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ABSTRACT

Future generations of radio interferometers targeting the 21 cm signal at cosmological distances with N >> 1000 antennas could
face a significant computational challenge in building correlators with the traditional architecture, whose computational resource
requirement scales as O(N?) with array size. The fundamental output of such correlators is the cross-correlation products
of all antenna pairs in the array. The FFT-correlator architecture reduces the computational resources scaling to O(N log N)
by computing cross-correlation products through a spatial Fourier transform. However, the output of the FFT-correlator is
meaningful only when the input antenna voltages are gain- and phase-calibrated. Traditionally, interferometric calibration has
used the O(N?) cross-correlations produced by a standard correlator. This paper proposes two real-time calibration schemes that
could work in parallel with an FFT-correlator as a self-contained O(N log N) correlator system that can be scaled to large-N
redundant arrays. We compare the performance and scalability of these two calibration schemes and find that they result in

antenna gains whose variance decreases as 1/log N with increase in the size of the array.
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1 INTRODUCTION

Traditional correlator architectures that have been used for most radio
interferometers from the Very Large Array (VLA; Thompson et al.
1980) to the Atacama Large Millimeter Array (ALMA; Escoffier
et al. 2007), require computational resources that scale as O(N?)
with the number of antennas. More recently, there has been a re-
newed interest in correlator architectures that require computational
resources that scale less steeply with array size, for low-frequency
radio astronomy applications that require a large collecting area. The
Hydrogen Epoch of Reionization Array (HERA; DeBoer et al. 2017),
the Canadian Hydrogen Intensity Mapping Experiment (CHIME;
Bandura et al. 2014; Newburgh et al. 2014), the Murchison Widefield
Array (MWA; Tingay et al. 2013), LOw Frequency ARray (LOFAR;
van Haarlem etal. 2013), and MITEoR (Zheng etal. 2014) are all built
with relatively cheap antennas that can scale to large-N arrays. At
the low radio frequencies that these telescopes operate at, the signal
chain can also be relatively inexpensive because cryogenic cooling
of receivers is not essential. Receivers are sky-noise dominated at
low radio frequencies (Ellingson et al. 2005), decreasing the need to
lower thermal-noise. If the correlator architecture can also scale up
to large-N arrays, it will be more cost-efficient to build the collecting
area required through numerous small antennas.

In a traditional correlator architecture, the signal from every
antenna is cross-correlated with the signal from every other antenna
in the array. The product of individual cross-correlations are called
visibilities and the set of visibilities from different baselines in the
array is called the visibility matrix. Panel (a) of Fig. 1 shows the
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architecture of a traditional FX-correlator. The first stage performs
a spectral Fourier transform, computing a spectrum of the time-
varying voltage signal from antennas. The second stage computes
the cross-correlation of all antenna pairs, producing a time-integrated
visibility matrix. The computational resources required to generate
the visibility matrix and to store and process the output data products
scale as O(N2) with the number of antennas in the array. For large-N
arrays, this cost can dominate the entire cost of the array and has been
one of the limiting factors for interferometers built in the previous
decade.

For interferometers with antennas on a regular grid, Daishido et al.
(1991), Tegmark & Zaldarriaga (2009), and Tegmark & Zaldarriaga
(2010) have proposed FFT-correlators or FFT imagers as a potential
solution to this steep scaling in cost- and computational-resources. In-
stead of cross-correlating antenna pairs, an FFT-correlator produces
visibilities through a spatial Fourier transform. If the visibilities of
redundant baselines, produced by an FX-correlator, can be averaged,
these two methods are equivalent by the convolution theorem (see
Tegmark & Zaldarriaga 2009, 2010). By the nature of the Fast
Fourier transform algorithm (Cooley & Tukey 1965) FFT-correlators
only scale as O(N log N), decreasing the number of computations
performed in the correlator.

An important difference between an FX-correlator and an FFT-
correlator is that the latter does not preserve the full visibility
matrix. The spatial Fourier transform averages redundant visibilities,
which are expected to be the same, in principle, since they are
visibilities measured by antenna pairs with the same displacement
vector. However, in practice, redundant visibilities are different due
to differences in the signal chain, structure of the dish, varying cable-
lengths, etc. If antenna voltages are not calibrated, the spatial Fourier
transform could result in averaging dissimilar visibilities, making
post-processing correction impossible as well. Hence, antenna gain-

© 2020 The Author(s)

Published by Oxford University Press on behalf of the Royal Astronomical Society

020z Jaquieoa( OE U0 Jasn (JleH 1jeog) me Jo [00yos eluloyijed 10 AlsiaAlun Aq GH2GE6S/99/1L/00S/3191e/SeluwW/Wwod dno olwapeoe//:sdiy Wolj papeojumMo(]


http://orcid.org/0000-0003-3336-9958
mailto:deepthigorthi@berkeley.edu

Reduced redundant-baseline calibration 67

(a) FX Correlator architecture

Spectral Fourier

Cross-correlation

(b) FFT Correlator architecture

Spectral Fourier

—> Transform

—> Transform A .
full _ & & Visibility Offline
Antennas —> Vi =vaxv Matrix > Calibration
> V= Fv®)]
FFT Correlator

Calibration

Spatial Fourier
Transform

Vuniqne = F—l |F [““,/] |2

Z Calibrated
Unique
time Visibilities

Antennas ——>|
—>

| g

v=F[v(n]

Downsized
cross-correlation

Reduced Redundant
Calibration

yreduced

g« Vreduced

Calibrator

Figure 1. Panels (a) and (b) show the correlator architectures for a traditional FX-correlator and an FFT-correlator, respectively. For either architecture, the
first stage Fourier transforms the voltage measured by each antenna v(#) to obtain a spectrum ¥, and the second stage computes visibilities of all antenna pairs.
For an FX-correlator, the visibility matrix V! is computed by cross-correlating the signal from every antenna with every other antenna in the array. For an
FFT-correlator, the visibility matrix V"9 is computed by a spatial Fourier transform on the calibrated antenna voltages (yellow box). The calibrator (blue box)

operates in-parallel to the FFT-correlator and computes per-antenna gains for calibrating antenna voltages. The antenna gains are computed by performing one of

the two reduced redundant-baseline calibration schemes described in this paper; on a smaller visibility matrix V*4¢d computed for the purpose of calibration.

and phase-calibration, prior to the spatial Fourier transform, is
essential to avoid signal-loss in the FFT-correlator.

An FFT-correlator that implements the design proposed by
Tegmark & Zaldarriaga (2009) is the one built by Foster et al. (2014)
on the BEST-2 array at Medicina, Italy. They demonstrated that
the visibilities produced by the FFT-correlator and the redundantly
averaged visibilities of an FX-correlator are similar when all the an-
tennas are calibrated before the spatial Fourier transform. However,
they used a traditional FX-correlator working in parallel to generate
all the visibilities required for point-source calibration. This is not
a scalable solution for calibrating large-N arrays, since building an
FX-correlator may not be viable.

A more generic alternative to the FFT-correlator, discussed by
Thyagarajan et al. (2017), is a direct-imaging-correlator called the E-
field Parallel Imaging Correlator (EPIC) that has now been deployed
on the LWA (Kent et al. 2019). It works like a Modular Optimal
Frequency Fourier (MOFF; Morales 2011) correlator, where antenna
voltages are gridded before a spatial Fourier transform produces
an electric-field image. Unlike the FFT-Correlator, EPIC can also
be implemented on non-redundant arrays, including arrays where
the antenna beams are non-identical. For highly redundant arrays
with identical antenna beams, EPIC becomes equivalent to the FFT-
correlator. Beardsley et al. (2017) propose an iterative sky-based
calibration algorithm, EPICal, for such a correlator that does not
require generating real-time visibility products and scales as O(N).
However, EPICal requires prior knowledge of antenna beams that
can be difficult to model or measure in situ at low radio frequencies.
Moreover, the lack of accurate diffuse-sky models that also account
for polarization at these frequencies could make it harder to decouple
the sky-signal from beam models. In this paper, we choose to discuss
only redundant array layouts, where the redundancy can be exploited
for calibration.

An ideal calibration scheme for FFT-correlators, must be capable
of minimizing the scatter in redundant visibilities because any
residual scatter will become additional noise on the visibility returned
by the correlator. Additionally, the calibration scheme must produce
an output that can be applied to antenna voltages. Liu & Shaw (2019,
section 9) summarize calibration methods that can be applied to
redundant arrays. Redundant-baseline calibration (Wieringa 1992;
Liu et al. 2010; Noorishad et al. 2012; Marthi & Chengalur 2014)
that has been used to calibrate the Donald C. Backer Precision Array
for Probing the Epoch of Reionization (PAPER; Parsons et al. 2010;
Ali et al. 2015; Kolopanis et al. 2019), LOFAR (Noorishad et al.
2012), MITEoR (Zheng et al. 2014, 2017), and HERA (Dillon et al.
2020) results in complex antenna gains that can be applied to antenna
voltages. The multiplicative antenna gains are computed by solving a
system of equations that minimize the scatter in calibrated redundant
visibilities.

A known caveat of redundant-baseline calibration is that it can
only yield relative antenna gains (Liu et al. 2010; Dillon et al.
2018), i.e. the equations can constrain the ratio of antenna gains
but cannot determine their actual value. The system of equations
has a null space with four degenerate parameters including the
absolute amplitude and the phase of antenna gains. However, this
is not a problem for calibrating voltages for the purpose of FFT-
correlation, since it requires only relative calibration of antennas so
that visibilities of redundant baselines can be averaged coherently.
Absolute calibration, to determine the degenerate parameters, can
still be performed offline with the visibilities generated by the FFT-
correlator.

Applications of redundant-baseline calibration, so far, had the full
visibility matrix available for constructing the system of equations
for calibration. However, redundant-baseline calibration does not
inherently require all N(N — 1)/2 visibilities measured at high
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signal-to-noise ratio (SNR). This paper explores two redundant-
baseline calibration schemes that can use O(N log N) computational
resources for generating visibilities for the purpose of calibration and
are henceforth referred to as reduced redundant-baseline calibration
schemes.

The FFT-correlator architecture assumed in this paper is similar to
the one proposed by Zheng et al. (2014). This is shown in panel (b)
of Fig. 1. The first stage, computing a spectrum of antenna voltages,
is similar to the FX-correlator architecture. The yellow boxed region
shows the FFT-correlation where a spatial Fourier transform on
calibrated voltages results in the time-integrated unique visibilities
of the array. Notice that the FFT-correlator does not produce the full
visibility matrix; the redundant baselines are averaged by the spatial
Fourier transform.

The blue boxed region in Fig. 1 shows the calibrator, which is
the main focus of this paper. It performs two functions: (a) cross-
correlate the baselines required for calibration in a manner similar to
the second stage of an FX-correlator and (b) compute antenna gains
by applying one of the two reduced redundant-calibration schemes
on this set of visibilities. The computation- and resource-intensive
stage of the calibrator is the first step of cross-correlating antenna
pairs. The number of baselines that need to be cross-correlated in
a given integration cycle determines the computational resources
required by this stage of the calibrator. The reduced redundant-
baseline calibration scheme employed by the calibrator dictates
the set of visibilities that need to be cross-correlated and hence
determines the size of the calibrator. Both the calibration schemes
discussed in this paper can be adapted to a calibrator that scales as
O(N log N), keeping the size of the calibrator comparable to the size
of the FFT-correlator.

In the first reduced redundant-baseline calibration scheme, low-
cadence calibration, the calibrator computes the full visibility matrix
by cycling through baseline pairs. As an extreme example, if the
computational resources allocated to the calibrator can only cross-
correlate one antenna pair at a time, the low-cadence calibrator
will generate the full visibility matrix by cycling through all the
antenna pairs in the array. The full visibility matrix, constructed in
this fashion, is then used for redundant-baseline calibration. While
all the ~N?/2 visibilities are used for redundant-baseline calibration,
they are computed by using only a small fraction of the resources
of an O(N?) FX-correlator. By adjusting the integration time and the
number of visibilities computed within each cycle, the computational
resources required by a low-cadence calibrator can be limited to an
O(N log N) scaling.

The second reduced redundant-baseline calibration scheme, subset
redundant calibration,' is a generalization of hierarchical redundant-
baseline calibration described by Zheng et al. (2014) (see the
Appendix). In subset redundant calibration, the calibrator computes
a partial visibility matrix by cross-correlating only a limited set
of antenna pairs. Redundant-baseline calibration is applied to this
partial visibility matrix to estimate the antenna gains. For example,
in highly redundant arrays, since the shortest baselines involve all the
antennas in the array, it is often possible to compute antenna gains by
performing redundant-baseline calibration on just the shortest base-
lines. Since only a subset of the full visibility matrix is generated for
the purpose of calibration, this technique is called subset redundant
calibration. Depending on the baseline-types chosen for redundant-
baseline calibration, the computational resources required by such a
calibrator can also be limited to an O(N log N) scaling.

IShortened from subset redundant-baseline calibration.

MNRAS 500, 66-81 (2021)

AN, =

NYAYAYAYA

O @@ —P 0@

North-South

East-West

Figure 2. A hexagonal redundant array, that is loosely based on HERA, is
used as a prototype for demonstrating the properties of reduced redundant-
baseline calibration in this paper. Three different redundant baseline groups
are marked by blue, orange, and grey arrows.

In the rest of this paper, we attempt to show that the gains
estimated using either low-cadence calibration or subset redundant
calibration, are capable of minimizing the scatter in the visibilities
of redundant baselines. We lay out metrics for comparing the two
reduced redundant-baseline calibration schemes and assessing their
scalability to large-N arrays. Ultimately, we attempt to show that the
calibrator design proposed here makes self-contained O(N log N)
correlators conceivable for future generation large-N arrays.

The layout of the rest of the paper is as follows. Section 2 quantifies
the parameters that are important for understanding the performance
of either reduced redundant-baseline calibration method in our
simulations (Section 3). Sections 4 and 5 examine low-cadence
calibration and subset redundant calibration, respectively, and discuss
the limits within which they result in convergent gain solutions.
Section 6 compares the performance of both methods for arrays
of various sizes and discusses the limitations and advantages of
employing either method for calibrating large-N arrays. Section 7
presents the conclusions of this paper.

2 METRICS TO EVALUATE REDUCED
REDUNDANT-BASELINE CALIBRATION

Redundant-baseline calibration computes per-antenna complex gains
by minimizing the scatter in the visibilities of redundant baselines,
which makes it a suitable calibration scheme for FFT-correlators. It
relies on the fact that pairs of antennas with the same beam patterns,
spaced at equal distances, measure the same visibility. If Vj; is the
visibility product of two antennas spaced a distance d apart in the
east—west direction, then the visibility measured by two different
antennas, V,, is the same as Vj; if they are also spaced a distance d
apart in the same direction. In practice, this is often not true because
of variations in amplifier gain, timing differences originating in the
correlator, cable delays etc., that need to be calibrated. By comparing
visibilities that are theoretically identical, it is possible to infer the
calibration parameters for the antennas involved.

In the case of highly redundant arrays such as HERA, PAPER,
CHIME, and the MWA Phase-II hexes, there are many more visibility
measurements than unique baselines. This allows one to build a
system of equations, which can be solved to estimate all the antenna
calibration parameters. For the array layout shown in Fig. 2, the
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system of equations can be constructed as’
meas * true

Vor © = 8& 'V, " +no
meas * true
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meas * true
Voo & = 80& Vs T+ nm

longer baselines, (1)

where V™ is the unknown, model true visibility of all the baselines
with a displacement vector d,, Vé‘“e is the unknown model true
visibility of baselines with displacement vector dg, and so on.
Baselines with the same displacement vector are said to be of the
same baseline-type. V;7* is the visibility measured by the pair of
antennas (i, j) in the field, and n; is the noise in that measure-
ment. The per-antenna, complex gains denoted by g; represent the
calibration parameters of the antennas involved in measuring that
visibility.

The redundant-baseline calibration process estimates the gains and
models true visibilities that best describe the measured visibilities.
When the full visibility matrix V! is used for the set of measured
visibilities V/j***, the V" returned by the redundant-baseline cali-
bration process represents the minimum-scatter average visibility for
that unique baseline-type.

The system of equations in equation (1) can also be built using
the visibility matrix computed by the calibrator V™% In the
case of low-cadence calibration, this set of visibilities may have
a lower SNR than the full visibility matrix due to smaller integration
times in the calibrator. In case of subset redundant calibration,
this set of visibilities is smaller than the full visibility matrix (but
sufficient to determine and over-constrain all the variables in the
system of equations) due to fewer cross-correlations computed by the
calibrator. The Vs estimated by either reduced redundant-baseline
calibration schemes are discarded and only the antenna gains are
used to calibrate voltages for the spatial Fourier transform. The
redundant-baseline averaged visibilities for all unique baseline-types
are computed by the FFT-correlator.

For the purpose of this paper, it is useful to consider an intermediate
hypothetical step in the spatial Fourier transform where the redundant
baselines have not yet been averaged. At this stage, the visibilities in
the FFT-correlator would be equivalent to the calibrated visibilities
of an FX-correlator. The baseline averaging stage within the FFT-
correlator, that generates yunique - can be written in terms of the full
visibility matrix as

:NLZ

Y (i, j)ea

full
v

V;uique g gjc (2)

)

2In general, all the measurements and variables in this system of equations
have a time and frequency dependence. We have omitted writing this explicitly
for notational convenience.
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where N, is the number of redundant baselines that contribute to that
baseline-type. Since it is easier to quantify the effect of calibration
on visibilities than on voltages, we use this equation to represent the
process of calibration in the FFT-correlator.

Another difference between traditional redundant-baseline cali-
bration and reduced redundant-baseline calibration, that is evident
from equation (2), is that the latter estimates antenna gains from
a different set of visibilities (V™) than what they are finally
applied to (V). In this section, we discuss two metrics that will
help in evaluating the effect of this: (a) the uncertainty in estimated
antenna gains and (b) scatter in visibilities calibrated by a reduced
redundant-baseline calibration process.

The uncertainty in antenna gains has to decrease or remain constant
with increase in array size, for the reduced redundant-baseline
calibration scheme, and consequently the calibrator design, to be
scalable to large arrays. Moreover, the uncertainty in the estimated
gains can be expressed in terms of the SNR of the measured visibil-
ities and the number of baselines used in the calibration process,
providing us with a convenient metric to directly compare low-
cadence calibration and subset redundant calibration. The overall
uncertainty in the redundant-baseline averaged calibrated visibilities
comes from both the noise in the measured visibilities and the
uncertainty in the estimated gains. A quantitative measure of the
antenna gain uncertainty will help us estimate the contribution of
gain errors to the overall error in the calibrated visibilities.

The scatter in visibilities post-calibration is a direct probe of the
effectiveness of the reduced redundant-baseline calibration process
in estimating gains that can calibrate antenna voltages for the FFT-
correlation. The spatial Fourier transform averages the visibilities
of redundant baselines (equation 2) converting any residual scatter
into noise in the estimated visibilities. Hence, quantifying the
post-calibration scatter will help us evaluate the performance of
either reduced redundant-baseline calibration scheme with respect
to traditional redundant-baseline calibration.

An important mathematical detail, before delving into the metrics
that assess reduced redundant-baseline calibration schemes, is that
the system of equations represented by equation (1) is not linear.
Wieringa (1992) suggests a logarithmic approach to linearizing
which can be written as

In V7 =Ing +Ingj +InV,™ +nj. (3)

The noise parameter n}; evaluates to a non-Gaussian error that
depends on the SNR of the measured visibilities. Liu et al. (2010)
discuss the noise-bias in antenna gains due to this non-Gaussianity,
and propose another approach based on Taylor expanding the
variables around a starting point. This paper employs a widely used
third approach, called omnical (Zheng et al. 2014; Ali et al. 2015;
Li et al. 2018; Dillon et al. 2020), that was originally developed
for the MITEoR experiment. We use the logarithmic approach to
make theoretical arguments about the nature of gain solutions, since
constant coefficients make the system of equations easier to analyse.
However, simulations run to test these arguments and the plots shown
in this paper have been generated by employing the omnical
algorithm that is not noise-biased. In general, most of the results
presented in this paper are not dependent on the solving technique
used.

2.1 Uncertainty in antenna gains

The uncertainty in the antenna gains, estimated by solving a system
of equations, is given by the variance—covariance matrix (covariance
matrix henceforth). The linearized system of equations shown in
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equation (3) can be written in matrix notation as AX + n = b, where
A is a constant complex-valued matrix of dimensions N,, X N,
(N,, is the number of measured visibilities and N, is the number
of variables). x, b, and n’ are one-dimensional matrices of the
variables (log-gains and log-unique-visibilities), measured quantities
(log-visibilities), and noise in each measurement, respectively. The
covariance matrix C (of dimensions N, x N,) for the estimated
variables is given by

C = xx') = (ATN"TA)L. 4)

The diagonal of the covariance matrix gives the variance in estimated
variables, including antenna gains. The noise covariance matrix (N =
(nn')) is a statistical estimate of the noise in the measurement matrix
b. The matrix n cannot be measured and can only be estimated from
the thermal noise expected in the measurements.

The covariance matrix C reflects the covariance between all
variables returned by the reduced redundant-baseline calibration
process. Since the calibrator uses only the antenna gains and discards
the model visibilities estimated by redundant-baseline calibration,
the covariance matrix of interest is the marginalized covariance
(C’) of just the antenna gain solutions. Assuming all variables are
normally distributed, the marginalized covariance matrix for a subset
of variables is given by the rows and columns of the variables
of interest. Hence, the marginalized covariance matrix of the gain
solutions is given by the first N rows and columns of the covariance
matrix in equation (4), where N is the number of antennas in the
array.

Liu et al. (2010, section 2.4) derive the noise covariance matrix
for the logarithmic approach to linearizing (equation 3) under the
assumptions that the measured visibilities have a high SNR, and
that the noise in the measured visibilities is uncorrelated between
baselines, Gaussian in nature and similar across all baseline-types.
This noise covariance matrix evaluates to

N~ (SNR)2 1 ()

under the additional assumption that all the baselines in the array
have the same average SNR. In general, this assumption does not
hold when observing a real sky. However, in this paper, we only use
SNR in the context of other array-averaged parameters, for which
this assumption is justified. Since we have assumed that the noise is
uncorrelated between baselines, the noise covariance matrix is just
proportional to the identity matrix I.

Substituting the noise covariance matrix into equation (4), and
taking the first N rows and columns of the covariance matrix, which
we denote by (ATA)(_A}X > We get the covariance of antenna gains.
The diagonal of this matrix represents the variance or uncertainty in
the estimated antenna gains:

o, ~ (SNR) ™ diag [(ATA) ] - ©

The two reduced redundant-baseline calibration schemes effect the
uncertainty in gains according to the above equation. In low-cadence
calibration, the lower SNR of visibilities in the calibrator result in
higher gain variance as compared to traditional redundant-baseline
calibration. In subset redundant calibration, only a sub-matrix of A
is used for calibration, again resulting in antenna gains with a higher
variance.

The matrix (ATA) is nearly diagonal (small off-diagonal terms),
with each entry equal to the number of equations in which the corre-
sponding variable is involved. When redundant-baseline calibration
is performed using the full visibility matrix, the first N diagonal
entries of this matrix are each equal to N since every antenna is
involved in N equations. At constant SNR, this results in the following
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scaling for gain variance:

, 1
oy X N @)
In Sections 4 and 5, we derive a scaling relation for the variance in
gains estimated using a O(N log N) calibrator that implements low-
cadence calibration and subset redundant calibration respectively,
and compare it with the above relation.

2.2 Scatter in visibilities of redundant baselines

The spatial Fourier transform in an FFT-correlator, which decreases
the computational scaling from O(N?) to O(N log N), averages
the visibilities of redundant baselines. Hence, the post-calibration
residual scatter in redundant visibilities is an important metric
for assessing the gains estimated by a reduced redundant-baseline
calibration process.

The scatter in redundant visibilities is quantified by the reduced
x* of antenna gains and model visibilities (x?) which is given by

2
Pepp 3 e ®
" Do o2 ’

(i,])ea,Ya ij

where ofj is the variance of the noise in measured visibilities, n;;,

1
in equation (1). DoF is the degrees of freedom in this system of

equations given by
DoF = Ngps — N — Nyt + 2. ©)

Nobs 1s the total number of cross-correlations computed (or number
of visibility measurements), N is the number of antennas in the array,
and N, is the number of unique baseline-types in the system of
equations. The additional offset by two accounts for the number
of degenerate parameters in the system of equations representing a
single-polarization (Dillon et al. 2018, 2020).

The reduced redundant-baseline calibration process within the
calibrator is setup to minimize the x between the visibility matrix
computed by the calibrator V< and the estimated gains and
model true visibilities. In an array with identical antennas and perfect
redundancy, we expect this x to evaluate to one.

The estimated gains, however, apply to antenna voltages prior
to the spatial Fourier transform that computes a different visibility
matrix VU"9% than that used in the reduced redundant-baseline cali-
bration process. Hence, the x? evaluated using the gains estimated by
the reduced redundant-baseline calibration process, model visibilities
computed by the FFT-correlator (estimated using equation 2) against
the V;7*** drawn from the full visibility matrix computed by an FX-
correlator, is a useful a metric to assess the effectiveness of the
estimated gains in calibrating the whole array.

In Section 6, we use the x> computed in this way to compare the
performance of reduced redundant-baseline calibration to traditional
redundant-baseline calibration with the full visibility matrix.

3 SIMULATION

In the following sections, we discuss the performance of low-
cadence calibration and subset redundant calibration using simulated
visibilities and antenna gains. We use hexagonal array layouts, like
the one shown in Fig. 2, with varying number of antennas for the
simulations. Though this layout is loosely based on HERA (see
Dillon & Parsons 2016), we expect the derived trends to hold for
any two-dimensional redundant array layout. We assume perfect
redundancy in the array and identical antenna beams.
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The simulations start by generating a set of true visibilities for all
the unique baseline-types and a set of gains for all the antennas in
the array. These simulated true visibilities have a random constant
average amplitude across all baseline-types are constant in time and
uncorrelated between baseline-types. While this does not reflect a
real sky signal, it is sufficient for the purpose of this paper because
redundant-baseline calibration only has a weak dependence on the
actual signal observed. The simulated antenna gains are Gaussian-
distributed, with an average amplitude of 1. The antenna-to-antenna
variation, or gain scatter, is assumed to be at the ~10 per cent level
which was found to be typical for HERA antennas (Kern et al. 2020).

The process of calibration in the FFT-correlator (the first step in the
yellow boxed region of Fig. 1) is simulated by applying the estimated
gains to the full visibility matrix. This is equivalent to applying the
gains to individual antenna voltages and cross-correlating them. The
full visibility matrix computed by an FX-correlator, V!, is generated
by multiplying the simulated gains and true visibilities and adding
Gaussian random noise. In the simulations where an explicit SNR for
the visibilities is not mentioned, we have assumed an SNR of 10 even
though a more favourable SNR is expected in practice. The visibilities
produced by the FFT-correlator V¥4 are generated by applying the
gains estimated by one of the reduced redundant-baseline calibration
processes to this full visibility matrix (equation 2).

For low-cadence calibration, the visibility matrix computed within
the calibrator, Vel i generated by adding higher amplitude
Gaussian noise to the multiplied gains and true visibilities. For subset
redundant calibration, this visibility matrix is generated by choosing
the visibilities of the selected antenna pairs from the full visibility
matrix. Reduced redundant-baseline calibration is performed on this
visibility matrix using the omnical algorithm, with a damping
factor of 0.3 and convergence criteria of 107'°. The amplitude and
phase degeneracies of the resulting gains are fixed by comparing
with the amplitude and phase of the simulated input gains. Unless
otherwise specified, the variance of antenna gains is computed by
running 256 simulations with the same underlying gains and different
realizations of true visibilities.

4 LOW-CADENCE CALIBRATION

Low-cadence calibration is a reduced redundant-baseline calibration
scheme that estimates antenna gains from visibilities that have been
computed in a round-robin fashion. The calibrator in Fig. 1 cross-
correlates the baselines required for calibration, but the computa-
tional resources allocated to it cannot scale faster than O(N log N).
The computational resources required to compute visibilities is
determined by the number of baselines that need to be cross-
correlated simultaneously. By decreasing the number of antenna
pairs that need to be correlated at a time, the computational resources
required by the calibrator can be reduced. The full visibility matrix is
populated after a few cycles and this is used to redundantly calibrate
the array. Since redundant-baseline calibration can only be performed
once in a given number of cross-correlation cycles, this calibration
scheme is called low-cadence calibration.

The size of a low-cadence calibrator is determined by two
parameters — the time period available for generating the full visibility
matrix within the calibrator (7.,) and the integration time allotted to
each cycle (#;,). These are related by the equation:

feal = Ncycle X Tint (10)

where Nyl is the number of integration cycles taken by the calibrator
to populate the full visibility matrix. The size of the low-cadence

Reduced redundant-baseline calibration 71

calibrator is inversely proportional to Neycy. i.€. for a small calibrator
size we require a large 7., and a small #y,.

Redundant-baseline calibration operates under the assumption that
antenna gains and true visibilities are constant during the time period
required to compute all the visibilities involved in the system of
equations. For an FX-correlator, this is equal to the integration time
of the full visibility matrix which is usually smaller than the inherent
gain variability, and necessarily smaller than the time period over
which the visibilities evolve due to a constantly rotating sky. For
a low-cadence calibrator, the constancy of antenna gains and true
visibilities within a calibration cycle has to be manually enforced.

The upper limit of 7. is set by the inherent gain variability of
the array, which could depend on numerous factors including the
analogue signal chain, the radio frequency interference environ-
ment and the precision of antenna gains required for the science
application. If the time taken to generate the full visibility matrix
is larger than the interval within which gains can be assumed to
be constant, redundant-baseline calibration can result in erroneous
gain solutions. If the time period of gain variability is large, it is
possible that the true visibilities change within this period. However,
to preserve redundancy we only require that all pairs of antennas
with the same baseline be correlated simultaneously. Since this is
necessarily always less than N visibilities, a calibrator which can
cross-correlate at least NV baselines can accommodate the largest
redundant-baseline group in the array and satisfy this condition.

A realistic lower limit for 7., is the integration time of visibilities
in the FFT-correlator. Within this period, the assumption of constant
antenna gains and true visibilities holds and redundant-baseline
calibration can be solved using the algorithms currently available.
While 7., can theoretically be set to a smaller value, it could
unnecessarily increase the size of the calibrator by decreasing Neycle
for a given fiy.

4.1 Scaling in gain variance with integration time

The relationship between integration time and SNR of a measured
visibility is given by the radiometer equation (see Thompson,
Moran & Swenson 2017, Appendix 1.1). Substituting the radiometer
equation into the variance of antenna gains in equation (6), we get

o, ~ (SNR)™ diag [(ATA) ¥, )]

o (v/Iin) 7 diag [(ATA), )] o ,i (11)
mnt
which quantifies the variance of the antenna gains estimated by
performing redundant-baseline calibration on visibilities integrated
for a given duration. A shorter integration time leads to lower SNR
in the measured visibilities and consequently, a higher variance in
the antenna gains.

Fig. 3 shows the trend in estimated gain variance with the average
SNR of all the visibilities in an array. Each box in the figure
represents the distribution of gain variance over all antennas in
the array and has been generated assuming that all the baseline-
types in the array have the same specified SNR. When the average
SNR of visibilities is high, the estimated antenna gain variance
follows the expected inverse square relationship. At low SNR, when
the theoretical gain variance estimated using equation (6) becomes
comparable to the antenna-to-antenna scatter in gains squared (~0.01
for this simulation), redundant-baseline calibration fails at estimating
antenna gains. Below a threshold SNR, that is set by the gain scatter,
the inverse square relationship breaks down and the variance of
estimated antenna gains becomes dependent on the solver. That is,
the logarithmic approach, Taylor expansion approach, and omnical
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Figure 3. Relationship between the variance of antenna gains and the SNR
of visibilities used for low-cadence calibration. The dashed line represents
the inverse square relationship predicted by equation (6) and the boxes show
the results of simulation. The estimated variance of antenna gains in each
simulation is a distribution of N points, where N is the number of antennas
in the array. The upper and lower limits of the ‘box’ represent the upper
and lower quartiles of the distribution. The horizontal bar within the box
represents the mean of the distribution, and the whiskers show the total range
of the estimated gain variances. At high SNR, the gain variance follows
the theoretically expected trend. At low SNR, the variance is higher than
the predicted value and becomes solver dependent because the x2 is not
effectively minimized by the solver.

algorithms of linearizing the system of equations result in different
deviations from the given trend. This is because each algorithm
minimizes x> in a different way and none of them are effective at
converging to the solution.

4.2 Scaling in gain variance with an O(N log N) calibrator

Fig. 4 shows the trend in gain variance with SNR of measured
visibilities for hexagonal layouts with different number of antennas.
The variance is suppressed by a factor of N as the number of antennas
in the array increase, because of the (ATA)(‘N'Xm term in equation (6).
Notice that in larger arrays, the gain variance follows the theoretical
trend even when the SNR of measured visibilities is less than one.

The threshold SNR below which the gain variance diverges from
the theoretical prediction, changes with the number of antennas in
the array. When the theoretical gain variance is less than the square
of the expected gain scatter, the gain variance follows the inverse
square relationship even when the SNR of measured visibilities is
less than one. This result is important because it allows low-cadence
calibration to be scaled to extremely large arrays.

Say, the computational resources allocated to the calibrator are
restricted to scale similarly as the FFT-correlator. The calibrator
cross-correlates pNlog N baselines in each integration cycle, where
p is a pre-factor (like a proportionality constant) to convert the
O(N log N) scaling into number of baselines. A larger pre-factor
would result in a larger calibrator size. For a fixed interval of
calibration t.,, the integration time is smaller for larger arrays
according to the scaling:

NlogN 2plog N
ting = (%) Teal = <%> Tcal- (12)

Hence, even if the interval of calibration is large, the multiplying
factor might become small enough to push the SNR of measured
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Figure 4. Relationship between distribution of gain variance and SNR
of visibilities used in low-cadence calibration. The four different colours
represent hexagonal arrays of various sizes; legend shows the number of
antennas in each layout. The solid lines represent the theoretical trend
predicted by equation (6) and the boxes show the distribution of gain variance
obtained from simulation (see Fig. 3 for explanation). The threshold SNR,
below which the variance deviates from the theoretical trend, is dependent on
the number of antennas in the array.

visibilities to less than one. Substituting the result of equation (12)
into equation (11), we get

) N 1 1 1 1

aga(i-—)—u(7>~—, (13)
217 10g N fea N p 10g N Tcal

which shows that the antenna gain variance improves with array
size even at constant 7., . That is, even though the SNR of measured
visibilities might decrease to a value less than one, the antenna gain
variance decreases. The price that one pays for not using O(N?)
resources for calibration is that the precision in antenna gains scales
more slowly as compared to that of redundant-baseline calibration
with the full visibility matrix which is given by equation (7).

Low-cadence calibration is a calculated way of trading compu-
tational resources for precision in the antenna gain solutions. As
long as the size of the calibrator scales faster than O(N) with
the size of the array, the variance in antenna gains decreases
with increase in the number of antennas. A potential drawback
of low-cadence calibration, especially when applied to arrays with
over 10 000 antennas, is the time taken by a linearized solver
to result in convergent gains. Dillon et al. (2020) show that the
time taken by the omnical algorithm scales as O(N?) when the
solver has to optimize N? baselines. If the time interval between
calibration cycles 7., can be proportionally decreased, it might still
be possible to obtain real-time solutions. However, 7., is usually
set by the inherent gain variability in the array which might not
be scalable with array size. One way of addressing this issue
is to look at redundant-baseline calibration with a limited set of
baselines.

5 SUBSET REDUNDANT CALIBRATION

The spatial Fourier transform in an FFT-correlator averages visi-
bilities of redundant baselines. Traditional redundant-baseline cal-
ibration assumes that all the ~N?/2 cross-correlation products are
available for calibration, which could be non-viable to compute for
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large-N arrays. Subset redundant calibration is a reduced redundant-
baseline calibration scheme that attempts to estimate antenna gains
from visibilities of only a limited set of baseline-types. This section
examines the effect of not using all baselines for redundant-baseline
calibration on the variance of estimated antenna gains.

While considering baselines for subset redundant calibration, it is
useful to distinguish between baseline-types (or unique baselines)
and redundant baseline groups. A baseline-type that a particular
antenna pair belongs to is specified by the displacement vector
between the two antennas. A redundant baseline group consists of
all the antenna-pairs that have the same baseline vector. For instance,
Fig. 2 shows three different baseline-types with displacement vectors
pointing east (grey), south-east (blue) and Southwest (orange). Each
baseline-type has 30 different antenna pairs in its redundant baseline
group, marked in arrows of the same colour.

5.1 Brief discussion on using short baselines

The short baseline-types are important in subset redundant cali-
bration for two main reasons: (a) they involve all the antennas
in the array, allowing redundant-baseline calibration on just these
visibilities to estimate all the antenna gains and (b) the redundant
baseline groups of these baseline-types are larger than the longer
baseline-types. For example, in the layout shown in Fig. 2, there are
30 baselines in each of the redundant baseline groups that belong to
the shortest three baseline-types, while there are only four baselines
that belong to the group formed by the baseline-type like (0,31).
This is important for subset redundant calibration because every
new baseline-type added to the system of equations requires a new
variable in the form of the unique visibility for that baseline-type.
Since the short baselines have a higher ratio of redundant baselines
(measurements) to unique visibilities (variables), they contribute
more to constraining the gain solutions.

In addition to this, at low radio frequencies, the short baselines
pick up the bright diffuse emission from our galaxy and have
high SNR visibilities. As shown in equation (6), this suppresses
gain variance and results in higher precision gain solutions. Orosz
et al. (2018) discuss other advantages of using only short baselines
from the perspective of non-redundancies in a realistic array lay-
out. They argue that calibration errors affect the inferred power
spectrum, and contamination worsens when longer baselines are
included in the redundant-baseline calibration process. Li et al.
(2018) point out that redundant-baseline calibration performs better
than sky-based calibration at low radio frequencies, partly be-
cause short baselines have to be ignored for sky-based calibration
due to poor diffuse sky models. On the other hand, the shorter
baselines are more susceptible to systematic errors like antenna
cross-coupling (Kern et al. 2019) and may be more non-redundant
than the longer baselines (Dillon et al. 2020) in a realistic array
layout.

A practical subset redundant calibrator would cross-correlate a
combination of short and long baselines that produces the best
estimate of antenna gains for the array. Since the voltages from
all the antennas are available to the subset redundant calibrator,
the combination of baselines that it needs to compute can also
dynamically change with time/day of observation. In this paper, the
baselines used to perform subset redundant calibration are considered
in the order of baseline length from shortest to longest. That is,
a smaller calibrator preferentially cross-correlates only the shorter
baselines. However, the results presented in this section apply to
combinations of short and long baselines as well.
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Figure 5. Relationship between fraction of baselines used in subset redun-
dant calibration and the resulting variance in estimated gains. The boxes show
the distribution of gain variances in simulation (see Fig. 3 for explanation),
where increasingly longer baselines are included in the subset redundant
calibration system of the simulation. When the fraction of baselines used in
estimating antenna gains is small, the gain variance depends on the number
of unique visibilities per antenna used in calibration (Nypj: an); this trend is
shown by the dashed green line. When a large fraction of baselines are used for
calibration, the gain variance depends on the total number of measurements
per antenna (Np. anc); shown by the solid blue line. A second set of boxes
in grey show the antenna-to-antenna variation with all the edge antennas
excluded.

5.2 Degeneracy criterion

When using a limited set of baselines for redundant-baseline cal-
ibration, it is important to ensure that there are sufficient number
of measurements to determine all the variables. The solution space
of equation (1) has a null space with following four degenerate
parameters (Wieringa 1992; Liu et al. 2010; Dillon et al. 2018):

(a) The absolute amplitude of the gains (or the sum of all gains)
(b) The absolute phase of the gains (or the sum of all gain phases)
(c) The phase slope of the gains in the x-direction

(d) The phase slope of the gains in the y-direction

When selecting baselines for subset redundant calibration, it is impor-
tant to verify that the null space of the solution set is restricted to these
four degenerate parameters. Introducing more degeneracies allows
the gain solutions to vary in that dimension and could require future
corrections. If the additional degeneracy does not have a physical
interpretation, this may not even be possible. For a hexagonal layout
like the one shown in Fig. 2, a minimum of three unique baseline-
types, with displacement vectors in the directions marked in the
figure, are required to satisfy the degeneracy requirement.

5.3 Scaling in gain variance with number of baselines

Fig. 5 shows the relationship between number of baselines used in
subset redundant calibration and the corresponding variance in the
estimated gains. The number of baselines are shown in terms of a
fraction of the total baselines in the array. The black boxes show
the results of simulation (see Section 3). The x-axis from left to right
represents baselines added to the subset redundant calibration system
in ascending order of baseline length (starting with the minimum
required to satisfy the degeneracy criterion). For each baseline-type
added to the system, it is assumed that all the redundant baseline
pairs that contribute to that baseline-type are used for calibration.

MNRAS 500, 66-81 (2021)
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The SNR of visibilities is assumed to be similar for all baseline-
types (unlike for a real sky) and constant through the simulation.
The vertical range of the boxes, which represents distribution of gain
variance over antennas in the array, is larger than the case of low-
cadence calibration. However, most of this variation comes from the
edge antennas in the array. A second set of solid boxes in grey shows
the distribution of gain variances with the edge antennas excluded.
The reason for this decrease in variation is discussed in more detail
in Section 5.4.

The solid line, in blue, represents the inverse of the total number
of baselines per antenna (Ny. .y) that are used to perform subset
redundant calibration:

Nobs fN2/2 N
~t IS 14
N N f 5 (14)

Here, f represents the fraction of all baselines used in subset
redundant calibration. When the fraction of baselines used in subset
redundant calibration is high, the gain variance asymptotes to the
inverse of the total number of measurements-per-antenna in the
system of equations. This trend is expected from the Gaussian noise
in visibility measurements; each new measurement added to the
system contributes to decreasing the noise in the estimated gains.

When the fraction of baselines used in estimating antenna gains
is small, gain variance depends on two factors: (a) the number of
baseline-types included in subset redundant calibration and (b) the
number of antennas that are involved in forming redundant baselines
for these baseline-types. A combination of these two factors is
captured by the variable Ny ane that represents the average number
of unique visibilities per antenna:

Nbl;am -

1
Nubl;ant - N ; Nam[e Voz]~ (15)

In the above equation, the variable being summed is the number
of antennas that are involved in forming redundant baselines of the
baseline-type V,. The summation runs over all the baseline-types that
are used in subset redundant calibration and N is the total number
of antennas in the array. Consider the case where all the baseline-
types used in subset redundant calibration have redundant baselines
involving all the antennas in the array (for instance, when only the
shortest three to six baseline-types are used for calibration). In such
a system, Nypj; ane Simply evaluates to the total number of baseline-
types (or unique visibilities) used in the calibration process. If some
of the baseline-types used in subset redundant calibration involve
only a couple of antennas, Nypj. ane is smaller than the total number of
unique visibilities in the system of equations.

Empirically, we find that the relationship between gain variance
and the average number of unique visibilities per antenna is a power
law with a slope around —1.5 for hexagonal and square layouts. This
power-law trend is shown by the dashed green line in Fig. 5. The
large antenna-to-antenna variation in this regime makes it difficult to
determine the exact slope or understand the origin of this power law.
We suspect that it originates in the way gain error propagates from
antenna to antenna.

In summary, for a subset redundant calibration system that uses
only a small fraction of the total baselines in the array, gain variance
improves when baseline-types with larger redundant groups are used
for calibration.

5.4 Covariance in estimated gains
The improvement in gain variance obtained when using a higher

number of unique baselines per antenna can also be explained through
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Figure 6. Covariance in the amplitude and phase of antenna gains for
subset redundant calibration performed on the hexagonal layout of Fig. 2.
Panel (a) shows the marginalized covariance for the case where redundant-
baseline calibration is performed using the full visibility matrix. Panel (b)
shows the covariance matrix when subset redundant calibration is performed
with just the shortest three baselines required to satisfy the degeneracy
criterion. In addition to higher gain variance, the antennas have also have
a high covariance. Panel (c) is the covariance matrix for subset redundant
calibration performed using more than half of the total baselines in the array.
Both the variance and the covariance are comparable to that of redundant-
baseline calibration performed with the full visibility matrix even though the
covariance has a different structure compared to panel (a), and the variance
is still dependent on antenna location.

the gain covariance. When the fraction of baselines used in calibration
is small, in addition to high variance, the gains also have a relatively
high covariance. The covariance in gains is given by the off-diagonal
terms of the marginalized covariance matrix:

C' ~ (SNR) *(ATA) Y, - (16)

Both the diagonal and off-diagonal terms of the matrix (AfA) change
when a subset of baseline-types are used for redundant calibration.
Inverting this matrix changes the covariance in the resulting gains.

Fig. 6 shows the marginalized covariance matrices for three
different subset redundant calibration systems (for the hexagonal
array layout in Fig. 2). The logarithmic approach to linearizing,
shown in equation (3), naturally results in separating the amplitude
and phase of gains into the real and imaginary parts of the logarithm,
respectively. Hence, using the real (imaginary) part of the matrix
A gives the gain covariance in the amplitude (phase) of gains. All
the covariance matrices are normalized by the thermal noise in the
visibilities used for redundant-baseline calibration.

Panel (a) of Fig. 6 shows the covariance matrices for the case where
redundant-baseline calibration is performed using the full visibility
matrix. The variance in antenna gains, given by the diagonal of the
matrix, has an average value of 1/N as predicted by equation (7).
Though not evident in the figure, this variance is weakly dependent
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Figure 7. Four rows of the covariance matrix in Panel (b) of Fig. 6. The
colourbar has been log-normalized to make the covariance more evident.
The covariance shown in each panel is the sum of covariance in amplitude
and phase for the antenna that is marked with a star. For all antennas, the
covariance is highest with adjacent antennas because only those visibility
measurements are used for constraining gain solutions. The variance and
covariance of corner and edge antennas (upper two panels) are higher than
that of antennas placed centrally (lower two panels) because the edge antennas
participate in fewer visibility measurements than central antennas.

on antenna location as shown by Dillon & Parsons (2016). There a
small but non-zero covariance in the antenna gains.

Panel (b) of Fig. 6 shows the covariance matrices for the extreme
case where only the shortest three baselines (the minimum baseline-
types required to satisfy the degeneracy criterion) are used in
redundant-baseline calibration. Notice that the variance is nearly an
order of magnitude higher than the first case and clearly dependent on
antenna location. The covariance between antennas is non-negligible
and higher between antennas that have a high variance.

Panel (c) of Fig. 6 shows the covariance matrices for the case where
more than half the baselines are used in subset redundant calibration.
This is the threshold at which gain variance starts following the
inverse measurements per antenna trend in Fig. 5. Even though the
variance is still antenna location dependent and the covariance has
a different structure, they are comparable to the case of redundant-
baseline calibration with the full visibility matrix.

When the subset redundant calibration system involves a larger
number of unique baselines, there are more independent constraints
on the gain of each antenna. This decreases the average gain
variance, covariance between antennas and also the antenna-location
dependence of the variance. In Fig. 5, the errorbars associated with
the gain variance estimated in simulation represent the antenna-to-
antenna variation within the simulation. Hence, the errorbars are
larger for the gains estimated using a smaller fraction of baselines.

This dependence of antenna gain variance and covariance on the
number of independent constraints per antenna is more evident in
Fig. 7, which shows four different rows of the covariance matrix in
Panel (b) of Fig. 6 in an exaggerated manner. In this case, subset re-
dundant calibration is performed with just the shortest three baseline-
types required to satisfy the degeneracy criterion. The covariance
and variance of edge antennas is higher than that of centrally placed
antennas because the corner antennas participate in fewer cross-
correlations (three for the antenna in the top left-hand panel, four for
the antenna in the top right) than centrally placed antennas (six each
for the antennas in the bottom two panels). Hence, there are fewer
independent constraints for the edge antennas, leading to a higher
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Figure 8. Relationship between variance of antenna gains and the fraction of
baselines used in subset redundant calibration, for hexagonal array layouts of
various sizes (shown in different colours). The boxes represent the distribution
of gain variance obtained from simulation (see Fig. 3 for explanation). The
solid lines represent an inverse trend of baselines per antenna (Nk;;;m). The
dashed lines show a power-law dependence on the number of different
baseline-types per antenna (Nl;,%;'sm) used for calibration. The small black
crosses represent the fraction of baselines that can be cross-correlated by a
calibrator that can process Nlog N baselines.

variance in their estimated gains. Ignoring the edge antennas after
subset redundant calibration leads to an 80-30 per cent decrease
in the antenna-to-antenna variation depending on the fraction of
baselines used in the calibration process. The distribution of antenna
gain variances with the edge antennas excluded is shown using solid
grey boxes in Fig. 5.

5.5 Scaling in gain variance with an O(N log N) calibrator

Fig. 8 extends the relationship between gain variance and fraction of
baselines used in subset redundant calibration to hexagonal layouts
with larger number of antennas. The four different colours represent
four different array sizes. Within each colour, the boxes represent
the distribution of gain variance over antennas in the array (see
Section 3). The solid lines represent an the inverse measurements
per antenna trend (Nb’];fmt) and the dashed lines show a power-law
relationship between gain variance and number of unique visibilities
per antenna (N@L'fm). It is evident that the two asymptotes to the gain
variance, shown in Fig. 5, hold with changing array size.

When a large fraction of baselines are used for subset redundant
calibration, the gain variance depends on the total number of
baselines used for calibration. At a constant fraction of baselines,
the number of baselines formed by an antenna is proportional to the
number of antennas in the array as shown in equation (14). The four
solid lines show a scaling in gain variance by this factor. When the
fraction of baselines used for calibration is small, the gain variance
does not necessarily decrease with increase in array size. The leftmost
point within each array size represents the variance in the estimated
gains when subset redundant calibration is performed, using just the
shortest three baseline-types (required for the degeneracy criterion).
As evident from the figure, the gain variance is nearly constant despite
the larger number of redundant baselines in an array with more
antennas. This is because, within increasing array size, there are as
many new variables (in the form of antenna gains) as measurements.
For improvement in variance, the size of the subset redundant
calibrator should increase with the array size.
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Say the computational resources allocated to a subset redundant
calibrator are restricted to scale similarly to the FFT-correlator. The
calibrator can process pNlog N baselines for a given array size. The
fraction of baselines that can be processed by such a calibrator is
given by

pNlogN  2plogN

- N22 N
Fig. 8 shows this fraction of baselines, for a pre-factor of one, in small
black crosses. When the calibrator cross-correlates exactly Nlog N
baselines, this fraction falls in the transition region between the two
asymptotes. However, assuming that the Nb_l;ilm approximation holds
at this fraction of baselines, we can substitute equation (17) into the
number of baselines per antenna in equation (14) to get the overall
scaling in gain variance:

a7

2 —1
Jg X Nbl;am

1 1

—_— _ 18
Y% plogh (19

The scaling in gain variance with array size, using subset redundant
calibration, is similar to that obtained using low-cadence calibration
(equation 13). In both cases, the price one pays for not using O(N?)
baselines for calibration is that the gain variance scales slower than
the case where redundant calibration is performed using the full
visibility matrix (equation 7).

Subset redundant calibration leverages the higher constraining
power of some baseline-types by allocating computational resources
of the calibrator to preferentially cross-correlating those redundant
baselines. The least number of baselines that need to be considered
is set by the null space of the solution to the redundant-baseline
calibration equations. However, using a small fraction of baselines
can result in antenna gains that have a non-negligible covariance
and location-dependent variances. If the fraction of baselines cross-
correlated by a subset redundant calibrator can scale as O(N log N)
or faster, the gain variance decreases with the increase in array
size and scaling in gain variance is similar to that of low-cadence
calibration.

6 COMPARISON BETWEEN THE
PERFORMANCE OF LOW-CADENCE
CALIBRATION AND SUBSET REDUNDANT
CALIBRATION

Low-cadence calibration and subset redundant calibration are two
potential solutions to calibrating FFT-correlators for redundant array
layouts without computing O(N?) cross-correlations. In low-cadence
calibration, the calibrator computes the visibilities of all baselines
through a round-robin of antenna pairs and spends a shorter amount
of time on each visibility measurement. As a consequence, the SNR
of measured visibilities is lower and leads to a higher variance in
the estimated gains. In subset redundant calibration, the calibrator
computes the correlations of only a few baselines (preferentially
the shorter baseline pairs) and uses these visibilities to estimate the
antenna gains. In this case, having fewer measurements leads to
higher variance in the estimated gains.

6.1 Scaling in gain variance

Fig. 9 compares the scaling in the average variance of gains estimated
using either reduced redundant-baseline calibration method to the
scaling in the average variance of gains estimated using redundant-
baseline calibration on the full visibility matrix measured at high
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Figure 9. Distributions of antenna gain variance, estimated using low-
cadence calibration (Lowcadcal), subset redundant calibration (subred-
cal) and traditional redundant-baseline calibration (redcal) for hexagonal
layouts of various sizes. The markers show the mean of the distribution
of gain variance for each array size, and the distribution itself is shown
using grey solid boxes around each marker (see Fig. 3 for explanation). The
larger vertical extent of boxes for arrays with N > 1500 elements are due
to fewer simulations. The dashed lines represent the theoretically derived
trends (equations 7, 13, 18). Low-cadence calibration consistently yields
lower gain variance than subset redundant calibration for similar calibrator
sizes. While both the reduced redundant-baseline calibration techniques
cross-correlate ~Nlog N baselines for each array size, traditional redundant-
baseline calibration assumes that the complete visibility matrix with ~N?/2
baselines is available for calibration. The additional reduction in gain variance
for the latter comes at a high computational cost and may not be necessary
when scatter in redundant visibilities is dominated by thermal noise (see
equations 23 and 24).

SNR. For both low-cadence calibration and subset redundant cali-
bration, we assume that the pre-factor p = 1 and use only Nlog N
visibility measurements to estimate antenna gains. The distribution
of gain variances, for arrays with number of antennas in the range
1500-5000, is computed using only 16 simulations (instead of 256)
due to long simulation times. For the same reason, the distributions
for the two largest array sizes with N > 5000 antennas are computed
using only two simulations each.

For low-cadence calibration, the interval between calibration cy-
cles, 7., is assumed to be constant for all array sizes. The integration
time f, has been scaled down according to equation (12) to keep
the size of the calibrator at an O(N log N) scaling. As predicted, the
variance in the estimated antenna gains scales according to equation
(13) and is shown by the dashed green line in Fig. 9.

For subset redundant calibration, the SNR of measured visibilities
is assumed to be constant for all array sizes. The number of baselines
used in the calibration process for a given array size is the closest
whole number, to the fraction given by equation (17), that accounts
for an integer number of redundant baseline groups in ascending
order of their baseline length. That is, baseline-types are considered
in the order of their baseline length and added to the subset redundant
calibration system only if all the redundant baselines that contribute
to that baseline-type can be considered. This causes a non-uniform
increase in the number of baseline-types used for calibration as the
array size increases. The overall trend in gain variance follows the
scaling predicted by equation (18) and is shown by the dashed orange
line in Fig. 9.

Subset redundant calibration results in a higher gain variance
than low-cadence calibration because, as shown in Fig. 8, the
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approximation of inverse measurements per antenna (equation 18)
underestimates the gain variance when the pre-factor is unity.
However, the scaling predicted by that approximation holds true
for all the simulated array sizes. For two largest array sizes in
Fig. 9, the estimated gain variance using subset redundant calibration
seems comparable to that of low-cadence calibration but is not
an exception to this trend. This is because the two simulations
used to compute these estimates generated a favourable set of
visibilities for subset redundant calibration with the short baselines
having larger amplitudes than the long baselines. In general, a
subset redundant calibrator would have to cross-correlate more
baselines than a low-cadence calibrator to achieve the same gain
variance.

Redundant-baseline calibration on the full visibility matrix, mea-
sured at high SNR results in a 1/N scaling as predicted by equation
(7) and shown by the black dashed line in Fig. 9. Such a calibration
method requires a calibrator with O(N?) computational resources
that may not be viable for large arrays. Moreover, the high precision in
gains obtained using the full visibility matrix might not be necessary
for decreasing the scatter in calibrated redundant visibilities.

6.2 Variance in calibrated redundant visibilities

The visibilities of redundant baselines, that have been calibrated us-
ing a reduced redundant-baseline calibration processes, are averaged
by the spatial Fourier transform. This converts any post-calibration
residual scatter in redundant visibilities into additional noise on the
unique visibilities returned by the FFT-correlator.

If the estimated antenna gains are exactly the true gains, the
scatter in redundant-baseline averaged visibilities is given by o%/N,,
assuming that the variance in the thermal noise of visibilities is
similar for all baselines and represented by o?. However, gains
estimated using redundant-baseline calibration diverge from the true
gains with an average scatter that is given by equation (6). Hence,
the calibrated redundant visibilities have a residual scatter that comes
from both the thermal noise in the measurements and the variance in
the estimated gains.

The variance in calibrated visibilities can be derived using equation
(2) and the first-order approximation for the variance of non-linear
functions. In this derivation, we have assumed that the calibrated
visibilities are not correlated with each other. Moreover, since
the gains estimated using reduced redundant-baseline calibration
are applied to a different set of visibilities that those used to
estimate them, we can also ignore the covariance between visibilities
and gains. The multiplying antenna gains, however, have a non-
negligible covariance that is represented by the terms pg,,; in the
following equation. This represents the off-diagonal components in
the covariance matrix C’ in equation (16):

i 2 2 2 2
| vamae] %ij 9 %) Psig
2 Z 2 + 2 + 2 + 2 :
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We can simplify this further under the assumptions that the average
amplitude of all antenna gains is close to one (|g;|>~1) and that the
gain variance of all antennas is similar and given by ng. Note that the
relative variance of visibilities is just the inverse squared SNR. In the
equation below, SNRy; unique s the SNR of the visibility computed by
the FFT-correlator for the baseline-type represented by o and SNRg
is the average SNR of the N, number of redundant visibilities that
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belong to that baseline-type:

(SNR), 2 ioue ~ N (SNR)i + 207 + Ni > pug |- 0
“ * (e

This equation gives the acceptable range of gain variance and covari-
ance for the gains estimated using redundant-baseline calibration.
When the gain variance and covariance is much smaller than the
thermal noise in visibilities, the first term dominates the residual
scatter. If this is satisfied, lowering gain variance by using a larger
calibrator will not improve the variance in calibrated visibilities.

6.2.1 Variance in redundant visibilities calibrated using
low-cadence calibration

The variance in antenna gains estimated using low-cadence calibra-
tion depends on the SNR of the visibilities computed in the calibrator
which in turn depends on the integration time (equation 11) available
for each cycle of computation. The relationship between the SNR
of the full visibility matrix and that of the reduced visibility matrix
computed in by calibrator, that scales as O(N log N), can be written
using equation (12) as

(SNR);UIZI — tint;reduced — (217 10gN> Teal
(SNR).3 — N

reduced

; 21
tim;full
where tiy. fn 18 the integration time used in an FX- or FFT-correlator.
Substituting the above relation into equation (6), we can write the
variance in estimated gains in terms of the SNR of the visibility
matrix that the gains calibrate:

—1

-
O'; = (SNR)reduced (ATA)(NXN)
N Tint;fu 1
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When 1., is large, the SNR of the reduced visibility matrix is larger
and the corresponding gain variance is smaller. Assuming the case
where the interval of calibration is same as the integration time in
the FFT correlator and substituting the above equation into equation
(20) we get the following for the variance in redundant visibilities:

SNR);f 2
oz, ~ SR {1 . ( )} | -
N, plogN

When redundant-baseline calibration is performed with the full
visibility matrix, the gain covariance terms in equation (20) are
around an order of magnitude smaller than the variance term so we
drop the third term for clarity. In large arrays, where an FFT-correlator
architecture would be preferable to an FX-correlator, the contribution
of gain variance (second term) to the variance in calibrated redundant
visibilities is smaller than the thermal noise in the measure visibilities
(first term). Hence, the precision in gain variance obtained from using
an O(N log N) calibrator is sufficient for the purpose of calibrating
voltages for an FFT-correlator.

6.2.2 Variance in redundant visibilities calibrated using subset
redundant calibration

In subset redundant calibration, the integration time does not change
between the calibrator and the FFT-correlator. Consequently, the
SNR of measured visibilities is the same for both data sets. However,
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the number of baselines used in the calibration process is lower, re-
sulting in a higher variance in the estimated gains. For a calibrator that
scales as O(N log N) with array size, the relationship between gain
variance and number of baselines is given by equation (18) where
the proportionality constant is the SNR of visibilities. Substituting
equation (18) into equation (20), we get

> (SNR)g; 2 2

(SNR) 2 e [T e TN (% pug| - 24
The gain covariance terms pg,,., for gains estimated using subset
redundant calibration, are sometimes comparable to the gain variance
terms. When the pre-factor (p) is small, the amplitude of the
covariance scales similarly to the gain variance with increase in
size of the array. This effectively doubles the contribution of the
variance term in the above equation. When the pre-factor is large, the
covariance is only a small fraction of the gain variance and can be
ignored. Overall, the contribution of the second and third terms in the
above equation is much smaller than the thermal noise in measured
visibilities for any reasonably large array. Hence, the precision in
gains estimated using subset redundant calibration is also sufficient
for the purpose of calibrating voltages for an FFT-correlator.

Fig. 9 might give a misleading impression that traditional
redundant-baseline calibration is superior to either of the reduced
redundant-baseline schemes, by providing gains that have orders-of-
magnitude lower variance. However, this additional gain precision
comes at a high computational cost and might not be necessary for
large arrays where the contribution of gain variance to the overall
scatter in redundant visibilities is only a small fraction of the thermal
noise.

6.3 Bias in estimated variables

The gains estimated using either reduced redundant-baseline cali-
bration process are unbiased estimates of the true value. This can be
verified through simulations that have constant underlying gains and
visibilities, and different realizations of the noise in the measured
visibilities. Averaging the solutions obtained over multiple such
simulations decreases the noise in the estimated parameters and
can expose an underlying bias, if any. Fig. 10 shows the deviation
in averaged gains from the input true gains, normalized by the
variance expected in the gains. The errorbars represent the antenna-
to-antenna variation which also averages down. Gains that have
been averaged over Ny, independent noise realizations have a factor
of 1/Ng, smaller deviation, which is expected when the estimated
gains differ from truth only within the Gaussian random noise in the
measurement. This trend is marked by the dashed black line in the
figure. A bias in gains, within the precision exposed by averaging
down noise, would have resulted in a deviation from this trend.

The visibilities computed by the FFT-correlator V*"4“ are also
unbiased when the visibility matrix used for reduced redundant-
baseline has a high SNR. The deviation of the calibrated and
redundant-baseline averaged visibilities from the simulated input,
averages down according to the trend expected for Gaussian random
noise. However, empirically, we find that the calibrated visibilities
are sometimes biased when the variance in estimated gains is larger
than ~107>. It is possible that there is a low level of bias, that
is not exposed by averaging over Ny, = 4096 simulations, in the
visibilities calibrated with lower variance gains. To clarify, the gain
variance plotted in all the figures in this paper has been normalized by
the thermal noise in the visibilities used for calibration. The absolute
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Figure 10. Deviation of averaged gains from their true value for low-
cadence calibration (lowcadcal; green triangles) and subset redundant
calibration (subredcal; orange squares). The markers are the result of a
simulation with the same underlying input variables (both gains and unique
visibilities) but different noise realizations of the measured visibilities. The
x-axis shows the number of such simulations that the variables have been
averaged over. The errorbars reflect the antenna-to-antenna variation. The
dashed line represents the trend expected when the estimated gains differ
from truth only within Gaussian noise. Both low-cadence calibration and
subset redundant calibration yield unbiased gain solutions.

gain variance in all these simulations is less than the empirical value
above which we find a bias in the calibrated visibilities.

Assuming this threshold in gain variance is real, it translates to
a requirement of an SNR 2 20 in the measured visibilities for
a 300 antenna array when implementing low-cadence calibration,
and higher when implementing subset redundant calibration. This
minimum SNR requirement decreases as 1/+/N with increase in
array size and may not be an issue for large-N arrays.

This requirement of a minimum SNR in the reduced visibility
matrix could be due two possible reasons: (a) if the assumption that
the non-linear equations of redundant-baseline calibration can be
optimized by solving the linearized system of equations does not
hold at this limit or (b) if the product of gains form an asymmetric
distribution about their mean value and do not average down. If the
former is true, a linearized solver of equation (1) would result in
a biased solution when the noise in measured visibilities is high.
However, we find that linearization based on Taylor expansion
of variables and omnical always result in unbiased gains and
visibilities irrespective of the SNR in the measured visibilities.

The more favourable explanation seems to be latter. As shown by
O’Donoughue & Moura (2012), the probability distribution function
(PDF) of the product of two complex Gaussian random variables is
not a simple Gaussian distribution. Moreover, the resulting distribu-
tion can be asymmetric if two complex random variables are drawn
from a non-zero mean Gaussian, as is the case with antenna gains.

6.4 X,z of estimated gains and visibilities

As was discussed in Section 2.2, the gains computed using a
reduced redundant-baseline calibration scheme are estimated from
the visibility matrix Ve but applied to a different visibility matrix
vundee The redundant-baseline calibration process is designed to
minimize the x? between the visibility matrix used for calibration
and the estimated variables. In the case of reduced redundant-baseline
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Figure 11. The upper panel shows the goodness of fit of the gains and unique
visibilities that have been estimated using either reduced redundant-baseline
calibration scheme. The hollow points (orange and green) show the fit of the
estimated gains to the visibilities computed by the calibrator V™duced and
is close to one as expected. The hollow black points show the fit of gains
estimated using full redundant-baseline calibration to V', The solid orange
and green points show the 2 of the fit to the full visibility matrix V' and
these are also not far from one. The associated errorbars show the range
of )(,2 obtained over multiple simulations. The jump in sz for low-cadence
calibration arises from a non-uniform increase in the calibrator size. The
number of unique baseline-types that are cross-correlated by the calibrator
are shown in the lower panel as a proxy for the size of the calibrator.

calibration, this is the x? evaluated between the estimated gains,
model visibilities that are discarded by the calibrator and the reduced
visibility matrix. In Fig. 11, this x? is represented by hollow orange
and green markers for subset redundant calibration and low-cadence
calibration, respectively, and has the expected value of one.

The x?2 estimated using gains computed by the reduced redundant-
baseline calibration process, unique visibilities computed by the FFT-
correlator and the full visibility matrix is a better metric to assess
the effectiveness of the calibration process. This x? is represented
by the solid orange and green points in Fig. 11 for subset redundant
calibration and low-cadence calibration respectively. The x?2 for array
sizes with number of antennas in the range of 1500-5000 is estimated
over only 16 simulations, rather than 256, due to long simulation
times. For the same reason, the x?2 for the two largest array sizes
with N > 5000 antennas is estimated using only two simulations.

Both the reduced redundant-baseline calibration schemes yield a
x? that is close to one, indicating that the estimated parameters are
a reasonable fit to the full visibility matrix. The larger x? of subset
redundant calibration as compared to low-cadence calibration, and
the larger range of x2 obtained over multiple simulations (represented
by the errorbars) is a direct consequence of the higher gain variance
in the former compared to the latter. The non-smooth trend in the
x? of low-cadence calibration is due to a non-uniform increase in
the size of the calibrator used in simulation. The jump in x> of
low-cadence calibration is correlated with the increase in number of
unique-baseline-types processed by the calibrator, because this leads
to a jump in the integration time available to each cycle of correlation
in the calibrator.

Fig. 12 compares the performance of low-cadence calibration to
subset redundant calibration for calibrators of various sizes operating
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Figure 12. Reduced chi-squared as a function of the computational resources
allocated to a reduced redundant calibrator for a 331 antenna array. The size
of the calibrator is marked in the fraction of baselines that can be processed
for subset redundant calibration (bottom axis) or the fraction of integration
time that can be spent on each baseline for low-cadence calibration (top axis).
The vertical dotted line marks the size of a O(N log N) calibrator. At larger
calibrator sizes, subset redundant calibration yields better gain estimates than
low-cadence calibration.

a fixed array size. When the resources allocated to the calibrator are
sufficient to cross-correlate exactly Nlog N baselines, which was the
assumption throughout this paper, low-cadence calibration yields
better gain estimates. This calibrator size is marked by a vertical
dotted line in the figure. However, at larger calibrator sizes, subset
redundant calibration performs better than low-cadence calibration.
This is because the subset redundant calibrator preferentially spends
time on baselines that have a higher constraining power and integrates
them to a higher SNR than a low-cadence calibrator of a similar size.

7 CONCLUSION

Low-frequency radio interferometers with N > 1000 antennas
are being proposed for targeting the 21 cm signal at cosmological
distances. These arrays will face a significant computational cost
in building traditional FX-correlators that scale as O(N?) with
the number of antennas in the array. FFT-correlators attempt to
decrease this scaling to O(N log N), thereby decreasing the cost
of the correlator backend. However, FFT-correlators only produce
meaningful output when the input antenna voltages are calibrated.
In the past, the few experiments that have used FFT-correlators
on redundant arrays had an FX-correlator working in parallel for
computing the visibilities required for calibration. This is, however,
a non-scalable solution for large-N arrays. In this paper, we propose
a O(N log N) calibrator design that can operate in parallel with the
FFT-correlator, forming a self-contained correlator system that can
be scaled to large-N arrays built on a regular grid. We discuss two
calibration algorithms, that can be employed by such a calibrator,
which are modifications of redundant-baseline calibration.
Redundant-baseline calibration relies on the array having multiple
redundant baselines or antenna pairs with the same displacement
vector. Non-redundancies in the array, originating from beam vari-
ation, antenna placement errors, etc., could lead to errors in the
gain solution as discussed by Orosz et al. (2018) and Byrne et al.
(2019). These gain errors are likely to affect low-cadence calibration
and subset redundant calibration, even though the FFT-correlator
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averages theoretically redundant baselines together. An analysis of
the impact of non-redundancy on an FFT-correlated telescope is
deferred for future work.

In low-cadence calibration, antenna pairs are cross-correlated in a
round-robin fashion over multiple integration cycles, producing the
full visibility matrix once every given number of cycles. However,
the time period between two calibration cycles 7., is fixed by the
inherent gain variability of the array. This leads to a decrease in the
integration time available for each cycle, as the array size increases.
A decrease in integration time results in lower SNR visibilities within
the calibrator, and consequently a higher variance in the estimated
gains. For a calibrator that is restricted to an O(N log N) scaling,
the gain variance scales as 1/log N with increasing array size. The
contribution of this gain variance to the overall variance in the
visibilities computed by the FFT-correlator is much smaller than the
contribution of thermal noise in measurements. Hence, low-cadence
calibration is a suitable calibration scheme to estimate gains that are
effective in calibrating voltages for the FFT-correlator.

In subset redundant calibration, the calibrator computes the visi-
bilities of only a few baseline groups without compromising on their
SNR. By nature of the system of equations solved by redundant-
baseline calibration, the larger baseline groups contribute higher
constraining power to antenna gains. Subset redundant calibration
exploits this property and computes cross-correlations of only these
baseline groups. The minimum number of baseline-types that need to
be considered for subset redundant calibration is determined by the
null space of the solution set, which should ideally not have more than
the four known degeneracies. However, using only a small fraction of
all the baselines, which satisty this degeneracy criterion, could still
result in antenna gains that have a high variance and covariance. A
calibrator that can cross-correlate Nlog N baselines results in antenna
gains that have a 1/log N scaling in variance as well. As in the case of
low-cadence calibration, the variance of the estimated antenna gains
forms only a small fraction of the total scatter in visibilities computed
by the FFT-correlator. Hence, subset redundant calibration is also a
suitable scheme of calibration for estimating gains that can minimize
scatter in redundant visibilities.

The gains, estimated using either reduced redundant-baseline
calibration method, are unbiased and converge to the true value
when noise averaged. When comparing low-cadence calibration and
subset redundant calibration, we find that low-cadence calibration
consistently yields lower variance antenna gains when the size of
the calibrator is held constant. This consequently leads to a better
fit to measured visibilities and the x> estimated using the variables
computed by low-cadence calibration is lower than that of subset
redundant calibration. However, for large-N arrays low-cadence
calibration could involve optimizing over a few hundred thousand
equations which could potentially hamper the real-time nature of the
calibration parameters required. If the calibrator for a given array
has more computational resources, subset redundant calibration can
result in better antenna gain estimates. Ultimately, the calibration
method that is suitable for a large array depends on the antenna design
parameters, the array layout, computational resources available and
the science goal at hand.
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APPENDIX: HIERARCHICAL CALIBRATION

Hierarchical redundant-baseline calibration was originally presented
by Zheng et al. (2014, appendix B). It is based on separating a
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redundant array into sub-arrays and cross-correlating all the antenna
pairs in each sub-array. Antenna gains are estimated by performing
redundant-baseline calibration on each sub-array independently. The
degenerate parameters of each sub-array are tied together by choosing
one antenna from each sub-array and redundantly calibrating the
array they form. For redundant arrays where the correlator also oper-
ates hierarchically (Tegmark & Zaldarriaga 2010), such a calibrator
system would parallel the correlator layout in the field and reduce
networking. However, this is not an optimal calibration solution for
FFT-correlators that operate on the entire array.

The spatial Fourier transform in an FFT-correlator can only be
performed on a machine containing the voltages of all antennas in the
array. This requires a large corner-turn as in FX-correlators, where the
voltages from all antennas over a narrow bandwidth are collected at a
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central server using an Ethernet switch or a similar device. When data
from all the antennas are available at a central location, the baselines
that yield optimal gain solutions can be chosen in any fashion for
the purpose of calibration. While hierarchical calibration has the
potential to simplify the networking required for large arrays, the
networking required for FFT-correlators renders this simplification
moot. For this reason, hierarchical calibration has been classified as
a special case of subset redundant calibration and is not presented in
more detail.

This paper has been typeset from a TEX/IATEX file prepared by the author.
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