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Abstract—In this paper, we address the issue of valuating
Distributed Energy Resources (DERs) as Non-Wires Alternatives
(NWAs) against wires investments in the traditional distribution
network planning process. Motivated by the recent literature on
Distribution Locational Marginal Prices, we propose a frame-
work that allows the planner to identify rigorously the short-
term Locational Marginal Value (LMV) of DERs using the
notion of Marginal Cost of Capacity (MCC) of the best grid
investment alternative to monetize hourly network constraint
violations encountered during a yearly rate base timescale.
We apply our methodology on two actual distribution feeders
anticipated to experience overloads in the absence of additional
DERs, and present numerical results on desirable LMYV-based
generic DER adoption targets and associated costs that can offset
or delay different types of grid wires investments. We close with
a discussion on policy and actual DER adoption implementation.

Index Terms—Distributed Energy Locational

Marginal Value, Non-Wires Alternatives.
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I. INTRODUCTION

ISTRIBUTION utilities have dealt with load growth

by commensurate network investments. However, recent
acceleration of Distributed Energy Resources (DERs) has
raised the opportunity for considering DERs as Non-Wires
Alternatives (NWAs) that enable deferral or avoidance of
costly and often disruptive network investments. In this vein,
[1] eloquently posed a key question: what is the value of DERs
to the distribution system? More specifically, what is the value
of DERSs at different hours and distribution network locations,
and how do different DERs compare on an annual basis?

A. Background and Motivation

Traditionally, DERs referred to small and dispersed genera-
tion resources, such as solar or Combined Heat and Power
(CHP), connected to the distribution network. DERs were
mainly associated with Distributed Generation (DG), whose
value has been studied from various perspectives; [2], [3]
consider optimal DG placement, [4]-[9] the impact of DG on
capacity deferral, and [10] the grid’s DER hosting capacity.
A sizable share of published work focuses on evaluating DG
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scenarios, their economics and impact on reliability and the en-
vironment. Capacity deferral literature has so far relied among
others on Avoided Cost, and Present Worth methods, (e.g., [4],
[11]). DG deferral of scheduled network upgrade investments
for feeder groups are quantified in [5]. The reduction of power
flowing over a radial feeder by adding DG is evaluated against
the time it will take for the load to outgrow DG’s effect. The
intuition that monetary benefits are maximized by adding DGs
at the end of long feeders and near load pockets is confirmed
in [5]; the delay period till reinforcements are necessary is
examined in [6]; [7] uses [6] to evaluate DG-related investment
deferral value with feeder specific investments following [5].
Lastly, [8] quantifies the DG impact on demand growth and
system security-related investments.

Although a widely acceptable definition of DERs is not yet
cast in concrete, their concept has evolved to include not only
DG (solar, CHP, small wind, etc.), but also energy storage,
demand response, electric vehicles (EVs), microgrids, and
energy efficiency. Recently, estimating DER value by time and
location is attracting increasing attention [12]-[18]. CA, NY,
IL stakeholders have ongoing discussions on using the value
of DERs as NWAs for compensation and incentive purposes.
In 2016, the California Public Utilities Commission approved
a Locational Net Benefits Analysis framework [19], and a
Benefit Cost Analysis Framework was adopted in NY [20].
Beyond the Brooklyn-Queens Demand Management demon-
stration project, N'Y utilities are announcing NWA projects and
are actually procuring NWAs [21]. The Illinois Commission
of Commerce announced the Next Grid initiative in 2017 [22]
designating the value of DERs as a key focal point.

Despite the related literature, a consistent framework that
compares DER adoption to traditional wires investments is still
lacking. Indeed, in the current state-of-the-art, utility planners
consider specific DERs assuming that their costs, capabilities,
and the like, constitute known input to their NWA planning
studies [23], [24]. However, when the attraction of future
DERs that are currently not in place is examined as a NWA,
this input is in a state of flux, and hence unavailable with suf-
ficient certainty. Most importantly, since committing the study
to uncertain input assumptions may affect its outcome signifi-
cantly in favor or against specific technologies, regulators and
stakeholders are likely, and justifiably so, to question them.
We propose a framework for considering DERs as NWAs that
does not rely on guesses of specific DER characteristics; it is
instead founded on quantifying generic DER spatiotemporal
marginal ‘“value-to-the-grid” encompassing a marginal cost
concept during hours of capacity constraint violations.



B. Objectives and Contribution

We strive to develop a formal framework that evaluates
generic real and reactive power producing/consuming DERs
as distribution NWAs. High fidelity AC circuit analysis is used
to estimate spatiotemporal marginal costs to the power system
unbundled to their energy and grid components and quantify
the generic DER spatiotemporal marginal value-to-the-grid.

The proposed framework builds upon short term locational
marginal costing and pricing analysis [25], [26]. We rely upon
and extend the concepts of the Marginal Cost of Capacity
(MCC) and Locational Marginal Value (LMV) to quantify
the value-to-the-grid of generic DER additions as NWAs that
could or would be located on the grid to relieve constraint
violations (e.g., line overloads, nodal over/under-voltages),
while participating in available energy market products and
services. It should be noted that the terms LMV and MCC
or similar expressions have been used in the literature of
T&D networks for several decades. For instance, Locational
Marginal Prices (LMPs) characterize today’s nodal electricity
markets that originate from the seminal work on spot pricing
of electricity [25]; LMV has been used in a different context
to characterize the value of storage capacity [27]; there is
also an emerging literature on Distribution LMPs (DLMPs)
[26], [28]-[30]. The term of Marginal Distribution Capacity
Cost (MDCC) has been also used extensively in the capacity
deferral and DG planning literature [11], [31]-[33]. In this
paper, LMV and MCC are construed differently to reflect the
new context that they are used in.

More specifically, the MCC is computed from the cost
of actual capital investments required to relieve anticipated
constraint violations. This cost is used to quantify the penalty
for exacerbating constraints encountered in an infeasible AC
OPF problem. The LMV of a generic real power or reactive
power DER represents the value of an incremental kW or
kVAR provided to relieve the cost associated with violated
constraints. LMVs vary by node of the network and by hour.
As such, they assign values to specific DERs based on both
their location and hourly profile across the year. Since our
MCC computation results in a cost per unit of constraint
violation, it impacts the LMV in a spatiotemporal manner to
the extent that an incremental DER at a specific node and hour
relieves each violated constraint with varying sensitivity.

The key contribution of our framework is that it (i) relies
on the cost of the best required wires investment to estimate
generic kW and kVAR LMVs that are independent of any
specific DER costs and capabilities, and (ii) provides the
theoretically optimal amount and value of generic DERs
required to defer the wires investment. The associated annual
DER procurement costs can be compared to the annual rate
payer avoided costs that would have resulted from the deferred
wires investment. Such comparisons performed on a yearly
basis can inform whether DER adoption is a desirable non
wires investment alternative.

Our approach embeds the explicit distribution planning
problem into a spatiotemporal generic DER valuation frame-
work, which is invariant of specific DER technologies and their
associated costs. Generic DER LMYV is dependent only on the

network characteristics, anticipated loads, constraint violations
determined by detailed AC OPF, and the cost of required
wires investments that may be needed to render the AC OPF
problem feasible. Specific DERs required to alleviate network
constraint violations can be construed as a composition of
generic DER quantities. The LMV of actual DERs and their
affordable compensation can be derived from the generic DER
LMV projected on actual DER potential real and reactive
power hourly trajectories at their specific locations.

A high level introduction of the concepts of MCC and LMV
in the context of the DER value-to-the-grid — as applicable
in our framework — is presented in our preliminary work
in [34]. In this paper, we thoroughly provide the network
model and the method. In addition, we apply our methodology
on two representative test cases adapted from actual feeders
of Commonwealth Edison (ComEd), IL, to examine DER-
enabled deferral of wires investments. The required wires
investments include two typical although different cases of
re-conductoring that were associated with anticipated load
growth expected to result in line overload but no over/under-
voltage violations. Furthermore, we discuss several aspects of
the resulting policy implications and extensions.

C. Paper Organization

The remainder of the paper is organized as follows. Section
IT presents the model formulation, Section III describes the
framework from an algorithmic point of view, Section IV
introduces the test cases, and Section V presents numerical
results. Section VI discusses policy implications, and Section
VII concludes and proposes future work.

II. MODEL

We assume a balanced radial distribution network, repre-
sented by graph (N,&). N is the set of nodes and & the
set of edges. Nodes are indexed by 0, 1,...,n, where 0 is the
root node. N = {0, 1,...,n}, and N'* = N\{0}. Pairs (4, )
represent edges that denote lines connecting node 7 with node
j. The set of lines £ has n pairs, which are ordered by the
j-th node. The radial structure allows a unique path from the
root node 0 to node j, with ¢ the node that precedes j in
this path. For each node i € N, let V; be the magnitude of
the voltage, with v; = Vf, and minimum (maximum) voltage
limits denoted by V;™n (V™). For each line (i,) € F, 14j
is the resistance, x;; the reactance, I;; the magnitude of the
current, with [;; = Ifj Ii‘}lax the ampacity, and P;; and Q;;
the sending-end real and reactive power flow, respectively. P;
and (Q; denote the net real and reactive power injections at
node 7. A positive (negative) value of P; refers to generation
(consumption); similarly for the reactive power. A sketch of a
tree network is shown in Fig. 1.

We use the DistFlow — also referred to as the branch flow
— model introduced in [35] and revised in [36], which is a
simplified, yet exact, representation of conventional AC power
flow equations for a radial network. The resulting AC OPF
optimization problem is listed next.

. P Q
min ¢ Py+c*Qo (1)
Py,Qo0,Pij,Qij,vi,lij ’
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Fig. 1. Sketch of a tree network representation.

subject to:
Py=Pyu, (X)), (2a)
Qo =Qo1, (A§), (2b)
Pij —lijrij + Pj — Z P =0, (A\) Vj e NT, (20
k:j—k
Qij — lymij +Qj— Y Qur=0, (\?) Vi e N, (2d)
k:j—k

vV = v — Q(Tijpij -‘r.%‘ijQij) + (T?j +$?j)lij, Vj e /\/+7 3)

P2 + Q2
(VM) <o < (V™) Vie N, 5
Ly < (I1%)?, V(i,5) €&, ©6)

where Py, Qo, P;j, Qs; are real, and v;,;; non-negative. The
time index is omitted for brevity.

The objective function (1) represents the cost of real and
reactive power procured at the T&D interface root node, with
cP the real power LMP, and c® a given reactive power com-
pensation opportunity cost. Notably, there is no transmission
wholesale market price for reactive power, for reasons that,
among others, include local market power concerns. However,
there is a cost for the provision of this service, which, in certain
situations, can be viewed as the opportunity cost of a local
generator (in the transmission system) providing this service,
associated with foregoing the use of a unit of real power pro-
duction [26]. We acknowledge that the issue of pricing/costing
the provision of reactive power at the substation is complex,
but further elaboration is beyond the scope of this paper.

The real and reactive power balance at each node are repre-
sented by (2a)—(2d); their associated dual variables )\f , )\ZQ de-
note the real and reactive power DLMPs at node 7. Constraints
(3) and (4) define nodal voltage and line current. Constraints
(5) and (6) impose voltage and current limits. We note that
constraint (4) is non-convex. As proposed in [36], replacing
(4) by inequality

vilij > P+ QF

fetl 3 177

V(i j) €€, (7

which is a convex Second Order Cone Programming (SOCP)
constraint, introduces a convex relaxation of the problem. For
the cases of interest in this paper, this relaxation is exact;
hence, instead of (4), we will use (7) in our formulations.

III. THE METHOD

The proposed framework’s method consists of 3 steps:
(1) Pre-processing (Subsection III-A), in which we calculate
the constraint violation overload and the MCC; (2) Pricing
(Subsection III-B), in which we obtain the real and reactive
power LMVs for each hour and location, and (3) Generic
DER Procurement (Subsection III-C), in which we derive the
optimal addition of generic DERs that relieve the overload.

A. Pre-processing

1) Overload Calculation: Our aim is to calculate the
amount of overload for each hour of the anticipated yearly load
profile. We employ the branch flow model, and we note that
in the absence of inter-temporal constraints hourly calculations
are parallelizable. In particular, omitting ampacity constraint
(6), we get the following OPF problem:

Optl: (1), s.t. (2a) —(2d),(3),(5), and (7), ()

which, because of (7), is a Quadratically Constrained Program-
ming (QCP) problem, more specifically an SOCP problem.
We note that Optl essentially optimizes the voltage at the
root node, since the net real/reactive power injections are fixed
and the remaining variables (flows, currents, voltages) can be
obtained by the load flow equations. The solution of Optl,
which allows overload to occur, yields the values of ;5 ;, from
which we calculate hourly overload Ajij,t in Amps for each
line segment (¢, j) exceeding its ampacity:

Ajij,t = max {0, \/m _ I;x]@ax} ' ©)

We use AIAZ-N (and not Al;;,) to distinguish the calculated
(hat) values in the absence of the ampacity constraint (6).

2) MCC Calculation: The MCC is calculated from the best
grid investment cost, denoted by C (in $), obtained by a
traditional wires solutions planning problem.

Let us first consider a case in which the best grid investment
involves line upgrades, and hence the project cost C' can be
directly allocated to each line segment. Let c;; be the cost for
increasing the line capacity (ampacity) by AI7** (in Amps),
with > (i,j) ¢is = C, and let Tj; represent the number of hours
in the year that the line is overloaded, i.e., the number of hours
the line upgrade is required within the year. Since our horizon
is one year, we first annualize the line upgrade cost to equal
its anticipated impact on the rate base. For the purposes of
this paper, we simply scale by a factor «. We then define the
MCC overload factor, denoted by w;;, which we henceforth
use interchangeably to MCC, as:

Q- Ciy

NTmax . 7 (10)
AT T,

wij =

where w;; (MCC) is measured in $ per Amp of new capacity
per (overloaded) hour, for the period of one year.!

Let us now consider a case in which the project involves an

investment that cannot be allocated directly to the overloaded

IThis definition is in fact the average incremental cost of capacity. We use
the term marginal for two reasons: (a) a small upgrade renders incremental
an approximation of marginal, and (b) w;; is used in (12) as the coefficient
of a linear ampacity overload cost where average and marginal coincide.



lines, e.g., building new lines as part of a reconfiguration
scheme. Arguably, we can still allocate the project cost to the
overloaded lines, taking into account their maximum overload,

Afif;.lax = max {Afij,t}, and their length L;;, as follows:
t
_ AL Ly
2o AL L
We can then apply (10) to derive the MCC, using the calcu-
lated value AI;7** instead of the actual increase in ampacity
AL resulting from the line upgrade. Hence, we can view

(11) as a reasonable, indirect, method for the allocation of the
project cost, when a direct allocation is not applicable.

(1)

Cij

B. Pricing

In this step, we derive the generic DER spatiotemporal
value. The idea is to monetize the overload Al;;; by the MCC
factor w;;; the new objective function that replaces (1) is:

PPy +c?Qo+ > wi; AL,
(4,4)
where the time index is omitted. In (12), Al;; represents a
new variable introduced for each overloaded line, so that the
related costs are only applied to (4, ) exhibiting Al;; > 0
during a specific hour. Since the solution of Optl is known
from the previous step, we define the overload variable Al;;
using the 1st order Taylor approximation, as follows:

Afij = Of’(\/@)_llij +0.5 l?j - Iz{;ax7

where l?j is the current (magnitude squared) value derived
from the solution of Optl.

The cost for the overload in (12) represents the annualized
pro-rated cost of the line, since we account only for the
amount of new capacity needed in each hour, AJ;;, instead
of the maximum (lumpy) new capacity of the line (AL;*¥).
Alternative approaches can be considered, as for instance, the
Net Present Value of the annual revenue requirement of the
capacity upgrade over an appropriate planning horizon. Our
framework is applicable to such approaches, in fact, the subject
of policy choices. A key benefit is that the inclusion of the
marginal avoided cost in w;; results in the DER investor and
the customers sharing the avoided cost. If the entire avoided
cost of planned traditional investments, including excess ca-
pacity, were included in w;;, then all of the avoided cost could
be captured by generic DERs via the LMV mechanism, and
customers/ratepayers would realize no net savings.

For each hour in which overload was identified in the
solution of Optl, we solve the following optimization problem:

min (12)
Py,Qo,Pij,Qij,vi,lij,Alij

13)

Opt2: (12), s.t. (2a) — (2d), (3),(5),(7) and (13),  (14)

which is also a QCP (SOCP) problem. The LMVs are the
shadow prices of (2¢)-(2d), i.e., )\f , )\?, referred to as P-LMV
and Q-LMYV, respectively, since they represent the marginal
value of real and reactive power at a specific node and
hour. We note that the linearization in (13) is performed
around the optimal operating point obtained by the exact

AC OPF model Optl, and that it relates variable Al;; to
branch flow model variable /;;. We solve Opt2 to derive dual
variables /\f and )\? (LMVs). An equivalent approach would
be to employ sensitivity analysis, following [26], which would
require the calculation of the partial derivatives of the branch
flow variables w.z1. to the real and reactive power net demand,
at the system’s optimal operating point.’

C. Generic DER Procurement

In this step, we derive an optimal generic DER allocation
that alleviates overload at a specific hour. We introduce
variables PJDER > 0, and Q?ER for real and reactive power
procured from generic DERs at node j, at a cost equal to P-
LMV and Q-LMYV, respectively, as estimated in the pricing
step. The new objective function is defined by

P+ Qu+ > ()\f PPER )\?Q?ER)7
JENT

min
Po,Q0,Pi;,Qij,
v lij PP, QYR
15)
where the time index is omitted since all variables/parameters
refer to a specific hour. Note that /\f and /\j2 are parameters
whose values are obtained from the solution of Opt2. The

power balance constraints (2c)—(2d) are modified accordingly:

Pij = lijrij + P+ PP — Y~ Pyo=0, (\))Vj e N'T,

k:j—k

(16a)

Quj = lijaiy + Qi+ Q7™ = 37 Qe =0, OF)¥j €NF.
k:j—k

(16b)

Network constraints — e.g., service transformer rated capacities

— may impose a bound on the real and reactive power DER

quantities that can be procured at a certain node:
DER _ SDER /.

PPPR < PPPR Wi e NT,

_ ADER DER _ ADER /. +

QT <R <QT, VjE NT.

(17a)
(17b)

The optimal generic DER allocation is obtained by solving
the following (QCP/SOCP) optimization problem:

Opt3: (15), s.t. (2a) — (2b), (16a) — (16b), (3) — (6),

(18)
and (17a) — (17b).

The solution of Opt3 provides an estimate of the DER quan-
tities required to satisfy ampacity constraints at a minimal
procurement cost. In the absence of DER quantity bound
constraints (17a)—(17b), the solution of Opt3 is a lower bound

2The P-LMV (Q-LMV) at a specific node can be obtained by the partial
derivative of the objective function in (12) w.r.t. net real (reactive) demand at
that node. For the first two terms we refer to [26] and the analysis in [30]. The
third term involves the partial derivative of Al;; = \/E —1I {‘J‘.a" which relatis
l%) ;
see also (13). We also clarify that by measuring the overload in Amps, using
variable Al;;, we naturally relate the MCC (measured in $ per Amp) to the
upgrade of a line that is typically measured in Amps. Another option would
be to measure the overload in Amps?, and adjust the MCC accordingly. We
would not then need the linearization in (13), as we could use a variable

to the partial derivative of variable [;; with the coefficient 0.5 (

2
Al;; = max [0,1;; — (I;“j"“‘) . This option could be viewed as measuring

the overload with the amount of thermal losses above the rated capacity.
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Feeder 2 has 38 nodes and is expected to exhibit overload in 31 17376 2 1 0 (1-2); e
various lines. Its topology is shown in Fig. 3 and the linc data Fig. 3. Topology of Héede# ! {3¥ nobl -s‘.'7C§13@lés with whitdfills indicate loads dif
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model proved adequate in illustrating the proposed framework in typical andt—=a— B " SRAI0NG 2 00 v aa aa ¢ azas s O 72
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4An extension of the SOCP problem to explicitly include reconfiguratio 1-2 %15 i 1 45 2000 5000 1

options, following the formulation proposed in [29] and resulting in a Mixe 2-3
Integer SOCP (MISOCP) problem is straightforward, and it affects only th 2-4tesly g)g
pre-processing step. The MISOCP model, optimizing available reconfiguratio 4- SShg

{ . &
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reflecting optimal network configuration for a specific load level. Once th 6 7 2 .20 Bl I 0.32 33 1()94 1260 2000
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LMVs; the pricing step can be applied as is. WQOSSZ 1000 '
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(22 nodes). Nodes 4 and 37 (gt@y fill) Bav&Tfidéd capacitors of 1.2 MVAR each.
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Fig. 4. Yearly load (in MW) duration curve for Feeder 1 (left) and Feeder 2
Figright) Yearly load (in MW) duration curve for Feeder 1 (left) and Feeder 2

(riﬁl.l t)F eeder 1 Results

We report and discuss the results for each step separately.
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Fig. 6. Unconstrained scenario. DER real power procurement (nodes 1, and 2)
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We illustrate the results for the unconstrained scenario in
Fig. 6, for the 127 hours of overload. Fig. 6 shows the DER
real power procurement (reactive power is low and its cost
negligible) at nodes 1 and 2 (stacked diagram, left axis), and
the overload at lines (0-1) and (1-2) in Amps (right axis). The
results confirm that DERs are procured exactly downstream
from the overloaded lines. Note that at the peak hour about
1.6 MW of DER are required to relieve overloads.

For the more interesting constrained scenario, we show the
generic DER procurement per node in Fig. 7 (total energy and
number of hours). We observe that most of the DER energy is
procured from the first lateral (nodes 74—87), then the second
lateral (nodes 3-4), then the third (nodes 8-21), the fourth
(nodes 23-28) and the fifth (nodes 67-70). We also note that
DER energy (primarily) and the number of hours (with some
exceptions) decrease as we move down a lateral while the
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?‘J‘é 171 éonstralneal scenar! B‘E& procuémen oth eneré’/ ours

cRSlsy JkEsiths pgp,e&ggstrarned scenario, the procurement cost
of real power is $13,475, and $38 for reactive power. For the

constrained scenario, the cost increases to $29,890 and $84
for real and reactive power, respectively. The source of the
difference is mainly the 4 hours when both lines ampacities
are binding. In the constrained scenario, a significant amount
of energy (downstream of node 2) is procured at a much higher
price (refer to LMVs in Fig. 5). But despite the much higher
cost of the constrained scenario, the results indicate that DERs
as NWAs are more favorable compared to the wires solution,
which would result in a $60K annual addition to the rate base.

B. Feeder 2 Results

1) Pre-processing: Feeder 2 experiences overload during
136 hours. In particular, 75 hours on line segment (5-6),
75 hours on (29-30), 109 hours on (30-31), 87 hours on
(31-32), and 136 hours on (6-36); the maximum overload
at the peak hour (5534) is 97.5 Amps (29% above ampacity),
36.8 (27.3%), 28 (31.1%), 25.9 (28.7%), and 40.3 (33.6%),
respectively. The LMPs across the 136 hours range from 17.18
to 72.22 $/MWh.

Since the investment is part of a reconfiguration project,
we allocate the project cost to each line using (11). For
line lengths (1n m), L576 = 100, L29’30 = 4507 L30731 =
120, L3130 = 550, Lg3s = 150, from (10), we obtain
W56 = 4005, w29,30 = 18023, w30,31 = 3307, w31,32 =
8.8357 We,36 = 3.313.

2) Pricing: Following the solution of Opt2, we illustrate P-
LMVs and Q-LMVs for peak hour 5534 in Fig. 8. We observe
that LMVs increase along the overloaded lines: they exhibit
their first step at node 6, and its lateral node 37, then they
increase at lateral 36, and take similar values from node 7 to
29, then they increase gradually over nodes 30, 31 and 32,
and take similar values at nodes 33-35. Note that Feeder 2
exhibits lower maximum values of LMVs compared to Feeder
1. The reason is that Feeder 1 has a much higher MCC value

Feeder 1; has asmuchg thherNMCC value at line (1-2); even
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VI. POLICY IMPLICATIONS AND EXTENSIONS
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cost ihéransl tedutdiis anamdaprimapagtiorodhessabe basen Second,
its cost is pro-rated to the capacity that load growth indicates
will be required during the next year or the relevant planning
horizon. Annualization and pro-rating introduces the notion of
the MCC, which we use in the valuation of generic DERs that
are in fact invariant of actual DER costs and capabilities.

Discussions abound on whether compensation should be
locked in, e.g., through grandfathering, to protect early DER
adopters from value tanking due to future overexpansion or lo-
cation specific load growth that renders their DER investments
stranded assets. These discussions are rather focused on the
mechanics of DER compensation over time, grandfathering
and risk allocation policies; they have been perennial and
inconclusive. We will not address them as part of this paper,
since we do not consider them part of the valuation question
that this paper is trying to contribute to.

We wish to comment briefly on one alternative process to
the proposed MCC and AC OPF framework which has been
on the table for years and relies on the cost of unserved energy.
This process would allow for load reduction via involuntary
curtailment at a very high curtailment cost, and would also
yield a feasible solution to the DER valuation even when
constraints are violated. It would result, however, in a DER
valuation that was very sensitive to the value of lost load and
introduce an arbitrary driver of the DER value. This would
almost certainly become a bone of contention in the planning
process and the DER compensation discussion, not to mention
that it might be interpreted as a violation of the utility’s
obligation to serve the load.

The proposed framework has the advantage that it is eco-
nomically consistent, tied to an objective assessment of grid
capacity costs, not related to new DER costs, and not requiring

run investment costs, and is a significant component of the
cost-benefit analysis of individual DER investors. The LMV
adds on the LMP the spatiotemporal “value-to-the-grid” and
along with existing market schemes will have a key role in the
investment decision of prospective DER owners. However, the
actual procurement scheme may not, in practice, provide the
level of compensation that will entice investors/customers to
deploy DERs. If the cost of DER technology has dropped
since the existing DERs were installed, the compensation
may be more than adequate. Otherwise, and particularly when
DER investors are worried about annual valuations dropping
precipitously in future years, it may be insufficient. In the
test cases presented, the calculated generic DER procurement
cost was lower than the cost of the wires solution. In general,
the results will depend on the specific case, the profile of the
anticipated overload, the topology and feeder characteristics.
However, LMVs will inform on potential DER procurement
methods and help to design them so as to match or even exceed
by some measure the wires solution cost, when a decision-
maker perceives additional benefits from a DER investment.
But even if the incentives prove to be inadequate for entirely
deferring the wires investment, they may though redirect the
planning process in partial or lighter feeder upgrades that

SIndeed, we assume that DERs buy and sell energy at the marginal cost of
energy to a typical competitive provider or load serving entity that is usually
independent of the DSO or the distribution network utility. On a typical
retail electric service bill, the energy supply rate is on average about half
or less than the total kWh rate, hence using the time varying LMP is not
an unreasonable approximation. In summary, the DSO burdens customers for
distribution network related costs that enter into the rate base, namely, network
asset maintenance, variable and fixed asset costs. It is precisely the impact
of DERs on the DSO rate base that LMVs represent. Customers are billed
separately for energy and network (transportation or delivery). LMV-based
non wires alternatives payments are related to the network portion of the bill.



could have not been considered in the context of conventional
investment planning efforts.

Given the desire to derive as much as possible actual DER-
independent NWA results, so far we have stayed away from
focusing on actual DERs with their specific capabilities and
costs, and we believe that our findings are still useful in
introducing the concept of DERs as NWAs. The P-LMV and
Q-LMV of a generic DER at a specific location and hour
can be used to calculate the value of an actual DER with
specific capabilities. For instance, a solar PV DER equipped
with a smart inverter (assuming it is sized to its nameplate
capacity K) will be constrained for its real and reactive power
provision, P and @, by its capacity, i.e., P2+ Q? < K2, and
also P will be constrained by the irradiation level (say p, with
0 <p <), ie, P < pK. The value of this solar PV at
each hour will be calculated by the the provided P and @
multiplied with P-LMV and Q-LMYV, respectively. Of course,
the hourly allocation of the anticipated overload is significant
in determining the ability of a solar PV to act as a NWA, given
its irradiation level constraint. As an example, we provide in
Fig. 11, the hourly allocation of the overload (in terms of
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Fig. 11. Total hourly allocation of real power DER procurement (Feeder 1,
constrained scenario).

Lastly, while re-conductoring has served as the primary
example of wires investments in our case studies, other pos-
sibilities such as repowering (raising circuit voltage level),
replacing switchgear or limiting station exit cables, and other
measures can be similarly treated. In this respect, the cost
of required voltage regulation or circuit impedance reduction,
addition of capacitor banks or LTC regulators can be calculated
and used to derive appropriate costs for over and under voltage
constraint violation.

VII. CONCLUSIONS

We proposed a valuation methodology for DERs as NWAs.
We employed the concepts of MCC and LMYV, and described
a framework that uses traditional planning process investment
cost information incorporated in an AC OPF problem to derive
generic DER LMVs with no need to rely on estimates of
actual DER costs and capabilities. Our framework determines
DER values which are locational in space and time, for both

real and reactive power. Generic DER LMVs are invariant to
actual DER technology and cost but can be used as the basis
for assigning value to and potentially compensate any DER
technology, including solar, EVs, demand response, etc.

In our future work, we plan to extend our approach to
a three-phase unbalanced system, consider cases of feeders
with voltage issues, elaborate on specific grid limitations (e.g.,
capacity of transformers) and incorporate related costs in the
LMVs, and examine the viability of various DER types under
certain procurement schemes. As such, an important issue that
remains to be fully investigated includes the reconciliation of
ex ante LMV estimates used in our framework to quantify
desirable “generic” DER procurement with ex post LMVs —
after DERs are in place — that may lend themselves more
appropriately for actual DER compensation.
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