
A PUF Based CAN Security Framework

Tyler Cultice, Carson Labrado, and Himanshu Thapliyal1

Abstract—We propose a method to include security and
reliability to the messages sent over the CAN bus. Our
approach adheres to CAN standard ISO 11898-1. A reliable
PUF response is used in key generation to create a unique
shared AES-256 key between each ECU, allowing for all
message paths to be encrypted. In addition, an HMAC
system with a counter is implemented to help protect
against replay attacks and message tampering within the
network.

I. PROPOSED DESIGN

We propose a more efficient and more secure CAN

security framework utilizing encryption and hash en-

gines. Proper usage of modern encryption algorithms,

such as ECDH, call for large key sizes. Due to the

large performance cost of messages, we propose meth-

ods to minimize the amount of packets required for

authorization and produce more secure communication

between authorized nodes. This proposed design requires

no changes to the standard CAN protocol.

A. Architecture

The architecture of this system requires no change

to the CAN protocol. To allow for random private key

generation, a Physically Unclonable Function (PUF) is

included with each node. These nodes should all have

their own ID associated with a message ID. Without the

unique IDs, the server would not know which shared

key to decrypt with. The system should send a 16 byte

message using two 8 byte CAN message payloads. The

server should contain a TRNG which will be used to

initialize the counter for each node.

The public keys are safe to be stored within nonvolatile

memory. Private and shared keys should be generated

each time during the authorization phase rather than

being stored between sessions. The general layout is

shown in Figure 1.

B. Encryption and MAC

The design will utilize ECDH to generate asymmetric

keys and the shared key. Asymmetric keys will be derived

The authors are with the Department of Electrical and Computer
Engineering, University of Kentucky, Lexington, KY, 40506 USA

1Contact e-mail: (hthapliyal@uky.edu). This research was partially
supported by National Science Foundation Grant No:1738662.

Fig. 1. Proposed CAN Authorization System

from PUFs. The PUF will generate the private keys

each time they are needed. The standard of security for

these algorithms call for key lengths that make previous

proposed frameworks dramatically increase in message

quantities. AES-128 or AES-256 are recommended for

the symmetric encryption based on the similar block

size and key size requirements to what is generated by

the proposed CAN framework. All messages should be

encrypted with AES using the shared key generated from

one node’s private key and the communicated node’s

public key. This results in 2 CAN frames for every

message passed between nodes utilizing this framework.

AES must encrypt blocks of 16 bytes at a time.

Standard CAN frames only contain 8 bytes of data so the

remaining 8 bytes can be used for protection from replay

attacks and data integrity. HMAC should be appended

to packets and should be checked before the data is

used by the ECU. Protection from replay attacks requires

including a counter in the payload. The server will first

initialize the counter with a random value and then share

it with the nodes. Each node keeps a record of the counter

and it should increment by at least one each time it is

used. HMAC+counter systems have proved useful within

a simple authorization protocol using CAN+ [1]. In our

proposed implementation, the counter system is known

by both the sender and receiver and an HMAC algorithm

is used to ensure that sent authorization data is authentic.

C. Authorization Phase

Authorization will utilize a server node framework.

Because authorization only requires data that can be



verified and not easily replicated, any string of bytes

known by both the server and node can be encrypted to

provide sufficient verification proof. AES-256 uses block

sizes of 16 bytes. Therefore, we can use any 16 byte

string of data, such as hashed data, for our verification

message. Due to the 16 byte minimum limit, we propose

a specific message structure. The message contains a bit-

field of 64 bits to transmit the verified list to each node

relative to the node’s list of communicated IDs. All node

public keys can be stored in advance instead of having to

send them over the bus. The nodes will use this bit field

as a means to activate and deactivate communications to

others based on the bit flags.

The remaining 64 bits of data will utilize a HMAC

structure with counter to provide integrity to the data

being sent. A node should immediately reject messages

if the MAC does not properly authenticate the received

data. This method of checking authenticity and security

is called Authenticate-then-Encrypt (AtE). The AES en-

cryption will result in a 16 byte final size per data block

with HMAC.

D. After Authorization

After authorization, the nodes should generate shared

keys using Diffie-Hellman for only the nodes that are

authorized. This makes sure that the private and shared

keys are both in volatile memory, assumed to be secure

by the user. These keys should be used throughout the

rest of the session to MAC and encrypt all communica-

tion between each node. Error handling should be used

to ensure that attempts to communicate with disabled

nodes are denied to prevent insecure communication or

unexpected issues.

II. PERFORMANCE AND SECURITY

The goal of security within systems that determine user

safety is to provide the best security possible without sig-

nificant cost. Time expensive frameworks and algorithms

slow communication systems down risking the safety of

the user. An ideal system provides strong security, af-

fordable architecture, and low impact performance costs.

For fair comparison, we are comparing our work with

the existing framework [2] as a base.

A. Message Costs and Performance

The lowest standard of acceptable security according

to NIST is 224 bits for the generated public key [3].

However, using a bit length of 256 and len(p) = 256, we

can generate a key that is the size needed for symmetric

AES encryption. For the sake of performance analysis

we will consider the public key to be 256 bits per NIST

standards. Packets sent from the node to the server for

authorization require 16 bytes per node to verify. This

is split into two messages, making the number of CAN

messages sent for n nodes to be 2n for the proposed

implementation. 4n messages are required to send the

256 bit public keys to verify n nodes. This results in a

significant decrease from the existing approach [2] as the

verification in our proposed design requires two packets

less per node.

Fig. 2. Graph Comparing Returned Message Count

The largest performance gain is within the whitelisting

phase of the framework. Sending a binary map of all the

verified nodes to each node results in n messages for

our proposed design. This is compared to the existing

design’s n2 messages. As shown in Figure 2, this differ-

ence becomes very significant as the number of nodes

grows.

III. CONCLUDING REMARKS

Many systems today still use the original CAN pro-

tocol and thus suffer the limitations with message size

and transmission speed. Many CAN systems remain

unencrypted, leaving these essential communication sys-

tems vulnerable to extremely simple hacks. Authorization

and encryption need to become standard in a vehicle.

Developing encryption methods that can be implemented

without driver or device changes are essential to encour-

aging security in vehicular communication systems.

REFERENCES

[1] A. Herrewege, D. Singele, and I. Verbauwhede, “Canauth - a
simple, backward compatible broadcast authentication protocol
for can bus,” 01 2011, p. 7.

[2] A. S. Siddiqui, Y. Gui, J. Plusquellic, and F. Saqib, “A secure
communication framework for ecus,” Advances in Science, Tech-
nology and Engineering Systems (ASTES), vol. 2, no. 3, pp.
1307–1313, 2017.

[3] L. Chen, D. Moody, A. Regenscheid, and K. Randall, “Recom-
mendations for discrete logarithm-based cryptography: Elliptic
curve domain parameters,” 10 2019, p. 9.


