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Geometric Adaptive Control With Neural Networks
for a Quadrotor 1n Wind Fields

Mahdis Bisheban

Abstract— This article presents a geometric adaptive controller
for a quadrotor unmanned aerial vehicle with artificial neural
networks. It is assumed that the dynamics of a quadrotor is
disturbed by the arbitrary, unstructured forces and moments
caused by wind. To address this, the proposed control system is
augmented with the multilayer neural networks, and the weights
of the neural networks are adjusted online according to an
adaptive law. By using the universal approximation theorem,
it is shown that the effects of the unknown disturbances can be
mitigated. More specifically, under the proposed control system,
the tracking errors in the position and heading directions are uni-
formly ultimately bounded. These are developed directly on the
special Euclidean group to avoid the complexities or singularities
inherent to local parameterizations. The efficacy of the proposed
control system is first illustrated by numerical examples. Then,
several indoor flight experiments are presented to demonstrate
that the proposed controller successfully rejects the effects of
wind disturbances even for aggressive, agile maneuvers.

Index Terms— Adaptive control, geometric control, neural
network, quadrotor unmanned aerial vehicles (UAVs), wind
disturbance rejection.

I. INTRODUCTION

ULTIROTOR unmanned aerial vehicles (UAVs) are
subject to various disturbance forces and moments. In
particular, wind disturbances may severely degrade the perfor-
mance and stability of small aerial vehicles. Thus, it is critical
to characterize these effects carefully and to alleviate them for
reliable autonomous flights in various outdoor environments.
Several approaches have been considered to address this prob-
lem, such as comprehensive aerodynamic modeling of wind
effects, system identification of wind effect modeling parame-
ters, and feedback control systems to mitigate the wind effects.
Concerning the wind effect modeling, thrust and drag forces
in forward flights for a quadrotor UAV are studied in [1],
and it is shown that the assumptions for hovering the flight
models become deteriorated when the relative wind speed
is sufficiently large. In [2], the blade-flapping response of
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a small-stiff propeller under wind is studied with a rotor—
pendulum system. Once a mathematical model for wind effects
is determined, the modeling parameters should be identified
by experiments with the particular UAV under consideration.
To determine the unknown aerodynamic modeling parameters,
[3] and [4] present computational geometric approaches for
the system identification of the quadrotor dynamics, where
the system-identification problem is converted into an opti-
mization problem to minimize the discrepancy between the
identified model and the actual response.

To reject the undesired effects of wind disturbances, control
systems are proposed to cancel out the wind effects from the
mathematical models. In [5], a lookup table is used to estimate
the wind forces and moments in real time based on the relative
wind speed and rotational speed of the propellers. The table
is generated by solving intensive computational aerodynamic
expressions. Bangura and Mahony [6] present the dynamics
of a brushless DC motor that is constructed to determine the
power level to follow a given desired trajectory while rejecting
the axial wind effects. In [7], the wind velocity data from the
flow probes are used in a control system to guarantee stability
in the presence of wind. While these cancellation techniques
have been successful, the robustness and performance are
limited by the accuracy of the wind effect model used in
the controller and the estimated wind velocity. The control
force and moment that resist wind would be reliable within
the flight envelop considered for the aerodynamic modeling,
which is additionally limited by the computing resources
available in real time. Furthermore, they may deteriorate for
the unexpected wind gusts, as there is no mechanism to adjust
the modeling errors online.

On the other hand, several alternative control techniques
have been presented without relying on cancellation. For
example, [8] presents a geometric proportional-integral—
derivative controller on the special Euclidean group to reject
the unknown, fixed uncertainties. In addition, parametric
uncertainties are addressed with a geometric adaptive control
scheme in [9]. In [10], to overcome the effects of modeling
errors, the data of the successive indoor experimental trials are
used to tune the control parameters for aggressive maneuvers.
Nicol ef al. [11] presents an adaptive neural network for the
reduced dynamics of a quadrotor UAV.

This article proposes a geometric adaptive control scheme
for a quadrotor UAV, where the effects of wind are con-
sidered as unstructured, unknown disturbances. Instead of
counterbalancing those with an aerodynamic model and a
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measured wind velocity, wind disturbances are compensated
by an artificial neural network whose weight parameters
are adjusted in real time. More specifically, we adopt the
geometric controller proposed in [12] and augment it with
multilayer neural networks and an adaptive law to mitigate the
unknown disturbing forces and moments that are considered
as an arbitrary function of the quadrotor UAV’s states. The
dynamics of a quadrotor is globally formulated on the special
Euclidean group to avoid the singularities and complexities
inherent to the Euler angles or quaternions. It is shown that
the tracking errors are uniformly, ultimately bounded with an
ultimate bound that can be reduced arbitrarily up to any desired
precision. These are illustrated by numerical examples with
the simulated aerodynamic effects of wind. Next, we show
that the proposed geometric adaptive controller can mitigate
wind effects even for aggressive maneuvers through indoor
flight experiments with artificial wind gusts generated by an
industrial fan. The preliminary results are presented in [13].
However, this article presents a complete Lyapunov stability
proof, extensive numerical examples, and additional flight
experimental results.

In short, the main contribution of this article is presenting a
geometric adaptive controller based on neural networks for a
quadrotor that is capable of compensating the unknown aero-
dynamic forces and moments caused by wind. This requires
neither the precise mathematical model of wind effects nor
the actual wind velocity, and it can be implemented without
an additional onboard anemometer.

II. PROBLEM FORMULATION
A. Quadrotor Dynamics With Disturbances

This section formulates the quadrotor dynamics, including
unknown disturbances in the translational dynamics and rota-
tional dynamics. The disturbances are considered as arbitrary
forces and moments, and they may represent the wind dis-
turbance effects, which are discussed later in Section IV. The
quadrotor UAV is regarded as a rigid body with a configuration
that is represented by the center of mass x € R? in the inertial
frame and the orientation of the body-fixed frame with respect
to the inertial frame R € SO3) = {R € R¥*3|R™R =
L33, det[R] = +1}, as illustrated in Fig. 1. Both the frames
are right-handed coordinate frames. Thus, the configuration
space of a quadrotor is the special Euclidean group SE(3),
which is the semidirect product of SO(3) and R3.

The equations of motion are given by

i=v (D

mo = U, )

R = RQ 3)
JIQ+QxJQ =M, 4)

where U, € R? is the resultant force resolved in the inertial
frame and M, € R? is the resultant moment resolved in the
body-fixed frame. The mass and the inertia matrix are denoted
by m € R and J € R, respectively. The vector v € R? is
the linear velocity in the inertial frame, and Q € R3 is the
angular velocity resolved in the body-fixed frame. The hat
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Fig. 1. Quadrotor model with the illustration of the rotors’ thrust (77, T2,
T3, and Ty), the inertial frame (eg, ez, and e3), and the body-fixed frame (b,
by, and b3). The third inertial axis e3 points downward along the gravity, and
the third body-fixed axis b3 is opposite to the direction of thrust [12].

TABLE I
SUMMARY OF NOTATIONS

Notation Refers to
B hat map
\Y, vee map
- estimated value
- estimation error value
time derivative
/ alternative value
X cross product
I Frobenius norm of a matrix, and 2-norm of a vector
Am () minimum eigenvalue of a matrix
A () maximum eigenvalue of a matrix

map A : R? — so0(3) is defined such that £y = x x y and
(#)T = —% for any x, y € R3. The inverse of the hat map is
denoted by the vee map V : s0(3) — R3.

Suppose that d, € Rt,d, € R specify the horizontal and
vertical distances from the origin of the body-fixed frame to
the center of a rotor. If a rotor is above the origin, d, is
positive, and it is negative otherwise. The locations of the
four rotors in the body-fixed frame are given by

o= [di0,d,]" r=[0,di.d,]" (5)
ry=[~di,0,d,]", ra=[0,-dyd,]". (6)

Let the thrust 7; € R and torque Q’; € R of the jth motor be
given by

T=Crod Q)=Copef =CroT] ()

where C7, C;, € R are the constant thrust and torque coef-
ficients, and Crp = (C,/C7) € R determines the relation
between the reactive torques and thrusts. The resultant force
and moment acting on a quadrotor can be written as

U, = mge; — fRe; — A4 (8)
Mé = Zj*zlrj X TJ{e_g — (—1)j+l Q/j€3 — Az (9)

where f = £%_,7; € R is the sum of the four rotor thrusts

J
and mge; is the gravitational force with e3 = [0,0, 1] € R3.
The sums of the unknown disturbing forces and moments are

denoted by A; and A, € R3, respectively.
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B. Position Tracking Control Problem

Suppose that the desired position trajectory is given as a
smooth function of time, i.e., x;(t) € R3. Tt is considered that
x4(t) and all its time derivatives are bounded. In addition, it is
sufficiently distinct from the gravitational acceleration such
that

s — gesll > By (10)

for a positive constant B,. We wish to design a control system
for the rotor thrusts such that the actual position trajectory
asymptotically follows the desired values in the presence of
unknown disturbances. Instead of designing the rotor thrusts,
the control input is considered as the total thrust f, and
moment M = [M,, My, M3]T € R? in the body-fixed frame.
For a given (f, M), the equivalent thrust of each rotor can be
computed by

, dp Cro
A I P e
T2 — l dp CT]Q M, (11)
T; 41 2 1T Im
T4’ dy, Cro M;
1 — 0 —
L dp Cro

III. GEOMETRIC ADAPTIVE CONTROLLER WITH NEURAL
NETWORKS

In this section, we present a geometric adaptive control
system for a quadrotor to reject the effects of unknown
disturbances without any prior knowledge.

A. Controller Structure

The presented quadrotor dynamics is underactuated, as there
are four control inputs. In [12], a geometric control system for
a quadrotor is presented with a backstepping approach, which
is adopted in this article. The overall controller structure is
summarized as follows. Let the tracking errors in the position
and the velocity be

ey =X — X4, €, =0 — Xy4. (12)
For the positive controller gains k,, k,, consider an ideal
control force A € R? defined as

A= Al - kxex

— kye, —mges + miy (13)

where A; € R? is an adaptive control term to mitigate the
effects of the disturbance A;. The control objective can be
achieved by replacing the control force term —fRe; in (8)
with the above ideal value of A. However, that is not feasible,
as the total control thrust is always in the opposite direction of
the third body-fixed axis, i.e., the direction of the total thrust
is always —Res3, and only its magnitude f can be adjusted
arbitrarily.

To address this, an attitude controller is introduced such that
the actual attitude is guided toward the ideal thrust direction

1
T,y Ynn,
Ty, Ynns
Ynnn,
.
Fig. 2. Structures of a three-layer neural network.

defined by (13). More specifically, the desired direction for
the third body-fixed axis is given by

A

bye = ———. (14)

[1A]l
As it is a 2-D unit vector, the desired heading direction,
namely, b, (1) € S* = {g € R*||g|l = 1}, is further

introduced as a function of time. These yield the complete
desired attitude as

R. = [b1., by, b3,] (15)

where by, = by, x b3, by, = —(by, xb3.)/(lb1, X b3 ||). One
can show that the above construction guarantees R, € SO(3),
and by taking its time derivative, the desired angular velocity
can be constructed as

Q.= (R'R,)". (16)

Any attitude tracking control system can be implemented
to follow asymptotically R., and the total thrust is chosen as
the ideal control force projected to the instantaneous thrust
direction as follows:

f = —A"Res (17)
M, = Az—kReR—kgeg—i-Q x JQ
—J(QR"R.Q. — RTR.Q,) (18)

where kg, kg are the positive attitude control gains, and the
tracking errors for the attitude and the angular velocity are
given by

1
eR = E(RZR —R"R)’, ea=0Q-R'RAQ,.
In addition, A, € R? denotes an adaptive term to eliminate
the effects of the unknown disturbance A, in (9). The above
attitude tracking error can be interpreted as the gradient of the
following attitude error function:

19)

1
¥(R, R.) = St [543 — RIR] (20)

which is positive-definite about R = R, [12]. In addition,
the angular velocity error vector satisfies ¥ = ereq.

In the absence of the disturbances and the adaptive control
terms, local exponential stability has been established in [12].
Next, we will formulate the expression for the adaptive
terms and the adaptive control law to address the unknown
disturbances.
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Fig. 3. Adaptive controller structure [the adaptive term for the position and the attitude dynamics is given by (23); the force controller is given by (17); the

computed rotation matrix is given by (15); the moment controller is given by (18); the adaptive law is given by (24)—(27); four commanded rotation speeds

are given by (7) and (11); and the quadrotor dynamics are given by (1)—(4)].

B. Adaptive Neural Network Structure

Consider a three-layer artificial neural network, as illustrated
in Fig. 2. The numbers of neurons at the input, hidden,
and output layers are denoted by Ny + 1, N, + 1, and N3,
respectively. The input to the neural network is arranged in
a vector form x,, € R+ as x,, = [1,x ]. The
input to the hidden layer, namely, z € RM isa weighted sum
of the above, given by z = VTx,,, for a weighting matrix
V € RM*IXN2 The output y € R of the neural network
is y = WTo(z), where the weighting matrix of the output
layer is denoted by W € RM>+1xN "and the activation function
o : R — RM*! 5 defined as o(z) = [1,¢1,...,¢cn,] for
the sigmoid function ¢ = 1/(1 4+ e~%), for k € {1, ..., Na}.

We assume that the unknown disturbing force and moment,
namely, (A, A;) in (8) and (9), are dependent on the quadro-
tor states. According to the universal approximation theo-
rem [14], there exist artificial neural networks that approximate
these disturbances up to an arbitrary level of accuracy.

More explicitly, the particular structures of the artificial
neural networks used in this article are defined as follows.
Throughout the remainder of this article, the subscript i = 1
denotes the position dynamics and i = 2 denotes the attitude
dynamics. Let the input to the neural network x,,, € RMi+1
be

o

o
nnps o xnan

Xun, = [ 1, x1,, %2, | @21

where x;, = x, x, = v are for the position dynamics and
x, = E (RT, Xz, = Q are for the attitude dynamics. The
vector E(R) = [0, ¢, w] contains the Euler angles from the
rotation matrix R. Consequently, N, = N;, = 6. Since the
neural network is formulated to approximate the disturbing
force and moment, the number of outputs is N3, = N3, = 3.
The universal approximation theorem implies that there exists
an ideal value of the weighting parameters (W;, V;) and the
number of the hidden layer N, such that A; = W o (VI x,,,)+
€(Xun,), for the approximation error satisfying ||€ (xun,)|| < €n
for some ey > 0.

While the ideal values (W;, V;) are not available, it is
assumed that the upper bounds Wy, , Vi, > 0 are given such
that

IWill < Wi, [IVill < Vi,. (22)

Let (W;, \_/i) be the current estimate of the ideal weighting
matrices. The adaptive control terms in (13) and (18) are
computed by

A=Wl (z) (23)

with z; = \_/iTxnni. In addition, they are updated according to
the following adaptive law:

Wi,, if H W,' ” < WMi or
. -A _ LT _A
W, = o (19 = Wi, WIW; <0) o8
W—— ! Vi/l-/, otherwise
W W;
v i Vi < Vi, or
. 7| = TARTA
‘7;‘ = - (”V’” =Vu, Vi Vi= 0) 25)
Iy — ‘-/ITV L \L/,»’, otherwise
7,

where Iy € RMitDNi+l and 1, € RMitIXNi+l are the
identity matrices. These correspond to the following adaptive
laws projected to a bounded region satisfying (22) [15]:

=
|

L=~y loGal =o' @)zal | = kiyw Wi (26)
= - T -
Vi = o xun [0 @) Wiai]” = kipy, Vi @7
a; = e, +ciex, ay =eq+ creg (28)
for the positive adaptive gains and parameters

ywi) yl)i ,Ki, C1,C2 € R+-

The proposed design of the adaptive law is based on the
following expressions of the estimation errors. Let the errors
in the weighting parameters be denoted by

Wi=W; =W, Vi=V,—V. (29)
The output error of the neural network A ;= A; — A; can be
written as

A= WHo @) —o'GDu] + Wie' @)z —wi  (30)
w; = —WiO',(Zi)Zi - VVITO(Zl) - 8(xilil,‘) (31)
0G@) =0(z)—0@)—0' (@) (32)

where z; = ViTx,m,.. Furthermore, it can be shown that w; is
bounded by

loill = i+ |Zi] (€2 + Gl + Cullxa ) 33)

where Cy,,k € 1,...,4 are the positive constants and Zi =
diag[W;, V;] € RN TN 420 N5 (16,

The resulting stability properties of the proposed control
system, shown in Fig. 3, are summarized as follows.
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Proposition 1: Consider the control force f and moment
M, defined at (17), (18). Suppose that the initial condition
satisfies

¥(R(0). Ry(0)) < p1 < 1 (34)
for the fixed constants i, there exist the values of the
controller parameters such that all the tracking errors of the
quadrotor, as well as the neural network weight errors, are
uniformly ultimately bounded.

Proof: See the Appendix. ]

This theorem implies that arbitrary disturbing forces and
moments can be mitigated by the adaptive neural networks
that are adjusted online to cancel out the disturbances. The
resulting controller does not achieve stability in the sense
of Lyapunov or attractivity, as the universal approximation
theorem implies approximation up to a small bounded error.
Compared with the conventional adaptive control, it is not
required that the uncertain term follows the form of linear
regression. As such, the proposed adaptive control scheme
can deal with a large class of unstructured uncertainties. In
contrast to nonlinear robust controls, such as that presented
in [17], there is no chattering problem in the control inputs.

IV. NUMERICAL EXAMPLE

The efficacy of the proposed control system is illustrated
by numerical examples. In particular, we consider a scenario
where the quadrotor is flying under wind gusts. To simulate
the effects of wind disturbances, we first present an aerody-
namic model of a quadrotor, inspired by the literature in the
helicopter rotor dynamics.

A. Quadrotor Dynamics Under Wind Disturbance

Suppose that the wind vector presented in the inertial frame
is denoted by v,, € R3. The relative wind on the jth rotor in
the body-fixed frame is denoted by v, = [u1,, uz;, u3,]". It
is caused by the wind vector and the quadrotor translational
and rotational velocities as follows:

vw, = RT(0y — ) + Qr;. (35)

The resultant external force acting on the quadrotor is given

by

U, = mge; — Cqllv — vy ||(0 — 0u) + RE[_ Tjd;  (36)

where the second term on the right-hand side represents the
drag force acting on the center of mass and C; € R is the
drag coefficient.

The variable T represents the thrust for the jth rotor, given
by

2

T = Cr,pA (1) 37

where p € R is the air density and the rotor’s sweeping area

is given by A, = (zr,)? for the radius r,. The rotating speed

is shown by w;. The parameter Cr; € R represents the thrust

coefficient and it follows the following expressions that model
the effects of the induced velocity [18]:

2
sCly 1 Uy 1
= Ol = L) - =(4; z; 38

CT.f

Aj = (39)
212 + ( + )’
A% u%j + u%j us;

lqu = > /qu = (40)

Wjrp @jTp

where A; € R is the inflow ratio, which is the induced air
velocity over the rotor tip speed, and s = (Nyc)/(zr,) €
R is the solidity ratio, which is the approximated blade area
over the blade’s sweeping area. Next, ¢, N, represent the blade
chord and the number of blades for one rotor, respectively.
The blade lift curve slope and the blade pitch angle are shown
by Cis,0 € R. In addition, u.;, iy, are the perpendicular
and parallel advance ratios to the rotor plane. As described
above, Cr, is defined implicitly. Therefore, Newton’s iterative
method is used in the numerical simulation to obtain the thrust
coefficient and the inflow ratio.

Next, we consider the blade-flapping effects corresponding
to the thrust direction’s change due to the wind velocity
parallel to the rotor plane. In (36), the rotor thrust’s direction
in the body-fixed frame is denoted by the unit vector d; € S?,
and it is computed by

—Sma; —Sma;

T
R I/tlj, I/tzj, —Cosa; 41
9j [,/u%#ru% Jut 4 u3 } @l
J J J J

where the blade-flapping angle of the jth rotor is shown
by a; € R. If the first and second elements of the relative
wind vector become zero, i.e., Ui, Uy, = 0, then d; = —e3,
implying that there is no thrust component in the b;—b, plane.
Let C, € R be the fixed flapping-angle coefficient [19], [20].
Then, the flapping angle can be approximated with

— /2 2
aj = Co\fuy, +uy .

If the vertical distances from the origin of the body-fixed frame
to the center of a rotor, d,,, are not zero, then the deflected force
results in moments in the b; and b, directions. Hence, (11),
which is used in the controller developments, becomes invalid.
Because of the difficulties in measuring the flapping-angle
coefficient, it is not practical to compensate for the force and
moments directly due to the flapping angles in the controller.
As such, each rotor’s thrust command is still computed by (11)
in the implementation of the proposed control system, instead
of using (41).

Finally, let the blade drag coefficient be Cp, € R. From [18]
and [19], the resultant external moment can be approximated
by

(42)

M, = Zi_r; x Tid; + (=)' Q,d; (43)
2
Qj = Co,pApry(rpw;) (@4)
where Cg, € R is the torque coefficient [18] given by
Cp,s
Co; = Cr, (’11 + /‘Z.f) + %(1 + 3'“?;‘)' (45)
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In short, U, and M/ in (2) and (4) are replaced by (36) and
(43), respectively, to simulate the quadrotor dynamics under
the effects of winds.

B. Position Tracking Control
The parameters of the quadrotor considered in the numerical

simulation are as follows:

m=1kg, d, =02 m, d, =0.01 m

J = 10"3diag[1,1,5] kgm?, Ty =8 N

Cro=01m, C,=1x10"% radsm™"
C; = 0.0l kgm™!, ¢=0.01 m,
Ny =2, r,=0.1016 m.

The controller gains are chosen as

ke =1, ky=14, kp =17, ko =24
ywl = 19 yul = 03, K| = 01
ywz = 03’ yvz = 3, Ky = 01, N21 = sz = 6

Initially, the quadrotor is at rest as specified by
xo =1[0,0,0" m, v9=10,0,0]" ms™!
Ry = Lys, Qo =10,0,0]T rads™'.

The desired trajectory is a sinusoidal oscillation along the first
inertial axis. More specifically

xq(f) = [cos2t, 0, 0]T m (46)
and the desired direction of the first body-fixed axis is
bia =1[1,0,01". 47)

It is assumed that the wind velocity in the inertial frame is
given by

0y = [sin 2t 4+ cos4t, cos 3¢, —0.5]T ms™'. (48)

The corresponding simulation results are presented
in Figs. 4 and 5. To illustrate the advantage of the adaptive
controller, we also present the simulation results of the
geometric controller without using the neural network
terms [12]. Specifically, the total thrust and torque are given
by (13), (17), and (18) with A, A; = 03,;. In addition,
the simulation result with the geometric PID controller [8] is
provided. This controller is designed to compensate for the
unknown fixed disturbances to the quadrotor. The results of the
three different controllers, the proposed adaptive controller,
and the controllers presented in [8] and [12] are denoted by
the red dash-dotted line, the blue solid line, and the green
dash-dotted line, respectively. The main goal is to track the
desired position trajectory given by (46). From Fig. 4, it can
be seen that ignoring disturbances in the controller results in
failure to track the desired position, especially along the third
axis. The geometric PID controller improves the tracking
performance over time. However, the proposed controller
adapts itself to the disturbances quickly while exhibiting
smaller tracking errors. Furthermore, as shown in Fig. 5,
although the other two controllers instantly increase the
thrust of the first rotor at + = 0 to compensate for the initial
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Fig. 4.  Position tracking simulation: tracking errors (blue line: without

disturbance rejection [12]; green dash-dotted line: PID [8]; and red dash-
dotted line: adaptive controller). (a) Position error (m). (b) Attitude error.

error, they fail to adjust the thrust properly afterward, thereby
causing large tracking errors, especially along e,,. However,
with the proposed controller, the thrust at each rotor remains
in the acceptable range, well under the maximum thrust
Tmax = 8 N. More specifically, the root-mean-square errors
along e,, for the controller without disturbance rejection,
PID, and the proposed controller are 8.2, 3.2, and 0.34 m,
respectively.

V. QUADROTOR UAV FLIGHT EXPERIMENTS

In this section, the proposed geometric adaptive controller is
validated by the flight experiments. Its hardware and software
are custom-designed and developed in-house. To demonstrate
the capability of rejecting the disturbances, flight experi-
ments are performed under wind disturbances generated by an
industrial fan. First, we describe the hardware and software
configurations. Then, we present the experimental results in
two sections, including attitude and flight trajectory trackings.
Additional experimental results are available in [21].

A. Hardware Configuration

The quadrotor platform is shown in Fig. 6. It has four
brushless DC electrical motors (700-kV T-Motor) paired with
11 x 3.7 carbon fiber propellers. To control the rotational
speed of the motors, each one is connected to an electronic
speed control (MikroKopter BL-Ctrl v2), which receives the
commands through the Inter-integrated Circuit (I2C) protocols
from an onboard computer.

All computations are performed on an embedded system-on-
module (NVIDIA Jetson TX2) running a Linux operating sys-
tem (Ubuntu 16.04 with JetPack 3.3). The onboard computer
is attached to an expansion board (Connect Tech’s Orbitty
Carrier), which is connected to a custom-designed printed
circuit board. This board houses a nine-axis inertial mea-
surement unit (IMU; VectorNav VN100) and 12C connection
headers for the motor speed controller. The computing module
communicates with a ground server (MacBook Pro) through
Wi-Fi to receive flight commands and data logging. A single
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Fig. 6.

Quadrotor UAV developed in the flight dynamics and control
laboratory. (a) Quadrotor UAV. (b) Attitude control test.

14.8-V Li-Po battery provides power for the motors and the
onboard computer. An optical motion capture system (VICON)
measures the position and orientation of the quadrotor and
sends their data through Wi-Fi to the onboard computer, which
are fed to an estimator to integrate the measurements from
IMU and VICON, and to determine the velocity.

The properties of the quadrotor are given by
J = diag[0.02, 0.02, 0.04] kng, m=2.1%kg, dy=0.23m

where the inertia matrix is estimated by a CAD model.

To generate wind disturbances in the indoor flight test facil-
ity, an industrial pedestal fan (Air King 9175) is placed. The
wind speed generated by the fan is measured and presented
in Figs. 7 and 10.

B. Flight Software

The flight software is written in C++. We used the POSIX
thread library to execute multiple tasks simultaneously. This
includes threads for data logging, communication, estimation,
and control with the average frequencies of 100, 60, 100, and
400 Hz, respectively. Additional software is developed for the
ground server that transmits commands to the quadrotor and
receives the flight data from the onboard computer to monitor
the quadrotor responses. We used the Glade library to design
a graphical user interface. It is used to monitor the flight data
and to enhance user interactions. The flight data are saved in
the host computer for postprocessing.

C. Attitude Trajectory Tracking Control

We first perform experiments for the attitude control. Here,
the quadrotor is attached to a spherical joint to prevent any
translation. In particular, the spherical rolling joint (SRJ012C-
P from Myostat Motion Control) is affixed to an aluminum
bar, as illustrated in Fig. 6(b). It allows up to 30° in roll and
pitch, and unlimited yaw.

As the spherical joint is below the mass center, this setup
resembles the dynamics of an inverted rigid pendulum, and
there is an additional gravitational torque to be considered
in (4). As such, the control moment in (18) is augmented by a
canceling term. Moreover, the moment of inertia is translated
to the center of rotation [21].

The wind speed generated with the fan is measured using
a TriSonica-Mini 3-D sonic anemometer as follows. The fan
faces the —e, direction in the inertial frame while generating
wind blowing to the left in Fig. 7. The wind generated by the
selected fan greatly varies depending on the relative location
of the fan, and they are with nontrivial turbulence. To measure
these, the quadrotor mounted on a fixed stand is oriented in
three different ways within the desired trajectory given by (49).
For each configuration, the wind is measured for 15 s with an
anemometer placed at the top of a selected rotor. During the
measurements, the rotors were not running to avoid disturbing
the wind with the rotors’ downwash and to solely measure
the fan’s wind speed. The corresponding results are presented
in the inertial frame in Fig. 7, where it is illustrated that the
wind speed varies greatly depending on the attitude and the
rotor location. As such, each rotor experiences different, time-
varying wind, while the quadrotor follows the desired attitude
trajectory.

The desired attitude is parameterized as

clcp swyslcp —coswysp cysOcod + syso

cls¢p swysOsd +cwycd cysOsd —sycd
—s0 sycl cycl

Ry = (49)
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Fig. 7. Wind measurement for the attitude trajectory tracking test. (a) Wind
speed (ms~") measurement for 15 s at several orientations. (b) Schematic of
the quadrotor UAV attitude test.

where cos and sin are shown by ¢ and s, respectively. The
Euler angles v, 8, and ¢ are chosen as

w(t) = m As cos(2m Bst) (50)
0(t) = n A; cos(2x B;t) (51)
o(t) =rmAy sin(27t Bft) (52)
and the trajectory parameters are set to
A, =015, A, =0.12, Ay =0.11
By =05, B, =05, By =0.5. (53)

The desired trajectory is chosen such that the vehicle rotates
along the three axes of by, by, and b3 simultaneously, while
wind is blowing toward the direction of —e, in the inertial
frame.

The controller gains and parameters are chosen as

kr =12, kg=0.6

Yur = 1, 75, =001, 1, =0.001, c; = 1.

The number of neurons in the first, hidden, and output layers
is

Ni, =6, Ny, =3, N3, =3.

The number of neurons in the hidden layer has been increased
until no further performance is observed. As such, the above
neural network structure is sufficiently rich for the uncertain-
ties in the given experiments. The corresponding responses
for the three different controllers are presented in Fig. 8. The
blue line is for the geometric controller without disturbance
rejection [12], the green line is for the geometric controller
with an integral term presented in [8], and the red line is for
the proposed method.

It can be observed that the geometric controller without
disturbance rejection causes large trajectory errors. However,
the proposed controller and the controller presented in [8]
improve the results [see Fig. 8(d)].

Fig. 9 shows the experimental setup in the e, — e3 plane,
while the wind is blowing toward —e;, and e3 points down-
ward. The photograph is taken at the time of 0.5 s when the
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Fig. 8. Attitude tracking experiments: attitude and angular velocity errors,

and four rotors’ thrusts (blue line: without disturbance rejection [12]; green
line: PID [8]; and red dash-dotted line: adaptive controller). (a) Attitude
error. (b) Angular velocity error (rad s71). (c) Attitude error function ().
(d) Thrust (N).

Attitude tracking experiment: snapshot at ¢
desired pitch angle of ¢4 = 19.8° (left: adaptive controller and right: without
disturbance rejection [12]).

Fig. 9. = 0.5 s, with the

desired pitch angle is ¢y = 19.8°. On the left, tracking with
the proposed adaptive controller is shown, and on the right,
the geometric controller without wind disturbance rejection is
presented. It can be seen that there is a large deviation in the
desired pitch angle (about —19.8°) in the presence of wind in
the absence of the disturbance-rejection techniques.

D. Position Trajectory Tracking Control

Next, the quadrotor is detached from the spherical joint
used in Section V-C, and it is controlled with the position
controller provided in Proposition 1. The quadrotor properties

IFor the video file of this experiment, visit the FDCL YouTube channel at
https://youtu.be/zUsOif 1SfEs or the experiment section of the FDCL Website
at http:/fdcl.seas.gwu.edu/
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Fig. 10. Wind measurement for the position trajectory test, where the fan . . . . . . .
Fig. 11. Hovering experiments: tracking errors (blue line: without distur-

is placed at x = 1.9 m along the e, axis, and it faces the —e, direction
(toward left). (a) Wind speed (ms~!) measurement for 15 s at several positions.
(b) Distribution of wind velocity element v,,, (ms~1) versus position (m) in
the front of the fan.

are given by

J = diag[0.02,0.027,0.04] kgm?, m =2.1 kg
dp =0.09 m, Ty =12 N, Cro=0.0135 m.

To generate the wind disturbances, the fan is placed at x, =
1.9 m along the second inertial axis e;, and it faces the —e,
direction in the inertial frame. The wind speed in the front
of the fan is measured using a TriSonica-Mini 3-D sonic
anemometer. It is held with a long rod at varying distances
along the e, axis in the front of the fan, and the resulting
wind speed measurements are presented in Fig. 10.

1) Geometric Adaptive Control for Hovering: We first study
the performance of the proposed adaptive controller for hover-
ing flight when the quadrotor is subject to the wind. Initially,
there is no wind. Later, the fan is turned on at about t = 10 s
and reaches the maximum speed at about + = 30 s. The
location of the quadrotor along the second inertial axisis 1.0 m
and the corresponding average wind speed is about 7.3 m/s,
as shown in Fig. 10.

The controller gains and parameters are chosen as

k, =16.0, k,=5.0, kr =1.2, kg =0.3
Yw, = 0.3, p,, =03, ¥, =0.0001, ¢; =1
Yw, = 0.035, v,, =0.035, x; =0.0001, c; = 1.

The number of neurons in the first, hidden, and output layers
is

N, =6, Ny =3, N3, =3
Ny, =6, N, =3, N3, =3.

The experimental results” are illustrated in Figs. 11 and 12
with comparisons against a controller without a disturbance-
rejection technique [12] and a geometric PID controller [8].
The controller without any disturbance rejection causes a
relatively large steady-state error e,, along the direction of

2For the video file of the hover flight experiment, visit the FDCL YouTube
channel at https://youtu.be/ouSsrDfiSDM or the experiment section of the
FDCL Website at http://fdcl.seas.gwu.edu/

bance rejection [12]; green line: PID [8]; and red line: adaptive controller).
(a) Position error (m). (b) Attitude error.

the wind. While the PID controller eliminates such steady
errors, it yields a noticeable disruption in position, especially
after the fan is turned on, indicated by a vertical line on
the figures. Even afterward, the turbulence causes a burst
of errors. In contrast, the proposed adaptive controller yields
consistent tracking performances throughout the experiment,
and compared with the geometric controller without distur-
bance rejection and PID, it reduces the root-mean-square error
in position from 0.42 and 0.17 m, respectively, to 0.10 m,
while the total force is reduced from 10.61 and 10.67 N,
respectively, to 10.19 N.
2) Geometric Adaptive Control for Position Tracking:

Next, the performance of the adaptive controller for trajectory
tracking is presented. The desired trajectory is given by

—0.67 X
t
xa(t) = 0.2—1.2005(%) L b = 0] (54
~1.57 0

which is a sinusoidal oscillation along the second inertial
axis. The controller gains and parameters are identical to
Section V-D1.

For the presented experiment, the quadrotor operates over
various locations in an unsteady nonuniform wind profile
generated by the fan, as illustrated in Fig. 10. The desired
trajectory is selected such that the relative velocity of the
quadrotor to the fan varies. Initially, the quadrotor flies toward
the fan. Then, it moves away from the fan, thereby the
wind affecting the quadrotor changes from 1 to 10 ms~!,
as illustrated in Fig. 10. In short, due to the turbulence from the
fan and the maneuvers of the quadrotor, the wind experienced
by the quadrotor is not steady for the presented experimental
results.

Figs. 13 and 14 show the experimental data. The trajec-
tories without disturbance rejection are plotted in blue line
and those with the proposed adaptive controller in red line.
It is illustrated that the proposed controller yields smaller
tracking errors without excessive rotor thrusts. This illustrates
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Fig. 12.
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and red line: adaptive controller). (a) A; for position. (b) A, for attitude.
(c) Attitude error function. (d) Thrust (N).

Hovering experiments: adaptive terms, attitude tracking error, and

that the proposed controller effectively compensates the wind
disturbance that may change depending on the position and
velocity of the quadrotor relative to the fan, as well as the time-
dependent turbulence. More specifically, the adaptive con-
troller decreases the root-mean-square errors of the position
tracking from 0.15 to 0.07 m while decreasing the total force
from 5.7 to 5.4 N, compared with the controller without
disturbance rejection.

3) Geometric Adaptive Control for Backflip: To illustrate
the performance of the proposed control system through an
agile maneuver, here we present experimental results for a
backflip maneuver.

The desired trajectory is composed of the following three
sequences: take-off, backflip, and hovering. The quadrotor
enters the region of strong wind generated by the fan at
the end of the take-off, and it is affected by the unsteady
wind throughout the remaining sequences. As such, the unique
feature of the proposed adaptive control system that can
handle the time-varying, configuration-dependent disturbances
is critical to complete this challenging maneuver successfully.
First, the quadrotor takes off to reach the desired upward

disturbance rejection [12] and red dash-dotted line: adaptive controller).
(a) Position error (m). (b) Attitude error.
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Fig. 14. Position tracking experiments: adaptive terms, attitude tracking error,
and thrust (blue line: without disturbance rejection [12] and red dash-dotted
line: adaptive controller). (a) A; for position. (b) A, for attitude. (c) Attitude
error function. (d) Thrust (N).

velocity from 75 =0 s to r; = 2.20 s as follows:

at?
xd(t)=x0+7[o,o,1]T, by, =[1,0,0]"  (55)
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Fig. 16. Backflip experiments: adaptive terms, attitude error function, and

Fig. 15. Backflip experiments: tracking errors (blue line: without disturbance
rejection [12] and dash-dotted and dashed red lines: adaptive controller).
(a) Position error (m). (b) Velocity error (ms™1). (¢) Attitude error. (d) Angular
velocity error (rad s7h.

where xy = [—0.22, 0.47, —0.50]", a = —0.50, and (17) and
(18) are used to control the quadrotor.

In the next step, the quadrotor performs a backflip while
encountering an unsteady wind shown in Fig. 10. More
specifically, the attitude is controlled with (18) to rotate the
quadrotor about 360° along the first body-fixed axis b;,, which
is parallel to the first inertial axis e; in this configuration. The
desired attitude trajectory is chosen as

Ry(t) = exp(0u(1)by,) (56)

where the rotation angle is chosen as a second-order polyno-
mial function of time

. ot
ifty <t <t +—

1
_am(t - tl)z» )

2

1
Gs(t)= EA’am(t —1), 57)

! t—t or)® 'ft+A’<t<t+65t
B P T B o
2 ) ) 'y

thrusts (blue line: without disturbance rejection [12] and dash-dotted and
dashed red lines: adaptive controller). (a) A; for position. (b) A, for attitude.
(¢) Attitude error function. (d) Thrust (N).

with a,, = 60.0 and A, = ((87)/a,)"/?. The resulting desired
angular velocity is
. ot
ifty <t <ty +—

b 2 5 ¥
am(Ar+11—1)by,, if t1+3 <t<t+ §5;,

am (t - tl)blda
Q1) =

After the backflip, (17) and (18) are used to control the
quadrotor to make it hover at a fixed location specified as

t2
xa(t) = xo+ SH0.0. 117, by, =[1,0,0]".  (59)

Figs. 15 and 16 show the experimental results. The trajecto-
ries without disturbance rejection are plotted in blue line and
with the proposed adaptive controller in red line. The results
of the two experiments are presented in a dashed line and a
dash-dotted line to illustrate the repeatability. The gray lines
are to separate the three stages described earlier. The first gray
line divides the take-off from the backflip, and the second one
separates the backflip from the last hovering stage. For the
control system presented in [12], the angular velocity diverges
during the backflip stage, resulting in a large attitude tracking
error afterward. More specifically, due to the wind in the —e;
direction, the quadrotor could not complete a swift rotation
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Fig. 17. Backflip without disturbance rejection [12] (snapshots). (a) At t = . . . .

0s.(b) At =220s.(c) Att=2.52s. (d) At =2.71s. (e) Att = 2.80 s. Fig. 18. Backflip with the adaptive controller (snapshots). (a) At ¢ = 0 s.

(f) Att =324 s. (b) At 1 =2.02s. (c) Att =248 s. (d) At t =2.55s. (e) At t = 2.60 s.
(f) Atr=274s.
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during the second step. It rotated only about 180° along the
e; axis in the second step and continued the rotation through
the third stage, during which the quadrotor fails to regain
control and loses height such that the position error along
the es axis reaches 1.6 m, as shown in Fig. 15(a). Finally,
the quadrotor crashes into the floor at + = 3.2 s, where the
blue lines end. See Fig. 17 for the snapshots. The yellow
arrows indicate the direction of b3 starting from the center
of mass.

In contrast, the proposed geometric adaptive controller with
the neural network results in a successful backflip maneuver
followed by a stable hovering flight, as illustrated in Fig. 18.
The yellow arrows indicate the direction of b3 starting from
the center of mass. Remarkably, the neural network parameters
are adjusted promptly over the short period of the second
backflip stage to achieve the successful backflip maneuver.
Such an agile maneuver under the effects of wind has not
been demonstrated before.?

VI. CONCLUSIONS

We have presented a geometric adaptive control system
for a quadrotor UAV based on an artificial neural network.
The weight parameters of the neural network are adjusted
online such that the effects of the unstructured, arbitrary
uncertain forces and moments are mitigated. The efficacy of
the proposed approach is illustrated by numerical examples
under simulated wind effects and indoor flight experiments
under the unsteady spatially varying wind gust generated by
an industrial fan. In particular, it is shown that the proposed
scheme can successfully and swiftly eliminate the adverse
wind effects for an aggressive maneuver. This can be further
used in estimating the effects of the wind by the converged
values of the weighting parameters.

For a future work, the neural network can be trained
offline to generate the expected force and moment for a
given wind gust. If the quadrotor UAV is augmented with
an on-board anemometer, the proposed adaptive scheme can
be used to mitigate the difference between the actual distur-
bance and the predicted values to improve performance under
strong winds.

APPENDIX

Here, we present the proof of Proposition 1. First,
in Section VI-A, selected identities are presented. Then,
in Section VI-B, we analyze the error dynamics for a posi-
tion tracking command, which will be integrated with the
attitude error dynamics presented in Section VI-C. Finally,
in Section VI-D, we consider the stability of the complete
dynamics. An alternative, more involved proof with less con-
servative results is available in [22].

3For the video file of this experiment, visit the FDCL YouTube channel at
https://youtu.be/a-DG2PcUu7k or the experiment section of the FDCL Website
at http:/fdcl.seas.gwu.edu/

A. Identities
Forany A e R*3,x,y e R ¢|,cr,c3 € R

tr [yxT] = xTy (60)

—cix? 4 ex < _Gy2 c_% (61)
- 2 26‘1

ATz + 32 A = ([tr[Allxs — Alx) " (62)

Let D be an open domain containing the origin of the error
states, defined as follows:

D= {x, 0, R, Q, (Wi, Vi)icia) € R? x R? x SO(3) x R?
X (RN VAN e+ ey |

T+ leall + 110 + 1221 < d] (63)

for a positive constant d. The subsequent Lyapunov analysis
is conducted in the domain D.

Here, we show that all the states, namely
(x,0, R,Q,Zl,zz), are bounded in D. Recall that from
the problem formulation, the desired position trajectory
x4(t) and all its time derivatives are bounded. These imply
that x = e, + x4 and v = e, + x4 are bounded in D.
From Assumption (22) and the projection scheme in (24)
and (25), the estimated weighting parameters (Z;, Z,) are
also bounded.

Throughout this proof, the bound of any state or any
error variable within D is denoted by a single variable J,
ie., |lex|| <9, |lv|| <. In addition, any function of J, which
is independent of the control parameters, is denoted by J. This
practice is not uncommon in the nonlinear controls [23], and
it is to present the key idea of the proposed control system
concisely without introducing too many notations.

The second-order derivative of the desired trajectory is suf-
ficiently distinct from the gravitational acceleration, as shown
in (10). As such, in (13), the first three terms satisfy

”Al —keer —kpey|| < (1 +k, +kv)5

and the last two terms satisfy || —mge; +mX,|| > mB,. Thus,
when B, is sufficiently large, the term A that is composed of
the sum of the above two cannot vanish, i.e., A # 0 in D.
Therefore, the desired attitude R, is well defined in (15), and
the desired angular velocity €. in (16) and its time derivative
are bounded.

Next, we show an inequality that is repeatedly used later
in the Lyapunov stability proof. Let Vy, be the part of the
Lyapunov function dependent on W;, V;, which is defined as

1 o= 1 .
Vo, = 5—tr| WIW; | + 5w [ V17 (64)
Zywi 2y“i
Consider the following expression of B; € R:
B; = —aiT(A,-) + V(),. (65)

which will appear in the subsequent stability analysis. Here,
we find an upper bound of this term.

The error dynamics of the neural network weights from (29)
are given by

W, =W, Vi=—V. (66)
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We substitute (26) and (27) into (66). Using (30), B; is
rewritten as

B = aiT{—WiT[U(Zi) —0'(z)zi) — Wle' @)z + wi}

+tr[WiT[a (z,‘)aiT - a/(zi)ziaiT + K; Wi]]

+tr|:‘~/iT{xnn,- [0/ ()" Wiai]" +xi‘7i}]. (67)
Applying (60), it reduces to
Bi = K;tr I:Z;TZ,:I + a,T(w,) (68)

We have
w217 =2 2|~ | 21 Z | <0212~ 1 201 (69)

Inequality (61) implies

2
z,

2

Since |lo|| <1, |l6’|| < 0.25, it can be shown that the upper
bound for (32) is |O;|| < 2 + 0.25||V;|[[[xpn, || From (22),
the upper bound of (31) is

- - 1 -
—HZH?+ZMHZAts—§HZm2+ (70)

lwill < 0.25 Vi | W,

|%un, | + Wa 10: 1l + €. (71
Since [l | = 1+ Nl + Il (|, | %)) = |2,
and (22), we obtain

lwill < 8+ NZill(1+ i, | + 2] (72)

where 0.25(Vy, + Wiy,) and 2Wyy, + ¢; are replaced with 6.
Substituting (70) and (71) into (68)

K,Z%,I

2
laill{o+aNZil (1 + x| + [} @3

Since (28), [laill < lles |l +cillexll, and [laz|l < lleall +c2llerll,
we have |a;|| < (1 4 ¢;)d. Since x;, = x and x,, = v, and
x1, = E(R)T and x,, = Q, we have ||x;,|| < 6 and [|xy,| <
0. Again, by invoking our convention on the notation of J,
the above bound can be rewritten as

Ki ~
B < —ZNIZill* +

Ki ~ K‘Zz.
B <~ 1ZilP + TM + (1 +¢)o[o+ (1 +20))
Ki ~ K‘Zz.
= —SNZiIP + 1+ )i+ TM (74)

B. Position-Error Dynamics

Taking the derivative of (12) and substituting (2) and (8),
the error dynamics are defined as

éx = e (75)
me, = mge; — A — fRe; — miy. (76)
Define X € R? as
f TpT

X = ———|(e3 R.Re3)Rez — R.e 77
eg‘RCTRe3 [( 3 e 3) 3 3] ( )

where e3TRCTR63 > 0 [12]. Equation (76) is rewritten as
mé, = mge; — Ay — mxq — Rees — X.  (78)

T RT
e3R;Res

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Since b3 = Ree3 = (—A/||A|) and f = —ATRes;, we can
conclude that f = (|| A||R.e3)TRes. Therefore

f

————————Rce3 = A.
eIRTRe; ¢

(79)
Substituting (13) and (79) into (78), the velocity-error dynam-
ics is written as

ke, — Ay — X. (80)

me, = —k,e, —

Next, we find the upper bound of X. From (79), ||A| =
I — f/(e_gTRCTRe3)RCe3||. Since R.e3 is a unit vector, ||A| =
I— f/(e3 RIRe3)||. Consequently, the norm of X' can be written
as

X1 = IANl]|[(e3 R'Re3)Res — Rees||. 81)

In addition, it is shown that |[[(e RIRe3)Res — Reesll <
lerll < B < 1, where f = (y1(2 — y1))"/* [12]. Substi-
tuting (13), the upper bound of ||X|| is given by

X1 < (kellex!l + ko lles || + O) llerll (82)
where it is considered as
H—mge3 + miq+ Ay H <. (83)

For a nonnegative constant c;, the Lyapunov function for
the position dynamics is chosen as

L p L T
V) = Ekxexex + Emev e, +mcy e e, + Vo, (84)
where V), is given by (64). It is straightforward to show
1 1
EZTMIIZI <V < EZTM1221 (85)
where
"k, —mcy 0
—mc m 0
M11 = ! 1 (86)
0 0 _
i min{yu,, 7o, }
k. mc 0
mc m 0
M, = | " 1 (87)
0 _
i min{y.,, 7, }
- . AT
2 = [lesl leul 1 Z11] (88)
If c; is sufficiently small such that
ki
Cl <4 — (89)
m
then M, M|, are positive-definite.
Taking the derivative of the Lyapunov function
]‘}1 = kxegex + (ev + Clex)Tméu + mcleyTeU + ].}01 (90)
and substituting (80) into (90) and rearranging
V) = (mcy — ku)eUTeU —c kxefex - clkuezev
— (e, + clex)TX — (e, + clex)Tﬁl + Vol- o1
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From (82) and |leg|| < f < 1, we have
(e, + clex)TX
< cikeBllexl® + ko Blle,|I?
+cikyBllexllles |l + cidllexllllerll + dlle, llllerll
+kellexllleslllerll- 92)
From (28), the last two terms of (91) are the same as (65).
Substituting its equivalent expression given by (74) and sub-
stituting (92)
V) < —crk (1 4+ ,[)’)eIex — (ky(1 4+ ) — mcl)egev
— SNZIP + ek (14 Bllesllle |
+cidllexllllerll + (1 +ko)dlles |l llerll

2
K]ZM1

2
where |le|| < 0 is used for the bound of | e,| |le, ]l ller]l-

+(1+c)o+

93)

C. Attitude-Error Dynamics

Here, we analyze the error dynamics for the attitude tracking
command.

We calculate the attitude-error dynamics, taking the deriv-
ative of (19) and (20) and using (9), (18), and (62). The
expression for attitude-error dynamics is given by

én = S ([KTR ) — KR )ea = C(RTR)en

94)

Jeq = —kger — kaeq — A, 95)

(R, R:) = egea (96)
IIC(RIR)|| < 1. 97

For more details about the proof of (94), (96), and (97),
see [12].

For a nonnegative constant c;, the Lyapunov function for
the attitude dynamics is defined as

1
V, = —eg;.]eg + kg (R, R,) + 2 e%]eg + Vo2

5 (93)
where V), is given by (64), and

1

~llerl” < (R, R.) < lerl® (99)

2 2—y

with w1 = (1/kg)[(1/2)eq(0)TJeq(0) + kg (R(0), R:(0))].
The bounds of V, are

1 1
EZEMZIZZ <W < EZEMzzlz (100)
where
B kR _CziM, 0
My = [ | (101)
0 0o -
L mln{ywz, Vuz}
™ 2kg
A 0
2—w CAM,
My = | &Au, A, (1) (102)
0 0o -
i min{y,, 70, }
- T
2 = [llexl, leal, 1 221] (103)

with 1, = 4 (J), A, = A (J).
Provided that ¢; is sufficiently small to satisfy the following
inequality, the matrices Mj; and My, are positive-definite:

kR Im 2k
¢y < min{ YR k (104)
j'MJ j'MJ (2 - V/l)

where y; < 2.
The time derivative of the Lyapunov function is given by

Vs = (ea +caen) o+ kn¥ (R, Ro) + eréfTea + Vo,
(105)

Substituting the error dynamics (4), (18), and (94)-(97)

].)2 = (eq + CzeR)T (—kReR — kgeq — Az)

+kregeq +c2 C(RTR)enJeq + Vo, (106)
From (97) and ||J|| < A,
Vs < —cakgeger + o2 kallerlllleall — (ko — c2du, )egea

— (ea+ czeR)T(Az) V. (107)

From (28), the last two terms of this expression are identical
to (65). Substituting its equivalent expression given by (74),
we have

. T T
V) < —crkgeger + cakallerlllleall — (ka — c2Aum, )egeq

2
ICQZM2

K ~
- §||Zz||2+ (14 c2)d + (108)

D. Stability Proof for Quadrotor Dynamics

Here, we combine the position-error dynamics and the
attitude-error dynamics to show the stability properties of
the complete controlled quadrotor. The Lyapunov function is
chosen as V = V| + V,, where V|, )V, are given by (84)
and (98). From (85) and (100), the bound on V is given by

1 1 1
Efbn(Mn)llzlll2 + E/Im(le)IIZzII2 V=< E/W(Mlz)llzlll2
1
+5Au M)z (109)
It can be rewritten in the form of
1 1
EZTMlz <V< EZTMzz

(110)

where M|, M, € R?>*? and z € R? are

M1 — |:jvm(Mll) 0 :|

0 /Im(MZI)
M) 0
M. = |: 0 iM(Mzz)i|

T
z = [||z4]l, lz2]l]"

The matrices M| and M; are positive-definite if (89) and (104)
are satisfied.

The derivative of the Lyapunov function is V=V +W.
From (93) and (108), it can be written as

1.} < _ZTWIZI + ZTW]QZQ — Z’;szz +C

< "Wz +C (111)
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where C = 2+ ¢1 4+ )0 + (k123;)/2 + (k2 Z3,,)/2 and

r 1
akd+p) —sakd+p 0
1
Wi=|—c k(1+p) kd+p)—me O
2 Kl
0 0 5
L 2
_ 1
c10 0 0 In(W1) =Wz,
Wi =|(0+k)d 0 0, W=l, g
0 0 0 §||W12||2 Am(W2)
r 1
C12 kg —Ecz ko 0O
Wo= | —Z¢) kg kg —cadu, O
2 K
0 0 >
L 2

If the constants ¢y, ¢, are chosen sufficiently small such that

, /kx 4 koky + 4Bkoky kv(l+ﬁ)
c1 < min >
" 4 kym + PKE+ K2
,/kRim, kg dkeko ko

¢y < min
/IM,(Z l//]) k2 +41Mij /IM,
then all the matrices, namely, M;;, M;», M;, and W; for
i € {1, 2} become positive-definite. Furthermore, if kg, kg are
sufficiently large such that

I,

W12l
44, (Wy)

then W becomes positive-definite. Consequently, we have V<
—AmW)|1Z|> +C, and for 0 < 6 < 1

j~m (WZ) >

. C

V< —(1-)l W)zl if |z > [ ——.
<—( VA (W)llz]|” if [|z]| > 07 (W)

Therefore, according to [23, Corollary 5.3], all the error states

are uniformly ultimately bounded.
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