A PUF Based CAN Security Framework

Tyler Cultice, Carson Labrado, and Himanshu Thapliyal®

Abstract—We propose a method to include security and
reliability to the messages sent over the CAN bus. Our
approach adheres to CAN standard ISO 11898-1. A reliable
PUF response is used in key generation to create a unique
shared AES-256 key between each ECU, allowing for all
message paths to be encrypted. In addition, an HMAC
system with a counter is implemented to help protect
against replay attacks and message tampering within the
network.

I. PROPOSED DESIGN

We propose a more efficient and more secure CAN
security framework utilizing encryption and hash en-
gines. Proper usage of modern encryption algorithms,
such as ECDH, call for large key sizes. Due to the
large performance cost of messages, we propose meth-
ods to minimize the amount of packets required for
authorization and produce more secure communication
between authorized nodes. This proposed design requires
no changes to the standard CAN protocol.

A. Architecture

The architecture of this system requires no change
to the CAN protocol. To allow for random private key
generation, a Physically Unclonable Function (PUF) is
included with each node. These nodes should all have
their own ID associated with a message ID. Without the
unique IDs, the server would not know which shared
key to decrypt with. The system should send a 16 byte
message using two 8 byte CAN message payloads. The
server should contain a TRNG which will be used to
initialize the counter for each node.

The public keys are safe to be stored within nonvolatile
memory. Private and shared keys should be generated
each time during the authorization phase rather than
being stored between sessions. The general layout is
shown in Figure 1.

B. Encryption and MAC

The design will utilize ECDH to generate asymmetric
keys and the shared key. Asymmetric keys will be derived

The authors are with the Department of Electrical and Computer
Engineering, University of Kentucky, Lexington, KY, 40506 USA

! Contact e-mail: (hthapliyal @uky.edu). This research was partially
supported by National Science Foundation Grant No:1738662.

CAN Server:
- CAN Controller
- PUF
- Encryption Engine
- TRNG

CAN-H
%1200 120Q %
CAN-L

CAN Node:
- CAN Controller

CAN Node:
- CAN Controller

= BUE =SPUE
- Encryption Engine

- Encryption Engine

Fig. 1. Proposed CAN Authorization System

from PUFs. The PUF will generate the private keys
each time they are needed. The standard of security for
these algorithms call for key lengths that make previous
proposed frameworks dramatically increase in message
quantities. AES-128 or AES-256 are recommended for
the symmetric encryption based on the similar block
size and key size requirements to what is generated by
the proposed CAN framework. All messages should be
encrypted with AES using the shared key generated from
one node’s private key and the communicated node’s
public key. This results in 2 CAN frames for every
message passed between nodes utilizing this framework.

AES must encrypt blocks of 16 bytes at a time.
Standard CAN frames only contain 8 bytes of data so the
remaining 8 bytes can be used for protection from replay
attacks and data integrity. HMAC should be appended
to packets and should be checked before the data is
used by the ECU. Protection from replay attacks requires
including a counter in the payload. The server will first
initialize the counter with a random value and then share
it with the nodes. Each node keeps a record of the counter
and it should increment by at least one each time it is
used. HMAC+counter systems have proved useful within
a simple authorization protocol using CAN+ [1]. In our
proposed implementation, the counter system is known
by both the sender and receiver and an HMAC algorithm
is used to ensure that sent authorization data is authentic.

C. Authorization Phase

Authorization will utilize a server node framework.
Because authorization only requires data that can be



verified and not easily replicated, any string of bytes
known by both the server and node can be encrypted to
provide sufficient verification proof. AES-256 uses block
sizes of 16 bytes. Therefore, we can use any 16 byte
string of data, such as hashed data, for our verification
message. Due to the 16 byte minimum limit, we propose
a specific message structure. The message contains a bit-
field of 64 bits to transmit the verified list to each node
relative to the node’s list of communicated IDs. All node
public keys can be stored in advance instead of having to
send them over the bus. The nodes will use this bit field
as a means to activate and deactivate communications to
others based on the bit flags.

The remaining 64 bits of data will utilize a HMAC
structure with counter to provide integrity to the data
being sent. A node should immediately reject messages
if the MAC does not properly authenticate the received
data. This method of checking authenticity and security
is called Authenticate-then-Encrypt (AtE). The AES en-
cryption will result in a 16 byte final size per data block
with HMAC.

D. After Authorization

After authorization, the nodes should generate shared
keys using Diffie-Hellman for only the nodes that are
authorized. This makes sure that the private and shared
keys are both in volatile memory, assumed to be secure
by the user. These keys should be used throughout the
rest of the session to MAC and encrypt all communica-
tion between each node. Error handling should be used
to ensure that attempts to communicate with disabled
nodes are denied to prevent insecure communication or
unexpected issues.

II. PERFORMANCE AND SECURITY

The goal of security within systems that determine user
safety is to provide the best security possible without sig-
nificant cost. Time expensive frameworks and algorithms
slow communication systems down risking the safety of
the user. An ideal system provides strong security, af-
fordable architecture, and low impact performance costs.
For fair comparison, we are comparing our work with
the existing framework [2] as a base.

A. Message Costs and Performance

The lowest standard of acceptable security according
to NIST is 224 bits for the generated public key [3].
However, using a bit length of 256 and len(p) = 256, we
can generate a key that is the size needed for symmetric
AES encryption. For the sake of performance analysis
we will consider the public key to be 256 bits per NIST

standards. Packets sent from the node to the server for
authorization require 16 bytes per node to verify. This
is split into two messages, making the number of CAN
messages sent for n nodes to be 2n for the proposed
implementation. 4n messages are required to send the
256 bit public keys to verify n nodes. This results in a
significant decrease from the existing approach [2] as the
verification in our proposed design requires two packets
less per node.

Max Messages in Return Phase

BN Existing [2]
B Proposed
200 ‘

8 10 12 14 16
n Nodes

[
wu
o

Messages
=
o
o
'
ol
.
I
I
I

Fig. 2. Graph Comparing Returned Message Count

The largest performance gain is within the whitelisting
phase of the framework. Sending a binary map of all the
verified nodes to each node results in m messages for
our proposed design. This is compared to the existing
design’s n? messages. As shown in Figure 2, this differ-
ence becomes very significant as the number of nodes
Srows.

III. CONCLUDING REMARKS

Many systems today still use the original CAN pro-
tocol and thus suffer the limitations with message size
and transmission speed. Many CAN systems remain
unencrypted, leaving these essential communication sys-
tems vulnerable to extremely simple hacks. Authorization
and encryption need to become standard in a vehicle.
Developing encryption methods that can be implemented
without driver or device changes are essential to encour-
aging security in vehicular communication systems.

REFERENCES

[1] A. Herrewege, D. Singele, and 1. Verbauwhede, “Canauth - a
simple, backward compatible broadcast authentication protocol
for can bus,” 01 2011, p. 7.

[2] A. S. Siddiqui, Y. Gui, J. Plusquellic, and F. Saqib, “A secure
communication framework for ecus,” Advances in Science, Tech-
nology and Engineering Systems (ASTES), vol. 2, no. 3, pp.
1307-1313, 2017.

[3] L. Chen, D. Moody, A. Regenscheid, and K. Randall, “Recom-
mendations for discrete logarithm-based cryptography: Elliptic
curve domain parameters,” 10 2019, p. 9.



