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Abstract— This work demonstrates that thin slots strategically
placed in MEMS ring resonators are able to enhance the quality
factor (Q) of the device operated in a wineglass mode in the
isothermal region. The devices are optimized using COMSOL
for an increased Q through increased slot size, using the Zener
curve as a comparative baseline. These parts are fabricated
and encapsulated in an ultra-clean environment, and tested in
various temperature and pressure conditions to directly measure
changes in anchor, gas, and thermoelastic dissipation across
temperature. [2020-0156]

Index Terms— Microelectromechanical systems, energy dissi-
pation, thermoelastic dissipation, anchor damping.

I. INTRODUCTION

HERMOELASTIC dissipation (TED) is a common

damping mechanism in microelectromechanical (MEM)
resonators. Zener first quantified this phenomenon in rectan-
gular beam structures and formulated the upper limit of the
quality factor (Q) derived from the relationship between the
coupling of mechanical and thermal modes [1], [2]. Sub-
sequent work built on this theory by studying the impact
that slots in rectangular beams have on Qrgp [3], [4]. Slots
impede heat flow across temperature gradients that form
during beam bending and thus decrease energy dissipation and
increase QTED.

Preliminary work has been done by Wong et. al. on another
TED-limited device: ring resonators [5]. Hossain et. al. further
quantified the effects of leg widths and leg geometries on TED
in these ring resonators [6]; a preliminary study on the effects
of adding slots to the rings was also included but focused
on the adiabatic regime of the ring resonators and found a
decrease in Q in this region [6].
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Fig. 1. Schematic of ring device showing slot parameter measured from the
center point of the anchor; inset shows an x-ray image of fabricated devices,
this is an internal layer in the encapsulated die with visible device layer and
electrodes.

This work builds on previous studies by investigating the
effect of slots in ring resonators operating in an isothermal
region. We also include a comprehensive study of the effects
of slot and diameter parameterization and quantify changes to
all dissipation mechanisms. The ring resonators are centrally-
anchored with four spokes that attach to a ring operating in the
wineglass mode (Fig. 1 and 2). Slots are placed symmetrically
in the four locations of greatest displacement (Fig. 1), where
the largest temperature gradients occur.

II. SIMULATION

A finite element model (FEM) was used to model how the
Qrep in the wineglass mode changes with the addition of slots.
The temperature fields for a set of 300um diameter devices
are shown in Fig. 2 and emphasize the temperature change
at the regions of largest displacement. Overall, 12 designs
of varying diameter (200xm through 400xm) and slot size
(solid to 30° slots, see Fig. 1 for slot parameter definition)
are fabricated and their Q is measured through a ringdown
response in various temperature and pressure conditions.

The Qrpp was simulated across a range of frequen-
cies and compared with Zener theory for beam res-
onators [1], [2], a modified Zener theory for disk resonator
gyroscopes (DRGs) [7], and with actual fabricated parts
(Fig. 3). It should be noted in Fig. 3 that the simulations
account only for Qrgp, while the experimental points are
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Fig. 2. TED finite element model simulations of wineglass mode in 300xm
diameter ring showing temperature gradients forming in regions of greatest
displacement.
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Fig. 3. Experimental measurements of QroraL; FEM simulation of Qrgp

(solid lines) using parameters from [8]; compared with Zener theory for rect.
beams [1] and modified Zener theory for ring resonators [7] (dotted lines).

measures of QroraL, as the vacuum encapsulated resonators
could have small contributions from other sources, such as gas
and anchor damping. Therefore, the simulated values represent
an upper limit on the Q, which closely aligns with most of
the experimental points (a few are higher than simulation due
to experimental error). The Q of the fabricated slotted designs
show up to a 4.5x Q enhancement depending on the diameter
and slot condition chosen.

In order to quantify changes to other dissipation mecha-
nisms, a focused ion beam (FIB) is used to open the encap-
sulation cavity of the devices in order to measure QroTAL
across pressure to extract Qgas. Devices opened via FIB
were then pumped down to ultra-high vacuum and swept
across temperature to a region where the coefficient of thermal
expansion (CTE) of silicon is zero to analyze the quality factor
dependence on temperature and measure QaANCHOR, given that
thermal and pressure effects were eliminated.

III. RESULTS

As shown in Fig. 4, the devices opened via FIB were swept
across pressure and when compared with the pre-FIB Q, reveal
the encapsulation pressure. We fit these results to squeeze-film
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Fig. 4. Experimental measurements of QroTaL(P) at T = 300K (points);
solid lines fit to (1) and Qgas (squeeze film damping) term extracted; FIB
was used to etch the hole in the device encapsulation layer (shown in SEM
inset).
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Fig. 5. Experimental measurements of QroTaL (T) in devices at ultra-vacuum
(elimating the effects of Qgas) and encapsulated pressure (P~0.1 Pa);
QANCHOR Was measured where CTE=0.

damping theory (1) in Fig. 4, where C is a constant, kp is
the Boltzmann constant, P is pressure, and T is temperature.
We can see that the slotted devices actually have slightly more
gas damping than the solid devices (3.79e6 vs. 5.55e6). This
can likely be explained by an increased amount of squeeze-
film damping within the actual slots.
Orhrar = Qibp + Oss = Opbp + == (1)
TOTAL LowP gas LowP C\/kB_T
In Fig. 5, we measure the Q across temperature at ultra-
low pressures to extract the anchor damping [9]. The slotted
devices, interestingly, increase the anchor damping (decrease
QANCHOR), Which in itself warrants more study.

In Fig. 6 we simulate QTgp across temperature and compare
with experimentally extracted Qrgp values. To extract the
Qrep across temperature, we subtract it from the inverse
sum of the measured QToTAL (m = ﬁ oors T

m). QroTtarL. Was measured in the temperature sweep
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Fig. 6. Experimentally measured Qrgp (points) compared with FEM
simulated Qrgp (lines); close match with simulation suggests all dissipation
mechanisms were measured.

(Fig. 5), QaNcHOR is assumed to be constant across temper-
ature, and Qgas was fit to squeeze film damping theory with
T dependence on temperature. The experimentally extracted
Qrep values closely match the finite element simulation,
which validates all dissipation mechanisms were captured.

IV. CONCLUSION

Using strategically placed thin slots, we have enhanced
the quality factor up to 4.5x in ring resonators. Furthermore,
we present an experimental technique to extract the Qtgp
of a resonator across temperature. We have observed that
despite decreasing the TED by disrupting heat flow path-
ways, we slightly increase the amount of gas and anchor
damping in these devices. These results have implications for
MEMS designers trying to optimize device performance and
sensitivity.
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