, we note that in our ongoing and future work,
we aim at considering 3-phase representations of the dis-
tribution network and more DER types, such as micro
generators, smart buildings with precooling/heating capable
HVAC, smart appliances, storage. Furthermore, AC OPF



linearizations updated at each iteration combined with load
flow solutions to refine the operating point around which
DLMCs will be computed — seems a promising direction
for a practical setup which we intend to pursue.
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