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Abstract: The last few decades have seen a large proliferation in the prevalence of cyber-physical
systems. This has been especially highlighted by the explosive growth in the number of Internet of
Things (IoT) devices. Unfortunately, the increasing prevalence of these devices has begun to draw
the attention of malicious entities which exploit them for their own gain. What makes these devices
especially attractive is the various resource constraints present in these devices that make it difficult
to add standard security features. Therefore, one intriguing research direction is creating security
solutions out of already present components such as sensors. Physically Unclonable Functions
(PUFs) are one potential solution that use intrinsic variations of the device manufacturing process
for provisioning security. In this work, we propose a novel weak PUF design using thermistor
temperature sensors. Our design uses the differences in resistance variation between thermistors in
response to temperature change. To generate a PUF that is reliable across a range of temperatures,
we use a response-generation algorithm that helps mitigate the effects of temperature variation on
the thermistors. We tested the performance of our proposed design across a range of environmental
operating conditions. From this we were able to evaluate the reliability of the proposed PUF with
respect to variations in temperature and humidity. We also evaluated the PUF’s uniqueness using
Monte Carlo simulations.

Keywords: Physically Unclonable Function (PUF); sensor PUF; cyber-physical systems;
Internet of Things (IoT); thermistor; security

1. Introduction

Internet of Things (IoT) devices are known to contain more security risks than conventional
computing devices [1]. IoT devices can contain a multitude of vulnerabilities including insecure access
interfaces, deployment locations that allow for easy unprotected physical access, and insufficient
cryptographic mechanisms (including none at all in some cases) [1–3]. This is especially concerning
when coupled with that fact that there are currently (as of 2018) 7 billion actively connected IoT devices
(39.3% of all connected devices worldwide). These numbers are projected to grow to the point that
in 2025 there will be 21.5 billion actively connected IoT devices worldwide. IoT devices would then
represent 62.5% of all actively connected devices [4].

Attackers have already shown that they are more than willing to make IoT devices the focus of
their attacks. In the last few years for example, compromised IoT devices have been used to create
botnets. Botnets are a network of compromised machines that an attack can be used for a variety
of malicious purposes including distributed denial-of-service (DDoS) attacks, password cracking,
and cryptocurrency mining. Once a machine is infected, it seeks to propagate the infection to other
machines in its network by exploiting known vulnerabilities [1]. IoT devices would appear to present

Sensors 2019, 19, 3905; doi:10.3390/s19183905 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9157-4517
http://dx.doi.org/10.3390/s19183905
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 3905 2 of 16

an ideal target due to a combination of their lack of security features and the sheer number of these
devices that are currently in existence. The Mirai botnet in late 2016 was the first major botnet to be
primarily composed of embedded and IoT devices. At its peak the botnet had infected 600 thousand
devices [5]. One DDoS attack launched by the botnet was able to disrupt service to many prominent
websites including Twitter, New York Times, Reddit, and Airbnb by targeting Domain Name Service
(DNS) service company Dyn [6]. A separate DDoS attack against French webhost OVH set the record
for largest recorded DDoS attack with a size of at least 1.1 terabits per second (tbps) [7].

The threats faced by IoT devices are just one, albeit very notable, example of the security threats
that are facing cyber-physical systems as a whole. Other cyber-physical systems such as industrial
control systems (ICS), smart grid, medical devices, and smart cars have been shown to be similarly
vulnerable to attackers [8]. Some examples include denial-of-service (DoS) attacks against ICS [9] and
smart cars [10] and exploiting the lack of encryption in medical devices [11] and smart grids [12].

As originally designed, the dominant methods of security in these systems were related to
“security by obscurity”. Devices were assumed to operate in isolation, and it was therefore difficult for
an attacker to access them. However, the push towards a connected world has resulted in many of
these previously isolated devices now including support for external communication over a variety of
networks. The increase in connectivity has also introduced several previously unconsidered possible
attack vectors.

On the surface, just simply introducing more security features to these devices seems to be a
reasonable approach to protect them from attackers. Unfortunately, these devices commonly have low
power, small amounts of available memory, and limited processing capabilities. These factors can prove
prohibitive to adding new security features; as a result, researchers have begun to explore nonstandard
solutions. Physically Unclonable Functions (PUFs) are one such area that has drawn interest. PUFs are a
class of device that are physical implementations of a function. PUF designs leverage their own intrinsic
variations so that each copy of the PUF will have its own unique operation in the form of generating
outputs that are unique to that copy. Previous works have shown how PUFs could be used to securely
generate and store secret keys [13,14] while other works have proposed PUF-based security protocols for
use in protecting sensor nodes [15] or securing radio-frequency-identification (RFID) systems [16].

While PUFs could prove to be a novel security solution, their integration would not be completely
seamless as it could introduce additional costs such as the monetary cost for the actual hardware or the
performance cost of having to operate and/or communicate with the PUF. Therefore, a PUF designed
for use in cyber-physical systems should also give special consideration towards reducing these costs
as much as possible.

A common functionality in many cyber-physical systems is the ability to monitor physical entities
such as temperature, humidity, pressure, luminosity, etc. This can range from being a core function
such as a sensor node in an IoT network [17] to being tangential such as a Home Energy Management
System (HEMS) that must monitor temperature in order to reduce energy consumption by efficiently
controlling a home’s heating and cooling systems [18]. The ability to monitor such a wide range
of physical entities is thanks to a similarly wide range of sensors. Thermistor temperature sensors
are one example of a popular sensor. In 2017, the thermistor market was valued at USD 74 million.
That number is projected to increase to USD 95 million by 2023 [19].

Intrinsic variations are known to exist across a wide range of devices and components and many
types of PUFs have already been designed from these materials. The authors believe that creating a
PUF from components that are already commonly found in cyber-physical systems could improve the
viability of integrating PUFs with these devices. This type of PUF would present a way to add security
features without also incurring substantial overhead costs in the form of new hardware. New copies
could be created using entirely off the shelf components, circumventing the specialized manufacturing
that is required for silicon-based PUF designs which rely on transistor-level variations.

In the existing literature, piezo sensors have been used to create a weak PUF design.
However, the use of piezo sensors required including an AC voltage source in the design which
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further harms its utility. In this work we propose a new design using thermistor temperature sensors
to address the shortcomings in the piezo sensor PUF design. We chose to use thermistor temperature
sensors due to their widespread appeal as shown by the presence of temperature sensing capabilities
in a wide range of fields including health care [20], agriculture [21], and smart home environments [22].
We evaluated the viability of using thermistors as a basis for creating a PUF by testing copies of the
proposed design in terms of reliability and uniformity and used Monte Carlo simulations to evaluate
the uniqueness.

Contribution of Work

In this work we propose a methodology that allows for using thermistor temperature sensors
to create a PUF that is specifically targeted for application in cyber-physical systems. Our proposed
design uses a microcontroller and thermistors which are themselves commonly used by these types of
devices. We provide the following:

• Proposal of a PUF circuit design methodology based on intrinsic variations between thermistors.
• Testing the proposed PUF’s reliability over a span of ten days.
• Testing the proposed PUF’s uniformity over a span of ten days.
• Testing the proposed PUF’s reliability over a temperature range of −20 °C to 80 °C.
• Testing the proposed PUF’s reliability over a relative humidity range of 30% to 100%
• Calculating the proposed PUF’s uniqueness through Monte Carlo simulations on 1000

simulated instances.

The rest of this paper is organized as follows: Section 2 covers PUFs including security applications
and design approaches that are relevant to our proposed design; Section 3 describes the design
methodology behind our proposed PUF; Section 4 describes the tests used to evaluate our proposed
PUF and presents the results of those tests; Section 5 compares our proposed PUF to existing
sensor-based PUF designs; and finally, Section 6 concludes the paper by providing a summary of
our results.

2. Background and Related Work

This section provides information on PUFs including different design approaches and examples
of their usage in security applications.

2.1. Physically Unclonable Functions

PUFs are a type of device that are commonly used in security applications. PUFs take a given
“challenge” or input and use it to produce an associated “response” or output. A challenge and its
associated response are collectively referred to as a challenge-response pair (CRP). PUFs are especially
designed in a way that make them impossible to clone, hence the name “physically uncloneable”. PUF
operations rely on their own intrinsic variations that are commonly introduced during the manufacturing
process. These variations are random and result in each instance of a given PUF with unique CRPs.

Figure 1 shows an example of the uniqueness property of PUFs. In the figure, there exists two
copies of the same PUF: PUF1 and PUF2. Each PUF copy is supplied with an identical challenge.
The PUFs will then produce their own unique responses for a given challenge. The end result is despite
being supplied the same challenge, PUF1 and PUF2 generate responses that are not equivalent.

Additionally, PUFs can be characterized as either “weak” or “strong”. Weak PUFs are
characterized as having a very limited number of challenge-response pairs (CRPs), typically just
one. They are used in applications where attackers are assumed to not be able to access the responses
as knowing just one CRP could be enough to compromise it. Conversely, strong PUFs have a very
large number of CRPs. This allows them to be used in applications where an attacker could obtain
access to some of the CRPs. This is because strong PUFs should have enough possible challenges that
an attacker will not be able to determine all possible CRPs if given a subset of CRPs.
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Figure 1. Uniqueness Property of PUF.

2.2. Use of PUF as a Security Measure

The intrinsic properties of PUFs make them well suited to a variety of security applications.
Each instance of a PUF should be both unique and unclonable. This places an extra hurdle in the way
of attackers that forces them to obtain the actual PUF that is being targeted in the attack as it should
be impossible for them to create an exact copy of the PUF. Researchers have begun proposing a wide
range of security measures that seek to directly leverage the unique features of PUFs.

One major focus of research has been using PUFs as a way of securely generating and storing
secret keys [13,14]. The response from a PUF is used as a seed to generate secret keys. For weak
PUFs, the response is a master seed from which all generated secret keys are ultimately derived.
The downside to this approach is an attacker only must compromise a single CRP or potentially even
one of the keys to compromise all the keys generated by the PUF. Using a strong PUF instead provides
more security as each key is derived from a different CRP. The CRPs of strong PUFs are unpredictable
and therefore even if an attacker compromises some of the CRPs or keys it has generated, the rest are
virtually unaffected.

An approach similar to the one used in key generation can be applied to remove the need for
secure memory to store secret keys [14]. Compared to normal unsecure memory, secure memory has
the downside of having slower access speeds and being more expensive. As previously described,
secret keys can be derived from PUF responses. Rather than store the keys in memory, they can instead
be regenerated each time they are needed. This means that the only information that must be stored for
each key is the challenge and whatever associated helper data required to generate it. This information
is useless to an attacker that does not have access to the actual PUF and thus can be stored in normal
unsecure memory.

2.3. PUF Design Methodologies

Silicon has proven to be a very popular medium for designing PUFs as researchers are able create
designs based on transistor-level variations such as the propagation delay between gates [23] or the
initial values found in memory when first powered on [24]. For self-contained devices such as IoT
nodes, the implementation of these Silicon-based PUFs, especially ones based on propagation delay,
would likely require the addition of specialized hardware or only be viable in certain applications.
For example, the sensor node security protocol proposed in [15] uses a memory-based PUF created
from the Static Random Access Memory (SRAM) found in commercial Bluetooth Low Energy (BLE)
modules. Other researchers have begun exploring the feasibility of implementing a Dynamic Random
Access Memory (DRAM)-based PUF in the existing memory of a Raspberry Pi B+ [25].

In addition to Silicon, there exists a wide range of components and materials which are suitable
for PUF design [26]. The designs of Non-Silicon-based PUFs prove to be much more varied than
normal silicon-based designs. Of particular interest are sensor-based PUFs as they are the category
of PUF that our proposed design fits into. Comparatively little research exists on sensor-based
PUFs. However, sensors and similar sorts of measurement devices are especially attractive for
designing PUFs since their core functionality of measuring and reporting values can be directly
incorporated into a PUF. Sensor PUF designs have been proposed based on a large range of components
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including microelectromechanical systems (MEMS)-based sensors [27–29], device touchscreens [30],
photodiodes [31], solar cells [32], and piezoelectric sensors [33]. More information about these designs
will be presented in Section V. For further information about other PUF designs, a number of existing
comprehensive literature surveys are available. We point interested readers to any one of the following
works: [34–36].

3. Proposed Design of a Thermistor Temperature Sensor-Based PUF

A thermistor is a temperature sensing device whose resistance changes with temperature.
The design of our proposed PUF uses the on the fact that variations introduced during the
manufacturing process will cause individual thermistors to have different resistances at a given
temperature. These variations are what allow us to ultimately design a PUF capable of generating
unique outputs.

In our proposed design we did not include the implementation of error correcting codes.
Error correcting codes have already been proposed as a way to improve the reliability of responses by
addressing faults such as bit-flip errors [37–39]. However, we wish to evaluate the baseline reliability
of our proposed design. Adding error correction codes would obscure these values since the actual
results would have been influenced by the codes. The addition of error correcting codes are thus a
more relevant consideration for future work that would involve creating a production quality PUF
from the proof of concept represented in this work.

3.1. Basic Circuit Diagram

The EK-TM4C123GXL model Tiva LaunchPad microcontroller we are using does not have a direct
way to measure resistance. Instead, the board has a 12-bit analog-to-digital converter (ADC) capable
of detecting voltages between 0 V and 3.3 V. For that reason we needed to create a circuit that would
allow the changes in a given thermistor temperature sensor’s resistance to manifest as voltage drops.

Our proposed solution is shown in Figure 2. The thermistors used in our design were NXP
KTY81/220. Their operating parameters are shown in Table 1.

Figure 2. Proposed PUF Circuit Diagram.

Table 1. Operating Parameters of NXP KRY81/220 Temperature Sensors [40].

Parameter Value

Operating Temperature −55 °C to 150 °C
Typical Resistance @ −20 °C 1367 Ω
Typical Resistance @ 25 °C 2000 Ω
Typical Resistance @ 80 °C 2980 Ω

The entire circuit consists of 8 thermistor temperature sensors (here represented as resistors R)
placed in series with a 3.3 V input voltage supplied by the microcontroller. A point before each
thermistor is attached to an ADC input pin (Ain). The microcontroller is then able to take a voltage
reading at each point and determine the voltage VR across each thermistor R by finding the different
between two surrounding points. For example, the voltage across thermistor R5 would be equal to
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the difference in readings between ADC inputs Ain5 and Ain4. The following equations show all the
calculations that are made to determine the voltage across each thermistor:

VR7 = Ain7 − Ain6

VR6 = Ain6 − Ain5

VR5 = Ain5 − Ain4

VR4 = Ain4 − Ain3

VR3 = Ain3 − Ain2

VR2 = Ain2 − Ain1

VR1 = Ain1 − Ain0

VR0 = Ain0

(1)

Additionally, singular values read by the ADC can be noisy and slightly vary between readings.
As a countermeasure, the final value for each ADC reading is actually the result of taking 100,000
readings and averaging the results.

3.2. Complete Architecture

Our proposed design requires 8 thermistor temperature sensors. Each sensor is connected to
a microcontroller in the configuration shown in Figure 2. The onboard ADC is used to sample
the voltage readings at each point and uses that data to ultimately derive a voltage drop across
each thermistor. After this step is completed, an algorithm can be used to process the individual
voltage data and construct a 128-bit response. One such example algorithm can be found in [33].
That algorithm generates a response by making a series of comparisons between total output readings
for predetermined groups of a given component. That algorithm assumes that each component should
have the same reading, and any differences are solely due to their intrinsic variations. This means that
actions such as applying heat to some of the thermistors will result in unreliable readings. The end
result is a PUF design that is directly based on thermistor temperature sensors. Figure 3 shows a
picture of the fully constructed PUF.

Figure 3. Prototype Implementation of Proposed Thermistor Based PUF.

4. Testing Configuration and Results

The responses generated from our proposed PUF design were tested to evaluate their reliability
and uniformity (as originally described in [41]). In addition, we evaluated the uniqueness of the design
by performing Monte Carlo simulations with 1000 simulated copies of the PUF.

4.1. Reliability Testing

The reliability of a PUF is a measure of how often it will produce the correct response. The ideal
reliability value of a PUF is 100%. This indicates that the PUF will never produce an erroneous response
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to a given challenge. The following equation (first described in [41]) is used to calculate the reliability
for a n-bit response:

Reliability = 100%− 1
m

m

∑
t=1

HD(Ri, R
′
i,t)

n
× 100% (2)

In this equation, Ri is a chosen reference response from PUF instance i. R
′
i is a response

generated under different environmental conditions. A total of m responses are collected with different
environmental conditions. HD(Ri, R

′
i,t) is the hamming distance (HD) between the reference response

(Ri) and the t-th generated response (R
′
i,t).

For our initial reliability testing we took 1000 consecutive readings from 5 copies of our proposed
PUF. The first response generated by each PUF was used as the reference response. All readings were
taken in a lab space under normal room conditions. Figure 4 shows the graphs for the reliability values
of the responses generated by each PUF. The graphs show that each PUF copy maintains a level of
reliability that remains close to the ideal value of 100%. Table 2 contains the average reliability values
for each copy of the PUF. Among the five copies of the proposed PUF, PUF2 had the highest average
reliability at 99.16% while PUF1 had the lowest at 97.09%. The overall combined average reliability for
the tested copies was 98.46%.
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Figure 4. Reliability of PUFs Against Repeated Response Generation.

Table 2. Average Reliability Values of Proposed PUF Instances when Generating 1000 Consecutive Responses.

PUF1 PUF2 PUF3 PUF4 PUF5 Total

97.09% 99.16% 99.09% 98.08% 98.91% 98.46%

4.1.1. Temperature Reliability Testing

The next phase of reliability testing involved taking readings on each PUF over a range of −20 °C
to 80 °C in increments of 5 °C. This was achieved by using the temperature chamber shown in Figure 5
and the graph of the results is shown in Figure 6.

Figure 5. Testing Chamber.

Figure 6. Reliability with Respect to Temperature. 25 °C was used as the reference value and the
measured range was −20 °C to 80 °C in increments of 5 °C.

25 °C was used as the reference temperature for determining the reliability values. This is why
each copy of the PUF shows 100% reliability at 25 °C. The graph shows that the reliability values begin
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to fall off as the temperature moves away from the reference temperature of 25 °C. It is worth noting
that PUF1 had a more pronounced decline than the other copies of the PUF did as the temperature
moved towards −20°. This could be due to just random chance as the other 4 copies of the PUF
remain relatively close together. In addition, PUF1 does not suffer a similarly drastic fall in reliability
compared to the other copies of the PUF as the temperature approaches 80°. Even though PUF1’s
average reliability was a relatively respectable 92.97%, it was still the lowest average reliability among
the tested PUFs. Table 3 shows the average reliability for each copy of the PUF. The overall total
average reliability for the set was 95.49%.

Table 3. Average Reliability from −20 °C to 80 °C.

PUF1 PUF2 PUF3 PUF4 PUF5 Total

92.97% 96.32% 96.84% 96.21% 95.09% 95.49%

4.1.2. Relative Humidity Reliability Testing

Reliability testing was also performed with respect to relative humidity. 30% relative humidity
was used as the reference values and the relative humidity increased from 30% to 100% in increments
of 10%. Figure 7 shows the reliability of the PUFs as the relative humidity increases from 30%. Overall,
the PUFs seemed to be resistant to changes in relative humidity. Most copies did not show consistent
drops in reliability until the relative humidity reached 80%. Table 4 shows the average reliability for
each copy of the PUF. PUF1 once again demonstrated the lowest reliability of the test group with an
average reliability of 95.70%. The overall total average reliability was 98.30%.

Figure 7. Reliability with Respect to Relative Humidity. 30% was used as the reference value and the
measured range was 30% to 100%.

Table 4. Average Reliability from 30% to 100% Relative Humidity.

PUF1 PUF2 PUF3 PUF4 PUF5 Total

95.70% 99.12% 99.12% 98.05% 99.51% 98.30%

4.2. Uniformity Testing

The uniformity of a PUF describes how “balanced” its responses are, i.e., what is the prevalence of
1’s vs. 0’s in the bits of the responses. Ideally, there will be an equal number of 1’s and 0’s to maximize
the difficulty for an attacker trying to guess the value of a given bit. This ideal scenario is represented
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by a uniformity value of 50%. The following equation (first described in [41]) is used to calculate the
uniformity of a n-bit response:

Uni f ormity =
1
n

n

∑
l=1

ri,l × 100% (3)

In the above equation, ri,l represents the l-th bit of a n-bit long response generated by PUF
instance i. In order to obtain a general uniformity of PUF we averaged together all the readings for a
given test. Table 5 shows the average uniformity value for each copy of the proposed PUF across each
of the areas of testing (1000 consecutive responses, temperature, and humidity). The overall average
uniformity values for the different tests were 50.22%, 49.34%, and 47.91%, respectively. On average,
the uniformity values were very close to the ideal value of 50%.

Table 5. Average Uniformity Values of Proposed PUF Instances.

PUF1 PUF2 PUF3 PUF4 PUF5 Total

Consecutive 49.66% 49.96% 50.05% 49.48% 51.94% 50.22%
Temperature 48.59% 48.21% 49.52% 48.92% 51.45% 49.34%

Humidity 47.46% 46.58% 49.51% 47.85% 48.14% 47.91%

4.3. Uniqueness Testing

As described in [41], the uniqueness of a PUF represents the ability to distinguish one particular
instance of a PUF from a group of PUFs of the same type. The ideal uniqueness value is 50%.
The following equation is used to calculate uniqueness:

Uniqueness =
2

k(k− 1)

k−1

∑
i=1

k

∑
j=i+1

HD(Ri, Rj)

n
× 100% (4)

The above equation determines the average hamming distance (HD) among k total PUFs. Ri and
Rj represent m-bit responses produced by PUFs i and j, respectively where i 6= j.

The common method for evaluating the uniqueness property of a PUF is by performing Monte
Carlo simulations as this allows many unique copies to be generated. For our simulations we
created 1000 simulated copies of the PUF. We first created a normal distribution of resistors using the
manufacturer specified resistances at 25 °C [40]: minimum of 1960 Ω, maximum of 2040 Ω, and typical
of 2000 Ω. Each simulated instance was created by randomly choosing 8 resistors from the distribution.
The uniqueness was determined to be 49.89%.

5. Comparison to Existing Designs

It should be noted that other PUF designs which are effectively based on measuring differences in
resistance values have been proposed. Those designs are based on materials such as magnetoresistive
RAM (MRAM)[42], memristors [43,44], and on-chip transistors [45] and metal wires [45,46].
These designs share a common theme with our proposed thermistor PUF of using unique resistances
to produce a response. However, we do not feel this is strong enough of a justification to include these
designs in direct comparisons that we will do with other sensor PUF designs. The main reason is
that one of the goals in creating sensor PUFs is that theoretically a device that already contains the
requisite number of sensors could function as a PUF without needing to add any additional hardware.
Much like Silicon PUFs, these resistance-measuring PUFs would have to be specifically added to the
target device. Furthermore, the resistances of thermistors are designed to change with temperature
and can therefore be more sensitive than the components in other designs. Variations in physical
properties due to temperature are not intended to be the core operating mechanic of those designs
(e.g., allowing thermistors to measure temperature). Sensors on the other hand are generally designed
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to change one of their physical properties in a significant and predictable way as a direct response to
the environmental condition they are monitoring. That same physical property also serves as the basis
for creating a sensor PUF from a given sensor. It is for these reasons the focus of our comparisons will
be PUF designs that are based on sensors.

Certain difficulties were encountered when attempting to compare the results of our proposed
thermistor PUF to existing sensor PUF designs. Unfortunately, sensor PUFs are less popular than
Silicon-based PUFs and thus there is comparatively little directly applicable existing research for which
we can compare our work. This is further exacerbated by the fact that works that have proposed
sensor-based designs do not tend to include performance metrics that can be directly compared
with our results. Among the existing sensor-based PUF designs, we are only able to make a direct
comparison of performance metrics with the piezo sensor-based design [33]. Comparisons to other
designs will solely focus on the functional aspects of the PUF designs.

The devices that we will specifically highlight are microelectromechanical systems (MEMs)-based
sensors [27–29], device touchscreens [30], photodiodes [31], solar cells [32], and piezo sensors [33].
These designs have certain drawbacks that could hinder their adoption by cyber-physical systems.
The piezo sensor PUF [33] requires a sinusoidal input source which is not always readily available
certain devices. Additionally, piezo sensors cannot be considered to be prevalent as thermistor
temperature sensors since vibration sensing is less common when compared to temperature sensing.
The MEMs gyroscope designs [27,28] generate responses based on the output of a MEMs gyroscope.
The major concern would be how easily a given gyroscope orientation could be reproduced by a user.
A different MEMs-based approach is a ring oscillator (RO) PUF design in which the ring oscillators are
constructed from pressure sensing MEMs relays [29]. This design is costly as it requires a separate RO
for each bit in the response in addition to bias generation circuitry to control the relays. The touchscreen
design [30] is subject to the same type of concern. The design generates a response based on a user’s
ability to trace a specified pattern on the screen. There should be a certain amount of variance in
results every time a user attempts to replicate the same fine movements that would be used to trace a
specified pattern. The photodiode-based design [31] is subject to a sort of chicken and egg problem
where its design actually requires a conventional PUF to operate. Lastly, the solar cell work [32] shows
that solar cells could potentially be used as a PUF, but stops short of proposing a complete design.
Table 6 contains a summary of the drawbacks of various sensor PUF designs.

Our proposed design does not suffer from any of the previously mentioned drawbacks that
are present in existing designs. One potential concern is the number of thermistors required to
implement our proposed design will not always be present in a given cyber-physical device or
system. However, some areas such as certain industrial applications [47,48] which make use of
redundant temperature sensors could be especially suitable thanks to the larger than normal number
of temperature sensors.

In terms of actual performance metrics, we were only able to make direct comparisons with the
reliability and uniformity results between our proposed design and those from the piezo sensor-based
PUF [33]. Uniqueness values were not reported. Table 7 contains these values for both our proposed
design and the previous piezo sensor work. The average reliability and uniformity across three copies
of the piezo PUF was calculated to be 96.07% and 47.24%, respectively. Our proposed design had an
average reliability of 98.46% and an average uniformity of 50.22%.

This improvement could be attributed to a couple of factors. The first possibility is the circuit used
by our proposed PUF could be more conducive to producing consistent responses. The piezo design
required using an ADC to sample AC waveforms which could introduce noise into the measurements.
The fact that our proposed design samples what should be steady DC voltages means that the overall
sampling process is more straightforward and thus more consistent. A second possible contributing
factor is some unspecified aspect of the physical properties of thermistor temperature sensors could
simply make them better suited than piezo sensors for constructing PUFs.
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Table 6. PUF Comparison.

PUF Description Drawback

Piezo [33] Compares summations of voltage drops
across groups of piezo sensors

Requires an additional AC input voltage.
Limited applications compared to
proposed design.

MEMs Gyro [27,28] Responses are derived from the output
of a MEMs gyroscope

Concerns about being able to repeatedly
produce a desired CRP.

MEMs Pressure [29] Ring Oscillator (RO) design using
pressure sensitive MEMs relays.

Significant overhead due to additional
circuitry.

Touchscreen [30] A user traces a specified pattern
displayed on the touchscreen

Concerns about being able to repeatedly
produce a desired CRP.

Photodiode [31] Compares summation of sensor groups
based on the output of a PUF

Correct operation requires an existing
conventional PUF.

Solar Cells [32] Testing results show that solar cells
produce unique voltages for the same
light source

Complete design not proposed.

Proposed Design Uses microcontroller to compare
readings from groups of thermistor
temperature sensors to generate a
weak response.

Requires more thermistor temperature
sensors than may already exist in
certain systems.

Table 7. PUF Comparison.

Piezo [33] Proposed

Uniformity 47.24% 50.22%
Reliability 96.07% 98.46%

A direct comparison of reliability with respect to temperature is complicated by the testing method
employed for the piezo PUF. Both our proposed PUF and the piezo PUF used 25 °C as a reference
temperature. However, two different chambers were used to test ranges of −20 °C to 0 °C and 25 °C
and 80 °C with the range of 0 °C to 25 °C being extrapolated. This prevents a direct comparison in
terms of average reliability values. What can be noted is the reliability for the piezo PUF faces a much
sharper drop in reliability (below roughly 88%) than any of the thermistor PUFs in which the lowest
recorded reliability was 92.97% at 80 °C for PUF1. Additionally, for the range of −20 °C to 0 °C the
piezo PUF had its reliability generally drop as the temperature approached 0 °C. Its reliability at−20 °C
was better than all the tested copies of our proposed thermistor temperature sensor PUF. However, its
reliability at 0 °C was worse than any of the copies of our proposed thermistor temperature sensor PUF.

6. Discussion & Conclusions

In this work, we have proposed a novel PUF design for use in cyber-physical systems by using
thermistors which are components commonly found within the field. The actual design uses a
microcontroller to compare the summed voltage outputs across predetermined groups of thermistor
temperature sensors to generate a weak response. Monte Carlo simulations produced a uniqueness
value of 49.89% which is very close to the ideal value of 50%. Our proposed design was shown to
have improved overall reliability and with regards to changes in temperature when compared to the
existing design based on piezo sensors [33]. Additional reliability testing with respect to relative humidity
appeared to show that the proposed design is relatively unaffected by humidity values less than 80%.
As a future work, the addition of error correcting codes could help improve the reliability values of the
base design.

It is worth noting that this design should be treated as a proof of concept and not a fully realized
security solution. The main goal in creating this device was to conduct a preliminary exploration to
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determine if thermistor temperature sensors are a viable option for PUF creation when compared
to existing sensor-based PUF designs. The prototypes we created for testing purposes were meant
to only address this question of viability. The prototypes are vulnerable to physical attacks such
as an attacker manually measuring the voltage drops across each thermistor and then creating a
model of the PUF. Other researchers have already explored mitigation methods such as implementing
tamper-resistance [49,50] and providing protection from side channel attacks [51–53]. Exploring the
integration of existing solutions or devising new concepts are outside of the scope of this paper and
should instead be considered to be avenues for future work when designing a full-scale production
quality implementation.
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