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Abstract

Compensation of the thermal distortion that occurs during the fabrication

process is an important issue in the field of metal additive manufacturing.

Considering the problem in forming a lattice structure inside an object to re-

duce the thermal distortion, we developed a lattice volume fraction distribu-

tion optimization method. Assuming that the linear elastic problem is solved

using the finite element method (FEM), an inherent strain method applying

a layer-by-layer process utilizing the element activation during the FEM is

formed as a recurrence relation, and the sensitivity of an objective function

is derived based on the adjoint method. R1C1, R2C4, and R3C2: The unit
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lattice shape is a simple cube with a cube or a sphere-shaped air hole, and

its distribution is optimized by considering the minimum thickness of the

wall surrounding it as a design variable. The effective stiffness tensor of the

lattice is derived using a homogenization method. The functions of the effec-

tive properties with respect to the design variables are approximated through

polynomial functions. The optimization problem is formulated as an uncon-

strained minimization problem. The design variables are optimized using the

method of moving asymptotes. Herein, the validity of the proposed method

is discussed based on quasi two-dimensional and three-dimensional numerical

studies including a re-analysis through full-scale thermo-mechanical analysis.

Keywords: Additive manufacturing, Thermal distortion, Inherent strain

method, Recurrence relation, Sensitivity analysis, Lattice density

optimization

1. Introduction

Additive manufacturing (AM) is a novel technique realizing the fabrica-

tion of complex three-dimensional (3D) geometries through a layer-by-layer

building process [1]. In particular, the development of metal AM technol-

ogy has allowed the use of AM to be realized in the final industrial product

beyond the prototyping of an object. Among the major approaches using

metal AM, namely, powder bed fusion (PBF) and directed energy deposition

(DED), metal powder is rapidly melted using a laser or electron beam and

solidified layer by layer until the intended 3D shape is completed. The melt-

ing and solidification processes are similar with the welding process. Thus, as

with welding, a large thermal distortion and residual stress can be an issue
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in metal AM [2, 3]. Techniques for the prediction and prevention of such

thermal distortion are expected to be developed in the field of metal AM,

particularly in the fabrication of large products.

A straightforward prediction method applied to deal with this issue is

a non-linear thermo-mechanical analysis using the finite element method

(FEM) when considering the temperature dependency of the physical prop-

erties and the plasticity [4, 5, 6, 7]. To simulate a stacking of the distortion,

including plastic distortion, the simulation process is also divided layer by

layer. The generation of a new layer is handled using the so-called element

activation or element birth and death technique, which change the Young’s

modulus of the elements while maintaining the same state of stress as in the

previous step[8, 9]. However, such a highly non-linear sequential analysis

requires significant computational costs.

Although a straightforward thermo-mechanical analysis is also a major

approach in a thermal distortion prediction method applied in welding[10],

another low-computational cost branch, called an inherent strain method,

was developed in this field. The inherent strain method was also extended to

the AM simulation processes [11, 12, 13, 14, 15, 16]. In AM inherent strain

methods, each layer is regarded as a basis structure generating an inherent

strain. Such an inherent strain is stacked in a layer-by-layer manner using

the element activation technique. The inherent strain value is calibrated by

adjusting the approximated displacements and the experiment or thermo-

mechanical analysis results in a simple benchmark model. The original def-

inition of an inherent strain is the plastic strain after fabrication. However,

Liang et al. [14] and Chen et al. [16] found this concept to be unsuitable for
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AM and developed a modified inherent strain method including the elastic

terms considering thermal relaxation and boundary effects for more accurate

analysis.

On the other hand, research on topology optimization (TO) is being con-

ducted as an effective tool generating innovative designs for AM such as

strength design [17], support structure design [18, 19], fabrication cost min-

imization [20] and industrial applications [21, 22]. Among them, utilizing

the low computational cost of the inherent strain method, when considering

only the final state in the sensitivity analysis, Cheng et al. conducted a TO

to prevent building failures during the final state of the AM process [19].

However, with the AM inherent strain method, the loads of the final state

depend on every intermediate sequential state. Thus, this methodology is

valid only in limited cases in which the thermal distortion generated by the

layering process close to the final step is dominant. To optimize the ther-

mal distortion of general problems when considering the entire layer-by-layer

process, its exact formulation and sensitivity analysis are required.

As a characteristic structure of AM, the lattice structure forms regular

hollow structures inside. Although the straightforward reason for using such

a lattice structure is to reduce the amount of materials applied during the

AM, the development of a special lattice with novel functions is an active

research field in this area, such as the permeability fitting to human bones

[23], the stiffness and strength [24, 25, 26, 27], the thermal conductivity [28],

the negative Poisson’s ratio [29, 30, 31], and a negative or extra-large thermal

expansion [32, 33]. Other significant advantage is the variable lattice shape

and performance like a functionally graded material [34]. Beginning with the
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stiffness or strength optimization [19, 35, 36, 37, 38, 39], they were extended

to improvements in the anti-buckling performance [40] and vibration char-

acteristics [41, 42], a maximization of the thermal conductivity [43, 44], and

liquid cooling [45, 46]. Such an optimal functional graded lattice can reduce

the thermal distortion if the stiffness is optimally distributed. Although its

still limited to numerical calculation, multi-scale simultaneous optimization

of lattice base shape and density distribution were also studied [47, 48].

Based on the above, we developed a lattice density distribution optimiza-

tion method for suppression of the thermal distortion when assuming that

the lattice structures are formed inside the target structure while maintaining

the original outline using a PBF metal AM. The linear elastic problem of an

inherent strain method is discretized using the FEM, and its layer-by-layer

process is formed as a recurrence relation. The sensitivity of the general ob-

jective function is derived based on the adjoint method [49]. R1C1, R2C4,

and R3C2: The unit lattice is assumed to be a simple cube with a cube or a

sphere-shaped air hole, and its distribution is optimized by setting the mini-

mum wall thickness as a design variable. The effective stiffness tensor of the

lattice is derived using the homogenization method [50, 51]. The functions of

the effective properties with respect to the design variables are approximated

through polynomial functions. The optimization problem is formulated as an

unconstrained minimization problem. The design variable is updated using

the method of moving asymptotes (MMA) [52]. The validity of the proposed

method is discussed through quasi two-dimensional (2D) and 3D numerical

studies.
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2. Formulation

2.1. Sequential inherent strain method for additive manufacturing

A characteristic of thermal distortion occurring during AM is warping,

as shown in Fig. 1 (a), which is also observed in a usual welding process.

The generation mechanism of such distortion is shown in Fig. 1 (b). The

heated part during AM or welding tends to expand owing to a local high

temperature. However, such an expansion is suppressed by restraining forces

from the surrounding non-heated part. Because the stiffness of the melt-

ing metal is extremely low, the welded part is formed by fitting with the

surrounding structure including the thermal expansion. After cooling, the

welded part shrinks and tries to recover its original shape, which is smaller

than that formed in a high-temperature environment. Such shrinking of the

welded part is the source of the thermal distortion and residual stress. Differ-

ing from usual welding, such heating and cooling process is repeated during

AM. Thus, the warping distortion can be a more serious issue in this type of

manufacturing.
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Heating process

Cooling process

Heated metal

Melt metal

Welded part

Shrinking

(a)

(b) Heat source

Non-heated metal

Figure 1: Warping through thermal distortion of AM part: (a) example and (b) outline

of generation mechanism

As a method for predicting such thermal distortion during AM with a low

computational cost, the inherent strain method has been actively studied in

recent years [11, 12, 13, 14, 15, 16]. The inherent strain method was originally

developed as a prediction method of the residual stress from welding [53].

The residual stress of the welding can be directly measured using an X-

ray. However, because they are usually limited to the surface, irreversible

cutting processes are required to capture the entire internal residual stress

distribution of a thick structure. To avoid such a process, a residual stress

distribution prediction method is required. The fundamental idea of the

original inherent strain method used in welding is the plastic strain, which
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is called the inherent strain, generated through the welding process as the

source of the residual stress. R2C3: This inherent strain is obtained only from

the final welding state, ignoring the complicated time dependent process. i.e.,

the distribution of the plastic or inherent strain is assumed to depend only

on the basic shape and fixed condition of the welding part. Under such an

assumption, the predicted plastic strain is applied to the target structure

as the initial strain in the elastic FEM. By calibrating the inherent strain

value using some measurable stress, the distribution of the residual stress

is numerically derived throughout the entire structure. Another aspect of

the inherent strain method is a low-cost computational method predicting

the thermal deformation of the welded structure. Under the assumption

that the inherent strain only depends on the basic shape of the welding

parts, by referring to the database of the inherent strain corresponding to

the basic welding patterns, the thermal distortion of a body composed of

several welding parts can be predicted [54, 55]. Such a low computational

cost can also be utilized in studies on the manufacturing sequence [56].

R2C3: Such application of the inherent strain method to the manufac-

turing sequence led to the AM inherent strain method. In the simplest AM

inherent strain method, each layer is regarded as a basis unit generating an

inherent strain [11, 12, 13, 15]. That is, each layer has a uniform inherent

strain toward the shrinking direction ignoring time-transient process of its

fabrication. A warping deformation can be represented by a combination of

the inherent strain and element activation technique [8, 9] applied through

the FEM. In a welding analysis utilizing an element activation, the entire

FEM model is constructed and represents the generation of the structure by
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changing the Young’s modulus. That is, the Young’s modulus of the activat-

ing elements is increased from a small value with zero stress. An extremely

small Young’s modulus is set to the deactivated layer elements to avoid a

singularity. The outline of the process is shown in Fig. 2. To explain this

process, two simplified layers are formed on the base plate. During the initial

step, only the first layer is formed and the second layer is deactivated. Dur-

ing the second step, the inherent strain is applied to the first layer. During

the third step, the second layer is activated. Through this step, if only the

Young’s modulus is changed, the equilibrium equation is calculated using the

new increased Young’s modulus and the deformation of the first layer is re-

duced because the total stiffness of the structure is simply increased over the

given load. Such phenomena never occur during an actual process. To form

a new layer on the deformed layer while keeping the same deformation, the

Young’s modulus of the new layer must be increased with zero stress. That

is, the expected stress is canceled by adding strain of the current layer gen-

erated in a deactivating state as an initial strain. During the fourth step, the

inherent strain is applied to the second layer. Finally, the second layer suffers

from shrinking forces through activation and the inherent strain. After cut-

ting from the base plate, this two-layer structure bends toward an imbalance

of the internal force. To use such a process for the prediction of the thermal

distortion in the AM, the inherent strain value must be calibrated based on

the experiment results or the detailed thermo-mechanical FEM results.
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Inherent strain

Activated

Inherent strain

Initial state

Applying inherent strain

to the 1st layer

The 2nd layer activation

(Young’s modulus is increased

and a corresponding strain is applied

to cancel the stress.)

Applying inherent strain

to the 2nd layer

Cutting from the base plate

Fixed

Strain by inherent strain              Strain by activation

Figure 2: Outline of the sequential layer-by-layer process of the AM inherent strain method

representing a warping deformation.

In one of the latest AM inherent strain methods, Liang et al. [14] and

Chen et al. [16] developed a more accurate way to extract the inherent

strains from detailed process simulation by considering elastic contribution.

R2C2: Moreover, varying lattice density can affect the inherent strain value

because the laser pass can change according to the lattice geometry change.

However, in this study, for simplicity, we use a conventional AM inherent

strain method, assuming that the inherent strain value is identical throughout

the entire structure, independent of the lattice density distribution.

2.2. Recurrence relation representation of layer-by-layer process

R2C3: In the AM inherent strain method, a stack of inherent strains and

activation forces is usually handled using time transient FEM solvers. How-
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ever, the AM inherent strain method is actually an approximated physical

problem and is not affected by the time scale. In other words, it is enough

to repeat the static analysis considering the mutual effect without the time

transient effect. We regard a recurrent formula as appropriate for represent-

ing the current state depending on the previous state during the repeated

process without the actual time scale. Thus, in this study, the exact formu-

lation of the AM inherent strain method is derived as a recurrent formula as

follows.

First, a recurrent formula representing the change in displacement of an

elastic body with a varying stiffness through the generation of a new layer,

as well as the cutting from the plate and a varying force occurring through

the inherent strain and layer activation, is derived. Considering the linear

elastic problem discretized using the FEM, the equilibrium equation at the

n-th step is as follows:

Knun = fn, (1)

where K, u, and f are the stiffness matrix, the displacement vector, and the

force vector. The increment on both sides is represented as follows:

∆(Knun)−∆fn

=∆Knun+1 +Kn∆un −∆fn

=∆Knun+1 +Kn(un+1 − un)−∆fn

=(Kn +∆Kn)un+1 −Knun −∆fn

=0

(2)

where ∆(Knun) = ∆Knun+1 + Kn∆un and ∆un = un+1 − un. Here, the

n-th load increment ∆fn can be divided as ∆fn = ∆factn +∆f ihsn , where ∆factn
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is the load increment through the activation, and f ihsn is that of the inherent

strain. In addition, ∆f ihsn is defined as follows:

∆f ihsn = Hihs
n+1Kn+1u

ihs
n (3)

where Hihs and uihs are the 0-1 matrix specifying nodes in which the loads

corresponding to inherent strains is applied and the fixed displacement vec-

tor corresponding to the inherent strain at the specified step, respectively.

However, ∆f ihsn does not depend on the state variable displacement, whereas

∆factn does depend on the displacements of the previous step.

An element activation is a key technique of the AM-inherent strain method,

as shown in Fig. 2. With this method, the generation of the structure is rep-

resented by changing the Young’s modulus with a zero-stress state. The zero-

stress state of the activated elements is realized by adding the initial strain

to these elements corresponding to the former state displacement, thereby

canceling the stress generated by the change in the Young’s modulus. In Eq.

(2), the load increment through activation at the n+1-th step is formulated

as follows:

∆factn = Hact
n+1∆Knun (4)

where Hact is the 0-1 matrix specifying the nodes corresponding to activated
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elements at the specified step. Substituting Eqs. (3) and (4) into Eq. (2),

(Kn +∆Kn)un+1 −Knun −Hact
n+1∆Knun −Hihs

n+1Kn+1u
ihs
n+1

={Kn + (I−Hact
n+1)∆Kn +Hact

n+1∆Kn}un+1 −Knun −Hact
n+1∆Knun −Hihs

n+1Kn+1u
ihs
n+1

=(I−Hact
n+1)∆Knun+1 + (Kn +Hact

n+1∆Kn)(un+1 − un)−Hihs
n+1Kn+1u

ihs
n+1

=(I−Hact
n+1)∆Knun+1 + (Kn +Hact

n+1∆Kn)∆un −Hihs
n+1Kn+1u

ihs
n+1

=0

(5)

That is, the recurrent formula representing the displacement at the n-th step

is obtained as follows:

Anun +Bn∆un−1 −Hihs
n Knu

ihs
n = 0 (6)

u0 = 0 (7)

where An = (I − Hact
n )∆Kn−1 and Bn = Kn−1 + Hact

n ∆Kn−1. The reason

the increment ∆un−1 is introduced instead of un−1 is this is suitable in the

following sensitivity analysis.

2.3. Sensitivity analysis

The sensitivity of the following general objective function is represented

as a fixed sum of a function with respect to the displacement vector u based

on the adjoint method [49].

g =
N∑
i=1

hi(ui) (8)

The Lagrangian is obtained from Eqs. (6) and (8) as follows:

L =
N∑
i=1

hi(ui) +
N∑
i=1

λT
i

(
Aiui +Bi∆ui−1 −Hihs

i Kiu
ihs
i

)
, (9)
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where λ is the adjoint variable vector.

Based on the chain rule, the derivative of L with respect to the design

variable x is obtained as follows:

dL

dx
=

∂L

∂x
+

N∑
i=1

(
∂L

∂ui

dui

dx
+

∂L

∂∆ui−1

d∆ui−1

dx

)
(10)

Calculating each term,

∂L

∂x
=

N∑
i=1

∂hi

∂x
+

N∑
i=1

λT
i

(
∂Ai

∂x
ui +

∂Bi

∂x
∆ui−1 −Hihs

i

∂Ki

∂x
uihs
i

)
(11)

N∑
i=1

∂L

∂ui

dui

dx
=

N∑
i=1

∂hi

∂ui

dui

dx
+

N∑
i=1

λT
i Ai

dui

dx
(12)

N∑
i=1

∂L

∂∆ui−1

d∆ui−1

dx
=

N∑
i=1

λT
i Bi

d∆ui−1

dx
(13)

Substituting Eqs. (11)-(13) into Eq. (10),

dL

dx
=

N∑
i=1

∂hi

∂x
+

N∑
i=1

λT
i

(
∂Ai

∂x
ui +

∂Bi

∂x
∆ui−1 −Hihs

i

∂Ki

∂x
uihs
i

)

+
N∑
i=1

∂hi

∂ui

dui

dx
+

N∑
i=1

λT
i Ai

dui

dx
+

N∑
i=1

λT
i Bi

d∆ui−1

dx

=
N∑
i=1

∂hi

∂x
+

N∑
i=1

λT
i

(
∂Ai

∂x
ui +

∂Bi

∂x
∆ui−1 −Hihs

i

∂Ki

∂x
uihs
i

)

+
N∑
i=1

(
∂hi

∂ui

+ λT
i Ai

)
dui

dx
+

N∑
i=1

λT
i Bi

d∆ui−1

dx

(14)

The sum of the third and fourth terms of Eq. (14) will be equal to zero by

an appropriate determination of the adjoint variable. Here, a rule of product

differentiation, ∆(unvn) = ∆unvn+1 + un∆vn, is considered, where u and v

are arbitrary functions. Thus, a formula for a fixed summation by parts is
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obtained as
∑N

i=1 ∆uivi = uN+1vN+1−u1v1−
∑N

i=1 ui+1∆vi. Thus, the fourth

term of Eq. (14) is expanded as follows:

N∑
i=1

λT
i Bi

d∆ui−1

dx
= λT

N+1BN+1
duN

dx
− λT

1B1
du0

dx
−

N∑
i=1

∆(λT
i Bi)

dui

dx

= λT
N+1BN+1

duN

dx
− λT

1B1
du0

dx
−

N∑
i=1

(∆λT
i Bi+1 + λT

i ∆Bi)
dui

dx

(15)

The sum of the third and fourth terms of Eq. (14) is as follows:

N∑
i=1

(
∂hi
∂ui

+ λT
i Ai

)
dui

dx
+

N∑
i=1

λT
i Bi

d∆ui−1

dx

=
N∑
i=1

(
∂hi
∂ui

+ λT
i Ai

)
dui

dx
+ λT

N+1BN+1
duN

dx
− λT

1 B1
du0

dx
−

N∑
i=1

(∆λT
i Bi+1 + λT

i ∆Bi)
dui

dx

=
N∑
i=1

(
∂hi
∂ui

+ λT
i Ai −∆λT

i Bi+1 − λT
i ∆Bi

)
dui

dx
+ λT

N+1BN+1
duN

dx
− λT

1 B1
du0

dx

=

N∑
i=1

{
∂hi
∂ui

+ λT
i (I−Hact

i )∆Kn−1 −∆λT
i (Ki +Hact

i+1∆Ki)− λT
i ∆(Ki−1 +Hact

i ∆Ki−1)

}
dui

dx

+ λT
N+1BN+1

duN

dx
− λT

1 B1
du0

dx

=
N∑
i=1

{
∂hi
∂ui

+ λT
i Ki − λT

i+1(Ki +Hact
i+1∆Ki)

}
dui

dx
+ λT

N+1BN+1
duN

dx
− λT

1 B1
du0

dx

(16)

Because
du0

dx
is zero from the initial condition in Eq. (7), when the above

equation is continuously zero, the following adjoint equation must be satis-

fied.

∂hn

∂un

+ λT
nKn − λT

n+1(Kn +Hact
n+1∆Kn) = 0 (17)

λT
N+1 = 0 (18)
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Finally, the sensitivity is obtained as follows by simplifying Eq. (14):

dL

dx
=

N∑
i=1

[
∂hi

∂x
+ λT

i

{
(I−Hact

i )
∂∆Ki−1

∂x
ui +

(
∂Ki−1

∂x
+Hact

i

∂∆Ki−1

∂x

)
(ui − ui−1)

− Hihs
i

∂Ki

∂x
uihs
i

}]
=

N∑
i=1

[
∂hi

∂x
+ λT

i

{
∂Ki

∂x
ui −

(
∂Ki−1

∂x
+Hact

i

∂∆Ki−1

∂x

)
ui−1 −Hihs

i

∂Ki

∂x
uihs
i

}]
(19)

2.4. Lattice optimization problem

Figure 3 shows the outline of the design target. We assume that a struc-

ture filled with lattices is built using an AM in a layer-by-layer process. The

density distribution of the lattices is optimized. The optimization process

of the lattice density can use similar algorithm as that applied using TO

[57, 58]. In TO, a intermediate density between zero and 1 is unfavored

because the density distribution is originally the 0-1 discrete function. The

solid isotropic material with penalization (SIMP) is usually used to penalize

the intermediate density. However, an intermediate value of the density func-

tion is considered as the effective density of a lattice with a corresponding

geometry in lattice optimization. The effective properties corresponding to

representative densities are calculated and then interpolated using polyno-

mial functions before optimization. This is a common way in deriving the

function of the effective properties of a lattice with respect to the lattice

density [36, 41, 43]. The representative size of a lattice is mapped into the

interval [0, 1] as a function of a formulated as a function of the design variable

d.
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Activated layer

Activated layer

Activated layer

Activated layer

Deactivated layer

Deactivated layer

Building

Direction
Microscopic lattice

domain

Base plate layer

Figure 3: Outline of the design target domain.

The advantage of the proposed method is being able to consider the opti-

mization problem of the thermal distortion in an arbitrary step of the inherent

strain layer-by-layer process. Thus, as a general objective function, the sum

of the square norm of the specified displacements of each step is applied.

The objective function is derived from the recurrence relation in Eqs. (6)

and (7). The stiffness matrix K is considered as a function of the design

variable vector d (0 ≤ d ≤ 1) whose dimension is equal to the number of

lattices. The optimization problem is then defined as follows:

minimize
N∑
i=1

|Hobj
i ui|2, (20)

subject to

Eqs. (6) and (7),

0 ≤ d ≤ 1, (21)

where N is the number of steps and Hobj
i is a 0-1 matrix specifying the

displacements considered in the objective function at the i-th step.
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3. Numerical implementation

3.1. Lattice base shape and effective properties

R1C1, R2C4, and R3C2: Simple shapes shown in Fig. 4 are introduced

as a basic unit lattice geometry in this study. A cube (Case A) or a sphere

(Case B) void is introduced into a cube unit cell, and the minimum thickness

is varied during the optimization process. Six 1 mm diameter holes are

introduced to remove the remaining powder from the PBF process. The unit

cell length is set to be 5 mm. The Case A lattice is suitable for voxel mesh

discretization used in the full scale thermo-mechanical analysis, while Case

B is suitable for actual fabrication because it has fewer horizontal overhangs.

5mm

1mm
t

Cross-sectional shapes

Case A Case B

t

Figure 4: R1C1, R2C4 and R3C2: Basis shapes of the unit lattices.

The effective properties of the lattice are derived by using numerical ho-

mogenization [50, 51] based on the FEM. R2C1: The developed lattice is

assumed to be laid out periodically. The design target is the geometry of

the lattice base cell. The static–elastic deformation of a metal with isotropic

stiffness is considered first to calculate the effective lattice stiffness. The
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microscale linear elastic deformation of the lattice structure is assumed to

follow Hooke’s law:

σij = Cijklϵkl = Cijkl
∂uk

∂xl

, (22)

where σ, C, ϵ, and u are, respectively, the stress tensor, elastic tensor,

strain tensor, and displacement vector. i, j, k, and l are the indices of the

tensors. By solving this equation numerically using FEM with Dirichlet

boundary conditions (u = 0), the distribution of displacements u in the

internal structure is obtained.

The effective elastic tensor CH of the periodic structure that is composed

of a unit cell Y is,

CH
ijkl =

1

|Y |

∫
Y

(
Cijkl − Cijpq

∂χkl
p

∂yq

)
dY, (23)

where χ is the displacement obtained by solving the problem of Y periodic

cells, and p and q are the dummy indices,∫
Y

Cijpq

(
δpkδql −

∂χkl
p

∂yq

)
∂vi
∂yj

dY = 0. (24)

Here, v is an arbitrary test function, and δ is the Kronecker delta.

Representative values are calculated using a wall thickness with t = 0.25

to 2 mm at 0.5 mm intervals. The thickness t (0.5 ≤ t ≤ 2) is mapped into the

design variable d (0 ≤ d ≤ 1) by t = 0.5 + 1.5d for the ease of optimization.

These representative values are interpolated using the polynomial function

with respect to the design variable d. Inconel 718 with a Young’s modulus

of E = 208GPa and a Poisson’s ratio of 0.3 is the assumed material. The

interpolation functions of the effective elastic tensor and volume fraction are

19
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summarized in Fig. 5. Because the miller symmetry of the cell is guaranteed,

the three components of the effective elastic tensor are independent.
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Figure 5: R1C1, R2C4, and R3C2: Interpolation functions of (a) volume fraction and

effective elastic tensor of (b) Case A lattice and (c) Case B lattice with respect to the

design variable. R2 is the coefficient of determination.
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3.2. Optimization procedure

The design variable d is updated using the MMA, a gradient-based al-

gorithm [52]. Figure 6 shows a flowchart. R2C1: Before optimization, the

approximation functions between the effective stiffness and the design vari-

able d shown in Fig. 5 is built using the homogenization method and initial

values of d are set. During optimization, the effective stiffness of the lattices

are first calculated using the approximation in Fig. 5. The recurrence rela-

tion of the inherent strain method in Eq. (6) is calculated using the FEM.

The objective function and constraint are then calculated. Subsequently, the

adjoint variable is derived by solving the recurrence relation in Eq. (17) and

(18). The sensitivities of the objective function are then calculated through

Eq. (19). The design variables are finally updated using the MMA [52].

These procedures are repeated until a specified convergence criteria is satis-

fied.
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Set an initial value of design variable d

based on the initial shape

Solve the layer-by-layer inherent strain 

recurrence relation in Eq. (6).

Calculate the objective function in Eq. (20)

Solve the adjoint recurrence relation

in Eq. (17) and calculate 

the sensitivities of the objective function.

Update design variable d using MMA.

Converged?

End

Yes

No

Built approximation functions between 

the effective stiffness and the design variable d 

in Fig. 5 using the homogenization method

Calculate the effective stiffness of lattices

using approximation in Fig. 5

Figure 6: R2C1: Flowchart of optimization procedure.

4. Numerical example

Quasi-2D and 3D examples are studied to validate the proposed method.

FEM calculations for solving the recurrent formula were conducted using

COMSOL Multiphysics software. Finite-element formulations are linear La-
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grange elements. The design target structures are assumed to be formed by

a PBF metal AM. The material is assumed to be the same Inconel 718 with

a Young’s modulus of E = 208 GPa and a Poisson’s ratio of 0.3 with the one

used in the derivation of the interpolation functions. The coefficient of the

Young’s modulus of the deactivated material is set to 10−5.

4.1. Quasi 2D example

A rectangular plate, shown in Fig. 7, is used as the first basic example.

We imagine the fabrication of a 50 mm × 200 mm plate part with a 5 mm

thickness composed of ten inherent strain layers. The bottom 5 mm layer

is assumed to be a base plate with a fully dense material. Considering the

post-processing cutting of the bottom of the part after fabrication, exclud-

ing the left bottom part, we evaluate the sum of the square of the vertical

displacements of the top and bottom planes. The analysis domain is one-

half when considering the symmetry. The domain is discretized by a 5 mm

lattice, as shown in Fig. 4. That is, the part domain is composed of 10 ×

20 lattices. The analysis domain is also discretized by a 5 mm cube voxel

mesh. In the part layers, one lattice corresponds with one finite element.

The design variables are set to each lattice.
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55mm

x

z

y

Plane of symmetry

5mm

Base plate layer (Cutting part)

Base plate layer (Remaining part)

Building

Direction

Displacement 

evaluation plane

Part layers

Figure 7: The outline of the design target of the quasi 2D example.

With the inherent strain method, the inherent strain is applied to the

one-level down layer of the activated layer [12]. Figure 8 shows the extracted

inherent strain processes from the initial to the final steps. At the final step,

cutting is represented by deactivating the base plate layer except for the left

corner. A warping deformation was clearly observed.
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Step 1

Inherent strain

Inherent strain

Activated

Step 2

Deactivated

Deactivated

Activated

Inherent strain

Activated

Inherent strain

Deactivated

Step 9

Step 10

x

z

Figure 8: Deformation through inherent strain method including cutting process. The

contour represents the magnitude of displacement. The scale factors for deformation

diagrams are 50 in steps 1 and 2 and 10 in steps 9 and 10.

4.1.1. Calibration

The concept of an inherent strain is a virtual approximation of the exact

welding distortion. Thus, its value must be calibrated based on the exact

distortion. In this study, instead of the experiments, the full-scale thermo-

mechanical FEM results are obtained using the Simufact Additive (Simufact

Engineering Gmbh, Hamburg, Germany). Here, “Full scale” means that the

detailed lattice geometry is modeled explicitly in the finite element model

without any homogenization method. R1C1 and R3C3: Recently the validity

of the full scale thermo-mechanical analysis was confirmed in several works

[4, 5, 6, 7, 16]. In this analysis, each lattice is modeled with the exact

geometries while is approximated based on the effective values through the

inherent strain approach. The geometry is discretized using 1 mm cubic voxel

elements. The conditional parameters [4, 6, 16] and temperature-dependent
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physical properties of the fabrication used in the analysis are summarized in

Tables 1, 2, and 3.

Table 1: Process parameters used in the full-scale thermo-mechanical analysis [4, 6, 16].

Parameter name Value

Laser power [W] 285

Laser absorption efficiency 0.4

Laser scan speed [mm/s] 960

Laser beam diameter [µ m] 100

Layer thickness [µ m] 40

Recoater time [s] 10

Powder and baseplate temperature [◦C] 80

Ambient temperature [◦C] 25

Surface emissivity 0.3

Natural convection heat transfer coefficient [W/(m2·◦C)] 5

Table 2: Thermal properties of Inconel 718 used in the full-scale thermo-mechanical anal-

ysis [4, 6, 16].

Temperature Thermal conductivity Specific heat Surface emissivity Density

[◦C] [W/(m·◦C)] [J/kg] [kg/m3]

20 11.4 427 0.3 8146

100 12.5 441 - -

300 14 481 - -

500 15.5 521 - -

700 21.5 601 - -

1350 31.3 691 - -
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Table 3: Mechanical properties of Inconel 718 used in the detailed thermo-mechanical

analysis.

Temperature Young’s modulus Yield strength Thermal expansion coefficient

[◦C] [GPa] [MPa] [×10−6/◦C]

21 208 1172 12.8

93 205 1172 12.8

204 202 - 13.5

316 194 - 13.9

427 186 1089 14.2

538 179 1068 14.4

649 172 1034 15.1

760 162 827 16.1

871 127 286 -

954 17.8 138 16.2

Assuming that the x and y components of the inherent strain, εihsx and

εihsy , are identical, the calibration is applied to find the inherent strain values

εihsx and εihsz minimizing the sum of the square error of the z-displacement of

the top and bottom planes shown in Fig. 7 between the full-scale thermo-

mechanical analysis and the inherent strain method. The inherent strain

is updated using the line search method. The design variable is uniformly

set to 0.5. R1C1, R2C4, and R3C2: The resulting inherent strains were

εihsx = εihsy = −6.35×10−3 and εihsz = −0.85×10−3 for the Case A lattice and

εihsx = εihsy = −5.96 × 10−3 and εihsz = −0.83 × 10−3 for the Case B lattice,

respectively. Figure 9 shows the comparison of the deformation diagrams

of the detailed analysis and graphs plotting the z-displacement of the top

and bottom planes in the Case A lattice. Although the total deformation

shapes including the x and y components are different, considering only the
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z direction as dominating the warping deformation, an acceptable level of

agreement was obtained.
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Figure 9: R1C1, R2C4, and R3C2: Comparison of the inherent strain method deformations

and the full-scale thermo-mechanical analysis after inherent strain calibration in the Case

A lattice. The contour represents the vertical displacement. Scale factors for deformation

diagrams are 10.

4.1.2. Validation of sensitivity analysis

R1C1, R2C4, and R3C2: Using the inherent strain of the Case A lattice

obtained above, a sensitivity analysis validation is first applied. The ana-

lytical sensitivities derived in Eq. (19) are compared with the sensitivities

obtained using the finite difference method. The design variable numbering

and comparison are shown in Fig. 10. Good agreement was obtained.
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Figure 10: Verification of the analytical sensitivity through a comparison with the finite

difference sensitivity.

4.1.3. Optimization

A lattice density optimization is then conducted. R1C1, R2C4, and

R3C2: The initial design variable is uniformly set to 0.5, corresponding to

a volume fraction of approximately 83% and 87% in the Cases A and B lat-

tices respectively. Figure 11 shows the iteration histories of the objective

function and the average lattice volume fraction in the Case A lattice. A

smooth and sufficient convergence is obtained until 30 iterations. The total

volume of the optimal result becomes smaller than the initial value. Figure

12 shows a 2D optimal distribution of the design variables and a 3D view

of the corresponding geometry. Denser lattices are laid out on the lower

layer in both lattice cases. As shown in Fig. 2, high strains are given for
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the layer near the top owing to the effect of the activation. Because of the

internal stress, which causes a bending deformation, is given by multiplying

the stiffness and strain, by weakening the upper layer stiffness, the internal

upper layer stress is also reduced. As a result, an arch-like distribution is

formed. The converged objective function values of the Cases A and B lat-

tices were 5.18 × 10−12 and 8.68 × 10−12, respectively. This indicates the

larger gap between the minimum and maximum stiffness of the lattice works

better. R2C5: The isolated dense lattices were observed on the right top

side in both lattice cases. The re-analysis results after making their design

variables zero show just 0.06% and -0.01% objective function changes in the

Cases A and B lattices, respectively. According to the history of the lattice

density shown in Fig. 11, the right upper side lattices were important only in

the early stages of optimization and the surrounding lattices were vanished

through the optimization. Due to the lack of volume constraint, such unnec-

essary lattices can remain in this optimization. Practically, these lattices can

be ignored.
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Figure 11: R2C5: Convergence history of the objective function and average volume

fraction of the lattices in Case A lattice optimization. Intermediate optimal lattice density

distributions are also shown after each five iterations.
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Figure 12: R1C1, R2C4, and R3C2: Optimal distribution of the design variable and

corresponding detailed geometry of (a) Case A and (b) Case B.
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Figure 13 shows a comparison of the vertical deformation between the

optimal and uniform lattice structure having the same volume fraction using

the inherent strain method and the full-scale thermo-mechanical analysis. A

smaller vertical deformation is clearly obtained on both the top and bottom

planes through the inherent strain method. A full-scale thermo-mechanical

analysis is conducted using the Simufact Additive software, same with the

calibration. Although the deformation of the optimal lattice structure is

sharper than the inherent strain analysis on the bottom plane, a smaller dis-

placements were clearly obtained in both cases. The optimal results obtained

by the inherent strain method can also be applied in the full-scale thermo-

mechanical analysis. R3C1: The computational time of the inherent strain

method and the full-scale analysis are 83.6 s and 9,225.5 s, respectively, using

an Intel Core i7-8750H processor (six cores) and 32 GB memory. The full-

scale analysis computational time is certainly not acceptable for structural

optimization as reported in [14] and [16].
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Figure 13: R1C1, R2C4, and R3C2: Comparison of the vertical displacement between

the optimal lattice structure and the uniform lattice structure using the inherent strain

method and the full-scale thermo-mechanical analysis. The contour represents the vertical

displacement. The deformation diagrams are the results of the Case A lattice with a scale

factor of 10.

4.2. 3D example

Figure 14 shows the design target of the structure of a 3D example. Con-

sidering the fabrication of a 200 mm × 200 mm × 50 mm rectangular shape

composed of ten inherent strain layers, the vertical displacements of its upper
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and lower layers are minimized. Similar to the 2D example, the bottom 5

mm layer assumes a base plate with a fully dense material. Considering the

post-processing cutting of the bottom of the part after fabrication, excluding

the left bottom corner lattice, as shown in Fig. 14, we evaluate the sum of

the square of the vertical displacements of the top and bottom part planes

as the objective function. The analysis domain is one-quarter of the entire

structure when considering the symmetry. The domain is discretized using a

5 mm voxel element, which corresponds to one 5 mm lattice. Thus, the part

domain is composed of 20 × 20 × 10 lattices. R1C1, R2C4, and R3C2: The

lattices are assumed to be Case A whose initial design variables are uniformly

set to 0.5.

Base plate layer (Remaining part)

Base plate layer (Cutting part)

Building

Direction

x

z

y

55mm

100mm
Plane of symmetry

Displacement 

evaluation plane

Part layers

Design symmetry 

plane

Figure 14: Outline of design target of the quasi 3D example.

Figure 15 shows the optimal distribution of the design variable and a 3D
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view of the corresponding geometry obtained after 50 iterations. The design

variables and detailed shapes of the cross-sections are also shown. Similar

with the 2D model, an arch-like distribution of dense lattices is formed over

the domain. Figure 16 shows a comparison of the vertical deformation be-

tween the optimal and uniform lattice structures having same volume fraction

when using the inherent strain method and the full-scale thermo-mechanical

analysis. In the full-scale thermo-mechanical analysis, the domain is dis-

cretized using a 2.5 mm voxel mesh, which is coarser than in the 2D example.

In both results, optimal results are clearly achieved at a lower displacement

than with a uniform lattice structure. The proposed method was valid, even

in the 3D study. R3C1: The computational time of the inherent strain

method and the full-scale analysis are 83.6 s and 14,614.9 s, respectively,

under the same computational environment with the 2D example.
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Figure 15: Optimal distribution of design variables and corresponding detailed geometry.
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Figure 16: Comparison of the vertical displacement between the optimal lattice struc-

ture and the uniform lattice structure using the inherent strain method and the full-scale

thermo-mechanical analysis.

5. Conclusion

We studied the optimization of the lattice structure distribution for a

minimization of the thermal distortion based on the layer-by-layer inherent

strain method. The inherent strain process representing the stack of the
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strain from the layer-by-layer process was formulated through the activation

of elements in the recurrent formula. A sensitivity analysis was conducted

for this recurrent formula. A cubic lattice with a cubic void was assumed as

the base shape of the lattice, and its effective elastic tensor was derived using

a numerical homogenization method. The design variables were related with

the size and volume fractions of the lattice and updated using the MMA.

The proposed method was examined by solving quasi 2D and 3D numerical

examples.

The calibration and verification of the proposed method were conducted

using a full-scale thermo-mechanical analysis. R1C1 and R3C3: Although the

validity of the full scale thermo-mechanical analysis was confirmed in several

works [4, 5, 6, 7, 16], for a more strict and practical verification, experimental

studies are being planned for the proposed method. R2C2: Moreover, the

assumption that the inherent strain is uniform in every layer is insufficient

for an approximation of the lattice structure deformation because the laser

path and the resulting thermal distortion can vary according to the geometry

change of the lattice. This was found in the gap in the displacements between

the inherent strain method and full-scale thermo-mechanical analysis. The

development of more accurate inherent strain methods whose inherent strain

values are depending on the lattice density is an important issue for improve-

ment of the proposed method. If a more accurate displacement prediction

can be achieved for a complicated distribution of the lattice, the design of

the arbitrary thermal distortion can be achieved along with its minimization.
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Appendix A. Study on imperfect sensitivity analysis when con-

sidering only the final state.

To confirm the necessity of considering the entire layer-by-layer process

of the inherent strain method in its sensitivity analysis, an optimization

through an imperfect sensitivity is described in this appendix. Here, using the

equilibrium equation of the final state Ku = f after cutting, the sensitivity

of an orbital objective function g(u) is derived as
dg

dx
=

∂g

∂x
+λT ∂K

∂x
u, where

∂g

∂u
+λTK = 0. The dependency of the design variable on the force is ignored

because it cannot be explicitly derived through this approach.

R1C1, R2C4, and R3C2: Figure A.17 shows the optimal distribution of

the quasi 2D problem shown in Fig. 7 obtained using the above sensitivity,

the Case A lattice, and the same settings described in Section 4.1.3. The

resulting objective function value is 260.2% higher than the optimal result

with a perfect sensitivity analysis. Figure A.18 shows the verification of

this result through the full-scale thermo-mechanical analysis. These results

indicate that considering only the final state is insufficient for minimizing the

distortion if it is not dominated by the final state.
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Figure A.17: Optimal distribution of design variables obtained from an imperfect sensi-

tivity.
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