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Geometric Adaptive Control With Neural Networks

for a Quadrotor in Wind Fields
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Abstract— This article presents a geometric adaptive controller
for a quadrotor unmanned aerial vehicle with artificial neural
networks. It is assumed that the dynamics of a quadrotor is
disturbed by the arbitrary, unstructured forces and moments
caused by wind. To address this, the proposed control system is
augmented with the multilayer neural networks, and the weights
of the neural networks are adjusted online according to an
adaptive law. By using the universal approximation theorem,
it is shown that the effects of the unknown disturbances can be
mitigated. More specifically, under the proposed control system,
the tracking errors in the position and heading directions are uni-
formly ultimately bounded. These are developed directly on the
special Euclidean group to avoid the complexities or singularities
inherent to local parameterizations. The efficacy of the proposed
control system is first illustrated by numerical examples. Then,
several indoor flight experiments are presented to demonstrate
that the proposed controller successfully rejects the effects of
wind disturbances even for aggressive, agile maneuvers.

Index Terms— Adaptive control, geometric control, neural
network, quadrotor unmanned aerial vehicles (UAVs), wind
disturbance rejection.

I. INTRODUCTION

M
ULTIROTOR unmanned aerial vehicles (UAVs) are

subject to various disturbance forces and moments. In

particular, wind disturbances may severely degrade the perfor-

mance and stability of small aerial vehicles. Thus, it is critical

to characterize these effects carefully and to alleviate them for

reliable autonomous flights in various outdoor environments.

Several approaches have been considered to address this prob-

lem, such as comprehensive aerodynamic modeling of wind

effects, system identification of wind effect modeling parame-

ters, and feedback control systems to mitigate the wind effects.

Concerning the wind effect modeling, thrust and drag forces

in forward flights for a quadrotor UAV are studied in [1],

and it is shown that the assumptions for hovering the flight

models become deteriorated when the relative wind speed

is sufficiently large. In [2], the blade-flapping response of
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a small-stiff propeller under wind is studied with a rotor–

pendulum system. Once a mathematical model for wind effects

is determined, the modeling parameters should be identified

by experiments with the particular UAV under consideration.

To determine the unknown aerodynamic modeling parameters,

[3] and [4] present computational geometric approaches for

the system identification of the quadrotor dynamics, where

the system-identification problem is converted into an opti-

mization problem to minimize the discrepancy between the

identified model and the actual response.

To reject the undesired effects of wind disturbances, control

systems are proposed to cancel out the wind effects from the

mathematical models. In [5], a lookup table is used to estimate

the wind forces and moments in real time based on the relative

wind speed and rotational speed of the propellers. The table

is generated by solving intensive computational aerodynamic

expressions. Bangura and Mahony [6] present the dynamics

of a brushless DC motor that is constructed to determine the

power level to follow a given desired trajectory while rejecting

the axial wind effects. In [7], the wind velocity data from the

flow probes are used in a control system to guarantee stability

in the presence of wind. While these cancellation techniques

have been successful, the robustness and performance are

limited by the accuracy of the wind effect model used in

the controller and the estimated wind velocity. The control

force and moment that resist wind would be reliable within

the flight envelop considered for the aerodynamic modeling,

which is additionally limited by the computing resources

available in real time. Furthermore, they may deteriorate for

the unexpected wind gusts, as there is no mechanism to adjust

the modeling errors online.

On the other hand, several alternative control techniques

have been presented without relying on cancellation. For

example, [8] presents a geometric proportional–integral–

derivative controller on the special Euclidean group to reject

the unknown, fixed uncertainties. In addition, parametric

uncertainties are addressed with a geometric adaptive control

scheme in [9]. In [10], to overcome the effects of modeling

errors, the data of the successive indoor experimental trials are

used to tune the control parameters for aggressive maneuvers.

Nicol et al. [11] presents an adaptive neural network for the

reduced dynamics of a quadrotor UAV.

This article proposes a geometric adaptive control scheme

for a quadrotor UAV, where the effects of wind are con-

sidered as unstructured, unknown disturbances. Instead of

counterbalancing those with an aerodynamic model and a
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measured wind velocity, wind disturbances are compensated

by an artificial neural network whose weight parameters

are adjusted in real time. More specifically, we adopt the

geometric controller proposed in [12] and augment it with

multilayer neural networks and an adaptive law to mitigate the

unknown disturbing forces and moments that are considered

as an arbitrary function of the quadrotor UAV’s states. The

dynamics of a quadrotor is globally formulated on the special

Euclidean group to avoid the singularities and complexities

inherent to the Euler angles or quaternions. It is shown that

the tracking errors are uniformly, ultimately bounded with an

ultimate bound that can be reduced arbitrarily up to any desired

precision. These are illustrated by numerical examples with

the simulated aerodynamic effects of wind. Next, we show

that the proposed geometric adaptive controller can mitigate

wind effects even for aggressive maneuvers through indoor

flight experiments with artificial wind gusts generated by an

industrial fan. The preliminary results are presented in [13].

However, this article presents a complete Lyapunov stability

proof, extensive numerical examples, and additional flight

experimental results.

In short, the main contribution of this article is presenting a

geometric adaptive controller based on neural networks for a

quadrotor that is capable of compensating the unknown aero-

dynamic forces and moments caused by wind. This requires

neither the precise mathematical model of wind effects nor

the actual wind velocity, and it can be implemented without

an additional onboard anemometer.

II. PROBLEM FORMULATION

A. Quadrotor Dynamics With Disturbances

This section formulates the quadrotor dynamics, including

unknown disturbances in the translational dynamics and rota-

tional dynamics. The disturbances are considered as arbitrary

forces and moments, and they may represent the wind dis-

turbance effects, which are discussed later in Section IV. The

quadrotor UAV is regarded as a rigid body with a configuration

that is represented by the center of mass x ∈ R
3 in the inertial

frame and the orientation of the body-fixed frame with respect

to the inertial frame R ∈ SO(3) = {R ∈ R
3×3 | RT R =

I3×3, det[R] = +1}, as illustrated in Fig. 1. Both the frames

are right-handed coordinate frames. Thus, the configuration

space of a quadrotor is the special Euclidean group SE(3),

which is the semidirect product of SO(3) and R
3.

The equations of motion are given by

ẋ = v (1)

mv̇ = Ue (2)

Ṙ = R�̂ (3)

J �̇ + � × J� = Me (4)

where Ue ∈ R
3 is the resultant force resolved in the inertial

frame and Me ∈ R
3 is the resultant moment resolved in the

body-fixed frame. The mass and the inertia matrix are denoted

by m ∈ R and J ∈ R
3, respectively. The vector v ∈ R

3 is

the linear velocity in the inertial frame, and � ∈ R
3 is the

angular velocity resolved in the body-fixed frame. The hat

Fig. 1. Quadrotor model with the illustration of the rotors’ thrust (T1, T2,
T3, and T4), the inertial frame (e1 , e2 , and e3), and the body-fixed frame (b1,
b2, and b3). The third inertial axis e3 points downward along the gravity, and
the third body-fixed axis b3 is opposite to the direction of thrust [12].

TABLE I

SUMMARY OF NOTATIONS

map ∧ : R
3 → so(3) is defined such that x̂ y = x × y and

(x̂)T = −x̂ for any x, y ∈ R
3. The inverse of the hat map is

denoted by the vee map ∨ : so(3) → R
3.

Suppose that dh ∈ R
+, dv ∈ R specify the horizontal and

vertical distances from the origin of the body-fixed frame to

the center of a rotor. If a rotor is above the origin, dv is

positive, and it is negative otherwise. The locations of the

four rotors in the body-fixed frame are given by

r1 =
[

dh, 0, dv

]T
, r2 =

[

0, dh, dv

]T
(5)

r3 =
[

−dh, 0, dv

]T
, r4 =

[

0,−dh, dv

]T
. (6)

Let the thrust T ′
j ∈ R and torque Q′

j ∈ R of the j th motor be

given by

T ′
j = C ′

T ω2
j , Q′

j = C ′
Qω2

j ≡ CT Q T ′
j (7)

where C ′
T , C ′

Q ∈ R are the constant thrust and torque coef-

ficients, and CT Q = (C ′
Q/C ′

T ) ∈ R determines the relation

between the reactive torques and thrusts. The resultant force

and moment acting on a quadrotor can be written as

U ′
e = mge3 − fRe3 − �1 (8)

M ′
e = �4

j=1r j × T ′
j e3 − (−1) j+1 Q′

j e3 − �2 (9)

where f = �4
j=1T j ∈ R is the sum of the four rotor thrusts

and mge3 is the gravitational force with e3 = [0, 0, 1] ∈ R
3.

The sums of the unknown disturbing forces and moments are

denoted by �1 and �2 ∈ R
3, respectively.
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B. Position Tracking Control Problem

Suppose that the desired position trajectory is given as a

smooth function of time, i.e., xd(t) ∈ R
3. It is considered that

xd(t) and all its time derivatives are bounded. In addition, it is

sufficiently distinct from the gravitational acceleration such

that

‖ẍd − ge3‖ > Bg (10)

for a positive constant Bg. We wish to design a control system

for the rotor thrusts such that the actual position trajectory

asymptotically follows the desired values in the presence of

unknown disturbances. Instead of designing the rotor thrusts,

the control input is considered as the total thrust f , and

moment M = [M1, M2, M3]
T ∈ R

3 in the body-fixed frame.

For a given ( f, M), the equivalent thrust of each rotor can be

computed by


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III. GEOMETRIC ADAPTIVE CONTROLLER WITH NEURAL

NETWORKS

In this section, we present a geometric adaptive control

system for a quadrotor to reject the effects of unknown

disturbances without any prior knowledge.

A. Controller Structure

The presented quadrotor dynamics is underactuated, as there

are four control inputs. In [12], a geometric control system for

a quadrotor is presented with a backstepping approach, which

is adopted in this article. The overall controller structure is

summarized as follows. Let the tracking errors in the position

and the velocity be

ex = x − xd, ev = v − ẋd . (12)

For the positive controller gains kx, kv , consider an ideal

control force A ∈ R
3 defined as

A = �̄1 − kxex − kvev − mge3 + mẍd (13)

where �̄1 ∈ R
3 is an adaptive control term to mitigate the

effects of the disturbance �1. The control objective can be

achieved by replacing the control force term −fRe3 in (8)

with the above ideal value of A. However, that is not feasible,

as the total control thrust is always in the opposite direction of

the third body-fixed axis, i.e., the direction of the total thrust

is always −Re3, and only its magnitude f can be adjusted

arbitrarily.

To address this, an attitude controller is introduced such that

the actual attitude is guided toward the ideal thrust direction

Fig. 2. Structures of a three-layer neural network.

defined by (13). More specifically, the desired direction for

the third body-fixed axis is given by

b3c = −
A

||A||
. (14)

As it is a 2-D unit vector, the desired heading direction,

namely, b1d
(t) ∈ S2 = {q ∈ R

3 | ‖q‖ = 1}, is further

introduced as a function of time. These yield the complete

desired attitude as

Rc =
[

b1c
, b2c

, b3c

]

(15)

where b1c
= b2c

×b3c
, b2c

= −(b1d
×b3c

)/(‖b1d
×b3c

‖). One

can show that the above construction guarantees Rc ∈ SO(3),

and by taking its time derivative, the desired angular velocity

can be constructed as

�c =
(

RT
c Ṙc

)∨
. (16)

Any attitude tracking control system can be implemented

to follow asymptotically Rc, and the total thrust is chosen as

the ideal control force projected to the instantaneous thrust

direction as follows:

f = −ATRe3 (17)

Mc = �̄2 − kReR − k�e� + � × J�

− J
(

�̂RT Rc�c − RT Rc�̇c

)

(18)

where kR, k� are the positive attitude control gains, and the

tracking errors for the attitude and the angular velocity are

given by

eR =
1

2

(

RT
c R − RT Rc

)∨
, e� = � − RT Rc�c. (19)

In addition, �̄2 ∈ R
3 denotes an adaptive term to eliminate

the effects of the unknown disturbance �2 in (9). The above

attitude tracking error can be interpreted as the gradient of the

following attitude error function:

�(R, Rc) =
1

2
tr
[

I3×3 − RT
c R
]

(20)

which is positive-definite about R = Rc [12]. In addition,

the angular velocity error vector satisfies �̇ = eT
Re�.

In the absence of the disturbances and the adaptive control

terms, local exponential stability has been established in [12].

Next, we will formulate the expression for the adaptive

terms and the adaptive control law to address the unknown

disturbances.
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Fig. 3. Adaptive controller structure [the adaptive term for the position and the attitude dynamics is given by (23); the force controller is given by (17); the
computed rotation matrix is given by (15); the moment controller is given by (18); the adaptive law is given by (24)–(27); four commanded rotation speeds
are given by (7) and (11); and the quadrotor dynamics are given by (1)–(4)].

B. Adaptive Neural Network Structure

Consider a three-layer artificial neural network, as illustrated

in Fig. 2. The numbers of neurons at the input, hidden,

and output layers are denoted by N1 + 1, N2 + 1, and N3,

respectively. The input to the neural network is arranged in

a vector form xnn ∈ R
N1+1 as xnn = [1, x◦

nn1
, . . . , x◦

nnN1
]. The

input to the hidden layer, namely, z ∈ R
N2 , is a weighted sum

of the above, given by z = V Txnn, for a weighting matrix

V ∈ R
N1+1×N2 . The output y ∈ R

N3 of the neural network

is y = W Tσ(z), where the weighting matrix of the output

layer is denoted by W ∈ R
N2+1×N3 , and the activation function

σ : R
N2 → R

N2+1 is defined as σ(z) = [1, ς1, . . . , ςN2
] for

the sigmoid function ςk = 1/(1 + e−zk ), for k ∈ {1, . . . , N2}.

We assume that the unknown disturbing force and moment,

namely, (�1,�2) in (8) and (9), are dependent on the quadro-

tor states. According to the universal approximation theo-

rem [14], there exist artificial neural networks that approximate

these disturbances up to an arbitrary level of accuracy.

More explicitly, the particular structures of the artificial

neural networks used in this article are defined as follows.

Throughout the remainder of this article, the subscript i = 1

denotes the position dynamics and i = 2 denotes the attitude

dynamics. Let the input to the neural network xnni
∈ R

N1i
+1

be

xnni
=
[

1, x1i
, x2i

]

(21)

where x11
= x , x21

= v are for the position dynamics and

x12
= E(R)T, x22

= � are for the attitude dynamics. The

vector E(R) = [θ, φ,ψ] contains the Euler angles from the

rotation matrix R. Consequently, N11
= N12

= 6. Since the

neural network is formulated to approximate the disturbing

force and moment, the number of outputs is N31
= N32

= 3.

The universal approximation theorem implies that there exists

an ideal value of the weighting parameters (Wi , Vi ) and the

number of the hidden layer N2 such that �i = W T
i σ(V T

i xnni
)+

ǫ(xnni
), for the approximation error satisfying ‖ǫ(xnni

)‖ ≤ ǫN

for some ǫN > 0.

While the ideal values (Wi , Vi ) are not available, it is

assumed that the upper bounds WMi
, VMi

> 0 are given such

that

||Wi || ≤ WMi
, ||Vi || ≤ VMi

. (22)

Let (W̄i , V̄i ) be the current estimate of the ideal weighting

matrices. The adaptive control terms in (13) and (18) are

computed by

�̄i = W̄ T
i σ(z̄i ) (23)

with z̄i = V̄ T
i xnni

. In addition, they are updated according to

the following adaptive law:

˙̄Wi =























˙̄W ′
i , if

∥

∥W̄i

∥

∥ < WMi
or

(

∥

∥W̄i

∥

∥=WMi
, ˙̄W T

i W̄i ≤0
)

[

IW −
W̄i W̄i

T

W̄i
T
W̄i

]

˙̄W ′
i , otherwise

(24)

˙̄Vi =























˙̄V ′
i , if

∥

∥V̄i

∥

∥ < VMi
or

(

∥

∥V̄i

∥

∥ = VMi
, ˙̄V T

i V̄i ≤ 0
)

[

IV −
V̄i V̄

T
i

V̄ T
i V̄i

]

˙̄V ′
i , otherwise

(25)

where IW ∈ R
N2i

+1×N2i
+1 and IV ∈ R

N1i
+1×N1i

+1 are the

identity matrices. These correspond to the following adaptive

laws projected to a bounded region satisfying (22) [15]:

˙̄W ′
i = −γwi

[

σ(zi)a
T
i − σ ′(zi)zi a

T
i

]

− κiγwi
W̄i (26)

˙̄V ′
i = −γvi

xnni

[

σ ′(zi)
TW̄i ai

]T
− κiγvi

V̄i (27)

a1 = ev + c1ex, a2 = e� + c2eR (28)

for the positive adaptive gains and parameters

γwi
, γvi

, κi , c1, c2 ∈ R
+.

The proposed design of the adaptive law is based on the

following expressions of the estimation errors. Let the errors

in the weighting parameters be denoted by

W̃i = Wi − W̄i , Ṽi = Vi − V̄i . (29)

The output error of the neural network �̃i = �i − �̄i can be

written as

�̃i = W̃ T
i

[

σ(z̄i) − σ ′(z̄i )z̄i

]

+ W̄ T
i σ ′(z̄i )z̃i − wi (30)

wi = −W̃iσ
′(z̄i )zi − W T

i O(z̃i ) − ε
(

xnni

)

(31)

O(z̃i ) = σ(zi ) − σ(z̄i) − σ ′(z̄i )z̃i (32)

where z̃i = Ṽ T
i xnni

. Furthermore, it can be shown that wi is

bounded by

‖wi‖ ≤ C1i
+

∥

∥

∥Z̃ i

∥

∥

∥

(

C2i
+ C3i

∥

∥x1i

∥

∥+ C4i

∥

∥x2i

∥

∥

)

(33)

where Cki
, k ∈ 1, . . . , 4 are the positive constants and Z̃ i =

diag[W̃i , Ṽi ] ∈ R
N2i

+N1i
+2,N2i

+N3i [16].

The resulting stability properties of the proposed control

system, shown in Fig. 3, are summarized as follows.
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Proposition 1: Consider the control force f and moment

Mc defined at (17), (18). Suppose that the initial condition

satisfies

�(R(0), Rd(0)) ≤ ψ1 < 1 (34)

for the fixed constants ψ1, there exist the values of the

controller parameters such that all the tracking errors of the

quadrotor, as well as the neural network weight errors, are

uniformly ultimately bounded.

Proof: See the Appendix.

This theorem implies that arbitrary disturbing forces and

moments can be mitigated by the adaptive neural networks

that are adjusted online to cancel out the disturbances. The

resulting controller does not achieve stability in the sense

of Lyapunov or attractivity, as the universal approximation

theorem implies approximation up to a small bounded error.

Compared with the conventional adaptive control, it is not

required that the uncertain term follows the form of linear

regression. As such, the proposed adaptive control scheme

can deal with a large class of unstructured uncertainties. In

contrast to nonlinear robust controls, such as that presented

in [17], there is no chattering problem in the control inputs.

IV. NUMERICAL EXAMPLE

The efficacy of the proposed control system is illustrated

by numerical examples. In particular, we consider a scenario

where the quadrotor is flying under wind gusts. To simulate

the effects of wind disturbances, we first present an aerody-

namic model of a quadrotor, inspired by the literature in the

helicopter rotor dynamics.

A. Quadrotor Dynamics Under Wind Disturbance

Suppose that the wind vector presented in the inertial frame

is denoted by vw ∈ R
3. The relative wind on the j th rotor in

the body-fixed frame is denoted by vw j
= [u1 j

, u2 j
, u3 j

]T. It

is caused by the wind vector and the quadrotor translational

and rotational velocities as follows:

vw j
= RT(vw − v) + �̂r j . (35)

The resultant external force acting on the quadrotor is given

by

Ue = mge3 − Cd ||v − vw||(v − vw) + R�4
j=1T j d j (36)

where the second term on the right-hand side represents the

drag force acting on the center of mass and Cd ∈ R is the

drag coefficient.

The variable T j represents the thrust for the j th rotor, given

by

T j = CT j
ρ A p

(

rpω j

)2
(37)

where ρ ∈ R is the air density and the rotor’s sweeping area

is given by A p = (πrp)
2 for the radius rp. The rotating speed

is shown by ω j . The parameter CT j
∈ R represents the thrust

coefficient and it follows the following expressions that model

the effects of the induced velocity [18]:

CT j
=

sClα

2

[

θ0

(

1

3
+

µ2
x j

2

)

−
1

2

(

λ j + µz j

)

]

(38)

λ j =
CT j

2

√

µ2
x j

+
(

λ j + µz j

)2
(39)

µx j
=

√

u2
1 j

+ u2
2 j

ω jrp

, µz j
=

u3 j

ω jrp

(40)

where λ j ∈ R is the inflow ratio, which is the induced air

velocity over the rotor tip speed, and s = (Nbc)/(πrp) ∈

R is the solidity ratio, which is the approximated blade area

over the blade’s sweeping area. Next, c, Nb represent the blade

chord and the number of blades for one rotor, respectively.

The blade lift curve slope and the blade pitch angle are shown

by Clα, θ0 ∈ R. In addition, µz j
, µx j

are the perpendicular

and parallel advance ratios to the rotor plane. As described

above, CT j
is defined implicitly. Therefore, Newton’s iterative

method is used in the numerical simulation to obtain the thrust

coefficient and the inflow ratio.

Next, we consider the blade-flapping effects corresponding

to the thrust direction’s change due to the wind velocity

parallel to the rotor plane. In (36), the rotor thrust’s direction

in the body-fixed frame is denoted by the unit vector d j ∈ S2,

and it is computed by

d j =

[

− sin α j
√

u2
1 j

+ u2
2 j

u1 j
,

− sin α j
√

u2
1 j

+ u2
2 j

u2 j
,− cos α j

]T

(41)

where the blade-flapping angle of the j th rotor is shown

by α j ∈ R. If the first and second elements of the relative

wind vector become zero, i.e., u1 j
, u2 j

= 0, then d j = −e3,

implying that there is no thrust component in the b1–b2 plane.

Let Cα ∈ R be the fixed flapping-angle coefficient [19], [20].

Then, the flapping angle can be approximated with

α j = Cα

√

u2
1 j

+ u2
2 j

. (42)

If the vertical distances from the origin of the body-fixed frame

to the center of a rotor, dv , are not zero, then the deflected force

results in moments in the b1 and b2 directions. Hence, (11),

which is used in the controller developments, becomes invalid.

Because of the difficulties in measuring the flapping-angle

coefficient, it is not practical to compensate for the force and

moments directly due to the flapping angles in the controller.

As such, each rotor’s thrust command is still computed by (11)

in the implementation of the proposed control system, instead

of using (41).

Finally, let the blade drag coefficient be CD0
∈ R. From [18]

and [19], the resultant external moment can be approximated

by

Me = �4
j=1r j × T j d j + (−1) j+1 Q j d j (43)

Q j = CQ j
ρ A prp

(

rpω j

)2
(44)

where CQ j
∈ R is the torque coefficient [18] given by

CQ j
= CT j

(

λ j + µz j

)

+
CD0

s

8

(

1 + 3µ2
x j

)

. (45)
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In short, U ′
e and M ′

e in (2) and (4) are replaced by (36) and

(43), respectively, to simulate the quadrotor dynamics under

the effects of winds.

B. Position Tracking Control

The parameters of the quadrotor considered in the numerical

simulation are as follows:

m = 1 kg, dh = 0.2 m, dv = 0.01 m

J = 10−3diag[1, 1, 5] kg m2, Tmax = 8 N

CT Q = 0.1 m, Cα = 1 × 10−2 rad s m−1

Cd = 0.01 kgm−1, c = 0.01 m,

Nb = 2, rp = 0.1016 m.

The controller gains are chosen as

kx = 1, kv = 1.4, kR = 1.7, k� = 2.4

γw1
= 1, γv1

= 0.3, κ1 = 0.1

γw2
= 0.3, γv2

= 3, κ2 = 0.1, N21
= N22

= 6.

Initially, the quadrotor is at rest as specified by

x0 = [0, 0, 0]T m, v0 = [0, 0, 0]T m s−1

R0 = I3×3, �0 = [0, 0, 0]T rad s−1.

The desired trajectory is a sinusoidal oscillation along the first

inertial axis. More specifically

xd(t) = [cos 2t, 0, 0]T m (46)

and the desired direction of the first body-fixed axis is

b1d = [1, 0, 0]T. (47)

It is assumed that the wind velocity in the inertial frame is

given by

vw = [sin 2t + cos 4t, cos 3t,−0.5]T m s−1. (48)

The corresponding simulation results are presented

in Figs. 4 and 5. To illustrate the advantage of the adaptive

controller, we also present the simulation results of the

geometric controller without using the neural network

terms [12]. Specifically, the total thrust and torque are given

by (13), (17), and (18) with �̄1, �̄2 = 03×1. In addition,

the simulation result with the geometric PID controller [8] is

provided. This controller is designed to compensate for the

unknown fixed disturbances to the quadrotor. The results of the

three different controllers, the proposed adaptive controller,

and the controllers presented in [8] and [12] are denoted by

the red dash-dotted line, the blue solid line, and the green

dash-dotted line, respectively. The main goal is to track the

desired position trajectory given by (46). From Fig. 4, it can

be seen that ignoring disturbances in the controller results in

failure to track the desired position, especially along the third

axis. The geometric PID controller improves the tracking

performance over time. However, the proposed controller

adapts itself to the disturbances quickly while exhibiting

smaller tracking errors. Furthermore, as shown in Fig. 5,

although the other two controllers instantly increase the

thrust of the first rotor at t = 0 to compensate for the initial

Fig. 4. Position tracking simulation: tracking errors (blue line: without
disturbance rejection [12]; green dash-dotted line: PID [8]; and red dash-
dotted line: adaptive controller). (a) Position error (m). (b) Attitude error.

error, they fail to adjust the thrust properly afterward, thereby

causing large tracking errors, especially along ex3
. However,

with the proposed controller, the thrust at each rotor remains

in the acceptable range, well under the maximum thrust

Tmax = 8 N. More specifically, the root-mean-square errors

along ex3
for the controller without disturbance rejection,

PID, and the proposed controller are 8.2, 3.2, and 0.34 m,

respectively.

V. QUADROTOR UAV FLIGHT EXPERIMENTS

In this section, the proposed geometric adaptive controller is

validated by the flight experiments. Its hardware and software

are custom-designed and developed in-house. To demonstrate

the capability of rejecting the disturbances, flight experi-

ments are performed under wind disturbances generated by an

industrial fan. First, we describe the hardware and software

configurations. Then, we present the experimental results in

two sections, including attitude and flight trajectory trackings.

Additional experimental results are available in [21].

A. Hardware Configuration

The quadrotor platform is shown in Fig. 6. It has four

brushless DC electrical motors (700-kV T-Motor) paired with

11 × 3.7 carbon fiber propellers. To control the rotational

speed of the motors, each one is connected to an electronic

speed control (MikroKopter BL-Ctrl v2), which receives the

commands through the Inter-integrated Circuit (I2C) protocols

from an onboard computer.

All computations are performed on an embedded system-on-

module (NVIDIA Jetson TX2) running a Linux operating sys-

tem (Ubuntu 16.04 with JetPack 3.3). The onboard computer

is attached to an expansion board (Connect Tech’s Orbitty

Carrier), which is connected to a custom-designed printed

circuit board. This board houses a nine-axis inertial mea-

surement unit (IMU; VectorNav VN100) and I2C connection

headers for the motor speed controller. The computing module

communicates with a ground server (MacBook Pro) through

Wi-Fi to receive flight commands and data logging. A single
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Fig. 5. Position tracking simulation: adaptive terms, attitude tracking error,
and thrust (blue line: without disturbance rejection [12]; green dash-dotted
line: PID [8]; and red dash-dotted line: adaptive controller). (a) �1 for
position. (b) �2 for attitude. (c) Attitude error function. (d) Thrust (N).

Fig. 6. Quadrotor UAV developed in the flight dynamics and control
laboratory. (a) Quadrotor UAV. (b) Attitude control test.

14.8-V Li–Po battery provides power for the motors and the

onboard computer. An optical motion capture system (VICON)

measures the position and orientation of the quadrotor and

sends their data through Wi-Fi to the onboard computer, which

are fed to an estimator to integrate the measurements from

IMU and VICON, and to determine the velocity.

The properties of the quadrotor are given by

J = diag[0.02, 0.02, 0.04] kgm2, m = 2.1 kg, dh =0.23 m

where the inertia matrix is estimated by a CAD model.

To generate wind disturbances in the indoor flight test facil-

ity, an industrial pedestal fan (Air King 9175) is placed. The

wind speed generated by the fan is measured and presented

in Figs. 7 and 10.

B. Flight Software

The flight software is written in C++. We used the POSIX

thread library to execute multiple tasks simultaneously. This

includes threads for data logging, communication, estimation,

and control with the average frequencies of 100, 60, 100, and

400 Hz, respectively. Additional software is developed for the

ground server that transmits commands to the quadrotor and

receives the flight data from the onboard computer to monitor

the quadrotor responses. We used the Glade library to design

a graphical user interface. It is used to monitor the flight data

and to enhance user interactions. The flight data are saved in

the host computer for postprocessing.

C. Attitude Trajectory Tracking Control

We first perform experiments for the attitude control. Here,

the quadrotor is attached to a spherical joint to prevent any

translation. In particular, the spherical rolling joint (SRJ012C-

P from Myostat Motion Control) is affixed to an aluminum

bar, as illustrated in Fig. 6(b). It allows up to 30° in roll and

pitch, and unlimited yaw.

As the spherical joint is below the mass center, this setup

resembles the dynamics of an inverted rigid pendulum, and

there is an additional gravitational torque to be considered

in (4). As such, the control moment in (18) is augmented by a

canceling term. Moreover, the moment of inertia is translated

to the center of rotation [21].

The wind speed generated with the fan is measured using

a TriSonica-Mini 3-D sonic anemometer as follows. The fan

faces the −e2 direction in the inertial frame while generating

wind blowing to the left in Fig. 7. The wind generated by the

selected fan greatly varies depending on the relative location

of the fan, and they are with nontrivial turbulence. To measure

these, the quadrotor mounted on a fixed stand is oriented in

three different ways within the desired trajectory given by (49).

For each configuration, the wind is measured for 15 s with an

anemometer placed at the top of a selected rotor. During the

measurements, the rotors were not running to avoid disturbing

the wind with the rotors’ downwash and to solely measure

the fan’s wind speed. The corresponding results are presented

in the inertial frame in Fig. 7, where it is illustrated that the

wind speed varies greatly depending on the attitude and the

rotor location. As such, each rotor experiences different, time-

varying wind, while the quadrotor follows the desired attitude

trajectory.

The desired attitude is parameterized as

Rd =





cθcφ sψsθcφ − cos ψsφ cψsθcφ + sψsφ

cθsφ sψsθsφ + cψcφ cψsθsφ − sψcφ

−sθ sψcθ cψcθ



 (49)
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Fig. 7. Wind measurement for the attitude trajectory tracking test. (a) Wind
speed (ms−1) measurement for 15 s at several orientations. (b) Schematic of
the quadrotor UAV attitude test.

where cos and sin are shown by c and s, respectively. The

Euler angles ψ, θ , and φ are chosen as

ψ(t) = π As cos(2π Bs t) (50)

θ(t) = π At cos(2π Bt t) (51)

φ(t) = π A f sin
(

2π B f t
)

(52)

and the trajectory parameters are set to

As = 0.15, At = 0.12, A f = 0.11

Bs = 0.5, Bt = 0.5, B f = 0.5. (53)

The desired trajectory is chosen such that the vehicle rotates

along the three axes of b1, b2, and b3 simultaneously, while

wind is blowing toward the direction of −e2 in the inertial

frame.

The controller gains and parameters are chosen as

kR = 1.2, k� = 0.6

γw2
= 1, γv2

= 0.01, κ2 = 0.001, c2 = 1.

The number of neurons in the first, hidden, and output layers

is

N12
= 6, N22

= 3, N32
= 3.

The number of neurons in the hidden layer has been increased

until no further performance is observed. As such, the above

neural network structure is sufficiently rich for the uncertain-

ties in the given experiments. The corresponding responses

for the three different controllers are presented in Fig. 8. The

blue line is for the geometric controller without disturbance

rejection [12], the green line is for the geometric controller

with an integral term presented in [8], and the red line is for

the proposed method.

It can be observed that the geometric controller without

disturbance rejection causes large trajectory errors. However,

the proposed controller and the controller presented in [8]

improve the results [see Fig. 8(d)].

Fig. 9 shows the experimental setup in the e2 − e3 plane,

while the wind is blowing toward −e2, and e3 points down-

ward. The photograph is taken at the time of 0.5 s when the

Fig. 8. Attitude tracking experiments: attitude and angular velocity errors,
and four rotors’ thrusts (blue line: without disturbance rejection [12]; green
line: PID [8]; and red dash-dotted line: adaptive controller). (a) Attitude
error. (b) Angular velocity error (rad s−1). (c) Attitude error function (�).
(d) Thrust (N).

Fig. 9. Attitude tracking experiment: snapshot at t = 0.5 s, with the
desired pitch angle of φd = 19.8◦ (left: adaptive controller and right: without
disturbance rejection [12]).

desired pitch angle is φd = 19.8◦. On the left, tracking with

the proposed adaptive controller is shown, and on the right,

the geometric controller without wind disturbance rejection is

presented. It can be seen that there is a large deviation in the

desired pitch angle (about −19.8◦) in the presence of wind in

the absence of the disturbance-rejection techniques.1

D. Position Trajectory Tracking Control

Next, the quadrotor is detached from the spherical joint

used in Section V-C, and it is controlled with the position

controller provided in Proposition 1. The quadrotor properties

1For the video file of this experiment, visit the FDCL YouTube channel at
https://youtu.be/zUsOif1SfEs or the experiment section of the FDCL Website
at http://fdcl.seas.gwu.edu/
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Fig. 10. Wind measurement for the position trajectory test, where the fan
is placed at x2 = 1.9 m along the e2 axis, and it faces the −e2 direction
(toward left). (a) Wind speed (ms−1) measurement for 15 s at several positions.
(b) Distribution of wind velocity element vw2

(ms−1) versus position (m) in
the front of the fan.

are given by

J = diag[0.02, 0.027, 0.04] kg m2, m = 2.1 kg

dh = 0.09 m, Tmax = 12 N, CT Q = 0.0135 m.

To generate the wind disturbances, the fan is placed at x2 =

1.9 m along the second inertial axis e2, and it faces the −e2

direction in the inertial frame. The wind speed in the front

of the fan is measured using a TriSonica-Mini 3-D sonic

anemometer. It is held with a long rod at varying distances

along the e2 axis in the front of the fan, and the resulting

wind speed measurements are presented in Fig. 10.

1) Geometric Adaptive Control for Hovering: We first study

the performance of the proposed adaptive controller for hover-

ing flight when the quadrotor is subject to the wind. Initially,

there is no wind. Later, the fan is turned on at about t = 10 s

and reaches the maximum speed at about t = 30 s. The

location of the quadrotor along the second inertial axis is 1.0 m

and the corresponding average wind speed is about 7.3 m/s,

as shown in Fig. 10.

The controller gains and parameters are chosen as

kx = 16.0, kv = 5.0, kR = 1.2, k� = 0.3

γw1
= 0.3, γv1

= 0.3, κ1 = 0.0001, c1 = 1

γw2
= 0.035, γv2

= 0.035, κ2 = 0.0001, c2 = 1.

The number of neurons in the first, hidden, and output layers

is

N11
= 6, N21

= 3, N31
= 3

N12
= 6, N22

= 3, N32
= 3.

The experimental results2 are illustrated in Figs. 11 and 12

with comparisons against a controller without a disturbance-

rejection technique [12] and a geometric PID controller [8].

The controller without any disturbance rejection causes a

relatively large steady-state error ex2
along the direction of

2For the video file of the hover flight experiment, visit the FDCL YouTube
channel at https://youtu.be/ouSsrDfi8DM or the experiment section of the
FDCL Website at http://fdcl.seas.gwu.edu/

Fig. 11. Hovering experiments: tracking errors (blue line: without distur-
bance rejection [12]; green line: PID [8]; and red line: adaptive controller).
(a) Position error (m). (b) Attitude error.

the wind. While the PID controller eliminates such steady

errors, it yields a noticeable disruption in position, especially

after the fan is turned on, indicated by a vertical line on

the figures. Even afterward, the turbulence causes a burst

of errors. In contrast, the proposed adaptive controller yields

consistent tracking performances throughout the experiment,

and compared with the geometric controller without distur-

bance rejection and PID, it reduces the root-mean-square error

in position from 0.42 and 0.17 m, respectively, to 0.10 m,

while the total force is reduced from 10.61 and 10.67 N,

respectively, to 10.19 N.

2) Geometric Adaptive Control for Position Tracking:

Next, the performance of the adaptive controller for trajectory

tracking is presented. The desired trajectory is given by

xd(t) =









−0.67

0.2 − 1.2 cos

(

π t

12

)

−1.57









, b1(tk) =





1

0

0



 (54)

which is a sinusoidal oscillation along the second inertial

axis. The controller gains and parameters are identical to

Section V-D1.

For the presented experiment, the quadrotor operates over

various locations in an unsteady nonuniform wind profile

generated by the fan, as illustrated in Fig. 10. The desired

trajectory is selected such that the relative velocity of the

quadrotor to the fan varies. Initially, the quadrotor flies toward

the fan. Then, it moves away from the fan, thereby the

wind affecting the quadrotor changes from 1 to 10 ms−1,

as illustrated in Fig. 10. In short, due to the turbulence from the

fan and the maneuvers of the quadrotor, the wind experienced

by the quadrotor is not steady for the presented experimental

results.

Figs. 13 and 14 show the experimental data. The trajec-

tories without disturbance rejection are plotted in blue line

and those with the proposed adaptive controller in red line.

It is illustrated that the proposed controller yields smaller

tracking errors without excessive rotor thrusts. This illustrates
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Fig. 12. Hovering experiments: adaptive terms, attitude tracking error, and
thrusts (blue line: without disturbance rejection [12]; green line: PID [8];
and red line: adaptive controller). (a) �1 for position. (b) �2 for attitude.
(c) Attitude error function. (d) Thrust (N).

that the proposed controller effectively compensates the wind

disturbance that may change depending on the position and

velocity of the quadrotor relative to the fan, as well as the time-

dependent turbulence. More specifically, the adaptive con-

troller decreases the root-mean-square errors of the position

tracking from 0.15 to 0.07 m while decreasing the total force

from 5.7 to 5.4 N, compared with the controller without

disturbance rejection.

3) Geometric Adaptive Control for Backflip: To illustrate

the performance of the proposed control system through an

agile maneuver, here we present experimental results for a

backflip maneuver.

The desired trajectory is composed of the following three

sequences: take-off, backflip, and hovering. The quadrotor

enters the region of strong wind generated by the fan at

the end of the take-off, and it is affected by the unsteady

wind throughout the remaining sequences. As such, the unique

feature of the proposed adaptive control system that can

handle the time-varying, configuration-dependent disturbances

is critical to complete this challenging maneuver successfully.

First, the quadrotor takes off to reach the desired upward

Fig. 13. Position tracking experiments: tracking errors (blue line: without
disturbance rejection [12] and red dash-dotted line: adaptive controller).
(a) Position error (m). (b) Attitude error.

Fig. 14. Position tracking experiments: adaptive terms, attitude tracking error,
and thrust (blue line: without disturbance rejection [12] and red dash-dotted
line: adaptive controller). (a) �1 for position. (b) �2 for attitude. (c) Attitude
error function. (d) Thrust (N).

velocity from t0 = 0 s to t1 = 2.20 s as follows:

xd(t) = x0 +
at2

2
[0, 0, 1]T, b1d

= [1, 0, 0]T (55)
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Fig. 15. Backflip experiments: tracking errors (blue line: without disturbance
rejection [12] and dash-dotted and dashed red lines: adaptive controller).
(a) Position error (m). (b) Velocity error (ms−1). (c) Attitude error. (d) Angular
velocity error (rad s−1).

where x0 = [−0.22, 0.47, −0.50]T, a = −0.50, and (17) and

(18) are used to control the quadrotor.

In the next step, the quadrotor performs a backflip while

encountering an unsteady wind shown in Fig. 10. More

specifically, the attitude is controlled with (18) to rotate the

quadrotor about 360◦ along the first body-fixed axis b1d
, which

is parallel to the first inertial axis e1 in this configuration. The

desired attitude trajectory is chosen as

Rd(t) = exp
(

θd(t)b̂1d

)

(56)

where the rotation angle is chosen as a second-order polyno-

mial function of time

θd(t)=



























1

2
αm(t − t1)

2, if t1 < t < t1 +
δt

2
1

2
�tαm(t − t1),

−
1

2
αm

(

t − t1 −
δt

2

)2

, if t1+
�t

2
< t < t1+

6

8
δt

(57)

Fig. 16. Backflip experiments: adaptive terms, attitude error function, and
thrusts (blue line: without disturbance rejection [12] and dash-dotted and
dashed red lines: adaptive controller). (a) �1 for position. (b) �2 for attitude.
(c) Attitude error function. (d) Thrust (N).

with αm = 60.0 and �t = ((8π)/αm)1/2. The resulting desired

angular velocity is

�d(t)=











αm(t − t1)b1d
, if t1 < t < t1 +

δt

2

αm(�t +t1−t)b1d
, if t1+

δt

2
< t < t1 +

6

8
δt .

(58)

After the backflip, (17) and (18) are used to control the

quadrotor to make it hover at a fixed location specified as

xd(t) = x0 +
at2

1

2
[0, 0, 1]T, b1d

= [1, 0, 0]T. (59)

Figs. 15 and 16 show the experimental results. The trajecto-

ries without disturbance rejection are plotted in blue line and

with the proposed adaptive controller in red line. The results

of the two experiments are presented in a dashed line and a

dash-dotted line to illustrate the repeatability. The gray lines

are to separate the three stages described earlier. The first gray

line divides the take-off from the backflip, and the second one

separates the backflip from the last hovering stage. For the

control system presented in [12], the angular velocity diverges

during the backflip stage, resulting in a large attitude tracking

error afterward. More specifically, due to the wind in the −e2

direction, the quadrotor could not complete a swift rotation
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Fig. 17. Backflip without disturbance rejection [12] (snapshots). (a) At t =
0 s. (b) At t = 2.20 s. (c) At t = 2.52 s. (d) At t = 2.71 s. (e) At t = 2.80 s.
(f) At t = 3.24 s.

Fig. 18. Backflip with the adaptive controller (snapshots). (a) At t = 0 s.
(b) At t = 2.02 s. (c) At t = 2.48 s. (d) At t = 2.55 s. (e) At t = 2.60 s.
(f) At t = 2.74 s.
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during the second step. It rotated only about 180◦ along the

e1 axis in the second step and continued the rotation through

the third stage, during which the quadrotor fails to regain

control and loses height such that the position error along

the e3 axis reaches 1.6 m, as shown in Fig. 15(a). Finally,

the quadrotor crashes into the floor at t = 3.2 s, where the

blue lines end. See Fig. 17 for the snapshots. The yellow

arrows indicate the direction of b3 starting from the center

of mass.

In contrast, the proposed geometric adaptive controller with

the neural network results in a successful backflip maneuver

followed by a stable hovering flight, as illustrated in Fig. 18.

The yellow arrows indicate the direction of b3 starting from

the center of mass. Remarkably, the neural network parameters

are adjusted promptly over the short period of the second

backflip stage to achieve the successful backflip maneuver.

Such an agile maneuver under the effects of wind has not

been demonstrated before.3

VI. CONCLUSIONS

We have presented a geometric adaptive control system

for a quadrotor UAV based on an artificial neural network.

The weight parameters of the neural network are adjusted

online such that the effects of the unstructured, arbitrary

uncertain forces and moments are mitigated. The efficacy of

the proposed approach is illustrated by numerical examples

under simulated wind effects and indoor flight experiments

under the unsteady spatially varying wind gust generated by

an industrial fan. In particular, it is shown that the proposed

scheme can successfully and swiftly eliminate the adverse

wind effects for an aggressive maneuver. This can be further

used in estimating the effects of the wind by the converged

values of the weighting parameters.

For a future work, the neural network can be trained

offline to generate the expected force and moment for a

given wind gust. If the quadrotor UAV is augmented with

an on-board anemometer, the proposed adaptive scheme can

be used to mitigate the difference between the actual distur-

bance and the predicted values to improve performance under

strong winds.

APPENDIX

Here, we present the proof of Proposition 1. First,

in Section VI-A, selected identities are presented. Then,

in Section VI-B, we analyze the error dynamics for a posi-

tion tracking command, which will be integrated with the

attitude error dynamics presented in Section VI-C. Finally,

in Section VI-D, we consider the stability of the complete

dynamics. An alternative, more involved proof with less con-

servative results is available in [22].

3For the video file of this experiment, visit the FDCL YouTube channel at
https://youtu.be/a-DG2PcUu7k or the experiment section of the FDCL Website
at http://fdcl.seas.gwu.edu/

A. Identities

For any A ∈ R
3×3, x, y ∈ R

3, c1, c2, c3 ∈ R

tr
[

yxT
]

= xT y (60)

−c1x2 + c2x ≤ −
c1

2
x2 +

c2
2

2c1

(61)

A
T x̂ + x̂A =

([

tr [A]I3×3 − A
]

x
)∧

. (62)

Let D be an open domain containing the origin of the error

states, defined as follows:

D =
{

x, v, R,�, (Wi , Vi )i∈{1,2} ∈ R
3 × R

3 × SO(3) × R
3

×
(

R
N2i

+1×N3i × R
N1i

+1×N2i

)

i∈{1,2}
|‖ex‖ + ‖ev‖

+ � + ‖e�‖ + ‖Z̃1‖ + ‖Z̃2‖ < d
}

(63)

for a positive constant d . The subsequent Lyapunov analysis

is conducted in the domain D.

Here, we show that all the states, namely

(x, v, R,�, Z̄1, Z̄2), are bounded in D. Recall that from

the problem formulation, the desired position trajectory

xd(t) and all its time derivatives are bounded. These imply

that x = ex + xd and v = ev + ẋd are bounded in D.

From Assumption (22) and the projection scheme in (24)

and (25), the estimated weighting parameters (Z̄1, Z̄2) are

also bounded.

Throughout this proof, the bound of any state or any

error variable within D is denoted by a single variable δ,

i.e., ‖ex‖ ≤ δ, ‖v‖ ≤ δ. In addition, any function of δ, which

is independent of the control parameters, is denoted by δ. This

practice is not uncommon in the nonlinear controls [23], and

it is to present the key idea of the proposed control system

concisely without introducing too many notations.

The second-order derivative of the desired trajectory is suf-

ficiently distinct from the gravitational acceleration, as shown

in (10). As such, in (13), the first three terms satisfy

‖�̄1 − kxex − kvev‖ ≤ (1 + kx + kv)δ

and the last two terms satisfy ‖− mge3 + mẍd‖ ≥ m Bg. Thus,

when Bg is sufficiently large, the term A that is composed of

the sum of the above two cannot vanish, i.e., A �= 0 in D.

Therefore, the desired attitude Rc is well defined in (15), and

the desired angular velocity �c in (16) and its time derivative

are bounded.

Next, we show an inequality that is repeatedly used later

in the Lyapunov stability proof. Let V0i
be the part of the

Lyapunov function dependent on W̃i , Ṽi , which is defined as

V0i
=

1

2γwi

tr
[

W̃ T
i W̃i

]

+
1

2γvi

tr
[

Ṽ T
i Ṽi

]

. (64)

Consider the following expression of Bi ∈ R:

Bi = −aT
i

(

�̃i

)

+ V̇0i
(65)

which will appear in the subsequent stability analysis. Here,

we find an upper bound of this term.

The error dynamics of the neural network weights from (29)

are given by

˙̃
Wi = − ˙̄Wi ,

˙̃
Vi = − ˙̄Vi . (66)
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We substitute (26) and (27) into (66). Using (30), Bi is

rewritten as

Bi = aT
i

{

−W̃ T
i

[

σ(zi ) − σ ′(zi )zi

]

− W̄ T
i σ ′(zi )z̃i + wi

}

+ tr
[

W̃ T
i

[

σ(zi )a
T
i − σ ′(zi )zi a

T
i + κi W̄i

]

]

+ tr
[

Ṽ T
i

{

xnni

[

σ ′(zi )
TW̄i ai

]T
+ κi V̄i

}]

. (67)

Applying (60), it reduces to

Bi = κi tr
[

Z̃ T
i Z̄ i

]

+ aT
i (wi ). (68)

We have

tr
[

Z̃ T
i Z̄ i

]

= tr
[

Z̃ T
i Z i

]

−tr
[

Z̃ T
i Z̃ i

]

≤||Z̃ i ||Z Mi
−||Z̃ i ||

2. (69)

Inequality (61) implies

−||Z̃ i ||
2 + Z Mi

||Z̃ i || ≤ −
1

2
||Z̃ i ||

2 +
Z 2

Mi

2
. (70)

Since ‖σ‖ ≤ 1, ‖σ ′‖ ≤ 0.25, it can be shown that the upper

bound for (32) is ‖Oi‖ ≤ 2 + 0.25‖Ṽi‖‖xnni
‖. From (22),

the upper bound of (31) is

‖wi‖ ≤ 0.25 VMi

∥

∥

∥W̃i

∥

∥

∥

∥

∥xnni

∥

∥+ WMi
‖Oi‖ + ǫi . (71)

Since ‖xnni
‖ ≤ 1 + ‖x1i

‖ + ‖x2i
‖, (
∥

∥

∥W̃i

∥

∥

∥,
∥

∥

∥Ṽi

∥

∥

∥) ≤

∥

∥

∥Z̃ i

∥

∥

∥,

and (22), we obtain

‖wi‖ ≤ δ + δ||Z̃ i ||
(

1 +
∥

∥x1i

∥

∥+
∥

∥x2i

∥

∥

)

(72)

where 0.25(VMi
+ WMi

) and 2WMi
+ ǫi are replaced with δ.

Substituting (70) and (71) into (68)

Bi ≤ −
κi

2
||Z̃ i ||

2 +
κi Z 2

Mi

2

+ ‖ai‖
{

δ + δ||Z̃ i ||
(

1 +
∥

∥x1i

∥

∥+
∥

∥x2i

∥

∥

)

}

. (73)

Since (28), ‖a1‖ ≤ ‖ev‖+c1‖ex‖, and ‖a2‖ ≤ ‖e�‖+c2‖eR‖,

we have ‖ai‖ ≤ (1 + ci)δ. Since x11
= x and x21

= v, and

x12
= E(R)T and x22

= �, we have ‖x1i
‖ ≤ δ and ‖x2i

‖ ≤

δ. Again, by invoking our convention on the notation of δ,

the above bound can be rewritten as

Bi ≤ −
κi

2
||Z̃ i ||

2 +
κi Z 2

Mi

2
+ (1 + ci)δ

{

δ + δ3(1 + 2δ)
}

= −
κi

2
||Z̃ i ||

2 + (1 + ci )δ +
κi Z 2

Mi

2
. (74)

B. Position-Error Dynamics

Taking the derivative of (12) and substituting (2) and (8),

the error dynamics are defined as

ėx = ev (75)

mėv = mge3 − �1 − fRe3 − mẍd . (76)

Define X ∈ R
3 as

X ≡
f

eT
3 RT

c Re3

[(

eT
3 RT

c Re3

)

Re3 − Rce3

]

(77)

where eT
3 RT

c Re3 > 0 [12]. Equation (76) is rewritten as

mėv = mge3 − �1 − mẍd −
f

eT
3 RT

c Re3

Rce3 − X . (78)

Since b3c = Rce3 = (−A/‖A‖) and f = −ATRe3, we can

conclude that f = (‖A‖Rce3)
TRe3. Therefore

−
f

eT
3 RT

c Re3

Rce3 = A. (79)

Substituting (13) and (79) into (78), the velocity-error dynam-

ics is written as

mėv = −kxex − kvev − �̃1 − X . (80)

Next, we find the upper bound of X . From (79), ‖A‖ =

‖ − f/(eT
3 RT

c Re3)Rce3‖. Since Rce3 is a unit vector, ‖A‖ =

‖− f/(eT
3 RT

c Re3)‖. Consequently, the norm of X can be written

as

‖X‖ = ‖A‖
∥

∥[
(

eT
3 RT

c Re3

)

Re3 − Rce3

∥

∥. (81)

In addition, it is shown that ‖[(eT
3 RT

c Re3)Re3 − Rce3‖ ≤

‖eR‖ ≤ β < 1, where β = (ψ1(2 − ψ1))
1/2 [12]. Substi-

tuting (13), the upper bound of ‖X‖ is given by

‖X‖ ≤ (kx‖ex‖ + kv‖ev‖ + δ)‖eR‖ (82)

where it is considered as

∥

∥−mge3 + mẍd + �̄1

∥

∥ ≤ δ. (83)

For a nonnegative constant c1, the Lyapunov function for

the position dynamics is chosen as

V1 =
1

2
kx eT

x ex +
1

2
meT

v ev + mc1 eT
x ev + V01

(84)

where V01
is given by (64). It is straightforward to show

1

2
zT

1 M11z1 ≤ V1 ≤
1

2
zT

1 M12z1 (85)

where

M11 =









kx −mc1 0

−mc1 m 0

0 0
1

min
{

γw1
, γv1

}









(86)

M12 =









kx mc1 0

mc1 m 0

0 0
1

min
{

γw1
, γv1

}









(87)

z1 =
[

‖ex‖, ‖ev‖, ‖Z̃1‖
]T

. (88)

If c1 is sufficiently small such that

c1 <

√

kx

m
(89)

then M11, M12 are positive-definite.

Taking the derivative of the Lyapunov function

V̇1 = kxeT
v ex + (ev + c1ex)

Tmėv + mc1eT
v ev + V̇01

(90)

and substituting (80) into (90) and rearranging

V̇1 = (mc1 − kv)e
T
v ev − c1 kxeT

x ex − c1kveT
x ev

− (ev + c1ex)
T
X − (ev + c1ex)

T�̃1 + V̇01
. (91)
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From (82) and ‖eR‖ ≤ β < 1, we have

(ev + c1ex)
T
X

≤ c1kxβ‖ex‖
2 + kvβ‖ev‖

2

+ c1kvβ‖ex‖‖ev‖ + c1δ‖ex‖‖eR‖ + δ‖ev‖‖eR‖

+ kx‖ex‖‖ev‖‖eR‖. (92)

From (28), the last two terms of (91) are the same as (65).

Substituting its equivalent expression given by (74) and sub-

stituting (92)

V̇1 ≤ −c1kx(1 + β)eT
x ex − (kv(1 + β) − mc1)e

T
v ev

−
κ1

2
||Z̃1||

2 + c1kv(1 + β)‖ex‖‖ev‖

+ c1δ‖ex‖‖eR‖ + (1 + kx)δ‖ev‖‖eR‖

+ (1 + c1)δ +
κ1 Z 2

M1

2
(93)

where ‖ex‖ ≤ δ is used for the bound of ‖ex‖‖ev‖‖eR‖.

C. Attitude-Error Dynamics

Here, we analyze the error dynamics for the attitude tracking

command.

We calculate the attitude-error dynamics, taking the deriv-

ative of (19) and (20) and using (9), (18), and (62). The

expression for attitude-error dynamics is given by

ėR =
1

2

(

tr
[

RT Rc

]

I3×3 − RT Rc

)

e� ≡ C
(

RT
c R
)

e�

(94)

J ė� = −kReR − k�e� − �̃2, (95)

�̇(R, Rc) = eT
Re� (96)

||C
(

RT
c R
)

|| ≤ 1. (97)

For more details about the proof of (94), (96), and (97),

see [12].

For a nonnegative constant c2, the Lyapunov function for

the attitude dynamics is defined as

V2 =
1

2
eT
� Je� + kR�(R, Rc) + c2 eT

R Je� + V02
(98)

where V02
is given by (64), and

1

2
‖eR‖2 ≤ �(R, Rc) ≤

1

2 − ψ1

‖eR‖2 (99)

with ψ1 = (1/kR)[(1/2)e�(0)T Je�(0) + kR�(R(0), Rc(0))].

The bounds of V2 are

1

2
zT

2 M21z2 ≤ V2 ≤
1

2
zT

2 M22z2 (100)

where

M21 =









kR −c2λMJ
0

−c2λMJ
λm J

0

0 0
1

min
{

γw2
, γv2

}









(101)

M22 =













2kR

2 − ψ1

c2λMJ
0

c2λMJ
λMJ

0

0 0
1

min
{

γw2
, γv2

}













(102)

z2 =
[

‖eR‖, ‖e�‖, ‖Z̃2‖
]T

(103)

with λm J
= λm(J ), λMJ

= λM (J ).

Provided that c2 is sufficiently small to satisfy the following

inequality, the matrices M21 and M22 are positive-definite:

c2 < min

{
√

kRλm J

λMJ

,

√

2kR

λMJ
(2 − ψ1)

}

(104)

where ψ1 < 2.

The time derivative of the Lyapunov function is given by

V̇2 = (e� + c2eR)T J ė� + kR�̇(R, Rc) + c2ėT
R Je� + V̇02

.

(105)

Substituting the error dynamics (4), (18), and (94)–(97)

V̇2 = (e� + c2eR)T
(

−kReR − k�e� − �̃2

)

+ kReT
Re� + c2 C

(

RT
c R
)

eT
� Je� + V̇02

. (106)

From (97) and ‖J‖ ≤ λMJ

V̇2 ≤ −c2kReT
ReR + c2 k�||eR||||e�|| −

(

k� − c2λMJ

)

eT
�e�

− (e� + c2eR)T
(

�̃2

)

+ V̇02
. (107)

From (28), the last two terms of this expression are identical

to (65). Substituting its equivalent expression given by (74),

we have

V̇2 ≤ −c2kReT
ReR + c2k�||eR||||e�|| −

(

k� − c2λMJ

)

eT
�e�

−
κ2

2
||Z̃2||

2 + (1 + c2)δ +
κ2 Z 2

M2

2
. (108)

D. Stability Proof for Quadrotor Dynamics

Here, we combine the position-error dynamics and the

attitude-error dynamics to show the stability properties of

the complete controlled quadrotor. The Lyapunov function is

chosen as V = V1 + V2, where V1,V2 are given by (84)

and (98). From (85) and (100), the bound on V is given by

1

2
λm(M11)||z1||

2 +
1

2
λm(M21)||z2||

2 ≤ V ≤
1

2
λM (M12)||z1||

2

+
1

2
λM (M22)||z2||

2. (109)

It can be rewritten in the form of

1

2
zTM1z ≤ V ≤

1

2
zTM2z (110)

where M1, M2 ∈ R
2×2 and z ∈ R

2 are

M1 =

[

λm(M11) 0

0 λm(M21)

]

M2 =

[

λM (M12) 0

0 λM (M22)

]

z = [‖z1‖, ‖z2‖]T.

The matrices M1 and M2 are positive-definite if (89) and (104)

are satisfied.

The derivative of the Lyapunov function is V̇ = V̇1 + V̇2.

From (93) and (108), it can be written as

V̇ ≤ −zT
1 W1z1 + zT

1 W12z2 − zT
2 W2z2 + C

≤ −zTWz + C (111)
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where C = (2 + c1 + c2)δ + (κ1 Z 2
M1

)/2 + (κ2 Z 2
M2

)/2 and

W1 =













c1 kx(1 + β) −
1

2
c1 kv(1 + β) 0

−
1

2
c1 kv(1 + β) kv(1 + β) − mc1 0

0 0
κ1

2













W12 =





c1δ 0 0

(1 + kx)δ 0 0

0 0 0



, W=







λm(W1)
1

2
‖W12‖2

1

2
‖W12‖2 λm(W2)







W2 =













c2 kR −
1

2
c2 k� 0

−
1

2
c2 k� k� − c2λMJ

0

0 0
κ2

2













.

If the constants c1, c2 are chosen sufficiently small such that

c1 < min

{
√

kx

m
,

4 kvkx + 4βkvkx

4 kxm + βk2
v + k2

v

,
kv(1 + β)

m

}

c2 < min

{
√

kRλm J

λMJ

,

√

2kR

λMJ
(2 − ψ1)

,
4 kRk�

k2
� + 4λMJ

kR

,
k�

λMJ

}

then all the matrices, namely, Mi1, Mi2, Mi , and Wi for

i ∈ {1, 2} become positive-definite. Furthermore, if kR, k� are

sufficiently large such that

λm(W2) >
‖W12‖

2

4λm(W1)

then W becomes positive-definite. Consequently, we have V̇ ≤

−λm(W)‖z‖2 + C, and for 0 < θ < 1

V̇ ≤ −(1 − θ)λm(W)‖z‖2 if ‖z‖ ≥

√

C

θλm(W)
.

Therefore, according to [23, Corollary 5.3], all the error states

are uniformly ultimately bounded.
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